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Abstract

Graph generative models often lack a proper reconstruction loss to evaluate the distance between the generated graph and the target
graph. This is particularly important for molecular graph generators based on autoencoders, which should reconstruct the input
graphs as precisely as possible. Though, the distance estimation can be useful for any graph generator based on reconstruction,
including sequential methods relying on Graph Neural Networks. Since graphs are discrete entities by nature, general graph spaces
lack a reliable, general, and computationally affordable distance function. Graph Edit Distance is of course an exact, general, and
permutation–invariant method for evaluating the difference between two graphs defined in the same graph space. Since it needs all
the possible combinations of pairs of nodes from the two graphs, its exact computation is a NP-complete problem and cannot be
carried out for graphs larger than ten nodes. As a consequence, a comprehensive soft–estimation method for Graph Edit Distance
based on siamese Graph Neural Networks is proposed. A theoretical discussion is carried out, showing that the proposed method
can provide a reliable and precise soft–estimation of the Graph Edit Distance on molecular graphs. Molecular graph generators can
therefore use this distance estimation as a powerful non–permutation–invariant reconstruction loss. Moreover, the experimental
results show that the distance estimation is accurate, with a very low Mean Squared Error loss value.
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1. Introduction

The problem of generating graph data involves training a generative model that can produce new graph instances
resembling those observed in a given dataset. Unlike other structured data, such as images or text, graphs exhibit
unique challenges, due to their complexity and heterogeneity. This makes graph generation a difficult and crucial
task in many domains, including social network analysis, recommendation systems, biological network modeling,
and design of new chemical compounds. The main issue when dealing with graphs is, of course, their discrete nature:
graphs or their encodings must be brought into a continuous domain, because discrete spaces hinder the possibility of
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calculating gradients and therefore applying Backpropagation–like algorithms to train generative models. Traditional
generative approaches [1] struggle to capture intricate topological patterns, community structures, and attribute distri-
butions present in complex graphs. By using neural networks to operate directly on graph–structured data, GNNs [2]
can capture hierarchical relationships and local dependencies present in graphs, enabling effective generative model-
ing. However, generating realistic graph data poses several key challenges. First, the generated graphs must possess
statistical properties and structural characteristics similar to those of the input dataset, including the degree distribu-
tion, average path length, and clustering coefficient. Additionally, the generated graphs should preserve the semantic
meaning and functional properties encoded in the node and edge attributes, if available. Several approaches have been
proposed to address these challenges, including sequential graph generation based either on recurrent models [3, 4, 5]
or reinforcement learning [6, 7], Variational Graph Autoencoders (VGAEs [8, 9, 10]), Graph Generative Adversarial
Networks (GGANs [11, 12]), and diffusion models for graph generation [13, 14]. Variational graph autoencoders learn
a low–dimensional latent space representation of graphs, allowing for efficient sampling and interpolation between
graph instances. Graph generative adversarial networks employ an adversarial training mechanism to generate real-
istic graphs by competing against a discriminator network. Sequential models iteratively generate nodes and edges
conditioned on previously generated components, capturing the sequential nature of graph generation.

One of the main problems in training generative models is the choice of an adequate loss function. For one–shot
models, such as variational autoencoders, the most commonly used loss functions is the Kullback-Leibler (KL) di-
vergence [15] combined with a reconstruction loss, such as the mean squared error (MSE). MSE can compute the
distance between two matrices but, in general, it does not guarantee to calculate an adequate topological distance for
two adjacency matrices representing the connectivity of two graphs. In fact, there are many possible adjacency ma-
trices for every single graph, one for each enumeration of the nodes. This means that comparing different adjacency
matrices of the same graph can lead to inadequate values of the reconstruction error. Two main functions are designed
for solving this problem: Graph Edit Distance (GED [16]) and Sub–graph Edit Distance (SED [17]). Unlike the SED,
which violates the properties of identity and symmetry, the GED is considered a distance metric [18, 19] invariant
to node order permutations. GED has an important application in inexact graph matching, especially useful in fault–
tolerant pattern recognition [20]. Additionally, it has interesting applications in bioinformatics: for instance, it can be
used to measure the distance between two molecular graphs [21, 22], a particular kind of labeled graph in which the
node labels indicate the type of each atom and the edge labels indicate the type of each chemical bond. Moreover, hav-
ing a model which computes the similarities or dissimilarities between molecular graphs could be functional also for
implementing an efficient reconstruction loss for deep generative models. Unfortunately, the tasks of computing GED
and SED have been demonstrated to be NP–hard [23]. Recently, some works have employed GNNs to estimate GED.
In [18]iamese structure with Graph Isomorphism Networks (GINs) is used to predict GED and SED, with multiple
MLPs for performing features encoding, decoding, and distance of embeddings. More complex is the structure of the
solution reported in [24] here, graphs are processed by two Graph Convolutional Networks (GCNs [25] to produce
node–focused embeddings, which are subsequently processed by a graphs global attention network to obtain graph–
focused embeddings, and by a sub–module to obtain a node wise attention embedding. These embeddings are then
concatenated and processed by an MLP to predict a GED–like similarity score. Despite achieving good performance,
those approaches cannot be used in a generation task, since the number of nodes in the generated graphs is constrained
by the dataset used to train the model (e.g. LINUX [26], AIDS1 and IMDB [27] datasets), making the computation
impossible for new datasets. Approximation of GED and SED could also be useful in many application fields, such as
social sciences or bioinformatics [28], for example to locate similar subgraphs within larger graphs — to find similar
communities in social networks [29] — or for matching similar and complementary substructures in drug discovery
[30, 31, 32] and for protein–protein interaction prediction [33].

In this paper, a procedure to be used in graph generative frameworks is proposed, which consists in training a
neural network to calculate a topological soft estimation of the GED using a simpler architecture compared with
the literature, setting up the task as a supervised regression problem on a synthetic graph dataset generated for this
purpose. The model consists of a GNN–based Siamese network [34, 35, 36], a type of architecture used for tasks
involving similarity comparison or metric learning. Specifically, it is constituted by two identical subnetworks sharing
the same parameters and architecture (for this reason, they are called “Siamese”), each taking a different input. The
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calculating gradients and therefore applying Backpropagation–like algorithms to train generative models. Traditional
generative approaches [1] struggle to capture intricate topological patterns, community structures, and attribute distri-
butions present in complex graphs. By using neural networks to operate directly on graph–structured data, GNNs [2]
can capture hierarchical relationships and local dependencies present in graphs, enabling effective generative model-
ing. However, generating realistic graph data poses several key challenges. First, the generated graphs must possess
statistical properties and structural characteristics similar to those of the input dataset, including the degree distribu-
tion, average path length, and clustering coefficient. Additionally, the generated graphs should preserve the semantic
meaning and functional properties encoded in the node and edge attributes, if available. Several approaches have been
proposed to address these challenges, including sequential graph generation based either on recurrent models [3, 4, 5]
or reinforcement learning [6, 7], Variational Graph Autoencoders (VGAEs [8, 9, 10]), Graph Generative Adversarial
Networks (GGANs [11, 12]), and diffusion models for graph generation [13, 14]. Variational graph autoencoders learn
a low–dimensional latent space representation of graphs, allowing for efficient sampling and interpolation between
graph instances. Graph generative adversarial networks employ an adversarial training mechanism to generate real-
istic graphs by competing against a discriminator network. Sequential models iteratively generate nodes and edges
conditioned on previously generated components, capturing the sequential nature of graph generation.

One of the main problems in training generative models is the choice of an adequate loss function. For one–shot
models, such as variational autoencoders, the most commonly used loss functions is the Kullback-Leibler (KL) di-
vergence [15] combined with a reconstruction loss, such as the mean squared error (MSE). MSE can compute the
distance between two matrices but, in general, it does not guarantee to calculate an adequate topological distance for
two adjacency matrices representing the connectivity of two graphs. In fact, there are many possible adjacency ma-
trices for every single graph, one for each enumeration of the nodes. This means that comparing different adjacency
matrices of the same graph can lead to inadequate values of the reconstruction error. Two main functions are designed
for solving this problem: Graph Edit Distance (GED [16]) and Sub–graph Edit Distance (SED [17]). Unlike the SED,
which violates the properties of identity and symmetry, the GED is considered a distance metric [18, 19] invariant
to node order permutations. GED has an important application in inexact graph matching, especially useful in fault–
tolerant pattern recognition [20]. Additionally, it has interesting applications in bioinformatics: for instance, it can be
used to measure the distance between two molecular graphs [21, 22], a particular kind of labeled graph in which the
node labels indicate the type of each atom and the edge labels indicate the type of each chemical bond. Moreover, hav-
ing a model which computes the similarities or dissimilarities between molecular graphs could be functional also for
implementing an efficient reconstruction loss for deep generative models. Unfortunately, the tasks of computing GED
and SED have been demonstrated to be NP–hard [23]. Recently, some works have employed GNNs to estimate GED.
In [18]iamese structure with Graph Isomorphism Networks (GINs) is used to predict GED and SED, with multiple
MLPs for performing features encoding, decoding, and distance of embeddings. More complex is the structure of the
solution reported in [24] here, graphs are processed by two Graph Convolutional Networks (GCNs [25] to produce
node–focused embeddings, which are subsequently processed by a graphs global attention network to obtain graph–
focused embeddings, and by a sub–module to obtain a node wise attention embedding. These embeddings are then
concatenated and processed by an MLP to predict a GED–like similarity score. Despite achieving good performance,
those approaches cannot be used in a generation task, since the number of nodes in the generated graphs is constrained
by the dataset used to train the model (e.g. LINUX [26], AIDS1 and IMDB [27] datasets), making the computation
impossible for new datasets. Approximation of GED and SED could also be useful in many application fields, such as
social sciences or bioinformatics [28], for example to locate similar subgraphs within larger graphs — to find similar
communities in social networks [29] — or for matching similar and complementary substructures in drug discovery
[30, 31, 32] and for protein–protein interaction prediction [33].

In this paper, a procedure to be used in graph generative frameworks is proposed, which consists in training a
neural network to calculate a topological soft estimation of the GED using a simpler architecture compared with
the literature, setting up the task as a supervised regression problem on a synthetic graph dataset generated for this
purpose. The model consists of a GNN–based Siamese network [34, 35, 36], a type of architecture used for tasks
involving similarity comparison or metric learning. Specifically, it is constituted by two identical subnetworks sharing
the same parameters and architecture (for this reason, they are called “Siamese”), each taking a different input. The
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key aspect of the Siamese model lies in its ability to learn a similarity function, thus representing the ideal choice
for the computation of the GED. The paper is organized as follows. In section 2, the GED learning problem and the
dataset generation are described, together with the model structure; in Section 3, the experimental set–up is reported
while the obtained results are discussed in Section 4. Finally, Section 5 collects some conclusions and depicts future
perspectives.

2. Materials and Methods

2.1. Problem definition

A graph is a non–linear, non–Euclidean data structure defined as a pair G = (V, E), where V represents the set of
nodes and E ⊆ V×V is the set of edges. Nodes describe entities, while edges stand for the relationships between them.
Nodes and edges can be associated with values or vectors of values describing their features — xv ∈ Rdv , ∀v ∈ V ,
and eu,v ∈ Rde , ∀(u, v) ∈ E, respectively. The stacked versions of all the node and edge feature vectors constitute,
respectively, the node feature matrix XV ∈ R|V |×dv and the edge feature matrix XE ∈ R|E|×de .

Let G = (V, E, XV , XE) be a generic undirected, labeled graph, s.t. G ∈ G, where G is a set of graphs. The GED
between two graphs G1 and G2 in G, denoted as GED(G1,G2), is defined as the minimum number of edit operations
which transform G1 in G2, where an edit operation on the graph G1 can be either a single insertion or a single deletion
of a node or an edge, or even a node relabeling. The GED between two identical graphs, i.e. between two isomorphic
graphs with the same node and edge features, is therefore defined as zero.

In this study, NeuraGED — a GNN–based approximation of the graph edit distance — is proposed. The model is
trained on a datasetLG = {〈G1,G2, y〉 : y = GED(G1,G2) ∈ R |G1,G2 ∈ G} of tuples, where y ∈ R is the ground–truth
value for GED(G1,G2), with y(G1,G2) = y(G2,G1).

2.2. Dataset generation

The primary challenge associated with the GED calculation is its computational complexity. It has been proven that
this problem belongs to the NP–hard class of complexity [23]: the NP–hardness of GED implies that computing the
exact distance between two graphs is intractable for large or complex graphs, since it requires a prohibitive amount of
time and resources. Hence, in order to obtain a soft estimation of this distance, the generation of a specific dataset, in
which the target distance for each couple of samples is known, is proposed.

The ZINC dataset [37], a common and widely used dataset in drug discovery and molecular modeling, was utilized
as a reference in this study [38]. ZINC contains information on the molecular structures, properties, and features of
various chemical compounds, comprising molecular graphs with a maximum of 38 atoms, described by a set of 27
features. The generated dataset is composed of ordered triplets 〈G1,G2, y〉, where G1 = (V1, E1) and G2 = (V2, E2)
describe two simple undirected and node–labeled graphs, i.e. undirected graphs which do not allow for parallel edges
nor self–loops, while y represents the GED between G1 and G2. In order to simulate the insertion and deletion edit
operations, and to guarantee a general balance of the dataset, the first half of the data was constructed so that G2 is
generated as an extension of G1, i.e. with only the addition operation allowed in the generation procedure, while the
second half of the dataset is built by exchanging the position of G2 and G1 inside the ordered triplets, so that only the
deletion operation is considered. Let G be the set of undirected simple graphs and let Bn×m be the set of all n×m binary
matrices. The structure of the graphs is then constructed through a random generation of their adjacency matrices by
means of a function f : R → G, which generates a squared matrix A = [ai j] ∈ Bk1×k1 , given a number of nodes
k1 = |V1|, sampled from a specific normal distribution. Moreover, since G1,G2 ∈ G, the generated adjacency matrices
are binary symmetric matrices with all zeros on the diagonal. In this context, isolated nodes are not allowed: if there
are one or more nodes with no incident edges (i.e. null rows and therefore null columns in A1), random non–diagonal
elements are set to 1. Given the two adjacency matrices A1 ∈ Bk1×k1 and A2 ∈ Bk2×k2 , with k1 ≤ k2, the topological
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estimation of the GED is computed as defined in Eq. (1):
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The two summations in Eq. (1) count the number of elements equal to 1 in the two submatrices that can be extracted
from A2 if only the rows associated to the added vertices are considered, hence the rows not belonging to A1. Fig. 2
shows the GED estimation from a graphical point of view: the sum of the second submatrix, colored in red, is di-
vided by two since undirected graphs are considered and because of the symmetrical nature of A2, otherwise the
corresponding edges would be counted twice.
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In order to measure the performance of the proposed model with different initialization methods for node labels,
and to generate the final samples 〈G1,G2, y〉, the associated feature matrices X1 ∈ Rk1×dv and X2 ∈ Rk2×dv are generated
as well, together with the target y and the maximum diameter D for each pair. On the one hand, if a generic graph G
is connected, then its diameter diam(G) is computed. On the other hand, if G is not connected, its diameter would be
infinite, therefore the relative sample is discarded. Hence, four possible situations can occur:

• Both G1, G2 are disconnected, then D = 0;
• G1 is connected and G2 is disconnected, then D = diam(G1);
• G1 is disconnected and G2 is connected, then D = diam(G2);
• Both G1, G2 are connected, then D = max{diam(G1), diam(G2)}.

2.3. NeuraGED Model

The GED estimation is carried out by NeuraGED, a hybrid model consisting of a GNN–based Siamese neural
network followed by a Multilayer Perceptron. In particular, Siamese networks for graphs [39, 40] approximate well
the embedding function f1 : G × G → Rh ×Rh, where G is the set of graphs and h is the dimension of the embedding
space.

GNNs have been demonstrated to be universal approximators on graphs [41]. Moreover, it has been proved that a
GNN with a sufficient number of message passing iterations and an injective readout function is as powerful as the
first–order Weisfeiler–Lehman test. This holds true both for recurrent GNNs and for some convolutional GNN models
[42]. As a consequence, the choice of GINs — which were purposefully designed for maximizing the isomorphism
recognition capability — seems to be natural. GINs calculate message–passing iterations in stacked convolutional
layers which do not share the weights, according to Eq. (2):

h(k)
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the embedding function f1 : G × G → Rh ×Rh, where G is the set of graphs and h is the dimension of the embedding
space.

GNNs have been demonstrated to be universal approximators on graphs [41]. Moreover, it has been proved that a
GNN with a sufficient number of message passing iterations and an injective readout function is as powerful as the
first–order Weisfeiler–Lehman test. This holds true both for recurrent GNNs and for some convolutional GNN models
[42]. As a consequence, the choice of GINs — which were purposefully designed for maximizing the isomorphism
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where h(k)
v is the state of the node v at layer k, ε(k) is a learnable parameter at layer k, and N(v) is the one–hop

neighborhood of node v. Once the two graphs G1 and G2 are fed in input to the Siamese GIN, after k message–passing
iterations (carried out by the same number of layers), the state of every node represents a natural node embedding (k is
a hyperparameter of the network). The two graph embeddings are obtained using a global pooling with max, average
or sum aggregation mode.

After the graph embeddings E1 and E2 are computed, they are concatenated and fed in input to a MLP which
approximates the function f2 : Rh × Rh → R, such that f2 (E1, E2) approximates GED(G1,G2). Setting the activation
function of the last layer of the MLP with a ReLU guarantees the non negativity of f2. Moreover, given that GNNs are
universal approximators on graphs [43, 44], it can be concluded that f2 maps the two embeddings in the GED value
of the correspondent pair of graphs [45]. Fig. 3 shows the structure of the NeuraGED model.

Fig. 3. Architecture of NeuraGED

3. Experimental Setup

Experiments have been performed on a Intel(R) Core(TM) i7-9800X CPU with 3.80GHz equipped with 64 GB
RAM. The dataset consists of 120.000 pairs of graphs, 70% of which compose the training set, 10% the validation
set, and 20% the test set. Once the number of message passing layers has been fixed to 3, equal to the maximum
diameter of connected graphs in the dataset, the first step of the training procedure consists in a random search of the
network hyperparameters. For the GIN state updating function, a MLP with only one hidden layer has been chosen.
The number of neurons in the hidden layer depends on the node state dimension, varying between 2h and 3h, h being
the node state dimension. The activation function of the MLP module inside the GIN layers is fixed to SeLU and the
global pooling method is always sum.

Since the MLP implementing the distance function f2 takes in input the concatenated embeddings of the two
graphs, its layout depends on the node state dimension h. While the input layer is always of dimension 2h and the
output layer is always composed of one unit, the number of hidden layers change within 2 and 3 and their units within
2 · h, 10 · h, for 2 layers, and 2h, 10h, 10h, for 3 layers. The activation function is LeakyReLU for all layers except the
last one, which is equipped with ReLU activation. In Table 1 are reported the combinations of node state dimension,
GIN hidden layers, pooling type, and number of hidden layer neurons for the MLP.

The training of the model is carried out using MSE as a loss function and the Adam optimizer, with a learning rate
of 10−6, a batch size of 512, and a number of epochs equal to 1000, with early stopping based on the validation loss.

To measure the performance of the network configuration with each chosen set of parameters, a 5–fold cross
validation has been applied, with patience for early stopping equal to 15. Each training inside the cross validation has
been performed changing the initialization of feature matrices of the graphs.

6 S. Bacconi et al. / Procedia Computer Science 00 (2024) 000–000

Table 1. Experimental setup for NeuraGED. The table summarizes the parameters used in the experiments. As it can be seen, values from the
second and fourth columns depend on the values of the first column, i.e. GIN hidden layer and MLP hidden layer sizes are multiples of the node
state dimension. The best setup is reported in bold.

State dimension GIN hidden layer Pooling type MLP hidden layers

64 128 sum [128 , 640]
64 192 sum [128 , 640]

128 256 sum [256 , 1280]
128 384 sum [256 , 1280]
128 256 sum [256 , 1280, 1280]
128 384 sum [256 , 1280, 1280]

4. Results and Discussion

Experiments show that the best model is the one having node state dimension of 128, GIN hidden layer size of 256,
sum global pooling and MLP with two hidden layers of 256 and 1280 neurons.

In Table 2, the best results of the cross–validation are reported.

Table 2. Comparison of results obtained with different feature matrix initialization methods. For each method, the average MSE on the test set and
its standard deviation are reported.

Feature matrix Average test MSE Standard deviation

ones 0.1343 0.0754
random uniform 1.9211 0.2822
random normal 14.4601 2.5295

As it can be appreciated from the results shown in Table 2, NeuraGED can identify with a low error a broad variety
of graph structures. This behavior can be obtained with different methods of feature matrix initialization, indicating
that the model is capable of filtering out (at least to a certain degree) this unrelated information, focusing only on the
topology. However, the predictions obtained with feature matrices sampled from a distribution in the interval [0, 1),
referred in Table 2 to as random uniform, or a standard normal distribution, referred in Table 2 to as random normal,
are not as accurate as those obtained in the case of feature matrices initialized with all the entries equal to 1. This
indicates that the features introduce some noise in the GED estimation process, even if the GED is purely topological.
Additionally, it is possible to observe that the sparsity of the random normal feature matrices can hinder the learning
process, but this could be avoided by shifting the mean of the normal distribution.

5. Conclusion

In this paper, NeuraGED, a method for computing a soft–estimation of the Graph Edit Distance (GED) based on
siamese Graph Neural Networks (GNNs) was presented. An exact computation of the GED is unfeasible because it
constitutes a NP–hard problem and cannot be carried out for graphs larger than 10 nodes. The proposed model pro-
vides a reliable and computationally affordable estimation of the GED, with very low error rates, that can be applied
also to graphs with more than 10 nodes. This method can be useful for several tasks on graph data that require an
evaluation of a topological distance between two structures. For instance, it could be used to compute the distance
between two molecular graphs, even when dealing with large molecules. This is potentially very useful when building
graph generators, as the proposed method could be used for calculating a reliable, fast, informative, and permutation–
invariant reconstruction loss. Such loss could substantially improve the training procedure of many graph generative
models, which typically rely on less informative and non–permutation–invariant reconstruction loss functions.
Regarding future research, it would be interesting to add a term accounting for the dissimilarities between the feature
vectors to the target estimation equation. For instance, this term could be based on the euclidean distance between
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constitutes a NP–hard problem and cannot be carried out for graphs larger than 10 nodes. The proposed model pro-
vides a reliable and computationally affordable estimation of the GED, with very low error rates, that can be applied
also to graphs with more than 10 nodes. This method can be useful for several tasks on graph data that require an
evaluation of a topological distance between two structures. For instance, it could be used to compute the distance
between two molecular graphs, even when dealing with large molecules. This is potentially very useful when building
graph generators, as the proposed method could be used for calculating a reliable, fast, informative, and permutation–
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features. Of course, another possible development to pursue could be the addition of edge labels, consequently obtain-
ing an estimation of the distances between the edge feature vectors. These latter two steps would extend the proposed
computation to labeled graphs, making the distance much more informative in this domain. Moreover, it could be
functional to add a normalized precomputed supervision, for instance by applying a logarithmic formulation. Finally,
this promising model could be extended to produce a more precise approximation of the GED, thus becoming a
plausible reconstruction loss function for deep generative models.
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features. Of course, another possible development to pursue could be the addition of edge labels, consequently obtain-
ing an estimation of the distances between the edge feature vectors. These latter two steps would extend the proposed
computation to labeled graphs, making the distance much more informative in this domain. Moreover, it could be
functional to add a normalized precomputed supervision, for instance by applying a logarithmic formulation. Finally,
this promising model could be extended to produce a more precise approximation of the GED, thus becoming a
plausible reconstruction loss function for deep generative models.

Acknowledgements

This study was co-funded by the European Union - Next Generation EU, in the context of The National Re-
covery and Resilience Plan - Investment 1.5 Ecosystems of Innovation, Project Tuscany Health Ecosystem (THE),
Spoke 3 - Advanced technologies, methods and materials for human health and well-being. ECS00000017, CUP:
B63C22000680007.

References

[1] Lim SH, Lee SM, Powers S, Shankar M, Imam N. Survey of approaches to generate realistic synthetic graphs. Oak ridge national laboratory.
2015.

[2] Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
2009;20(1):61–80.

[3] You J, Ying R, Ren X, Hamilton W, Leskovec J. Graphrnn: Generating realistic graphs with deep auto-regressive models. In: International
conference on machine learning. PMLR; 2018. p. 5708–5717.

[4] Bongini P, Bianchini M, Scarselli F. Molecular generative graph neural networks for drug discovery. Neurocomputing. 2021;450:242–252.
[5] Bongini P. Graph Neural Networks for Drug Discovery: An Integrated Decision Support Pipeline. In: 2023 IEEE International Conference on

Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). IEEE; 2023. p. 218–223.
[6] De Cao N, Kipf T. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv:180511973. 2018.
[7] You J, Liu B, Ying Z, Pande V, Leskovec J. Graph convolutional policy network for goal-directed molecular graph generation. Advances in

neural information processing systems. 2018;31.
[8] Kipf TN, Welling M. Variational graph auto-encoders. arXiv preprint arXiv:161107308. 2016.
[9] Simonovsky M, Komodakis N. Graphvae: Towards generation of small graphs using variational autoencoders. In: Artificial Neural Networks

and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27. Springer; 2018. p. 412–422.

[10] Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for molecular graph generation. In: International conference on machine
learning. PMLR; 2018. p. 2323–2332.

[11] Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, et al. Graphgan: Graph representation learning with generative adversarial nets. In:
Proceedings of the AAAI conference on artificial intelligence. vol. 32; 2018. .

[12] Ma D, Yuan D, Huang M, Dong L. Vgc-gan: a multi-graph convolution adversarial network for stock price prediction. Expert Systems with
Applications. 2024;236:121204.

[13] Chamberlain B, Rowbottom J, Gorinova MI, Bronstein M, Webb S, Rossi E. Grand: Graph neural diffusion. In: International Conference on
Machine Learning. PMLR; 2021. p. 1407–1418.

[14] Cao H, Tan C, Gao Z, Xu Y, Chen G, Heng PA, et al. A survey on generative diffusion models. IEEE Transactions on Knowledge and Data
Engineering. 2024.

[15] Shlens J. Notes on kullback-leibler divergence and likelihood. arXiv preprint arXiv:14042000. 2014.
[16] Bunke H, Allermann G. Inexact graph matching for structural pattern recognition. Pattern Recognition Letters. 1983;1(4):245–253.
[17] Bunke H. On a relation between graph edit distance and maximum common subgraph. Pattern recognition letters. 1997;18(8):689–694.
[18] Ranjan R, Grover S, Medya S, Chakaravarthy V, Sabharwal Y, Ranu S. Greed: A neural framework for learning graph distance functions.

Advances in Neural Information Processing Systems. 2022;35:22518–22530.
[19] Gao X, Xiao B, Tao D, Li X. A survey of graph edit distance. Pattern Analysis and applications. 2010;13:113–129.
[20] Dory M, Parter M. Fault-tolerant labeling and compact routing schemes. In: Proceedings of the 2021 ACM Symposium on Principles of

Distributed Computing; 2021. p. 445–455.
[21] Ibragimov R, Malek M, Guo J, Baumbach J. Gedevo: an evolutionary graph edit distance algorithm for biological network alignment. In:

German conference on bioinformatics 2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik; 2013. .
[22] Deng S, Yu Y. Predicting Structural Similarity between Molecules Using Graph Neural Networks. In: 2022 10th International Conference on

Bioinformatics and Computational Biology (ICBCB). IEEE; 2022. p. 78–84.
[23] Zeng Z, Tung AK, Wang J, Feng J, Zhou L. Comparing stars: On approximating graph edit distance. Proceedings of the VLDB Endowment.

2009;2(1):25–36.
[24] Bai Y, Ding H, Bian S, Chen T, Sun Y, Wang W. Simgnn: A neural network approach to fast graph similarity computation. In: Proceedings of

the twelfth ACM international conference on web search and data mining; 2019. p. 384–392.

8 S. Bacconi et al. / Procedia Computer Science 00 (2024) 000–000

[25] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907. 2016.
[26] Wang X, Ding X, Tung AK, Ying S, Jin H. An efficient graph indexing method. In: 2012 IEEE 28th International Conference on Data

Engineering. IEEE; 2012. p. 210–221.
[27] Maas A, Daly RE, Pham PT, Huang D, Ng AY, Potts C. Learning word vectors for sentiment analysis. In: Proceedings of the 49th annual

meeting of the association for computational linguistics: Human language technologies; 2011. p. 142–150.
[28] Bongini P, Pancino N, Scarselli F, Bianchini M. BioGNN: how graph neural networks can solve biological problems. In: Artificial Intelligence

and Machine Learning for Healthcare: Vol. 1: Image and Data Analytics. Springer International Publishing Cham; 2022. p. 211–231.
[29] Su X, Xue S, Liu F, Wu J, Yang J, Zhou C, et al. A comprehensive survey on community detection with deep learning. IEEE Transactions on

Neural Networks and Learning Systems. 2022.
[30] Bongini P, Messori E, Pancino N, Bianchini M. A Deep Learning Approach to the Prediction of Drug Side–Effects on Molecular Graphs.

IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2023.
[31] Pancino N, Perron Y, Bongini P, Scarselli F. Drug side effect prediction with deep learning molecular embedding in a graph-of-graphs domain.

Mathematics. 2022;10(23):4550.
[32] Bongini P, Scarselli F, Bianchini M, Dimitri GM, Pancino N, Lio P. Modular multi–source prediction of drug side–effects with DruGNN.

IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2022;20(2):1211–1220.
[33] Pancino N, Rossi A, Ciano G, Giacomini G, Bonechi S, Andreini P, et al. Graph Neural Networks for the Prediction of Protein-Protein

Interfaces. In: ESANN; 2020. p. 127–132.
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