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The use of ideal memristors in a continuous-time (CT) nonlinear circuit is known to greatly
enrich the dynamic behavior with respect to the memristorless counterpart, which is a crucial
property for applications in future analog electronic circuits. This can be explained via the flux—
charge analysis method (FCAM), according to which CT circuits with ideal memristors have
for structural reasons first integrals (or invariants of motion, or conserved quantities) and their
state space can be foliated in infinitely many invariant manifolds where they can display different
dynamics. The paper introduces a new discretization scheme for the memristor which, differently
from those adopted in the literature, guarantees that the first integrals of the C'T memristor cir-
cuits are preserved exactly in the discretization, and that this is true for any step size. This
new scheme makes it possible to extend FCAM to discrete-time (DT) memristor circuits and
rigorously show the existence of invariant manifolds and infinitely many coexisting attractors
(extreme multistability). Moreover, the paper addresses standard bifurcations varying the dis-
cretization step size and also bifurcations without parameters, i.e. bifurcations due to varying the
initial conditions for fixed step size and circuit parameters. The method is illustrated by analyz-
ing the dynamics and flip bifurcations with and without parameters in a DT memristor—capacitor
circuit and the Poincaré—Andronov—Hopf bifurcation in a DT Murali-Lakshmanan—Chua circuit
with a memristor. Simulations are also provided to illustrate bifurcations in a higher-order DT
memristor Chua’s circuit. The results in the paper show that DT memristor circuits obtained
with the proposed discretization scheme are able to display even richer dynamics and bifur-
cations than their CT counterparts, due to the coexistence of infinitely many attractors and
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the possibility to use the discretization step as a parameter without destroying the foliation in

invariant manifolds.

Keywords: Bifurcation without parameters; discrete-time memristor circuit; first integral; flip
bifurcation; flux-charge analysis method; invariant manifold; memristor; Poincaré—Andronov—

Hopf bifurcation.

1. Introduction

The memristor was postulated in a seminal article
by [Chud [1971] as the fourth basic passive circuit
element in addition to the resistor, capacitor and
inductor. Due to the lack of physical devices for
implementing a memristor, the memristor itself has
been mainly of theoretic and academic interest for
more than 30 years. Things changed drastically due
to the discovery of memristive behavior in nanotech-
nology devices by Williams and his team [Strukov
et al., [ZD_OH] Since then, the memristor has been the
subject of an unprecedented research interest due
to its enormous potential for implementing com-
pact and power-efficient memories and its expected
role in futuristic neuromorphic computers [Yang &

Williams, 2013; Williams, 2017; [Sebastian et al,
2018; LHu.angJ_t_aU 2021 Llameut_QU 2018; Sir-
akoulis et al., 2022)].

One relevant research branch concerns the use
of memristors in the design of continuous-time (CT)
dynamic analog circuits for signal processing. In
fact, several papers in the literature have pointed
out that, due to their memory and nonlinearity,
memristors are able to greatly enrich the possible
range of dynamic behaviors, which is crucial for the
use of analog c1rcu1ts in future electronics [Itoh &
Chua DDDH , | ; Buscarino
et al., 2013 , Kumar et al A ‘m; ian ,M]

In recent years, a technique named flux—charge
analysis method (FCAM) has been introduced to
analyze CT circuits with ideal memristors in the
flux—charge domain (FCD), rather than in the tra-
ditional voltage—current domain (VCD) [Corinto &
Forti, 12016; |Corinto et all, l2Q2l|] By means of
FCAM, it has been shown that any circuit with
ideal memristors admits for structural reasons first
integrals and the state space can be foliated in
infinitely many invariant manifolds where it displays
different dynamics |Corinto & Forti, [2017]. This
rigorously shows that memristor circuits can pos-
sess infinitely many different coexisting attractors, a
peculiar dynamic property known in the literature as

extreme multistability [Hens et al], Dﬁlﬂ; &Mt_aﬂ,
2016; IChang et all, [ZDLQ] When applied for instance
to a memristor Chua’s circuit (MCC), FCAM shows
that there is coexistence of convergent, periodic and
complex dynamics for a given set of MCC parame-
ters. In [Di Marco et all [2022] and [Escudero et al!

], it is shown that extreme multistability can
be observed also in circuits with some real memris-
tor devices.

The study of discrete-time (DT) models of
memristors is rapidly gaining increasing interest
and momentum in the literature due a number of
fundamental reasons:

(a) Real memristor devices for laboratory exper-
iments are nowadays still not always easily
available, hence DT models permit to develop
effective digital emulators to study the dynam-
ics and evaluate the performance of CT mem-
ristor circuits [[toh & Chua, [2014: Solan &
Ochs, 201§]. DT emulators of memristors can be
directly implemented in software on digital com-
puters or other types of digital signal proces-
sors, as a reconfigurable hardware emulator on
an FPGA (field-programmable gate array) or an
ASIC (application-specific integrated circuit).

(b) In addition to approximating the dynamics of
CT counterparts, discrete maps implemented
by DT memristor circuits can be of interest in
themselves as a source of complex dynamics for
engineering applications. Along this line, sev-
eral papers in the literature have been devoted
to DT memristor circuits generating chaos
or hyperchaos and exhibiting coexisting com-

plex attractors, see e.g. [Bao et al! [2021]. Bao
et al. [2022] and ILi et all [2020] and refer-
ences therein. Industrial applications to gen-
erate chaotic sequences of numbers or chaotic
signals in secure communications have been
investigated in these papers as well.

(¢) DT models of memristors can be effectively
used for implementing on a digital hardware
relevant paradigms such as DT cellular neural
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networks and cellular automata [Di Marco

et al., 2023; [Itoh & Chua, 21!14].

Despite considerable works available so far in
the literature, a rigorous analysis of how the prop-
erties of the dynamics of CT memristor circuits are
affected by the discretization schemes is still lack-
ing. This paper addresses this issue by introducing
a new method to analyze a large class of DT mem-
ristor circuits, named LM, containing ideal mem-
ristors, capacitors, inductors, resistors and possibly
voltage and current sources. More precisely, the goal
of this paper is threefold:

(1) The fact that a CT system has a first integral
is known to be a fragile property, i.e. it is in
general not preserved when discretizing the sys-
tem, no matter how small the step size is. This
notwithstanding, in the paper we introduce a
new ad-hoc discretization scheme for the mem-
ristor which, differently from the schemes used
in the literature, guarantees that the first inte-
grals and the foliation in invariant manifolds
of the state space are preserved exactly in the
discretization, and that this property holds for
any step size.

(2) The paper extends FCAM in order to ana-
lyze in the FCD the DT memristor circuits
thus obtained. The new method is named the
discrete-time flux—charge analysis method, or
DT-FCAM.

(3) The paper illustrates the application of DT-
FCAM to rigorously show the existence of
infinitely many coexisting attractors (extreme
multistability) for some prototypical circuits in
LM, namely, a DT memristor—capacitor (MC)
circuit, a DT Murali-Lakshmanan—Chua circuit
with a memristor and a DT memristor Chua’s
circuit. More precisely, the paper studies two
types of bifurcations: First, standard bifurca-
tions with respect to the step size, using the
property that the existence of invariant mani-
folds and their structure is independent of the
step size; second, it addresses bifurcations with-
out parameters for a fixed step size.

The results in the paper show that DT mem-
ristor circuits in LM obtained with the proposed
scheme are able to display even richer dynamics
and bifurcations than the original CT circuits. This
property is due to the possibility for varying the
step size without altering the structure of invariant

New Class of Discrete-Time Memristor Circuits

manifolds and the coexistence of infinitely many dif-
ferent attractors for each fixed step size.

2. Basic Example

For illustrative purposes, we find it useful to discuss
the basic idea in this paper by means of the simplest
memristor circuit. More precisely, consider the CT
memristor—capacitor (MC) circuit in Fig.[I] given by
a linear capacitor ic = C'U¢, where the dot denotes
the time derivative, and a flux-controlled memris-
tor qu = q(par), where @p(t) = ffoo vpr(t)dt
and gy (t) = ffoo in(t) are the memristor flux and
charge, respectively. The MC circuit satisfies the
second-order ordinary differential equation (ODE)
in the state variables v, @ar,

. 1,
o =—74 (ear)ve,

(1)
()bM = v,

for t > to, where t( is the initial instant. By ¢,
we denote the derivative of ¢ with respect to its
argument.

Consider the function of the state variables

w(ve, em) = Cve + 4(pm).
We have

w(ve(t), eu(t) = Cic(t) + 4 (eu (1) oar(t) = 0,

i.e. w is constant along the solutions of (). In math-
ematical terms, w is said to be a first integral (or
invariant of motion, or conserved quantity) of the
MC circuit.

The existence of a first integral is of impor-
tance, since it severely constrains the dynamics of
the MC circuit, which is bound to evolve on invari-
ant manifolds; moreover, on each invariant mani-
fold the dynamics itself turns out to be of lower

order (i.e. first-order) |Corinto & Forti, [2016]. The

ic M
—————O0—p—
N +
C___ vc UM E]M

Fig. 1. Continuous-time MC circuit.
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existence of a first integral and the foliation of the
state space in invariant manifolds permit to explain
rigorously the coexistence of an infinite number of
attractors for the MC circuit, a phenomenon also
known as extreme multistability. Moreover, they are
at the basis of the so-called bifurcations without
parameters.

Now, suppose we want to discretize the
ODE (). Given a scalar function z(t), t > to, we
consider its samplings z = x(tx) = z(to + kh),
k = 0,1,2,..., where h > 0 is the step size (or
sampling interval). According to the forward Euler
rule, &(tx) can be approximated by the difference
quotient

_ w(ter1) — 2(tr)

_ x(to + (k + 1)h) — x(to + kh)
N h
_ Tkl — Tk

—

Next, we consider two different discretization
schemes for ().

Discretization Scheme 1. A first possibility is to
consider the scheme

(2)

A~/
Vo k+1 = vk — R (On k) Ve ks
OMk+1 = OMm i + hvok,

where we used the forward Euler rule to approx-
imate 0c(tr) and $pr(tx). This is a second-order
map in the state variables vc i, ¢k defining a DT
MC circuit.

It can be checked that w is no longer a first
integral for the map (2) no matter how small the
step size h is. In fact, we have

Awy, = w(ve kt1, PME+1) — WVC K, M k)
= —hq' (err)vek + (e + hok)

— (k)

Since in the general case

. Gk + hvg) — (e
d(omp) # oar . ) — dleas)
VCk

)

it follows that Awy # 0, i.e. w is not constant along
the solutions of ().

It is worth noting that this is the typical dis-
cretization scheme used in the literature to study

the DT memristor circuits, see e.g. Bao et all ﬂ292l|],

Bao et all [2029] and [Li_ef all [2020] and references

therein.

Discretization Scheme 2. The new discretiza-
tion proposed in this paper is as follows. Recall
that ipy = ¢p. By the forward Euler rule, we

have inp = (qmp+1 — ap)/h = (@(emp+1) —
G(¢ark))/h. Therefore, we obtain the scheme

1, .
VOk+1 = VC,k — 5(Q(<PM,k + hvok) — G(eak)),

OMk+1 = @Mk + hvcog.

(3)
This is again a second-order map in the state vari-

ables VC ks PM k-
Now, it can be checked that

wvo k1, PMk+1) = Cvo st + G(Orrpe1)
= w(vc,k, (PM,k)

= Cvci + q(onm k),

hence Aw, = 0. Therefore, it can be concluded
that, using the second discretization scheme, the
first integral w is preserved exactly in the discretiza-
tion of MC' for any step size h.

The possibility to use a discretization scheme
that exactly preserves the first integral is crucial.
In Sec. @ we will continue the analysis of map (3
showing that, due to the existence of a first integral,
the state space can be foliated in invariant mani-
folds where the map is of lower order (first-order),
and giving a rigorous proof of the coexistence of
an infinite number of attractors and the existence
of bifurcations without parameters for the DT MC
circuit, in analogy to what happens in the CT case.
To this end, we will find it useful to analyze the DT
MC circuit not only in the traditional VCD, but
also in the FCD.

3. Discrete-Time Flux—Charge
Analysis Method

In this section, we extend the ideas in Sec.
by developing a general method to discretize and
analyze DT memristor circuits. Let us consider a
class of CT memristor circuits named LM con-
taining two-terminal elements such as ideal resis-
tors, capacitors and inductors, ideal flux-controlled
or charge-controlled memristors and possibly inde-
pendent Voltl%or current sources. Corinto and

Forti [2016, ] (see also |Corinto et all [2021])

2450001-4



Int. J. Bifurcation Chaos 2024.34. Downloaded from www.worldscientific.com

by UNIVERSITY OF SIENA on 02/29/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

developed a method to effectively analyze such
class of circuits in the FCD, rather than in the
traditional VCD, named the flux—charge analysis
method. FCAM permits to show that any circuit
in LM possesses for structural reasons one or more
first integrals, so that the state space can be foliated
in invariant manifolds where there is a reduced-
order dynamics. In this section, we address two
main issues: (a) to introduce a new discretization
scheme for CT circuits in LM; and (b) to develop
a method to effectively analyze the DT memristor
circuits thus obtained in the FCD, based on writing
the Kirchhoff laws and constitutive relations (CRs)
of the DT circuit elements in the FCD. We will
name such method the DT-FCAM. In Sec. @ we
will apply DT-FCAM to some basic DT memristor
circuits in LM, namely, an MC circuit, a Murali—
Lakshmanan—Chua circuit with a memristor and a
memristor Chua’s circuit, and we will show that
the newly introduced discretization scheme guaran-
tees that the first integrals of C'T memristor circuits
are preserved exactly in the discretization for any
step size. This will enable us to prove for these cir-
cuits the coexistence of infinite attractors (extreme
multistability) and to study bifurcations without
parameters.

3.1. Electric quantities and
Kirchhoff laws

For each circuit element in LM, in addition to the
voltage v and current i, we consider the flux p(t) =
[* v(t)dt and charge q(t) = [*__i(t)dt. Moreover,
given an initial instant ¢g, for ¢t > ¢y, we define the
incremental flux ©°(t) = p(t) — @(tg) = ftz v(t)dt
and incremental charge ¢°(t) = q(t) — q(to) =

JiLi(t)dt [Corinto & Fortd, 2016). We have

_dp(t) _de() . dg(t)  dg°(t)
== =—a > W= = a

Kirchhoff voltage law (KVL) can be expressed

> i) =0

J

as

for the voltages of the elements forming a loop,
while Kirchhoff current law (KCL) can be expressed

> i) =0

J

New Class of Discrete-Time Memristor Circuits

for the currents of elements connected to a node. By
integrating KVL and KCL between tg and t > tg, we
obtain the Kirchhoff (incremental) flux Law (K¢L)

> )y =0
J
and the Kirchhoff (incremental) charge law (KqL)

E:ﬁ@):Q

It is worth to stress that, as it is discussed in detail
in Corinto and Forti M], it is not convenient to
use analogous forms of these laws involving the flux
or charge.

Consider the sampling instants t, = tg + kh,
k =0,1,2,..., where the step size h > 0, and the
discretized electric quantities vy = v(ty), i = i(tx),
o = o(tr), o = q(te), ¢p = ©°(tx) and ¢)) =
¢°(t). By the forward Euler rule, we obtain

_ P —
h no

0 0
L= Qe+1 — Gk _ Det+1 — 9k

h h

_ Pkl — Pk _

Vg

Moreover,

. . Vk+1 — Vi
O = 0(ty) = %,

X X lgt1 — Uk
i =i(ty) = +T

Via discretization, the KVL reads as
> vik =0,
J
while the KCL is given by

> ik =0.

J

Moreover, KyL becomes
2 ¢k =0,
J

while KqgL can be expressed as

J
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3.2. Constitutive relations
of circuit elements

In the previous subsection, we have introduced the
DT versions of Kirchhoff laws in terms of voltages
and currents (VCD), and the corresponding ones
involving incremental fluxes and charges (FCD).
Here, we address the problem of writing the DT ver-
sions of CRs of circuit elements both in the VCD
and FCD. To be more specific, by a CR in the
VCD we mean a relation between vy, and i5 possibly
involving other internal state variables. Similarly,
by a CR in the FCD we mean a relation between
@2 and qg possibly involving other internal state
variables.

3.2.1.

Consider a linear capacitor with CR ¢o = Cveo. We
have (VCD)

Capacitor

ic = Cig.

The CR in terms of incremental flux and charge
(FCD) is given by the first-order ODE [Corinto &
Forti, M]

9¢(t) = Coe(t) — Cuo(to).

Let us now discretize the capacitor. Applying
the forward Euler rule, we obtain the first-order
map (VCD)

VCk+1 — UCk (4)

o _C
(2o} 5

Moreover, the CR in terms of incremental flux and
charge (FCD) is given by the first-order map

0 0
PCk+1 — POk

—CE —Cuclt). (5)

qoc,k =C

3.2.2.  Inductor

Consider a linear inductor with CR ¢, = Liy,. We
have (VCD)

v = LiL.

The CR in terms of incremental flux and charge
(FCD) _is given by the first-order ODE [Corinto &
Forti, 2016]

01 (t) = Lqy(t) — Lip(to).

Let us now discretize the inductor. Applying
the forward Euler rule, we obtain the first-order
map (VCD)

ILk+1 — ILk
Lkl Tk 6
. ()

Moreover, the CR in terms of incremental flux and
charge (FCD) is given by the first-order map

vpk =L

0 0
qdrk+1 — 4

A= L5~ Lig(t).  (7)

3.2.3.  Fluz-controlled memristor

Consider a flux-controlled memristor whose defin-

ing CR is qar = ¢(par). By differentiating in time,

the CR in the VCD is given by
iM - qAI(SOM)’UM7
OM = VM.

(8)

In the FCD, the CR in terms of the incremental
flux and charge is the algebraic relation [Corinto &

Forti, 2016

as () = d(e () + enr(to)) — (e (to)).

Let us now discretize the memristor. Analogous
to Sec. @ we consider two different discretization
schemes.

Discretization Scheme 1. In the VCD, the typ-
ical discretization scheme of (§) considered in the

literature is [Bao_ et _all, 2021 [Bao et _all, 2022 Li
et al., 12020)]

{iMJc = ¢ (oM k)UM ks

(9)
OMk+1 = O,k + hvak,

where the forward Euler rule is used in (8) to

approximate ¢y = vas.

Discretization Scheme 2. In this paper, we intro-
duce a new discretization scheme of () in the VCD
as follows. By applying the forward Euler rule to
iv = 4y, we have iyp = (qumr+1 — amp)/h =
(G(enmk+1) — G(park))/h. Therefore, we obtain the
scheme

- qlemp+1) — d(emk)
Mk = h )

(10)
OM,k+1 = @Mk + hvas .

It is worth to stress that on the basis of (I0),
vpr = 0 implies ip7, = 0, hence the pinched
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hysteresis property in response to a sinusoidal sig-
nal is preserved exactly in the discretization. From
now on, unless stated otherwise, we always use the
discretization scheme (I0) for the memristor.

Finally, in the FCD we simply obtain the alge-
braic map

Ak = a@3p + en(to)) — d(en(to)).  (11)

3.2.4.  Charge-controlled memristor

Consider a charge-controlled memristor whose
defining CR is ¢y = ¢(qur). By differentiating in
time, the CR in the VCD is given by

{UM = &' (qm)inm, 12)

qM =M.
In the FCD, the CR in terms of the incremental
flux and charge is the algebraic relation [Corinto &

Forti, 2016]

o (t) = (g

() + anr(to)) — lqur(to))-

Let us now discretize the memristor. We con-
sider two different discretization schemes.

Discretization Scheme 1. In the VCD, the typ-
ical discretization scheme of (I2)) considered in the
literature is

{'UM,k = @' (qnr k)i s (13)

M k+1 = qrk + Pipr g,

where the forward Euler rule is used in ([I2)) to
approximate ¢y = tps-

Discretization Scheme 2. In this paper, we intro-
duce a new discretization scheme of (I2) in the VCD
as follows. By applying the forward Euler rule to
vy = $u, we have vy gk = (Om k1 — @amp)/h =
(@(amk+1) — ©(qark))/h. Therefore, we obtain the
scheme

Oamp+1) — Plan k)

(14)
AM k+1 = quk + Nipg .

It is worth to stress that on the basis of (I4)),
iy, = 0 implies vyr, = 0, hence the pinched hys-
teresis property in response to a sinusoidal signal is
preserved exactly in the discretization. From now
on, unless stated otherwise, we always use the dis-
cretization scheme ([[4]) for the memristor.

New Class of Discrete-Time Memristor Circuits

Finally, in the FCD we simply obtain the alge-
braic map

Wk = 2(drp + anrto)) — &an(to)).  (15)

3.2.5. Resistor

Consider a linear resistor vg = Rir (VCD). In the
FCD, we have ¢%(t) = Rq%(t). By discretization,
we obtain vgjy = Rigy in the VCD and go%,k =
Rqf, in the FCD.

3.2.6. Voltage and current source

Consider an ideal voltage source v(t) =0(t), where
0] is a given function (VCD). In the FCD, we have
ft o)do. By discretization, we obtain

v =0y in the VCD and ¢ = tOJrkh 0(o)do in the
FCD.

We proceed in an analogous way for an ideal
current source i(t) = i(t), where 7 is a given func-
tion (VCD). In the FCD, we have ¢°(t) = [; i(0)do
By discretization, we obtain ¢, = ik in the VCD and
g = t°+kh i(0)do in the FCD.

4. Analysis of MC Circuit
via DT-FCAM

4.1. Analysis in the VCD

Let us analyze the DT MC circuit in the class LM
shown in Fig. @ with an ideal capacitor C' > 0 and
an ideal flux-controlled memristor gy = ¢(¢nr),
using DT-FCAM and the new discretization scheme
introduced for the memristor. In the VCD, KCL
reads as ic + ipr = 0. Using the CR of C' given
by (@) and the second discretization scheme for M,
i.e. the CR ([I0)), we obtain

q(orrrr1) — (k)

VCk+1 — UCk
C i ) ) ) — 0.
h + h
1ok LMk
————O0—p———
I +
C_—__ vk UMk E]M

Fig. 2. Discrete-time MC circuit.
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KVL yields vc , = vark, hence

OMk+1 = Mk + hoy e = On i + hoe k.

Therefore, we obtain in the VCD the second-order
map in the state variables vc g, Yk,

1 R .
VO k+1 = UC,k + 5(—Q(80M,k +hvek) +q(emk))s

OMEk+1 = Mk T+ hvok,
(16)

which coincides with that found in Sec. 2l The ini-
tial conditions are ve g =vc(to) and a0 = @ (to).

4.2. First integral and invariant
manzfolds

Consider the function of the state variables

w(ve, em) = Cvo + G(om)-
We have

W(VC k1, PM kt1) = W(VC &y OM )

along the solutions of ([If]). Hence, as it was already
noticed in Sec. Bl w is a first integral for the DT
MC circuit and it coincides with that of the CT
MC circuit. Note that this holds for any step size h.

Let us introduce the subsets of the state space

M(Qo) = {(ve,om) € R?:
w(ve, om) = Cve + 4(pm) = Qo},

where Qg € R. Each set is a one-dimensional
invariant manifold for the dynamics of (@) and
it is uniquely defined by the manifold index Qo =
Cvco + G(¢n0) depending upon the initial condi-
tions for the state variables in the VCD.

It is worth to stress that the first integral w and
the invariant manifolds M(Qp) are independent of
the step size h.

4.3. Analysis in the FCD

Let us now analyze the DT MC circuit in Fig.
in the FCD in order to determine the dynamics on
each invariant manifold. We have from KgqL that
qOCJC + q%’k = 0. Using the CR of C given by (B
and the CR of M in (), we have

0 0
PCk+1 — POk

¢ h

- C'UC,O

+G(@h ke + Par0) — Alerro) = 0.

qdc k q?w,k
———O0—p—
N +
C”— o2 @M

Fig. 3. Discrete-time MC circuit in the flux—charge domain.

Taking into account that KL reads as cp%’k =

% 4+ We obtain the first-order map in the state
: 0

variable ¢

ho .
Ol ps1 = POk — 5(Q(<P°c,k + oaro) — d(earo))
+ hvey

or

Pl pr1 = PCk — %Q(woc,k +¢no) + %Qo, (17)
where
Qo = w(vc(to), pm(to))
= Cvcyo + 4(¢mo)

is the manifold index depending on the initial con-
ditions v, @m0 for the state variables in the
VCD. The initial condition for the first-order map
is %, =0
Yoo =Y
The map can be rewritten as

h . h
O rr1 = Pk — BQ(@%J,k +¢mo0) + 6Q0

or, equivalently,

h . h
OMk+1 = PMk — 56](80M,k) + EQO’ (18)

Let (vok, omi)s K = 1,2,..., be the solution
of the second-order map ([If) in the VCD with
the initial conditions vc o, @ar0. It can be checked
that oarp, B = 0,1,2,..., is the solution of the
first-order map (I8) in the FCD with the initial
condition ¢z, provided Qo = Cvco + ¢(Yno)-
Conversely, given Qo, if arp, £ =0,1,2,..., is the
solution of () with the initial condition ¢y, then
(oM k1 — ©mk)/hyorr k) is the solution of (I6)
with the initial conditions vcp = (Qo — ¢(¢nr0))/
C, empo-
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4.4. Coexisting attractors and flip
bifurcations without
parameters

We have seen that the DT MC circuit is defined
by the second-order map (I6]) in the VCD. How-
ever, the state space in the VCD is foliated in the
one-dimensional invariant manifolds and on each
manifold, the circuit is defined by the first-order
map (I8). If we let xz(t) = par(t), and also let for
simplicity C' = 1, then this map can be rewritten as

Tpy1 = g — hq(zr) + hQo, (19)

with xg = 0. Thus, we obtained ool different
first-order maps, in one-to-one correspondence with
the manifolds. Each map differs from the others due
to the additive term h(Q)y depending on the mani-
fold index QQg, i.e. on the initial conditions for the
state variables in the VCD.

Assume the memristor has the typical nonlin-
earity ¢(¢ar) = apmeon + chp?\/[, where aps, bys are
fixed real numbers. Then, the map (I9]) becomes

Tkl = Tk — h(aMxk + bez) + hQQ7 (20)

and it depends upon the step size h and the man-
ifold index @y. For this map, we can envisage two
conceptually different types of bifurcations:

(1) Standard bifurcations due to varying parameter
h for a fixed manifold index Q)g. In this regard,
it is of importance to stress that, as discussed
before, changing h does not alter the foliation
in invariant manifolds of the state space of the
MC circuit and does not change the invariant
manifolds themselves. This fundamental prop-
erty enables us to use the step size h as a bifur-
cation parameter while maintaining fixed the
foliation and structure of invariant manifolds.

(2) Bifurcations due to varying the initial condi-
tions in the VCD and the manifold index Qg
for the fixed parameter h. In analogy to what
happens for CT circuits, this special type of
bifurcations is referred to as bifurcations with-

out parameters |Corinto & Forti, [2017].

Suppose for simplicity that a;; = 0 and byy = 1,
i.e. gv = ¢(pn) = ¢3;. Using a standard notation,
the map (20) is defined by

z — f(z) =z — hz® + hQy. (21)

The fixed points T of the map satisfy f(z) = Z.
Note that, for any @y € R, the map has a unique

New Class of Discrete-Time Memristor Circuits

fixed point
_ 1/3
T = QO/ .
The change of variable y = x — Q(l)/ s yields the map

1/3 2/3
y— Fly) =y — hy® = 3h*Qy° — 3hyQp/
which has a unique fixed point at = 0. The partial
derivative of F' with respect to y is given by

Fy(y) =1 - 3hy?® — 6hyQL/* — 3hQ2/",

so that
F,(0) = 1 —3hQ2".

It is easy to check that we have |F'(0)| < 1, hence
the fixed point 7 = 0 is asymptotically stable (AS),
provided Qo # 0 and h < (2/3)|Qo| /3. Moreover,
we can verify geometrically via the stair-step dia-
gram that § = 0 is AS for any h, when @y = 0.
When h > (2/3)|Qo|~%/3, we have |F’(0)] > 1 and
so the fixed point 7 is unstable. The region in the
(h,Qo)-plane where the fixed point is AS (resp.,
unstable) is denoted by Rg (resp., Ryr) and is shown
in Fig. @

The condition for which the map defined by
F displays a flip bifurcation at y = 0 when vary-
ing the parameter h or parameter (Jg is given by

F,(0) = —1 [Kuznetsow, 1998], i.e.

2
hQl? = 5

gy = 1.95

I
|

0.2 Q().’ﬁip =3.31
—0.5 | | | | | |
—4 -3 —2 -1 0 1 2 3 4
Qo

Fig. 4. Flip bifurcation curve Cfqj, and the region Rg (resp.,
Ryy) where the fixed point T of the map 1)) is AS (resp.,
unstable).
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This defines the curve Cpgi, in the (h,Qo)-plane
shown in Fig. @ Solving for h, we obtain

Cﬂip = {(h’ QO) : QO 7é 07h = hﬂip = <§>Q02/3}’

while there is no solution h when Qg = 0. Solving
for (Qg, we obtain

9\ 3/2
Chip = {(h, Qo) : Qo = Qo flip = <§> }

U{(h,Qo) : Qo = —Qo,gip}-

Note that Cgjp, is the boundary between Rg and Ry;.

Let us now study in more detail the bifurca-
tions with respect to h for fixed @q, i.e. on a given
manifold M(Qp) for the map y — F(y). We have
already seen that if Qg = 0, the fixed point 7 = 0 is
AS for any h. We then consider the case @y # 0
and suppose without loss of generality @)y > 0.
The value of h for which there is a flip bifurca-
tion is hgi, = (2/3)@52/3. The change of variable

n=nh-— (2/3)@82/3 yields the map

y— Hy,n) =y— <n+ (g) 52/3)

x (1® + 302Q4 > + 3yQY/?)

which has a flip bifurcation at n = 0. In order
that the bifurcation is generic, the two follow-
ing transversality conditions need to be satisfied

[Kuznetsov, [1998]:

1
(B].) Cy) = 5

1
Hy,(0,0)* + gHyyy(Oa 0) #0

(B2) Hy(0,0) # 0.
Some simple computations yield

= _QO 2/3 7

since Qo # 0, hence (B.1) is satisfied. Moreover, we
have

H,,(0,0) = —3Q%* <

since Qo # 0, hence (B.2) is also satisfied. We
remark that, since ¢y > 0 for any @y > 0, the
flip bifurcation is supercritical and a stable period-
two cycle bifurcates at the fixed point for h > hgj,
Kuznetsov, |_9_9ﬁ An analogous result is obtained
for Qg < 0.

Let us now study the bifurcations with respect
to Qo for fixed h. The values of Qg for which there
is a flip bifurcation at a given h are £ g;p, where
Qoqip = (2/3h)%2. Consider without loss of gen-
erality Qo = (2/3h)%/2. The change of variables
1= Qo — (2/3h)>/? yields the map

TN
y— Qy,n) =y — hy’ — 3hy” <u + <3h> )
3/2\ 2/3
—3hy | n+ 2
3h
which has a flip bifurcation at 4 = 0. It can be

checked that
1 1
c0 = 5Quy(0,0)* + 5Quyy (0,0) = 10 > 0;
since h > 0, hence (B.1) is satisfied. We also have

Qyu(0,0) = =613/ < 0;

since h > 0, hence (B.2) is also satisfied. Since
co > 0 for any h > 0, the flip bifurcation is super-
critical and a stable period-two cycle bifurcates for
@ > Qo qip at the fixed point ﬂlﬁlznﬂtsmd, |19_9H] An
analogous result is obtained for Qy = —(2/3h)3/2.

Let us illustrate these behaviors using the
numerical simulations of the map (ZI)). First con-
sider the bifurcations with respect to h for fixed Q.
If Qo = 0, from simulations (not reported here) we
observed convergence to the AS fixed point Z = 0
for any h. Then, choose Q)9 = 0.2, hence hgp, = 1.95
(cf. Fig. [). Figure [ depicts the bifurcation dia-
gram obtained with MATLAB. It is seen that for
0 < h < hgjp the solution converges to the AS fixed
point T = (1)/3 = 0.585. For h > hg;p, as predicted,
the fixed point becomes unstable and we observe an
attracting cycle of period two, confirming that we
have a supercritical flip bifurcation at hg;,. By fur-
ther increasing h, the cycle undergoes a second flip
bifurcation at h = 2.44 with the birth of a cycle of
period four. Then, we have a typical scenario where
we observe a cascade of flip bifurcations accumulat-
ing at h = 2.61 where there is the birth of a complex
attractor.

Then, let us fix h = 0.3. We have Qo qip, =
+3.31 (cf. Fig. H). Suppose we start with Qo = 0
and we increase (Qp. The corresponding bifurcation
diagram is depicted in Fig. [0l It is seen that the

solution converges to the AS fixed point = = Q(l)/ 3,
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Fig. 5. Bifurcation diagram of the map 2I]) when Q¢ = 0.2
and the step size h is varied.

Qo

Fig. 6. Bifurcation diagram of the map (ZI) when h = 0.3
and parameter Qg is varied.

depending on Qp, as long as 0 < Qp < Qo aip- Then,
as predicted, for Qg > 0 the fixed point becomes
unstable and we observe an attracting cycle of
period two, confirming that there is a supercritical
flip bifurcation at Qg gip. At Qo = 4.65, we observe a
second flip with the birth of a cycle of period four,
followed by a cascade of flip bifurcations and the
birth of a chaotic attractor at Qg = 5.11. A similar
scenario is observed if we decrease () starting from

Qo = 0.

5. Discussion

In this section, we provide some comments on the
rich dynamic behavior we can observe in a DT MC

New Class of Discrete-Time Memristor Circuits

circuit. This is related to two main reasons. The first
reason is the foliation of the state space in invari-
ant manifolds and the coexistence of infinitely many
different dynamics and attractors. The second rea-
son is that the previous property holds for any dis-
cretization step size and it is known that an intrinsic
property of DT systems is to display richer dynam-
ics than their CT counterparts when the step size
is varied.

Let us first consider the complexities related to
the decomposition in invariant manifolds. Consider
the second-order map (I6) of the DT MC circuit in
the VCD. Suppose once again that §(oa) = @3,
and let y, = vox and 2z = @y . The map can be
written as

<y> <11(y, Z)) <y — (z —+ hy)3 + zs)
z fg(y, Z) z + hy '
(22)

It can be checked that there is a line of noniso-
lated fixed points given by (7,z) = (0,¢), where
¢ € R. Note that all fixed points are character-
ized by a capacitor voltage equal to 0, while the
memristor flux can assume any value. Now, sup-
pose as it was done previously that the step size is
fixed at h = 0.3. It follows that the second-order
map ([22) embeds all the different dynamics dis-
played by the first-order map ([2II) when varying Q)
(cf. Fig.[6). To see this more clearly, consider Fig. 7,
where we have shown in the state space (y, z) of (22)

0‘\“*%

> 0 |
4L ]
—6l
8l
~10 w s s \ \
0.5 1 1.5 2 2.

-1 —0.5 0 5

z

Fig. 7. From left to right: Invariant manifolds M(Qo),
where Qo € {0,1,2,3.31,4,4.7,6}, for the second-order
map (22). For each manifold, the figure shows with green
points the solution starting on the manifold at zg = —1. The
red points represent the long-term behavior of each solution.
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a number of different invariant manifolds M(Qo)
obtained by varying )o. Note that each manifold is
given by y = Qg — 3. For each manifold, the figure
shows the trajectory starting at the initial condition
on the manifold with zyp = —1. It can be checked
that, as predicted by the theory, each manifold is
invariant for the dynamics of ([22), i.e. the solution
starting on a manifold stays on it for all £ > 0.
Moreover, in the figure, we have shown for each
manifold the long-term behavior of the solution and
the corresponding attractor. It is seen that when
Qo = 0 the solution converges monotonically to the
fixed point (0,0). When Qo = 1 < Qo aip = 3.31, we
observe again monotonic convergence to the fixed
point (0,7 = (1)/3 =1). If Qo = 2, we have conver-
gence to the fixed point (0,2'/3), but in this case
the solution approaches the fixed point by oscillat-
ing around it. An analogous situation is observed
when Qo = Qo aip = 3.31. Then, when Qo = 4, we
have convergence to a period-two cycle, while when
Qo = 4.7, there is convergence to a period-four
cycle. Finally, when ()9 = 6, we observe convergence
to a complex attractor. In Fig. B, we provide an
alternate 3D visualization of these behaviors using
an additional axis Qg. All these different asymp-
totic dynamics, i.e. convergent, periodic and com-
plex dynamics, coexist for the same set of circuit
parameters of the map ([22). In a more suggestive
way, suppose we increase )y and we move along the
line of fixed points in Fig. [l Then, it is seen that at
Qo,ip = 3.31 the fixed point with T = Qg = 1.49
undergoes a (supercritical) flip bifurcation without
parameters. Moreover, at Qg = 4.65, the period-two
cycle undergoes a second flip bifurcation without

Fig. 8. An alternate 3D visualization of the coexisting
dynamics for the second-order map ([22)).

parameters and so on. In this way, we have given a
rigorous proof of the coexistence of infinitely many
different attractors, and the existence of flip bifurca-
tions without parameters, for the second-order DT
MC circuit (22).

Consider now the complexities due to chang-
ing the discretization step size on a given manifold.
We have already seen in Fig. [l that by increasing
h the DT MC circuit can pass on a given invari-
ant manifold from a simple convergent dynamics
to periodic and even complex dynamics. Such a
scenario is typical of many discretization schemes
of CT systems. The complexities due to varying h
add to those due to changing the invariant manifold
via the initial conditions for the MC CT circuit in
the VCD.

As a final comment, let us compare the behav-
ior of the DT MC circuit with that of its CT
counterpart. A CT MC satisfies in the VCD the
second-order ODE (). It is easy to see that on an
invariant manifold M(Q) the memristor flux sat-
isfies (FCD) the first-order ODE

om = —d(em) + Qo = —pi; + Qo. (23)

We refer the reader to Corinto and Forti M] for
more details. It is seen that, for any initial condition
@0, the solution of (23] converges to the equilib-
rium point T = Q(l)/ 5, Hence, () always displays
convergent dynamics and no bifurcations without
parameters of the equilibrium point are present.
Quite differently, we have seen that the second-
order DT MC map can embed infinitely many con-
vergent, periodic and also complex dynamics and it
can display flip bifurcations.

6. Analysis of MRLC Circuit
via DT-FCAM

6.1. Analysis in the VCD

Consider the CT MRLC circuit in the class LM,
with an ideal resistor R > 0, an ideal capacitor
C > 0, an ideal inductor L > 0 and an ideal
flux-controlled memristor gar = Gasr(par), shown in
Fig. [ The circuit is obtained by replacing the non-
linear resistor in a Murali-Lakshmanan—Chua cir-
cuit [Ishaq Ahamed & Lakshmanan, DM] with a
memristor.

Let us analyze the corresponding DT MRLC
circuit in Fig. using DT-FCAM and the new
discretization scheme introduced for the memristor.
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Fig. 9. Continuous-time MRLC circuit.

In the VCD, the KCL reads as
iLk = 10k + Mk
while the two KVLs can be written as
VRE T ULk + VoK =0

and

UMk = VC,k-
Using the CRs of circuit elements, the above equa-
tions can be written as
vo ki1 —Vok  Q(omrr1) — a(pnrk)
+ )

h h
ILk+1 — iLk
L + UC,k — 07

h
OMEk+1 = Mk T hvo.

These yield the third-order map in the VCD
describing the dynamics of the MRLC circuit,

irg=C

_ q(on ke +hvor) — (o)
VO k+1 = VO, — C

+ _Z.L,kn
¢ (24)

. RRY . h
iLk+1 = (1— T

ZiL’k - ZUC,/W
OMk+1 = PMk + hve k.

iRk T oo T iMk |
RZ VR vk __C M E UM,k
4 —vYiCk B

Fig. 10. Discrete-time MRLC circuit.

New Class of Discrete-Time Memristor Circuits

The state variables are vco k., ir K, @m k. and the ini-
tial conditions are vco = wvcl(to),iro = irn(to),
e = e (to)-

6.2. First integral and invariant
manzifolds

From the second equation in (24)), we obtain

. . Rh . h
ULk+1 — ULk = _TZL,k - ZUC,ka

and using the third equation,

L 1
hir = _E(iL,k-H —iLg) — E(@M,k—l—l — OME)-

Substituting in the first equation and rearranging,
we have

1

. L.
Cvot1 + 4(orrp+1) + RiLk+1 + RPM b+

. L. 1
=Cucyi + q(omi) + Rk T HOMk:

Consider the function of the state variables

. Li .
w(UC,ZijM) = Cve + FL + Q(‘PM) + %\4

We have shown that

W(VC k15 8L k+1, M k+1) = WOk, UL s OM k)

along the solutions of (24]). Hence, w is a first inte-
gral for the DT RLMC circuit and it coincides with
that of the CT MC circuit (cf. [Corinto et al! [2021,
Chapter 6]). Note that this property holds for any
step size h.

Now, introduce the subsets of the state space

M(Qo) = {(UC,iL#PM) € R®:w(ve,ir, oum)

Li R
= Cvc + ?L +q(om) + %M = QO}a
(25)

where @)y € R. Each set is a two-dimensional invari-
ant manifold for the dynamics of (I8) and it is
uniquely defined by the manifold index
Liro . PM,0
— C ) )

Qo = Cucpo + ==t q(en0) + =
depending upon the initial conditions of the state
variables in the VCD.
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Fig. 11.
domain.

Discrete-time MRLC circuit in the flux—charge

Once again, we note that the first integral w
and the invariant manifolds are independent of the
step size h.

6.3. Analysis in the FCD

Let us now analyze the DT MRLC circuit of Fig. [IT]
in the FCD to determine the dynamics on each
invariant manifold. KqL yields

0 _ 0 0
Aok = 4ok + 9 ks

and using the CRs of circuit elements,

0 0
0o _ C‘Pc,k+1 — POk

qrx = h — Cucp

+ (D5 + par0) — d(earo)-
Moreover, from Kyl we have
‘P%,k + ‘P%,k + (POC,k =0,
and so

0 0
dp k+1 — 9L

k .
Rq}, +L - — Lipo+ gy =0.

Finally, from K¢L we obtain

0 _ .0
PME = PCk-

Therefore, we obtain the second-order map
describing the dynamics of the MRLC circuit in

the FCD, |

h

X+ 2y -

X Fl(X,Y,h,QO) B C
v) \B@vine))

,

h . .
<Poc,k+1 = <Poc,k - E(Q((Pg',k +a0) — 4(ear))

h 0
— h
+ oLk + hveo,

Rh h .
G2 ges1 = (1 - T) aLn — E‘P%,k + hir .

(26)
The state variables are ngC s 4% ;. and the initial con-

ditions are cp%,O =0, qOL,0 = 0.

6.4. Coexisting attractors and
Poincaré—Andronov—Hopf
bifurcations without
parameters

Letting z, = @ark, Uk = ¢ — ¢am0/R — Livo/R,
we obtain from (26]) a second-order map that can
be rewritten as

T+ EY ECI(UU) + 6@0
- (21)
MR R
VL

As it was done for the MC circuit, let us illus-
trate the dynamics and bifurcations of (27) in the
case where the memristor nonlinearity is chosen
as (z) = x3. The fixed points (Z,7) of the map
satisfy

+2=Q

= &l

and § = —Z/R. For any @y € R, there is a unique
fixed point (Z(Qo),—Z(Qo)/R), where Z(Qp) is a
strictly monotone increasing function of QQg. The
change of variables X = x —Z(Qo), Y = y+7Z(Qo)/
R yields the map with a unique fixed point at
(X.Y) = (0,0),

3h h 3h
Ef(Qo)QX - 5X3 - 65_6(620))(2
(28)
h hR
Y- 2X - 22y
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We want to study the possible existence of
Poincaré—Andronov—Hopf (PAH) bifurcations for
the second-order map when varying the parameter
h or Qp. The Jacobian of the map evaluated at (0, 0)
is

1 3h7°(Qo) h
C C
J =
_h | hR
L L

New Class of Discrete-Time Memristor Circuits

Cpan = {(h7 Qo) :

h = hpau(Qo) =

RC + 3Lz(Qp)?
1+ 3R§‘(Q0)2

(32)

for any Q9 € R. Given any h > 0, we can also

solve for Qg and obtain two values £Qo pan(h) for

which (BT]) is satisfied.
Let us study in more detail the bifurcations

when h is varied for a fixed @, i.e. the bifurca-
tions on a fixed invariant manifold M(Qp). In order
to verify that a generic PAH bifurcation occurs,
we resort to verifying the conditions (i)—(iv) and
an additional transversality condition in Hale and
Kocak [1991, Theorem 15.31]. Condition (i), which
amounts to F1(0,0,h, Qo) = 0 and F5(0,0,h, Qo) =
0 for h close to hpan(Qo), is satisfied by construc-
tion. Condition (ii) requires that J has complex
eigenvalues o + j such that |a + j3| = 1 when
h = hpan(Qo), which is true by construction; more-
over, we have [ # 0 for h close to hpan(Qo),
which is true for continuity under (29) and (30). For
the transversality condition (iii), we have to check
and that the eigenvalues of J cross the unit circle when

2 2 varying the parameter h through the critical value

A" = Aol = det(). hpan(Qo). We have

We suppose henceforth that the circuit parameters

satisfy
| L
R <24/ —= 29
< C’ ( )

and that |Qo| is sufficiently small in order that the
following condition holds:

L 6LR7*(Qo) . 9L*7*(Qo)
C C C?
Under @0), the eigenvalues A\ o = o+ j3 of J are
complex conjugates with 3 # 0, hence

)\1)\2 = 042 + ﬁQ = det(J)

R?>—4

<0.  (30)

It can be seen that we have

. Odet(J)
_ 0(Qo) = ——
det(J) =1, oh h=hpan(Qo)
i.e. A1, Ao are on the unit circle of the complex plane 1
if = 75 (2hpan(Qo) — CR = 3L7(Qo)
RC + 3L7(Qo)?
= (31) +6RhpAnT(Q0)°), (33)

This defines a curve in the (h,Qo)-plane where a
PAH bifurcation occurs, namely,

hence condition (iii) is met provided o(Qq) # 0.
Consider now the eigenvalues of J when

| h = hpan(Qo),
Mo —atjB— _3LhPAH(Q0)§‘(QO)22—CiCL + CRhpau(Qo)
1 jhean(@u) VIOL = P12 + SOLTEQF 917 @)t 5

Condition (iv) requires that A\¥ # 1, k = 1,2,3,4. |
Since B # 0, we need to have @ # 0 and if @ < 0,
then /@ # +/3.

different from 0. This coefficient characterizes the
type of PAH bifurcation. More precisely, if a > 0,
then the bifurcation is supercritical and (28)) has

Finally, the last relevant transversality condi-
tion concerns the coefficient a appearing in formula
(15.23) of the quoted theorem, that needs to be

a unique stable closed invariant curve encircling
the fixed point (0,0) that bifurcates at hpam(Qo)
from this point and exists for sufficiently small
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h — hpan(Qo) > 0. If instead we have a < 0,
then (28) has a unique unstable closed invariant
curve around the fixed point (0,0) that shrinks at
hpan(Qop) to this point and exists for sufficiently
small A — hpAH(Q()) < 0.

The condition on a is typically the most elabo-
rate to check. For illustration purposes, we first con-
sider the relatively simple situation where Qg = 0,
i.e. the dynamics evolves on the manifold M/(0),
and, from (BI]), we simply have hpan(0) = RC. In
this case, it is shown in Appendix A that the sought
coefficient has the simple analytic expression

a(Qozo):%@g—RQ—R).

The general case @y # 0 is illustrated by numerical
means in the next example.

Example 6.1. Choose R=1,C =1and L =5.In
this case, we have that ([B0) is satisfied for |Qo| <
0.82. Figure[I2 shows the curve Cpay in (32)), while
Fig. I3 shows o(Qo). Since (Qp) > 0, condition
(iii) is satisfied for any (p; moreover, the eigenval-
ues of J cross the unit circle from inside to out-
side when increasing h through hpap(Qo). It can be
checked that we have |A\j2| < 1 (resp., |A\12] > 1),
i.e. the fixed point is AS (resp., unstable) in the
region Rg (resp., Ry) in Fig. Note that Cpan
is the boundary between Rg and Ry. Now, suppose
Qo = 0, in which case hpan(0) = CR = 1. It has
been checked numerically on the basis of (34) that
the nonresonance condition (iv) is satisfied provided

Q()TP‘AH =0.34
0.5 1

Fig. 12. Bifurcation curve Cpap and region Rg (resp., Ry)
where the fixed point (Z,7) of the map @1) is AS (resp.,
unstable) when the circuit parameters are C =1, L=5, R=1.

14 T T T T T T T n6

0.8

U(Qn)

0.6 -

0.4

0.2 b . . . . . .
-08 —-06 —04 02 0 0.2 0.4 0.6 0.8

Qo

Fig. 13. Parameter o(Qo) (red) and coefficient a(Qq) (blue)
as a function of Q.

h # 2.930 and h # 2.938. Moreover, we have

3

=35

hence on manifold M(0) we expect a generic super-
critical PAH bifurcation at h = hpap(0) = 1. This
is confirmed by the bifurcation diagram shown in
Fig. [[4l We developed an algorithm based on Hale
and Kocak [1991, Eq. (15.25)] to numerically evalu-
ate the coefficient a(Qy) for any Qp. The algorithm
is quite involved and we omit the details to avoid an
excessive length. Figure[[3]shows a(Qp) in the inter-
val Qo € [—0.82,0.82]. Once again, since a(Qp) > 0
for any g, we expect a generic supercritical PAH
bifurcation when varying h for any )y in the con-
sidered interval. For confirmation, Fig. 15 shows the
bifurcation diagram in the case Qg = —0.25 and
hpan(—0.25) = 0.341.

a(Qo = 0)

Suppose now that h is fixed and we vary Q.
Again, we use Hale and Kocak [1991, Theo-
rem 15.31] to check if the PAH bifurcation is
generic. It can be verified, as it was done previously,
that conditions (i) and (ii) are satisfied, provided
29) and ([B0) hold. Moreover, we have

ddet(J)  6hE(Qo) (h% _ 1)

07(Qo) C
and
5(h) = Odet(J)
9Qo Qo==%Qo,pPAH

_ wf’(iQQPAH) (h% - 1).
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Fig. 14. Bifurcation diagram of the map (7)) with respect to h when Qg = 0: (a) variable z and (b) variable y.

0.5
0.2
04
0 L
0.3 r
—0.2F
8 = 0.2
—04r 0.1 -
—0.6F 0
708 L 1 1 I 1 701 1 1 1 I 1
0.8 1 1.2 1.4 1.6 1.8 2 0.8 1 1.2 1.4 1.6 1.8 2
h h

(a) (b)
Fig. 15. Bifurcation diagram of the map (21) with respect to h when Qo = —0.25: (a) variable z and (b) variable y.

Fig. 16. Parameter 6(h) (red) and coefficient a(h) (blue) for the second-order map (Z1).
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—0.2

-0.4

-0.6

Fig. 17. Bifurcation diagram of the map (Z1) with respect to Qo when h = 1.9: (a) Variable z and (b) variable y.

It is seen that o(h) does not vanish, i.e. condition
(ili) is satisfied, when Qo pan # 0 and h # L/R.

The nonresonance condition (iv) and the
transversality condition related to coefficient a are
discussed in the next example.

Example 6.2. Consider again the second-order
map in Example On the basis of ([B4]), it can
be checked that the nonresonance condition (iv) is
satisfied provided Qo # +0.537, Qo # +0.542 and
Qo # £0.686. Figure shows d(h) and a(h) as
a function of h. If we choose h = 1.9, we have
5(19) = —7.07 < 0 at —Qoﬁﬁip = —0.34, while
0(1.9) = 7.07 > 0 at Qogip, = 0.34; moreover,
a(1.9) = 2.26 > 0. Then, we expect a supercriti-
cal PAH without parameters at —Qopan = —0.34
and an inverse supercritical PAH bifurcation with-
out parameters at Qopan = 0.34. This is indeed
confirmed by the bifurcation diagram in Fig. [I7
The diagram also shows quite a large interval Qg €
[—0.085,0.085] where the map displays a cycle of
period six. It is worth noting that by increasing Qg
the cycle undergoes a period-doubling bifurcation
at Qo = 0.085 followed by a cascade of period-
doubling bifurcations originating a complex attrac-
tor at Qg = 0.12.

7. Discussion

As it was done for the DT MC circuit, let us dis-
cuss the dynamic complexities due to the foliation
of the state space in invariant manifolds. To this
end, consider the third-order map (24) of the DT
MRLC circuit in the VCD. Suppose once more that

T,

0.6
q(em) = cp:]sw and let 7, = vog, sy = ipk and
2 = ¢um k- The map can be rewritten as

r fi(r,s, z)
s| = | falrys, 2)
z J3(r,5,2)

r—(z4hr)® + 22+ hs

- (1_§)s_§r 3

z+ hr

It is seen that the map has a line of nonisolated fixed
points given by (7,5,z) = (0,0,), where £ € R.
Note that all fixed points are characterized by a
capacitor voltage and an inductor current equal to
0, while the memristor flux can assume any value.
If we suppose that the step size is fixed at h = 1.9,
the third-order map (BH) embeds all the different
dynamics displayed by the second-order map (27)
when varying Qo (cf. Fig. IT). In Fig. I8 we have
shown a number of different invariant manifolds
M(Qo) obtained by varying Qy. Note that, accord-
ing to (23]), each manifold M(Qyp) is given by

r=Qy—bs— 2> — 2

For each manifold, the figure shows the trajectory
starting at the initial condition on the manifold with
so = 0 and zg = —0.1. It can be checked that, as
predicted by the theory, each manifold is invariant
for the dynamics of (35). The same figure also shows
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Fig. 18. Different invariant manifolds of the third-order map (B0 obtained by varying Qq. For each manifold, the figure
shows the solution starting at sop = 0,z9 = —0.1 (green points) and the long-term behavior of the solution (red points):
(a) Qo = —0.4, (b) Qo = —0.3, (¢) Qo = —0.2, (d) Qo = —0.18, (e) Qo = —0.1 and (f) Qo = 0.
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the long-term behavior of the solution and the cor-
responding attractor. Note that when Qg = —0.4 <
—Qo,pan = —0.34, the solution converges to a fixed
point. When Q¢ = —0.3 > —Qopan, the solu-
tion converges to a closed curve encircling the fixed
point. Moreover, when Qg = —0.2 and Qg = —0.18,
we observe a complex attractor. Finally, when Qg =
—0.1 the attractor appears to be a period-12 cycle,
and when @Yy = 0 it is a period-six cycle.

8. Analysis of Memristor Chua’s
Circuit via DT-FCAM

8.1. Analysis in the VCD

Consider the CT MCC in the class LM shown in
Fig. The circuit has an ideal resistor R > 0,
two ideal capacitors C1,Cy > 0, an ideal induc-
tor L > 0 and an ideal flux-controlled memristor
av = qu(ear). The circuit is obtained by replac-
ing the nonlinear resistor in Chua’s circuit [Itoh &
Chua, 2008] with a memristor.

Let us analyze the corresponding DT MCC cir-
cuit in Fig. using DT-FCAM and the new dis-
cretization scheme introduced for the memristor. In
the VCD, using the CRs of circuit elements, the two
KCLs at nodes A and B read as

Vo2,k — VCO1,k

VC1,k+1 — VC1,k
Oy =1 =

h R
_qlenrkr1) — G(oark)
h
and
v -0 ] v -0
0y DOk T VC2E _ L VOLE Ok

1 )
h b R
respectively, while the two KVLs can be written as

UL k41 — UL,k
L 7+ )

A = —V02,k
and
UM,k = VO1,k-
R

| B AAA A ZL

i A— 4 4 +
Lg v Co”— vc2 vor —__C ME UM

+ 1Y — —vYic o

Fig. 19. Continuous-time MCC.

"Lk + +
LS vk Cy___ Vo2 Veik ___ (4 M |2 ik

+ 1026y —vicLk

Fig. 20. Discrete-time MCC.

These yield the fourth-order map in the VCD
describing the dynamics of MCC,

Gormk + hver k) — o)

VC1,k+1 = VC1,k —
C
+ ve2,k — VC1k
ClR( ) ) )’
h [(veir —veok) .
Vo2 ki1 =VC2k+ A4 |5 t Lk
Jk+ s 02 R NAR
) ) h
ULk+1 =1Lk — ZUCQJc,
OMk+1 = @M,k + hve k.
(36)

The state variables are vci i, Vc2.k, L ks PM,k and
the initial conditions are vcio = vei(to), vz =
vea(to),ino = irL(to), pao = ¢m(to)-

8.2. First integral and invariant
manzifolds
From the third equation in (24]), we obtain
L. .
vo2k = =3 (L k1 — LK),
Moreover, from the fourth equation, we have

PM,k+1 — PM,k

—

Substituting in the first equation and rearranging
the terms, we have

VO1k =

L. 1 .
Civet g1 + RiLk+1 + RPM k1 + (e k+1)

C + L, + ! + 4( )
= (v =1 = .
10C1,k R L,k R‘PM,k A\ P M,k

Consider the function of the state variables
w(vet, v, in, o)

Lip,  om .
—C 27 21 .
vo1 + = + 7 + q(enr)
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‘We have shown that
W(VC1 1, VO2 k415 UL ot 1> PM k1)

= w(ve1 k, VC2,ks Lk PME)

along the solutions of ([Bd), i.e. w is a first integral
for MCC and it coincides with that of the CT MCC
(cf. Corinto and Forti M]) Once again, note that
this property holds for any step size h.

Now, introduce the subsets of the state space

M(Qo) = {(1101,v02,iL,<pM) eR*:
w(vet, vee, in, i)

LiL R OM
:C _— _— =
vol + I +q(onr) + 7 Qo},
(37)

where Qg € R. Each set is a three-dimensional
invariant manifold for the dynamics of ([36]) and it
is uniquely defined by the manifold index

Lig, . M,
Qo= Cvcro+ =22 +dleno) + 752 (39)

depending upon the initial conditions for the state
variables in the VCD.

8.3. Analysis in the FCD

Let us now analyze the MCC of Fig. 2Ilin the FCD
to determine the dynamics on each invariant man-
ifold. Using the CRs of circuit elements, the KCLs
at nodes A and B yield

0 0
PC1k+1 — POk
h

o — Ciucip

0 0
_ Po2k — PC1k

7 — (D0 k + orr0) + 4lonr0)
and

0 0 0 0
PC2k+1 ~ PC2,k Po1kx —Po2k . o
Cy h — Coveo0 = B — + 471k

R

B A

A% g

qo _ e +
Lk + + ’

Co”— @loyr Pk ——C1 M| ok

0 _ _l.o
+ do2,kY Ydo1,k _

Fig. 21. Discrete-time MCC in the flux—charge domain.
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respectively. Moreover, we can write the two KVLs
as

4% pi1 — 90k
k+ » . 0
Lih —Liro=—vcok

and

0 _ .0
PMk = PC1,k:

Therefore, we obtained the third-order map describ-
ing the dynamics of the MRLC circuit in the FCD,

0 0
L h [ Ycor — Pork
<PC1 k+1 = 8001 k C — R
— §(04n  + PM0) + ﬁ(@M,O)) + hveo,
h ‘P%Lk - ‘P%Q,k 0
<Pcz k1 = <P02 kT A Cy ( R +ar

+ th?,()’

0 _ 0
qr k+1 — 490k —

h .
Z@%Q,k‘ + hZL7O'
(39)

The state variables are 4,00017 > 4,0%2’ s q0L7 i and the ini-
tial conditions are 4,0%1’0 =0, @00270 =0, q%,o =0.

8.4. Coexisting attractors and
bifurcations without

parameters
The change of variables z3, = ok, Yp = (pOCQk —
Lipo and z, = RQOL,k — oMo — Lipog + RCoveap
yields from (39) the third-order map

fl(xa Y, Z)
f2(xay’ Z)
f3(xaya Z)

T
y —
z

h R h
$+@( —ﬂf—RQ(JU))+C—1Q0
h
= CzR(JU—?/JrZ) )
_hR
VA Ly

where Qg is given in (3).
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Fig. 22. Long-term behavior of the solutions of the DT MCC #0) when Qo = —0.064 and for different values of the step
size h: (a) h = 0.0001, (b) h = 0.001, (c) h = 0.008, (d) h = 0.0098, (e) h = 0.01 and (f) h = 0.02.
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0.05

Fig. 23. Long-term behavior of the solutions of [ @0) when h = 1.9 and for different values of the manifold index Qo:
(a) Qo =0, (b) Qo = —0.06, (c) Qo = —0.64, (d) Qo = —0.645, (e) Qo = —0.065 and (f) Qo = —0.078.

2450001-23



Int. J. Bifurcation Chaos 2024.34. Downloaded from www.worldscientific.com

by UNIVERSITY OF SIENA on 02/29/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

M. Di Marco et al.

Suppose to choose the normalized circuit
parameters R = 1, L = 1/15, C; = 1/10 and
Co = 1; moreover, let §(x) = mor + mi2®, where
mo = —8/7 and m; = 4/63. For these values and
nonlinearity, the corresponding CT Chua’s circuit
is known to display a complex behavior [Corinto &
Forti, [2017]. Next, we want to study through simu-
lations the bifurcations of ([@0)) when the parameter
h or Qg is varied.

First, consider the bifurcations with respect
to h when Qg = -—0.064 is fixed. Figure
shows the results obtained from simulations. When
h = 0.0001, the DT MCC converges to a closed
curve. When h is increased, this curve appears
to undergo a sequence of bifurcations similar to
period-doubling bifurcations. Finally, when h =
0.02, we have convergence to a complex single-scroll
attractor.

Then, suppose we fix h = 0.01 and study the
bifurcations with respect to Qq. Figure23 shows the
results obtained with simulations. When Qg = 0,
MCC displays a complex double-scroll attractor.
When @9 = —0.06, we instead observe a com-
plex single-scroll attractor. By further decreasing
)y, we observe a sequence of bifurcations similar
to inverse period-doubling bifurcations. All these
bifurcations are obtained by varying ()¢ through
variations of the initial conditions for the state vari-
ables in the VCD for fixed circuit parameters, mem-
ristor nonlinearity and step size. Along the same
line of reasoning as for the MC and MRLC cir-
cuits, we conclude that all these different dynamics
obtained by varying Qo coexist for the DT MCC

circuit ([34).

9. Conclusion

The paper has introduced a new discretization
scheme for a class LM of nonlinear circuits contain-
ing ideal resistors, capacitors, inductors and ideal
flux- or charge-controlled memristors. The scheme
ensures that the first integrals of C'T memristor cir-
cuits are preserved exactly in the discretization and
that this holds for any step size h. As such, it differs
from those typically used in the literature, that typ-
ically destroy the first integrals. On this basis, the
flux—charge analysis method in Corinto and Forti

| has been extended to analyze this class of
DT memristor circuits. The method has enabled to
rigorously show that the state space of DT mem-
ristor circuits in LM can be foliated in invariant

manifolds, which in turn implies the coexistence of
infinitely many different attractors (extreme multi-
stability) and the existence of bifurcations without
parameters.

One general conclusion of this study is that
maps obtained by discretizing via the proposed
scheme’s memristor circuits in the class LM are
able to display for structural reasons a very rich
dynamical behavior. The richness is ascribed to two
main properties: First of all, the foliation of the
state space in invariant manifolds and the coex-
istence of infinitely many different dynamics and
attractors; second, since the foliation in invariant
manifolds holds for any h, this enables to use h
as a parameter without destroying the structure of
invariant manifolds and, as a consequence, further
complexities are obtained by varying h.

We have analyzed in detail a DT MC circuit in
LM showing coexisting dynamics and flip bifurca-
tions due to varying h or the index of the manifold
(flip bifurcations without parameters). For the DT
MC circuit, there is coexistence of convergent, peri-
odic and complex dynamics. Moreover, for a DT
MRLC circuit, we have studied the coexisting con-
vergent and nonconvergent dynamics and Poincaré—
Andronov—Hopf bifurcations with or without the
parameters. Simulations are also provided to show
bifurcations in a higher-order DT memristor Chua’s
circuit.

We believe the introduced DT maps may be
useful to design effective algorithms for applications
in the telecommunications field or in the field of ran-
dom number generators. Investigating these aspects
will be the subject of future work on DT memristor
circuits.
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Appendix A

Consider the second-order map (28). We wish to
apply the procedure in ﬂlQ_Q]J,
Sec. 15.5] to evaluate the coefficient a when Qg = 0,
in which case the map has a unique fixed point
(z,y) = (0,0), and moreover, from (B2), we have
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hpan = RC. The Jacobian of the map at (0,0),
evaluated at h = hpay, is given by

h
1 o
J=
_fean | heanR
L L
1 R
S| Be | ECp
L L

and it has the complex eigenvalues

A2 =a=xjp
B _C’R2 —2L n RVACL — C?R?
- oL J oL
provided R < 2,/L/C. The change of variables
g _E VACL — C2R?
| 2 20 *
T Y
1 1

yields the following map: (S,T7) — (G1(S,T),
G2(S,T)), where the linear part is in normal Jordan

form,
G1(S,T)
Go(S,T)

CR?-2L RVACL — C?R?

2L 2L (S)
RVACL —C2R? CR2—2L T

2L 2L

0

| R@VICL—C?R? - CRs)* |- (A1)
4C2\/4CL — C?R?

Now, we are in a position to use [Hale_and Kocak

(1991, Eq. (15.25)] to evaluate the coefficient a,
which is a function of the second- and third-order
derivatives of the nonlinear terms of map (A.J]) and
the eigenvalues of J. After some tedious yet quite
straightforward computations and manipulations, it
is possible to show that we have

a(Qo=0)=%<2é—R2—R>.
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