
Citation: Laveglia, V.; Trentin, E.

Downward-Growing Neural

Networks. Entropy 2023, 25, 733.

https://doi.org/10.3390/e25050733

Academic Editor: Gholamreza

Anbarjafari

Received: 28 February 2023

Revised: 8 April 2023

Accepted: 24 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Downward-Growing Neural Networks
Vincenzo Laveglia 1,†,‡ and Edmondo Trentin 2,∗,‡

1 DINFO, Università di Firenze, Via di S. Marta 3, 50139 Firenze, Italy
2 DIISM, Università di Siena, Via Roma 56, 53100 Siena, Italy
* Correspondence: trentin@dii.unisi.it; Tel.: +39-0577-234636
† Current address: Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine,

Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
‡ These authors contributed equally to this work.

Abstract: A major issue in the application of deep learning is the definition of a proper architecture for
the learning machine at hand, in such a way that the model is neither excessively large (which results
in overfitting the training data) nor too small (which limits the learning and modeling capabilities of
the automatic learner). Facing this issue boosted the development of algorithms for automatically
growing and pruning the architectures as part of the learning process. The paper introduces a novel
approach to growing the architecture of deep neural networks, called downward-growing neural
network (DGNN). The approach can be applied to arbitrary feed-forward deep neural networks.
Groups of neurons that negatively affect the performance of the network are selected and grown
with the aim of improving the learning and generalization capabilities of the resulting machine. The
growing process is realized via replacement of these groups of neurons with sub-networks that are
trained relying on ad hoc target propagation techniques. In so doing, the growth process takes place
simultaneously in both the depth and width of the DGNN architecture. We assess empirically the
effectiveness of the DGNN on several UCI datasets, where the DGNN significantly improves the
average accuracy over a range of established deep neural network approaches and over two popular
growing algorithms, namely, the AdaNet and the cascade correlation neural network.

Keywords: deep neural network; deep learning; adaptive architecture; growing neural network;
target propagation

1. Introduction

Selecting the best architecture for a given learning task has always been an open issue
in the training of deep neural networks (DNNs). Trial-and-errors and heuristic solutions
still represent the state of the art. Therefore, the selection process is frustrating and heavily
time-consuming, and it generally ends up in sub-optimal architectures.

Formally, given a learning task T represented in terms of the corresponding supervised
training setD = {(xj, yj)

N
j=1}, the following steps are required in the development of a feed-

forward DNN capable of tackling T : (1) set the number of input and output units equal
to the corresponding dimensionalities of the input and target outputs in D, respectively;
(2) fix the form of the activation functions in the output layer, such that their codomain
matches the range of the target values in D; (3) most crucially, fix the internal structure
of the DNN (which utterly affects the computational capabilities of the model). This
includes fixing the number of hidden layers, the size of each such layer, and the form of
the corresponding activation functions. If dealing with many hidden layers, quasi-linear
activation functions are advisable in order to overcome numerical issues such as vanishing
gradients [1]. Once the architecture has been fixed, a proper learning strategy shall be
implemented. This strategy involves the selection of other hyperparameters, including
the mini-batch size, a drop-out value [2], the batch-normalization [3], etc. All in all, model

Entropy 2023, 25, 733. https://doi.org/10.3390/e25050733 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25050733
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2358-7268
https://orcid.org/0000-0003-2197-0703
https://doi.org/10.3390/e25050733
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25050733?type=check_update&version=1

Entropy 2023, 25, 733 2 of 19

selection is no straightforward process, and it typically involves (implicitly or explicitly)
applying a computationally expensive search strategy.

This paper investigates a novel framework for the automatic completion of the afore-
mentioned steps (2) and (3), that is, the data-driven adaptation of the DNN architecture
and, implicitly, of the corresponding neuron-specific activation functions. The proposed
framework is herein referred to as the downward-growing neural network (DGNN). The
learning process in the DGNN unfolds deep architectures by means of local, piecewise
training sub-processes in an incremental way, with no need for the usual overall backprop-
agation of partial derivatives throughout the whole DNN. Inherently, this can be seen as
an instance of the divide-and-conquer strategy. Section 4 makes it explicit that the DGNN
realizes a model of exploratory causal analysis capable of causal discovery [4,5].

Before presenting the DGNN, we begin the treatment by studying a motivating exam-
ple (Section 1.1) and surveying the literature related to the present research (Section 1.2).
The details of the proposed algorithm are presented in Section 2 (“Materials and Meth-
ods”). The latter introduces the first two novel target-propagation methods (Section 2.1),
namely, the residual driven target propagation (Section 2.1.1) and the gradient-based target
propagation (Section 2.1.2), used as building blocks for the DGNN growing and learning
procedure (Section 2.2). The outcome of experiments conducted on datasets drawn from the
UCI repository is reported in Section 3 (“Results”), where the DGNN is compared favorably
with established DNN paradigms and growing algorithms. Section 4 (“Conclusions”)
draws the concluding remarks and pinpoints major directions for future research work.

1.1. Motivating Example

Let us consider a feed-forward neural network, for instance, a multilayer perceptron
(MLP). To fix ideas, assume that the MLP has three layers, namely, L0, L1, and L2, where
L0 (the input layer) has d input units (d being the dimensionality of the feature space),
the hidden layer L1 has arbitrary size, and L2 (the output layer) of 1-dimensional (i.e.,
there is only one output unit). The function realized by the MLP is y = f2(f1(x)) where
fi = σ(Wix + bi) is the layer-specific function, that is, a mapping Rdi−1 → Rdi where di is
the i-th layer dimensionality (i.e., the corresponding number of units), and σ : R→ R is the
usual element-wise activation function. The function f0 is associated to the input layer and,
as such, is not considered for all practical intents and purposes (in fact, input signals do not
undergo any transformation before being propagated forward through the network).

Let us consider a classification problem with two classes, say, ω1 and ω2, and let
T = {(xj, ŷj)

N
j=1, xj ∈ R2, ŷj ∈ {0, 1}} be a supervised dataset where ŷj = 0 if xj is in class

ω1 and ŷj = 1 else. We write ŷ to represent the network output when the network is fed
with the generic input x. Finally, to fix ideas, we assume that a logistic sigmoid σ(.) is
associated to the output neurons of the network.

Once the training has been completed, we can consider the network weights as
constants. The k-th neuron in L1 realizes the logistic regression ok = σ(x1wk1 + x2wk2 + bk)
which, in turn, realizes the k-th component of the layer-specific multi-dimensional function
f1(.). Depending on x, ok is valued along the tails of σ(.) or in its middle range. Whenever
the module of the connection weights is large, ok is valued along the tails of the sigmoid for
most of the inputs x; that is to say, ok turns out to be close to either 0 or 1.

We write R0 to represent the decision region for class ω1, that is, the subspace of
R2 where ok is below the decision threshold (namely, ok ≤ 1

2), and R1 to represent the
decision region for class ω2 (i.e., the subspace of R2 where whereok >

1
2). The set of points

where ok =
1
2 forms the inter-class separation surface. Formally, we define the separation

surface associated to the k-th neuron of the i-th layer as Sk
i = {x : Fk

i (x) = γ}, where
Fi(x) = fi(fi−1 . . . f0(x)) and, in the specific case of sigmoid activation functions, γ = 1

2 . For
sigmoids, a generic x = (x1, x2) lies on the separation surface when x1wk1 + x2wk2 + bk = 0,
that can be easily rewritten as

Entropy 2023, 25, 733 3 of 19

x2 = −x1
wk2
wk1
− bk

wk1
(1)

that is, the equation of a line having slope −wk2
wk1

and offset − bk
wk1

. The computation realized
by layer L1 of the MLP is the set of the outputs of the neuron-specific logistic sigmoids
for that layer. It is straightforward to see that this pinpoints which one of the two neuron-
specific decision regions (R0 or R1) the generic input x belongs to, for each and every one
of the individual neurons. A graphical representation is shown in Figure 1.

o1 o2
x2

x1

o2
x2

x1

o'1

Figure 1. Data in R2 belong to two classes, represented by crosses and circles. (Left): separation
surfaces defined by two hidden neurons. (Right): separation surfaces expected to be generated by a
growing model, where o′1 is the grown version of o1.

The argument we just used for L1 can be extended to L2, as well. The difference is
that L2 is fed with the outputs of L1. Furthermore, L2 being the output layer, its separation
surface corresponds to the separation surface of the classifier. In general, we can say that
the overall separation surface Sk

i realized by the network is a function of the separation

surfaces defined at the previous layer: S1
i−1,S2

i−1, . . . ,Sdi−1
i−1 . In short, the output separation

surface is Sk
2 = φ(S1

1 , . . . ,Sd1
1). In particular, in the simple architecture at hand, it is seen

that Sk
2 is approximately in a piecewise linear form, where each linear segment corresponds

to the separation surface generated in the preceding layer. It turns out that the overall
separation surface is built from the linear segments realized by the neurons in L1, as shown
in Figure 1 (left).

In most of the cases, in practice, quasi-piecewise linear decision regions are not
sufficient to separate data effectively. In this scenario, what we expect from a growing
model is the capability to overcome such limitations by switching from piecewise-linear to
generic decision surfaces. Furthermore, we want the model to define decision regions that
can adapt to the model needs (i.e., to the nature of the data D and of the specific learning
task T) in order to improve the performance of the resulting machine. This behavior is
shown graphically in Figure 1 (right).

In case of input spaces having higher dimensionality, say, m, the outcome of the k-

neuron is ok = σ
(

∑m
h=1 wkhxh + bk

)
, and the equation realizing the separation surface is

∑m
h=1 wkhxh + bk = γ, which is a hypercube of dimensionality m− 1.

1.2. Related Works

The idea of learning/evolving the architecture of a neural network is not, per se, new.
Early attempts date back to the late 1980s [6]. In this section, we review major, popular
techniques for growing neural network architecture that relate somehow to the approach
presented in this paper.

One of the most popular and effective paradigms for growing neural architectures
is the cascade-correlation neural network [7]. It prescribes initializing the network as a

Entropy 2023, 25, 733 4 of 19

minimal architecture with no hidden layers. After a first learning stage (based on gradient-
descent), an iterative growing procedure is applied. It consists of adding a single neuron
per time to the architecture. New forward connections are created, linking each pre-existing
neuron (except for the output units) to the newly added neuron. The corresponding
connection weights are learned by maximizing the correlation between the outcome of the
new neuron and the output of the network. Afterwards, the values of these connection
weights are clamped, and the output weights are learned via plain gradient-descent. Each
new neuron partakes, in turn, in feeding the input to the next neuron to be added. This
algorithm generates a particular instance of a deep architecture, where each hidden layer is
composed of a single neuron and each internal neuron is fed from all the previous neurons
(either input or hidden neurons).

An unsupervised incremental architecture-growing approach is represented by the
growing neural gas [8], an extension of the traditional neural gas model [9]. A growing
algorithm for semi-supervised learning is presented in [10]. As learning proceeds, more
and more computational power is required of the learning machine to capture the input-to-
output relationship encapsulated within the ever-increasing labeled fraction of the dataset.
In [10], this is accomplished by creating new, additional layers that are plugged into the
network architecture. Any such new layer is initialized as a replica of the previous one;
then, a fine-tuning procedure is applied to optimize the parameters stemming from the
introduction of the new layer.

A recent trend occurred in the development of algorithms capable of realizing dynamic
architectures (including growing architectures) Recently, adaptive (e.g., growing) archi-
tectures proved suitable to continual learning setups (i.e., setups where the learning task
changes over time). In particular, the approach presented in [11] exploits the knowledge
encapsulated within a previously trained machine in order to train a new, larger neural
architecture capable of modeling the new instances of the time-dependent learning task
at hand.

A significant approach that relates to the present research is the AdaNet [12]. The
AdaNet is initialized with a simple base-architecture, and new neurons are progressively
added for as long as the performance improves. The criterion function to be minimized
involves an architecture-driven regularized empirical risk where the complexity of the
architecture plays the role of the regularization term. The growing stage goes as follows:
given the base-architecture h` having ` layers, two candidate networks h′` and h′`+1, are
generated, having ` and ` + 1 layers, respectively. The generic k + 1-th layer in both
candidate nets is fed with the output of the k-th layer in h`, leveraging the embeddings
of the data that h` learned already. Then, the candidate models undergo completion of
their training process. Eventually, a new base-architecture is selected between h′` and h′`+1
based on the corresponding performance in terms of the given loss function, and the whole
procedure is iterated. It is seen that the computational cost of this growing algorithm can
be very high, especially when the learning process ends up in large architectures.

Splitting steepest descent for growing neural architectures [13] is a technique that
“splits” an individual neuron by replacing it with a set of new neurons whenever the
learning process cannot improve the loss any further. Any such set of new neurons is
initialized in such a way that the sum of their outputs equals the output of the neuron that
underwent splitting. An ad hoc metric is defined for choosing the next neuron to be split.
The approach was extended to the so-called firefly neural architecture descent in [14]. The
latter sides the neuron-splitting mechanism with other growing tools that allow for the
modification in width and depth of the neural architecture at hand.

Another approach called Gradmax was recently introduced in [15]. It focuses on an
initialization procedure for the ingoing and outgoing connection weights of new neurons
that have been introduced in the architecture at hand. The technique revolves around
the idea of initializing the weights by solving an optimization problem such that (1) the
output of the network is not initially affected by the activity of the new neurons, and (2) the

Entropy 2023, 25, 733 5 of 19

gradient of the loss function with respect to the new weights is maximum in order to speed
up the learning process.

2. Materials and Methods

In light of the motivating example analyzed in Section 1.1, and relying on the notation
introduced therein, we hereafter extend our scope to any generic supervised learning task.
As we have seen, in a two-class classification task, the linear decision surface Sk

i is the
subset of the feature space where ok is equal to a certain value γ. In particular, in the case of
sigmoid activation function, we have γ = 1

2 , and ok = σ(win
k x + bk). The latter depends on

the neuron input weights win
k = (wk1, wk2) and on the bias. We replace the neuron and all its

input connections (win
k , bk) with a more general, adaptive processing component realizing a

nonlinear activation function ϕ : Rd0 → R such that the corresponding decision surface Sk

results in a more flexible adaptive form. Such an adaptive processing component is realized
via a smaller neural network Sub that we call subnet. Therefore, ok = ϕ(x;W) whereW
represents the set of all the weights of the subnet. In so doing, a modification of the original
network architecture is achieved. Figure 2 shows a simple yet illustrative graphical example.
Although the approach has been introduced referring to the illustrative setup outlined in
Section 1.1 (two-class classification task over a two-dimensional feature space), it is seen
that it can be applied in a straightforward manner, as is, to generic tasks having arbitrary
input dimensionalities. The procedure can be repeated multiple times recursively, leading
to a progressive growth of a DNN architecture with an arbitrary number of layers. Each
application of the procedure replaces either (1) a group of the bottom-most hidden neurons
in the original architecture with a subnet, or (2) a group of the bottom-most hidden neurons
in a subnet with a sub-subnet, and so forth in a downward-growing manner. The following
sections present the algorithmic building blocks used for realizing the DGNN growing and
learning processes. These building blocks are in the form of techniques for propagating
target outputs to hidden neurons within the DGNN, possibly located deep down in the
network (Section 2.1), as well as in the form of procedures for generating and training the
subnets involved (Section 2.2). Unfamiliar readers may find a gentle introduction to the
basic notions of target propagation, architecture growing, and DNN refinement in [16].

x1 x2

o2

y

x1 x2

o2

y

𝑜′# = 	𝜑(𝑥)𝑜# = 𝑓(𝑥)

Figure 2. (Left): standard 1 hidden layer feed-forward network, also known as the base network.
(Right): the grown network, after replacing the leftmost hidden neuron and its input connections
with a subnet.

2.1. Target Propagation

Let us first consider the regular backpropagation (BP) algorithm [17]. The core idea
behind BP is that each weight of the network is partially accountable for the output error
yielded by the model when fed with any labeled example (x, ŷ) in the training set, where

Entropy 2023, 25, 733 6 of 19

ŷ is the target output over input x. Let wi be any generic connection weight in the DNN.
Gradient-descent is applied in order to search for values of wi that reduce the output error.
Therefore, wi is updated to its new value w′i as follows:

w′i = wi − η
∂L
∂wi

(2)

where L is the loss function and η is the learning rate. In spite of its popularity and rele-
vance, BP suffers from shortcomings when applied to deep architectures [1]. In particular,
the backpropagated gradients tend to vanish in the lower layers of deep networks, hinder-
ing the overall learning process. A viable workaround was proposed in the form of Target
Propagation (TP) [18,19], still an under-investigated research area. Originally proposed
in [20,21] within the broader framework of learning the form of the activation functions,
the idea underlying TP goes as follows. In plain BP, the signals to be backpropagated are
related to the partial derivatives of the global loss function with respect to the layer-specific
parameters of the DNN. To the contrary, in TP, the real target outputs (naturally defined at
the output layer in regular supervised learning) are propagated downward through the
DNN, from the topmost to the bottom-most layers of the network. In so doing, each layer
gets explicit target output vectors that, in turn, define layer-specific loss functions that can
be minimized locally without involving explicitly the partial derivatives of the overall loss
function defined at the whole network level. As a consequence, the learning process is
not affected by the numerical problems determined by repeatedly backpropagating partial
derivatives throughout the DNN. In the TP scheme proposed hereafter, the targets are first
computed for the topmost layer. Such output targets are then used for determining new
targets for the DNN internal layers, according to novel downward-propagation techniques.

Given a DNN N having ` layers, let ŷ` represent the generic target output of the
network, which is associated to the `-th layer (the output layer). The aim of TP is the com-
putation of a proper target value ŷ`−1 for layer `− 1 and, in turn, for layers `− 2, `− 4, . . .
In order to accomplish the task, a specific function φ(.) has to be realized, such that

ŷ`−1 = φ(ŷ`) (3)

When N is fed with an input vector x, the i-th layer of N (for i = 1, . . . , `, while i = 0
represents the input layer which is not counted) is characterized by a state hi ∈ Rdi , where
di is the number of units in layer i, hi = σ(Wihi−1 + bi) and h0 = x as usual. The quantity
Wi represents the weight matrix associated to layer i, Wi ∈ Rdi×di−1 , bi ∈ Rdi denotes the
corresponding bias vector and σi(.) represents the vector of the element-wise outcomes
of the activation functions for the specific layer i. For notational convenience, the layer
index will be omitted when it is not needed. Hereafter, we assume that the DNN at hand is
based on activation functions that are in the usual form of logistic sigmoids. Nevertheless,
the following results still hold for any kind of differentiable activation functions (upon
minimal adjustments of the formalization). Let us consider a supervised training set
D = {(xj, ŷj)|j = 1, . . . , N}. Given a generic input pattern x ∈ Rn and the corresponding
target output ŷ ∈ Rm both drawn from D, the state h0 ∈ Rn of the input layer of N is
defined as h0 = x, while the target state ĥ` ∈ Rm of the output layer is ĥ` = ŷ. Relying on
this notation, it is seen that the function fi(.) realized by the generic i-th layer of N can be
written as

fi(hi−1) = σ(Wihi−1 + bi) (4)

Therefore, the mapping Fi : Rn → Rdi realized by the i-th bottom-most layers over
current input x can be expressed as the composition of the i-th layer-specific functions
as follows:

Fi(x) = fi(fi−1...(f1(x))) (5)

Eventually, the function realized by N (which is an `-layer network) is F`(x). Bearing
in mind the definition of D, the goal of training N is having F`(xj) ' ŷj for j = 1, ..., N.

Entropy 2023, 25, 733 7 of 19

This is achieved by minimizing a point-wise loss function measured at the output layer.
In the literature, this loss is usually the squared error, defined as L(xj; θ) = ‖F`(xj)− ŷj‖2

2,
where θ represents the overall set of the parameters of N and ‖·‖2 is the Euclidean norm.
Differently from the traditional supervised learning framework for DNNs, where the targets
are defined only for the neurons of the output layer, TP consists in propagating the topmost
layer targets ŷ to the lower layers, in order to obtain explicit targets for the hidden units of
the DNN as well. Eventually, gradient descent with no BP may be applied in order to learn
the layer-specific parameters as a function of the corresponding targets. TP is at the core
of growing and training the DGNN. Two TP algorithms are proposed in the next sections,
namely, residual driven target propagation (RDTP) and gradient-based target propagation.
The former applies to DNNs having a single output unit (e.g., binary classifiers), while the
latter is suitable to arbitrary architectures.

2.1.1. Residual Driven Target Propagation

Instead of attempting a direct estimation of the targets ĥ`−1, hereafter we aim at
estimating the residual values z`−1 defined as the difference between the actual state h`−1
and the desired, unknown target ĥ`−1, such that h`−1 + z`−1 = ĥ`−1. The rationale behind
using residuals is twofold:

1. Assume the network at hand, trained via plain BP over D, converges to the global
minimum of the loss function. Under the circumstances, we would just let ĥi = hi
such that z`−1 = ĥ`−1 − h`−1, for i = 1, . . . , `. To the contrary, residuals would not be
null during the training: in particular, their module would start from a certain (large,
in general) initial value and progressively converge to zero as training completes. Let t
represent a certain training iteration, and let τ denote a certain number of consecutive
training epochs. If the loss function decreases monotonically for t = 1, 2, . . ., it is
immediately seen that z`−1(t + τ) ≤ z`−1(t). Therefore, it is seen that after pre-
training the network we have |z`−1| � |h`−1|, i.e., a smaller range of the inversion
function φ(.), entailing a more error-robust target propagation technique.

2. In RDTP (as we will see shortly), whenever the network evaluated over a given input
pattern results in a null error, then z`−1 = 0 and ĥ`−1 = h`−1 + 0; that is, the target
reduces to the actual state. In so doing, the layer-wise training steps will not entail
forgetting the knowledge learned by the DNN during the preceding pre-training
process. This is not guaranteed by the established target propagation techniques.

Let us stick with the single-output network case for the time being. The core of RDTP
lies in the estimation of the residues z`−1 in the hidden layer ` − 1, given the network
output error (ŷ− y)2. Once the residues are estimated, we define the target values for layer
`− 1 as ĥ`−1 = h`−1 + z`−1. Note that, for notational convenience, we omitted writing
explicitly the dependence of the quantities on the input pattern. Relying on the notation
introduced in Section 2.1, in the present scenario ` and `− 1 represent the output and the
hidden layer of the DNN, respectively. Let us assume that a certain value of N is given.
Using apexes and subscripts in order to point out the layer-specific and the neuron-specific
indexes, respectively, the DNN output can be written as:

y = σ`

(d`−1

∑
u=1

w(`)
u h(`−1)

u + b(`)
)

(6)

with

h(`−1)
u = σ`−1

(n

∑
k=1

w(`−1)
u,k xk + b(`−1)

u

)
(7)

where x ∈ Rn is the input pattern. A generic target output for the DNN is given by

Entropy 2023, 25, 733 8 of 19

ŷ = σ`

(d`−1

∑
u=1

w(`)
u ĥ(`−1)

u + b(`)
)

(8)

where ĥ(`−1)
u represents the target for u-th neuron in the hidden layer, for u = 1, . . . , d`−1.

Since z(`−1)
u = ĥ(`−1)

u − h(`−1)
u , we can write ĥ(`−1)

u = h(`−1)
u + z(`−1)

u and the latter, in turn,
can be rewritten as

ŷ = σ`

(d`−1

∑
u=1

w(`)
u (h(`−1)

u + z(`−1)
u) + b(`)

)
(9)

= σ`

(d`−1

∑
u=1

w(`)
u h(`−1)

u︸ ︷︷ ︸
ã

+
d`−1

∑
u=1

w(`)
u z(`−1)

u︸ ︷︷ ︸
ãz

+b(`)
)

(10)

where the quantities in the form ãz are the activations (i.e., inputs) to the corresponding
neurons, and will be defined shortly. Given the discussion so far, the target output can be
written as

ŷ = y + yz (11)

where yz is the output component related to the residues, namely, yz = σ`(ãz); therefore

yz = ŷ− y (12)

ãz = σ−1
` (yz) (13)

Starting from ãz, that is, ãz = ∑
d`−1
u=1 w(`)

u z(`−1)
u , the residuals zu for the lower layer(s) of

the DNN can be computed as follows. First, when a generic pattern x ∈ D is fed into the
DNN, a certain output error yz is observed. Different neurons in layer `− 1 may have
diverse degrees of responsibilities for that particular error. Formally, the responsibility
r(i)u (x) ∈ [0, 1] of the u-th neuron in the generic i-th layer having size di shall satisfy

di

∑
u=1

r(i)u (x) = 1 (14)

To this end, we define r(i)u (x) as

r(i)u (x) =
σi(au)

∑di
k=1 σi(ak)

(15)

where au and ak are the activations of the generic units u and k, respectively. In the
following, for notational convenience, writing explicitly the dependence on x may be
dropped whenever needed. Equation (15) allows for the computation of the residues z(i)u ,
u = 1, . . . , di. It relies on the assumption that the higher the responsibility of a neuron on
the overall error, the higher shall be the corresponding residue z(i)u required to compensate
for the misbehavior of the neuron at hand. Finally, we empirically factorize ãz in terms of
a sum of responsibility-weighted contributions from the neurons in the previous layer as
ãz = ∑

d`−1
u=1 w(`)

u z(`−1)
u , where r(`−1)

u ãz = w(`)
u z(`−1)

u , such that

z(`−1)
u =

r(`−1)
u ãz

w(`)
u

(16)

The pseudo-code of the overall procedure is presented in Algorithm 1, where a pattern-
specific index j is used in order to make explicit the dependence of each quantity on the
specific input vector.

Entropy 2023, 25, 733 9 of 19

Algorithm 1 Residual Driven Target Propagation (RDTP)

Input: training set D = {(xj, ŷj)
N
j=1}, the network N , the output layer i + 1

Output: the propagated targets at layer i. ForN , layer i corresponds to the single hidden layer.
1: for j = 1 to N do
2: yj ← Fi+1(xj)
3: yz,j ← ŷj − yj

4: ãz,j ← σ−1
i+1(yz,j)

5: for u = 1 to di do
6: r(i)u (xj) =

σi(au)

∑d
s=1 σi(as)

7: z(i)u = r(i)u ãz

w(i+1)
u

8: h(i)u = σi(au)

9: ĥ(i)u = h(i)u + z(i)u
10: end for
11: ĥi,j = (ĥ(i)1 , ..., ĥ(i)di

)

12: end for

2.1.2. Gradient-Based Target Propagation

By construction, RDTP can backpropagate targets to the (topmost) hidden layer only
when the network has a single output unit. As a consequence, it is not suitable to further
propagate targets from layer ` − 1 to layer ` − 2, unless layer ` − 1 is one-dimensional
(which is hardly the case). Therefore, RDTP can be applied only to traditional, single
hidden layer MLPs having a single output unit. To overcome this limitation, an extended
version of the algorithm is herein proposed, called gradient-based target propagation
(GBTP). As in RDTP, the idea is to estimate the residual values z`−1 for layer `− 1 such
that ĥ`−1 = h`−1 + r`−1 � z`−1, where the residues are multiplied element-wise by the
responsibility of the individual neurons. In the following, the residues are computed via
gradient descent by letting

ĥ
′
` = σ`

(
W`(h`−1 + r`−1 � z`−1) + b`

)
(17)

and minimizing the loss L(ĥ`, ĥ
′
`) = ‖ĥ` − ĥ

′
`‖2

2 by iteratively updating z`−1 as

z′`−1 = z`−1 − η
∂L(ĥ`, ĥ

′
`)

z`−1
(18)

that can be applied either in an online or batch fashion. Propagation of the targets to
the preceding layers is straightforward, by iterating the procedure in a backward manner
over the layer-specific parameters. Algorithm 2 presents the pseudo-code of GBTP, where
the function calculate_layer_resp(net, i, x) computes the responsibilities for i-th layer of
the network as in Equation (15), in an element-wise fashion, in response to the input x.
The procedure estimate_residues(net, x, ri, ĥi+1, hi) computes the residues for i-th layer by
iterating the application of Equation (18) until a stopping criterion is met. Note that the
pseudo-code uses a pattern-specific index for representing all the quantities involved in the
computation.

Entropy 2023, 25, 733 10 of 19

Algorithm 2 Gradient-based RDTP

Input: training set D = {(xj, ŷj)
N
j=1}, the network N , the layer i

Output: the propagated targets at layer i− 1
1: for j = 1 to N do
2: if i = ` then
3: ĥi,j ← ŷj
4: end if
5: hi−1,j = Fi−1(xj)
6: ri−1,j = calculate_layer_resp(N , i− 1, xj)
7: zi−1,j = estimate_residues(N , xj, ri−1, ĥi,j, hi−1,j)
8: ĥi−1,j ← hi−1,j + ri−1,j � zi−1,j
9: end for

2.2. The Algorithm for Growing and Training the DGNN

Building on the TP mechanisms, it is straightforward to devise the DGNN growing
and learning procedure. First, the DGNN is generated as a feed-forward neural network
(e.g., an MLP) with a single hidden layer. Hereafter, we write h-size to denote the number of
hidden units. Such an initial shallow neural network is trained via BP over the supervised
data sample D. TP (either RDTP or GBTP) is then applied in order to estimate the target
values for all the hidden neurons, and the corresponding values of the loss function is
computed. Afterwards, the k̄ hidden neurons having highest loss are selected (where k̄ is a
hyperparameter, see Section 3). These neurons and their input connections are replaced by
a subnet Sub (this realizes the proper “growing step”). The subnet is built as a one-hidden-
layer MLP having k̄ output units (the i-th of which realizes the activation function fi(ai) for
the i-th neuron replaced by Sub), h-size hidden units, and as many input neurons as the
dimensionality of the DGNN input layer. The subnet Sub is then trained via BP using the
values yielded by TP as target outputs for the corresponding output neurons of Sub. The
procedure is recursively applied: TP is used to estimate targets for the hidden neurons of
Sub. For each neuron in the output layer of Sub, the corresponding loss is computed. The
average loss values λ̄h and λ̄Sub are then determined by averaging over the losses yielded
by the remaining original hidden units in the DGNN and by the output neurons of Sub,
respectively. If λ̄Sub ≥ λ̄h, then the k̄ highest-loss neurons in the hidden layer of Sub are
grown; otherwise, growing is applied to the k̄ original hidden neurons having highest
loss. In both cases, a new subnet is introduced (having the same architecture as Sub) and
trained based on TP. The entire procedure is applied recursively to all the original hidden
neurons that have not been grown yet, as well as to all the subnets already present in the
DGNN. This recursive growing step is repeated until a stopping criterion is met (namely,
an early sopping criterion based on the validation loss evaluated at the whole DGNN level).
Finally, a global refinement [22] of the model may be carried out by means of an end-to-end
BP-based retraining of the overall grown neural architecture over D (starting from the
DGNN parameters learned during the growing process). The recursive growing procedure
aims at developing architectures having a number of internal layers that suits the nature
of the specific learning problem at hand. Instead of growing the architecture by simply
adding new neurons to the single hidden layer, the DGNN expands individual neurons in
a depth-wise manner. The highest-loss criterion for selecting the neurons to be replaced by
subnets entails that only those portions of the architecture that are actually relevant to the
learning task are eventually grown.

3. Results

Experiments were designed to (1) assess the effectiveness of the proposed approach,
as well as to (2) demonstrate that the results achieved by the DGNN do compare favor-
ably with (and, possibly improve over) the state-of-the-art techniques. Publicly available,
popular datasets were used in the experiments. The datasets were drawn from the UCI
repository [23]. They correspond to several application-specific classification problems,

Entropy 2023, 25, 733 11 of 19

spanning a range of different underlying characteristics (namely, the dimensionality of
the feature space, the nature of the features involved, and the cardinality of the dataset).
The specific datasets used, along with their characteristics and their bibliographic source,
are summarized in Table 1. All of them consist of real-life data collected in the field, cor-
responding to specific real-world tasks. The Adult dataset [24] is a collection of records
from the Census database describing professionals in terms of age, work-class, education,
race, sex, etc. The task is predicting whether the income of a given professional exceeds
$50 K/annum or not. The Ozone dataset [25] consists of weather/climatic measurements
(temperatures, wind speed, etc.) collected from 1998 to 2004 at the Houston, Galveston, and
Brazoria area at 1–8 h intervals. The task is the detection of the ozone level. The Ionosphere
dataset [26] is a collection of radar data collected by a phased array of 16 high-frequency
antennas located in Goose Bay, Labrador. The task is the classification of the radar returns
from the ionosphere as either positive (the radar returns show evidence of the presence
of some type of structure in the ionosphere) or negative (returns do not show any such
presence; the corresponding signals pass through the ionosphere). The Pima dataset [27] is
a collection of diagnostic measurements (number of pregnancies the patient has had, BMI,
insulin level, age, etc.) carried out at the US National Institute of Diabetes among female
patients of Pima Indian heritage. The task is to diagnostically predict whether or not a
patient has diabetes. The Wine dataset [28] is a sample of chemical analysis (such as the
quantity of alcohol, of malic acid, of magnesium, etc.) over a number of wines grown in the
same region in Italy but derived from different cultivars. The task is determining the origin
of any given wine. Vertebral [29] is a biomedical dataset where orthopaedic patients are
to be classified into three classes (normal, disk hernia, or spondylolisthesis) based on six
biomechanical features. Finally, Blood [30] is a dataset extracted from the Blood Transfusion
Service Center in the city of Hsin-Chu (Taiwan) that is used for the classification of a variety
of different measurements characterizing different blood donations.

Table 1. Characteristics of the datasets used in the experiments.

Adult Ozone Ionosphere Pima Wine Vertebral Blood

Cardinality 48,842 2536 351 768 178 700 748
Nb. of features 14 72 34 8 13 6 5

Reference [24] [25] [26] [27] [28] [29] [30]

We adopted the same robust many-fold crossvalidation methodology (and the same
partitioning of the UCI datasets into training, validation, and test sets, on a fold-by-fold
basis) used in [31]. As in [31], the hyperparameters of each algorithm were selected using
the validation fraction of each fold-specific subset. The hyperparameters were tuned via
random search, selecting the specific configuration of hyperparameters that resulted in
the minimum validation loss. Random search was applied to the selection of the DGNN
hyperparameters as well. For all the training algorithms under consideration, the following
stopping criterion was applied: stop training once the loss function evaluated on the fold-
specific validation subset of the data has not shown a relative improvement of as much as
(at least) 2% over the last 200 consecutive training epochs.

We first evaluated the improvement yielded by the DGNN over a standard DNN hav-
ing the same initial architecture, namely, a three-layer DNN. Of course, the dimensionality
of the input and output spaces are dataset-specific. The number of neurons per hidden
layer was fixed according to the aforementioned model selection procedure applied to the
plain DNN (the architecture was inherited by the DGNN as a starting point, before growing
takes place), and it ranged between a minimum of eight neurons for the Adult dataset to
a maximum of 30 neurons for the Ionosphere dataset. Table 2 compares the values of the
average classification accuracies (and the corresponding standard deviations) yielded by
the plain DNN with no growing mechanism (hereafter termed base-model) with the outcome
of the grown-model, which is the same DNN whose architecture underwent growing during
its training process. The accuracies are averaged over the test subsets of the many-fold

Entropy 2023, 25, 733 12 of 19

crossvalidation procedure for the different UCI datasets under consideration. The third and
fourth columns of the Table report the average absolute accuracy improvement offered by
the grown-model over the base-model and the corresponding relative error rate reduction,
respectively. It is seen that the DGNN yields an improvement over the base-model for all
the UCI datasets at hand. The improvement is significant: in fact, it amounts to an average
25.66% relative error rate reduction. The average improvement of the DGNN over the plain
DNN in terms of absolute accuracy is significant as well, being approximately 3%. For five
out of seven datasets, the DGNN turned out to also be more stable than the base-model,
resulting in a reduced standard deviation of the fold-by-fold dataset-specific accuracies.
In fact, on average (last row of the Table), the standard deviation of the grown-model is
smaller than the standard deviation of the base-model. This is remarkable in light of the
fact that the DGNN ends up becoming a more complex machine than the bare base-model,
and its increased complexity (and architectural variance) could have been suspected of
worsening the generalization capabilities of the resulting learning machine, affecting the
stability of the latter. These results are empirical evidence of the fact that this is not the case.
To the contrary, it is seen that the DGNN training algorithm tends to grow subnets that
actually improve the quality of the mapping realized by the DGNN without overfitting the
specific training data.

Table 2. Average accuracy (±std. dev.) on the test subsets of the many-fold crossvalidation procedure
yielded by the base-model and by the grown-model, respectively, along with the average absolute
accuracy improvement offered by the latter over the former and the corresponding relative error
rate cut.

Dataset Base-Model Grown-Model Avg. Absolute Avg. Relative
Accuracy (%) Accuracy (%) Gain (%) Error Cut (%)

Ionosphere 87.78 ± 2.03 93.47 ± 0.49 5.69 46.56
Wine 98.30 ± 0.98 99.43 ± 0.98 1.13 66.47

Vertebral 78.90 ± 2.96 87.01 ± 1.84 8.11 38.44
Blood 77.14 ± 0.58 80.35 ± 3.03 3.21 14.04
Pima 75.00 ± 2.68 77.08 ± 2.05 2.08 9.32

Ozone 97.24 ± 0.18 97.32 ± 0.27 0.08 2.90
Adult 85.38 ± 0.00 85.66 ± 0.00 0.28 1.92

Average 85.69 ± 1.34 88.62 ± 1.24 2.94 25.66

Table 3 reports the average absolute accuracy improvement (%) and the average
relative error rate reduction (%) yielded by the proposed growing mechanism as functions
of the dataset-specific number of features. It is seen that the improvements offered by
the DGNN are substantially independent of the dimensionality of the feature space. In
fact, Pearson’s correlation coefficient r between the number of features and the average
absolute accuracy improvement turns out to be r = −0.3395, which is a nonsignificant
very small negative relationship between the two quantities (the p-value being equal to
0.4563). As for the correlation between number of features and average relative error rate
cut, Pearson’s coefficient is r = −0.2317 (p-value = 0.6172), i.e., an even less significant,
very small negative correlation. In short, the performance of the DGNN growing algorithm
is affected by the number of features to an extremely limited extent.

An illustrative instance of the sensitivity of the DGNN performance to the number k̄
of neurons that are grown during the learning process can be observed graphically in the
following figures. Figure 3 shows the average validation accuracy on the Ozone dataset
yielded by the trained DGNN as a function of k̄. Different curves are plotted in the figure,
each corresponding to a different initial number of neurons in the DGNN hidden layer.
The following remarks are in order: (1) as expected, regardless of the growing mechanisms,
the accuracy of the DGNN is affected significantly by the initial size of the hidden layer;
(2) the optimal (i.e., yielding maximum-accuracy) value of k̄ strictly depends on the initial
dimensionality of the hidden layer; (3) the accuracy of the resulting model is definitely not

Entropy 2023, 25, 733 13 of 19

a monotonic function of k̄; neither does it present a unique maximum. Likewise, Figure 4
represents an overview of the variations of the validation accuracies on the remaining UCI
datasets considered in the paper for different values of k̄. A substantial variability in the
behavior of the DGNN can be observed in the graphics, depending on the specific data at
hand (and, implicitly, on the corresponding dimensionality), as expected.

The positioning of the learning and classification capabilities of the DGNN with respect
to the state-of-the-art algorithms were assessed by means of two comparative experimental
evaluations. The former aimed at putting the DGNN in the proper context of established
results yielded by popular DNN-based approaches [32]. Hereafter, the established results
are quoted from [32] (which obtained them via random-search model selection). Henceforth,
the DGNN is compared with the following algorithm: self-normalizing neural networks
(SNN) [32], sparse rectifier (s-ReLU) neural networks [33], deep residual neural networks
(ResNet) [34], DNNs with batch-normalization (BN) [3], DNNs with weight normalization
(WN) [35], and DNNs with layer normalization (LN) [36]. The outcomes of the experimental
comparisons are reported in Table 4.

Table 3. Average absolute accuracy improvement and average relative error rate cut as functions of
the number of features.

Dataset Nb. of Features Avg. Gain (%) Avg. Error Cut (%)

Blood 5 3.21 14.04
Vertebral 6 8.11 38.44

Pima 8 2.08 9.32
Wine 13 1.13 66.47
Adult 14 0.28 1.92

Ionosphere 34 5.69 46.56
Ozone 72 0.08 2.90

1 3 5 10 15 20
k̄

0.9550

0.9575

0.9600

0.9625

0.9650

0.9675

0.9700

ac
cu

ra
cy

ozone

dgnn h-size

5

10

15

20

30

40

Figure 3. Accuracy yielded by the DGNN on the Ozone dataset as a function of the number k̄ of
neurons to be grown by the algorithm during the growing process, for different initial numbers of
neurons (h-size) in the hidden layer.

Entropy 2023, 25, 733 14 of 19

1 3 5 10 15
k̄

0.7615

0.7620

0.7625

0.7630

0.7635

0.7640

ac
cu

ra
cy

blood

dgnn h-size

5

10

15

1 3 5 10 15 20
k̄

0.76

0.78

0.80

0.82

0.84

0.86

ac
cu

ra
cy

ionosphere

dgnn h-size

5

10

15

20

30

40

1 3 5 10 15 20
k̄

0.79

0.80

0.81

0.82

0.83

ac
cu

ra
cy

adult

dgnn h-size

5

10

15

20

30

40

1 3 5 10 15
k̄

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

ac
cu

ra
cy

pima

dgnn h-size

5

10

15

1 3 5 10 15
k̄

0.72

0.74

0.76

0.78

0.80

0.82

ac
cu

ra
cy

vertebral

dgnn h-size

5

10

15

1 3 5 10 15
k̄

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

wine

dgnn h-size

5

10

15

Figure 4. Accuracy of the DGNN on the UCI datasets as a function of k̄.

Table 4. Comparison between the DGNN and the DNN-based classifiers: average accuracy on the
different datasets. For each dataset, the highest accuracy is printed in bold.

Dataset DGNN SNN s-ReLU ResNet BN WN LN

Ionosphere 93.47 88.64 90.91 95.45 94.32 93.18 94.32
Wine 99.43 97.73 93.18 97.73 97.73 97.73 97.73

Vertebral 87.06 83.12 87.01 83.12 83.12 66.23 84.42
Blood 80.35 77.01 77.54 80.21 76.47 75.94 71.12
Pima 77.08 75.52 76.56 71.35 71.88 69.79 69.79

Ozone 97.32 97.00 97.32 96.69 96.69 97.48 97.16
Adult 85.66 84.76 84.87 84.84 84.99 84.53 85.17

Overall average 88.62 86.25 86.77 87.06 86.46 83.55 85.67

The results are reported in terms of average accuracy over the many-fold crossvali-
dation procedure, on a dataset-by-dataset basis. For each algorithm, the last row of the
Table presents the algorithm performance (i.e., the average accuracy) averaged over the
different datasets. For each dataset at hand, a boldface font is used in the Table to high-
light the models that resulted in the highest average accuracy. It is seen that the DGNN

Entropy 2023, 25, 733 15 of 19

resulted in the highest accuracy in five out of seven cases, and was second-best in the
Ozone setup. In terms of overall average accuracy, the DGNN yielded a significant 1.56%
gain over the ResNet, the latter being (on average) its closest competitor. Averaging over
the six established DNNs reported in the Table, the DGNN resulted in an overall 2.66%
average accuracy gain over its competitors. The two-tailed Welch’s t-test resulted in a
confidence >75% of the statistical significance of the gap between the accuracies achieved
by the DGNN and those yielded by the ResNet. The confidence increases (>88%) when
comparing the DGNN with the remaining approaches.

Table 5 reports the comparison between the DGNN and the other DNNs in terms
of average depth (number of layers) and average number of hidden neurons. Note that
the input and output neurons are not counted, insofar as they are implicitly defined
by the nature of the specific datasets under consideration; hence, they do not affect the
comparisons. The quantities in the Table are averaged over the different UCI datasets and
over the different many-fold crossvalidation iterations. Except for the DGNN case, the
other values are quoted from [32]. A lower-bound on the average number of layers needed
for the ResNet was estimated based on the latter being reported in [32] as a 6.35-block
network on average, where each such a block involved a minimum of two layers. Since
the number of layers and the number of hidden neurons are indexes of the complexity of
the neural networks at hand, it is seen that the average DGNN complexity is dramatically
smaller than for all the other DNNs. This results in improved generalization capabilities,
which is likely to be at the core of the accuracy gains yielded by the DGNN according
to Table 4. In short, the DGNN growing mechanism tends to grow only those neurons
whose growth actually benefits the learning and generalization capabilities of the DNN
undergoing growing.

Table 5. Comparison between the DGNN and the DNN-based classifiers: average depth (number of
layers) and average number of hidden neurons.

DGNN SNN s-ReLU ResNet BN WN LN

Depth 4.04 10.80 7.10 >12.70 6.00 3.80 7.00
Nb. of hidden neurons 35 2765 1818 1626 1536 973 1792

In the second comparative experimental evaluation, we compared the DGNN with
two established and popular growing algorithms for DNNs, namely, the adaptive structural
learning of artificial neural networks (AdaNet) [12] and the cascade-correlation learning
architecture (Casc-Corr) [7]. We adopted the same experimental setup used so far, namely,
the same many-fold crossvalidation assessment procedure and the same model selection
technique. The results are reported in Table 6. It turns out that the DGNN yields the
highest average accuracies in four out of seven datasets, and the second-best accuracies in
the remaining cases. When performing second-best, the difference between the accuracy
yielded by the best scorer and the DGNN is negligible. In fact, upon averaging over
the seven UCI datasets (last row of the Table) the DGNN yields the highest average
accuracy overall. The two-tailed Welch’s t-test shows that the statistical significance of the
improvement yielded by the DGNN over its closest competitor (that is, the Casc-Corr) is
quite high, with a confidence >95%.

Entropy 2023, 25, 733 16 of 19

Table 6. Comparison between the DGNN and the established growing algorithms: average accuracy
on the different datasets. For each dataset, the highest accuracy is printed in bold.

Dataset DGNN AdaNet Casc-Corr

Ionosphere 93.47 ± 0.49 77.56 ± 4.05 91.75 ± 2.82
Wine 99.43 ± 0.98 94.90 ± 1.88 100.00 ± 0.00

Vertebral 87.06 ± 1.84 71.44 ± 5.44 87.06 ± 1.84
Blood 80.35 ± 3.03 63.62 ± 1.89 80.90 ± 3.62
Pima 77.08 ± 2.05 62.88 ± 3.90 76.80 ± 1.54

Ozone 97.32 ± 0.27 97.40 ± 0.20 97.10 ± 0.17
Adult 85.66 ± 0.00 82.30 ± 0.26 84.75 ± 0.25

Average 88.62 ± 1.24 78.59 ± 2.52 88.34 ± 1.46

4. Conclusions

DGNNs extend plain DNNs insofar as they realize a growing mechanism that can
adapt the architecture to the nature of the specific learning task at hand. Implicitly, such a
growing mechanism results in the adaptation of the neuron-specific activation functions
of the DNN, such that the activation function associated to a certain hidden neuron ξ is
the (adaptive and nonlinear) function computed by the subnet associated with ξ. The best
selling point of DGNNs over established growing algorithms lies in their locally expanding
neurons only wherever necessary for improving the learning capabilities of the resulting
machine, keeping the growth factor to a minimal scale which prevents the DNN from
overfitting. From this perspective, DGNNs are complementary to the neural network
pruning algorithms (which, by construction, start from an oversized architecture that is
prone to overfitting since the early stages of the learning process).

The empirical evidence proves that the DGNN actually improves over established
DNNs and growing algorithms, yielding sounder solutions to the different learning tasks
covered in this paper. DGNNs offer practitioners a viable tool for compensating for possible
mischoices at the architectural level made during the creation and initialization of the neural
network. In principle, the DGNN growing mechanism may form the basis for overcoming
any issues related to initial architectural choices.

An open issue with DGNNs is represented by the generation of target outputs for the
different subnets. In fact, the target propagation process may not scale up to a very large
dataset. Furthermore, the learning task entailed by the target propagation approach may
also end up defining learning tasks for (at least some of) the subnets that are not necessarily
simpler than the original learning task as a whole. Searching for solutions to these open
problems is going to be part of the future work on the topic, alongside other research
directions (e.g., the investigation of larger architectures for the subnets, the involvement of
feature importance selection techniques for excerpting the neurons to be grown, etc.).

Finally, it is seen that the proposed approach introduces an implicit model of ex-
ploratory causal analysis, suitable to causal discovery [4,5] in the field. Let us resort to
the probabilistic interpretation of artificial neural networks (the unfamiliar reader is re-
ferred to [37,38]). As shown in [39] (section 6.1.3, page 202), a feed-forward neural network
realizes an implicit model of the conditional probability p(t|x) of the targets t given the
input x, where t and x are random vectors, insofar that y(x) = 〈t|x〉 =

∫
tp(t|x)dt. As

observed in [40] (section 5.6, page 272), the ANN may be used for solving either forward
problems that “(. . .) correspond to causality in a physical system” (i.e., y(x) is caused by x),
or inverse problems (e.g., in pattern recognition it is the class t that causes the probability
distribution of the features x). Any generic hidden layer of the ANN realizes a nonlinear
mapping ϕ(.) of the random vector x onto a latent random vector z = ϕ(x). The specific
observation x causes z and the latter, in turn, causes y. Likewise, at each growing step the
proposed algorithm introduces a new latent random vector that is caused by x and causes
a selected subset of the components of the latent random vector yielded by the next hidden
layer of the ANN, eventually causing y, in a cascade-like fashion. In short, the DGNN
discovers spontaneously new latent variables and a chain of causalities that better explain

Entropy 2023, 25, 733 17 of 19

the causality relationship between x and y. Moreover, since the algorithm selects subsets
of the latent variables to be grown at each step, based on the extremization of the training
criterion (that is, the best implicit fit of the resulting model to p(t|x)), eventually different
causal chains (of different length, involving different latent and observable variables) are
discovered. At a post-processing stage, since each latent variable discovered by the DGNN
is realized via a corresponding sub-network defined over x, the connection weights in
the sub-network that are below a given (small) threshold may be neglected, such that an
overall pattern of causality between some input variables and specific latent and output
variables emerges. Note that the forward-propagation of the input through such a grown
DGNN complies with the two principles of Granger causality [41], insofar that (1) the
feed-forward nature of the DGNN ensures that the causes happen prior to their effects,
and (2) since the growing mechanism applies only to those variables that actually affect y
and, in turn, the training criterion, the causes (along the causality chains) turn out to have
unique information about the consequent values of their effects. It is seen that, due to its
very architectural nature and dynamics, the DGNN and its generating data according to
p(t|x) do relate to some extent to the notions of cellular automata and complex networks
in the framework of causal calculus [42].

Author Contributions: V.L. and E.T. contributed equally to all facets of the present research. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data used in the paper are available publicly from the UCI Machine
Learning Repository at https://archive.ics.uci.edu/ml/index.php (accessed on 31 January 2022).

Acknowledgments: The authors gratefully acknowledge the invaluable contributions from nobody.
This paper is in memory of Ilaria Castelli, also known as Hillary Castles (LOL).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DNN Deep neural network
AdaNet Adaptive structural learning of artificial neural networks
BO Bayesian optimization
BP Backpropagation
BN Deep neural network with batch-normalization
Casc-Corr Cascade-correlation learning architecture
GBTP Gradient-based target propagation
LN Deep neural network with layer normalization
MLP Multilayer perceptron
s-ReLU Sparse rectifier linear unit
RDTP Residual driven target propagation
ResNet Deep residual neural networks
SNN Self-normalizing neural networks
TP Target propagation
WN Deep neural network with weight normalization

References
1. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010; pp. 249–256.

2. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

https://archive.ics.uci.edu/ml/index.php

Entropy 2023, 25, 733 18 of 19

3. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; pp. 448–456.

4. Zenil, H.; Kiani, N.A.; Marabita, F.; Deng, Y.; Elias, S.; Schmidt, A.; Ball, G.; Tegnér, J. An Algorithmic Information Calculus for
Causal Discovery and Reprogramming Systems. iScience 2019, 19, 1160–1172. [CrossRef] [PubMed]

5. Zenil, H.; Kiani, N.A.; Abrahão, F.S.; Tegnér, J.N. Algorithmic Information Dynamics. Scholarpedia 2020, 15, 53143. [CrossRef]
6. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
7. Fahlman, S.E.; Lebiere, C. The cascade-correlation learning architecture. In Proceedings of the 2nd International Conference

on Neural Information Processing Systems, Cambridge, MA, USA, 1 January 1989; Touretzky, D., Ed.; Morgan-Kaufmann:
Burlington, MA, USA, 1990; Volume 2, pp. 524–532.

8. Fritzke, B. A growing neural gas network learns topologies. In Proceedings of the 7th International Conference on Neural
Information Processing Systems, Cambridge, MA, USA, 1 January 1994; pp. 625–632.

9. Martinetz, T.; Schulten, K. A “Neural-Gas” Network Learns Topologies. Artif. Neural Netw. 1991, 1, 397–402.
10. Wang, G.; Xie, X.; Lai, J.; Zhuo, J. Deep growing learning. In Proceedings of the IEEE International Conference on Computer

Vision, Venice, Italy, 22–29 October 2017; pp. 2812–2820.
11. Yoon, J.; Yang, E.; Lee, J.; Hwang, S.J. Lifelong Learning with Dynamically Expandable Networks. In Proceedings of the

International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
12. Cortes, C.; Gonzalvo, X.; Kuznetsov, V.; Mohri, M.; Yang, S. AdaNet: Adaptive Structural Learning of Artificial Neural Networks.

In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August
2017; Proceedings of Machine Learning Research; Volume 70, pp. 874–883.

13. Wu, L.; Wang, D.; Liu, Q. Splitting Steepest Descent for Growing Neural Architectures. In Proceedings of the Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
Vancouver, BC, Canada, 8–14 December 2019; Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett,
R., Eds.; pp. 10655–10665.

14. Wu, L.; Liu, B.; Stone, P.; Liu, Q. Firefly Neural Architecture Descent: A General Approach for Growing Neural Networks. In
Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, Virtual, 6–12 December 2020.

15. Evci, U.; van Merrienboer, B.; Unterthiner, T.; Pedregosa, F.; Vladymyrov, M. GradMax: Growing Neural Networks using
Gradient Information. In Proceedings of the The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, 25–29 April 2022. Available online: https://OpenReview.net (accessed on 30 May 2022).

16. Laveglia, V. Neural Architecture Search by Growing Internal Computational Units. Ph.D. Thesis, Università degli Studi di
Firenze, Firenze, Italy, 2019. Available online: https://hdl.handle.net/2158/1303131 (accessed on 10 March 2023).

17. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation. In Parallel Distributed
Processing: Explorations in the Microstructure of Cognition; Rumelhart, D.E., McClelland, J.L., PDP Research Group, Eds.; MIT Press:
Cambridge, MA, USA, 1986; Chapter Learning Internal Representations by Error Propagation; Volume 1, pp. 318–362.

18. Lee, D.; Zhang, S.; Fischer, A.; Bengio, Y. Difference Target Propagation. In Proceedings of the Machine Learning and Knowledge
Discovery in Databases—European Conference, ECML PKDD 2015, Porto, Portugal, 7–11 September 2015; Proceedings, Part I;
pp. 498–515. [CrossRef]

19. Castelli, I.; Trentin, E. Combination of supervised and unsupervised learning for training the activation functions of neural
networks. Pattern Recognit. Lett. 2014, 37, 178–191. [CrossRef]

20. Castelli, I.; Trentin, E. Semi-unsupervised Weighted Maximum-Likelihood Estimation of Joint Densities for the Co-training
of Adaptive Activation Functions. In Proceedings of the Partially Supervised Learning—Proceedings of the 1st IAPR TC3
Workshop, PSL 2011, Ulm, Germany, 15–16 September 2011; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 62–71. [CrossRef]

21. Castelli, I.; Trentin, E. Supervised and Unsupervised Co-training of Adaptive Activation Functions in Neural Nets. In Proceedings
of the Partially Supervised Learning—First IAPR TC3 Workshop, PSL 2011, Ulm, Germany, 15–16 September 2011; Revised
Selected Papers; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–61. [CrossRef]

22. Laveglia, V.; Trentin, E. A Refinement Algorithm for Deep Learning via Error-Driven Propagation of Target Outputs. In
Proceedings of the Artificial Neural Networks in Pattern Recognition—Proceedings of tghe 8th IAPR TC3 Workshop, ANNPR
2018, Siena, Italy, 19–21 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 78–89.

23. Dheeru, D.; Karra Taniskidou, E. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/
index.php (accessed on 31 January 2022).

24. Kohavi, R. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; Simoudis,
E., Han, J., Fayyad, U.M., Eds.; AAAI Press: Menlo Park, CA, USA, 1996; pp. 202–207.

25. Zhang, K.; Fan, W. Forecasting skewed biased stochastic ozone days: Analyses, solutions and beyond. Knowl. Inf. Syst. 2008,
14, 299–326. [CrossRef]

26. Sigillito, V.; Wing, S.; Hutton, L.; Baker, K. Classification of radar returns from the ionosphere using neural networks. Johns
Hopkins APL Tech. Dig. 1989, 10, 262–266.

http://doi.org/10.1016/j.isci.2019.07.043
http://www.ncbi.nlm.nih.gov/pubmed/31541920
http://dx.doi.org/10.4249/scholarpedia.53143
http://dx.doi.org/10.1007/BF02478259
https://OpenReview.net
https://hdl.handle.net/2158/1303131
http://dx.doi.org/10.1007/978-3-319-23528-8_31
http://dx.doi.org/10.1016/j.patrec.2013.06.013
http://dx.doi.org/10.1007/978-3-642-28258-4_7
http://dx.doi.org/10.1007/978-3-642-28258-4_6
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://dx.doi.org/10.1007/s10115-007-0095-1

Entropy 2023, 25, 733 19 of 19

27. Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S. Using the ADAP Learning Algorithm to Forecast the
Onset of Diabetes Mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care; IEEE Computer Society
Press: Los Alamitos, CA, USA, 1988; pp. 261–265.

28. Aeberhard, S.; Coomans, D.; de Vel, O. Comparison of Classifiers in High Dimensional Settings; Technical Report 92–02; Department
of Computer Science and Department of Mathematics and Statistics, James Cook University of North Queensland: Douglas,
Australia, 1992.

29. Berthonnaud, E.; Dimnet, J.; Roussouly, P.; Labelle, H. Analysis of the Sagittal Balance of the Spine and Pelvis Using Shape and
Orientation Parameters. J. Spinal Disord. Tech. 2005, 18, 40–47. [CrossRef] [PubMed]

30. Yeh, I.C.; Yang, K.J.; Ting, T.M. Knowledge discovery on RFM model using Bernoulli sequence. Expert Syst. Appl. 2009,
36, 5866–5871. [CrossRef]

31. Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification
problems? J. Mach. Learn. Res. 2014, 15, 3133–3181.

32. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. In Proceedings of the Advances in
Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 971–980.

33. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

35. Salimans, T.; Kingma, D.P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In
Proceedings of the 30th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 5–10 December
2016; pp. 901–909.

36. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
37. Trentin, E.; Lusnig, L.; Cavalli, F. Parzen neural networks: Fundamentals, properties, and an application to forensic anthropology.

Neural Netw. 2018, 97, 137–151. [CrossRef] [PubMed]
38. Trentin, E. Soft-Constrained Neural Networks for Nonparametric Density Estimation. Neural Process. Lett. 2018, 48, 915–932.

[CrossRef]
39. Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: Cary, NC, USA, 1995.
40. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2007.
41. Granger, C. Testing for causality: A personal viewpoint. J. Econ. Dyn. Control 1980, 2, 329–352. [CrossRef]
42. Zenil, H.; Kiani, N.A.; Zea, A.A.; Tegnér, J. Causal deconvolution by algorithmic generative models. Nat. Mach. Intell. 2019,

1, 58–66. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1097/01.bsd.0000117542.88865.77
http://www.ncbi.nlm.nih.gov/pubmed/15687851
http://dx.doi.org/10.1016/j.eswa.2008.07.018
http://dx.doi.org/10.1016/j.neunet.2017.10.002
http://www.ncbi.nlm.nih.gov/pubmed/29096202
http://dx.doi.org/10.1007/s11063-017-9740-1
http://dx.doi.org/10.1016/0165-1889(80)90069-X
http://dx.doi.org/10.1038/s42256-018-0005-0

	Introduction
	Motivating Example
	Related Works

	Materials and Methods
	Target Propagation
	Residual Driven Target Propagation
	Gradient-Based Target Propagation

	The Algorithm for Growing and Training the DGNN

	Results
	Conclusions
	References

