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Abstract
Purpose  The Ki-67/MIB-1 labeling index (LI) is clinically used to differentiate between high and low-grade gliomas, while 
its prognostic value remains questionable. Glioblastoma (GBM) expressing wild-type isocitrate dehydrogenase IDHwt, a 
relatively common malignant brain tumor in adults, is characterized by a dismal prognosis. Herein, we have retrospectively 
investigated the prognostic role of Ki-67/MIB-1-LI in a large group of IDHwt GBM.
Methods  One hundred nineteen IDHwt GBM patients treated with surgery followed by Stupp’s protocol in our Institution 
between January 2016 and December 2021 were selected. A cut-off value for Ki-67/MIB-1-LI was used with minimal 
p-value based approach.
Results  A multivariate analysis showed that Ki-67/MIB-1-LI expression < 15% significantly correlated with a longer over-
all survival (OS), independently from the age of the patients, Karnofsky performance status scale, extent of surgery and 
O6-methylguanine (O6-MeG)-DNA methyltransferase promoter methylation status.
Conclusions  Among other studies focused on Ki-67/MIB-1-LI, this is the first observational study showing a positive cor-
relation between OS of IDHwt GBM patients and Ki-67/MIB-1-LI that we propose as a new predictive marker in this subtype 
of GBM.
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Introduction

Glioblastoma (GBM), the most common malignant central 
nervous system (CNS) tumor, is characterized by a short 
overall survival (OS). The standard of treatment for a GBM 
is surgery, followed by daily radiotherapy (RT) combined 
with temozolomide (TMZ), then followed by 6 cycles of 
TMZ [1, 2]. The use of biomarkers predicting prognosis and 
response to treatment are integrative parts of medical man-
agement in GBM patients. In this regard, the methylation 
status of the gene coding promoter for O6-methylguanine-
DNA methyltransferase (MGMT) enzyme has been posi-
tively correlated with a prolonged survival in patients treated 
with TMZ-based therapy [3].

The new classification of tumors of CNS recently intro-
duced, identifies a critical role for the mutation status of the 
isocitrate dehydrogenase gene (IDH) [4]. The expression of 
wildtype IDH (IDHwt), occurring in ∼90% of all GBM cases, 
results in a worse prognosis [5], whilst is a weak predictor 
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of long-term survival in GBM patients [6]. Ki-67, a nuclear 
protein persistently expressed in all phases of the cell cycle, 
is widely used as a proliferation marker for human tumor 
cells [7]. MIB-1 is a monoclonal antibody that identifies the 
Ki-67 protein in paraffin tissue [8]. The Ki-67/MIB-1 labe-
ling index (LI) is one of the immunohistochemical markers 
used for discriminating between high and low-grade gliomas 
[9], whilst its use as prognostic factor for the stratification is 
still discussed [10–20]. Thus, whilst some studies show no 
association between Ki-67 LI and survival [13, 14, 21], and 
no predictive value [10, 21], others show a poorer survival 
rate for lower Ki-67 LI [14, 19], whilst others the opposite 
[11, 12, 15–18, 20]. Notably, nowadays, no studies have still 
been performed on the relationship between Ki-67/MIB-1 
labeling index and IDH1-WT status in GBM.

In the present study, we have investigated the power of 
Ki-67/MIB-1 expression as prognosticator in a large and 
homogenous group of patients suffering from IDH wild-type 
Glioblastoma (IDHwt GBM) prognostic impact of the Ki-67/
MIB-1 labeling index.

Patients and methods

Patient characteristics

Between February 2016 and July 2021, 183 consecutive 
patients with GBM were treated at University Hospital 
of Siena, Italy. The main clinical data (extent of surgery, 

clinical examination, blood counts and chemistry, Karnofsky 
Performance Status – KPS) were registered in all patients. 
All GBMs were surgically removed and characterized for 
the MGMT methylation-, IDH1 mutation status, and Ki-67/
MIB-1-LI score. One hundred and nineteen patients, char-
acterized for MGMT status and IDH-wild type and MIB-1/
Ki 67 labeling index are selected for the present analysis. 
Characteristics of patients are listed in Table 1. All patients 
received RT plus concomitant daily TMZ, followed by 
adjuvant TMZ. RT started within 6 weeks of surgery and 
consisted of fractionated focal irradiation, at the dose of 
60/59.4 Gy in 30/33 fractions of 2/1.8 Gy each. Concomi-
tant chemotherapy consisted of TMZ at the dose of 75 mg/
m2, given 7 days per week from the first day of RT. Adjuvant 
TMZ was started 4 weeks after the end of RT and deliv-
ered for 5 days every 28 days up to 12 cycles. The dose was 
150 mg/m2 for the first cycle and was increased to 200 mg/
m2 from the second cycle. The dose was reduced or sus-
pended in patients with disease progression or toxicity. MRI 
was repeated before RT, before the first cycle of adjuvant 
TMZ, and thereafter every 8 weeks or as appropriate accord-
ing to neurological status. Neuroradiographic response was 
assessed by RANO criteria [22]. Tumor progression was 
defined by an increase in tumor size more than 25% or by the 
presence of a new lesion on imaging. Radiological progres-
sion had to be confirmed at two different MRI evaluations 
(at least 2 months apart). In patients with tumor progression, 
the recurrence was recorded at the time of the first MRI 
showing progression.

Table 1   Patient’s demographics and survival parameters (univariate and multivariate analysis)

Parameters Num-
ber of 
patients

Median survival Univari-
ate analysis 
(p-value)

Multivariate analysis (p-value) - OR (CI 95%)

Age  < 55 y 20 30 months p = 0.043
 > 55 y 99 11 months

Karnofsky performance status 100–80 103 14 months p = 0.000 3.46; 95% CI: 1.83–6.54; p = 0.000
 < 70 16 6 months

Extent of surgery Gross total 25 23 months p = 0.048 2.04; 95% CI: 1.08–3.84; p = 0.001
Sub-total–biopsy 94 11 months

Radiotherapy total dose  < 59.4/60 Gy 27 8 months p = 0.001
59.4–60 Gy 70 15 months p = ns
 > 60 Gy 22 15 months

Radiological treatment 
response (6 months)

Complete 23 60 months p = 0.000

Partial 25 21 months
Stable 20 17 months
Progression 51 8 months

MGMT promoter status Methylated 51 25 months p = 0.000 2,83; 95% CI: 1,20–3,32 p = 0.023
Unmethylated 68 8 months

Ki-67/ Mib-1% class Mib-1 < 15% 17 40 months p = 0.005 3,85; 95% CI: 1,84–4.43; p = 0.001
Mib-1 > 15% 102 11 months
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Treatment planning and treatment parameters

Radiation treatment planning was performed with the Var-
ian Eclipse Treatment Planning System. In each patient, 
the treatment volume was delineated using post-contrast 
thin-slice (1-mm) gadolinium-enhanced T1-weighted and 
T2-weighted MRI axial sequences fused with planning com-
puted tomography (CT) scans of 1.2 mm acquired through-
out the entire cranium. The gross tumor volume (GTV) 
encompassed the resection cavity and any residual tumor 
as seen on a contrast enhancing T1 postoperative MRI. 
Delineation of clinical target volume (CTV), considered to 
contain the microscopic disease, was carried out by adding 
a margin of 2 cm to the GTV (standard-CTV plan). The 
CTV margins were reduced to 1–3 mm around natural bar-
riers to tumor growth (the skull, ventricles, falx, etc.), as 
well to allow sparing of the optic nerve/chiasm, if necessary. 
The CTVs were expanded by 5 mm to create the planning 
target volumes (PTV) to compensate for variability in treat-
ment setup and patient motion. The prescribed dose was 
normalized to 100% at the isocenter and 95% isodose surface 
covered the PTV as the minimum dose (ICRU Report 50). 
Treatment was given using a Tomotherapy machine. Nor-
mal tissue was contoured to include cerebral hemispheres, 
hippocampi, brainstem, optic nerves, and chiasm, eyes, and 
cerebellum. Maximum dose was 55 Gy to the eyes, optic 
nerve, or chiasm, and 54 Gy to the brainstem. The treatment 
was performed with the Raystation Planning System. The 
local Institutional Review Boards approved the study.

MGMT status and MIB‑1/Ki67 evaluation

We assessed the MGMT gene promoter methylation status 
using a methylation-specific Polymerase Chain Reaction 
(PCR), as previously reported [23]. Briefly, genomic DNA 
was extracted from paraffin-embedded tumor sections and 
treated with sodium bisulfite using the EZ DNA Methyl-
ation-Gold kit (HISS Diagnostics, GmbH, Freiburg, Ger-
many). Primer sequences were used to detect methylated and 
unmethylated MGMT promoter sequences. PCR products 
were separated on 2% agarose gel. A glioma cell line with 
a completely methylated MGMT promoter, and peripheral 
blood mononucleated cells, served as positive and negative 
control samples, respectively. A methylation percentage 
of 5% was used as a cut-off value: samples with methyla-
tion < 5% and > 5% were classified as unmethylated (Unmet 
MGMT) and methylated (MethMGMT), respectively.

Evaluation of MIB-1 Expression: Protein expression 
was determined by neuropathological evaluation of biopsy 
or resection tissue. Immunohistochemistry was performed. 
In brief, heat-induced epitope retrieval was performed with 
either citrate or ethylenediaminetetraacetic acid (EDTA) 
according to the manufacturer’s protocol of the respective 

primary antibody. Sections were incubated for 1 h with the 
following primary antibodies anti-Ki-67/MiB-1 (1:200; 
Dako M7240, Agilent Technologies, Inc., Santa Clara, CA, 
USA). Sections were washed and incubated with post-block 
solution and horseradish peroxidase (HRP) polymer reagent 
according to the manufacturer’s protocol of the ZytoChem-
Plus HRP Polymer Kit (Zytomed Systems GmbH, Berlin, 
Germany). Ki-67 Labeling Index/MIB-1 demonstrates the 
percentage of immunoreactive tumor cells from all tumor 
cells.

Statistical analysis

For data collection and analysis, we used IBM® SPSS® 
Statistics (version 21; IBM Corp., Armonk, NY, USA). The 
prevalence of investigated variables as well as the calculation 
of means and standard deviations was obtained by descrip-
tive statistics. Comparison between nominal variables have 
been made with Chi2 test. Continuous variable correlations 
have been investigated with Pearson’s Bivariate correlation. 
Threshold of statistical significance was considered p < 0.05. 
Overall survival (OS) and progression-free survival (PFS) in 
patients with recurrent or progressive tumors were estimated 
using the Kaplan–Meier method calculated from the time of 
radiation treatment to the date of death from any cause. All 
tests with p < 0.05 were then included in univariate analysis 
(log-rank test) for comparison of survival probability. Fol-
lowing this, all tests with p < 0.1 were included in multi-
variate analysis using a Cox proportional hazards model to 
analyze possible dependencies. Lastly, tests with p < 0.05 
in multivariate analysis were considered significant. The 
assessment of Ki67/MIB-1-LI as survival prognosticator was 
performed using software X-TILE that allows to define the 
best cut-off point for biomarkers with minimal p-value [24]. 
This is an outcome-based cut-point optimization approach 
that illustrates the presence of substantial tumor subpopula-
tions and shows the robustness of the relationship between 
a biomarker and outcome by construction of a two-dimen-
sional projection of every possible subpopulation.

Results

In the selected population, after a median follow-up time 
of 18 months [range 2–76 months], the median OS was 
12 months, with 78.2% and 48.5% survival rates at 6 and 
12 months, respectively. Median PFS was 7 months, with 
55% and 33.6% survival rates at 6 and 12 months, respec-
tively. Patients characteristics, age, KPS, extent of surgery, 
RT dose, Radiological Response, MGMT status and Ki67/
MIB-1-LI and the corresponding OS data, are reported 
in Table 1. Regarding the MGMT promoter status, it was 
unmethylated in 68 cases (57.1%) and methylated in 51 
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(42.9%). After the survival univariate analysis (Table 1), 
significant factors for OS were: KPS, extent of surgical 
resection, RT dose, age, MGMT status, response to treat-
ment. Moreover, we identified a most-significative cut-off 
value for MIB-1 of 15% of expression with a survival value 
(p = 0.005). The patients with a Ki67/MIB-1-LI value < 15% 
were 17 and had median survival 40 months, 102 patients 
with Ki67/MIB-1-LI value > 15% had a median survival 
11 months (Fig. 1). Distribution and correlation analysis 
between the MIB-1 expression and other prognostic param-
eters showed that the MIB-1 expression level is not signifi-
cantly associated with other prognostic factors: such as KPS, 
extent of surgery, MGMT, age and Radiological Response. 
On the other hand, combined MGMT status is strongly cor-
related to the radiological response to treatment (p = 0.000).

Multivariate analysis (Cox regression analysis) showed 
that KPS (HR: 3.46; 95% CI: 1.83–6.54; p = 0.000), extent of 
surgery (HR: 2.04; 95% CI: 1.08–3.84; p = 0.001), MGMT 
(HR: 2.83; 95% CI: 1.20—3.32 p = 0.023) and Ki67/MIB-
1-LI status (HR: 3.85; 95% CI: 1.84—4.43; p = 0.001) were 
independent prognostic factors.

Interestingly, low Ki67/MIB-1-LI values were indepen-
dently associated with survival, identifying long survival 
patients in the methylated and unmethylated patients. Indeed, 
the Methylated MGMT-MIB-1 < 15% group was associated 
with the longest OS (8 patients; median OS 41 months); 
Methylated MGMT-MIB-1 > 15% group (43 patients;) 
has a median OS 25 months (p = 0,003); in the Unmethyl-
ated MGMT-MIB-1 > 15% group (59 patients; median OS 
8 months; in the Unmethylated MGMT-MIB1 < 15% group 
containing 9 patients median OS is not reached (Fig. 2A 
and B).

Discussion

Concurrent and sequential TMZ with RT, after complete sur-
gical removal is the standard treatment for newly diagnosed 
GBMs. The overall expected 5-year survival rate for GBM 
patients is < 5% [25], and several data suggest that survival 
depends on a combination of intrinsic patient characteristics 
and genetic mutations.

In neuro-oncology, the Ki67/MIB-1-LI is widely used 
[21], with the expression of Ki 67/Mib-1 ≥ 10% e IDHwt 
strongly suggestive of GBM diagnosis. However, the prog-
nostic role of Ki-67/MIB-1-LI remains largely debated, 
with large discrepancies [10–19], potentially depending 
on the inter- and intra-observer variability [26–28], and 
lack of standardization in the immunostaining procedure 
[29]. Furthermore, the prognostic role of Ki-67/MIB-1-LI 
has been often investigated considering other prognostic 
factors, rather than directly analyzing the correlation with 
OS [20], and only few papers approached the association 
considering histological heterogeneity [30, 31]. Therefore, 

Fig. 1   Kaplan Meier Survival curves according Mib-1 index (cut-
off: 15%) in all patients selected for the present analysis (119 pts, 
p = 0,005). Abbreviations: OS: averall survival

Fig. 2   Kaplan Meier Survival curves according to the Mib-1 index 
(cut-off: 15%) and MGMT status. A Methylated MGMT patients (51 
patients; p = 0,03). B Unmethylated MGMT patients (68 patients, 
p = 0,02)
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nowadays, it is not yet a cut-off point for Ki67/MIB-1-LI 
capable of having a potential prognostic effect [19, 31, 
32]. In the present work we demonstrate a prognostic 
significance for Ki67/MIB-1-LI in IDHwt GBM patients, 
with a cut off level 15%. The incidence of IDHwt GBMs 
with a Ki-67/Mib-1-LI lower than 15% are quite rare and 
is found only in 17 patients among 119 patients but is 
strongly and independently associated with a long survival 
with a median survival of 40 months. Thus, our evidence 
confirms what has already been previously described [19], 
with the important difference that our evidence indicates 
a survival of 40 months and not 18 months previously 
indicated [19].

Notably, when combined with MGMT status, Ki67/MIB-
1-LI correlates with a higher OS of IDHwt patients, indepen-
dently from MGMT promoter status. The correlation analy-
sis didn’t clarify the modality in which low Ki67/MIB-1-LI 
provides a better prognosis, indeed it wasn’t correlated with 
any analyzed prognostic factors, nor to the radiological treat-
ment response. In consideration of a homogeneity of treat-
ment for the patients selected in the work, we believe that 
an explanatory hypothesis could be that the parameter ki/67/
MIB-1 is not only a prognostic factor but also a predictive 
factor of response to radio-chemotherapy treatment.

Conclusions

Ki67/MIB-1-LI used with a cut-off value of 15% seems to 
be very interesting as a prognostic-related index in IGHwt 
patients, identifying those candidates to have a higher OS, 
independently by MGMT status. The retrospective analysis 
setting, the mono-centric data and, particularly, the uneven 
group sizes are the main limitations of the present work. 
Our study results present an interesting finding that warrants 
further investigation, perhaps in the first instance through 
larger retrospective studies involving multiple cancer treat-
ment and pathology centers. More data should be collected 
in a prospective and multi centric setting to overcome the 
discrepancy of Mib-1 expression assessment due to inter-and 
intra-observer variability.
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