
UNIVERSITÀ DEGLI STUDI DI SIENA

DI

Dipartimento di Ingegneria dell’Informazione e Scienze

Matematiche

Ph.D. Information Engineering and Science

Contributions to ceers, logical depth,
algorithmic randomness and their applications

Supervisor:
Prof. Andrea Sorbi

Candidate:
Valentino Delle Rose

XXXIV Cycle

“Tra quello che sappiamo e quello che ci inventiamo, sempre ce la caviamo.”
(Motto della famiglia Delle Rose)

Ai miei genitori Graziella e Maurizio, che mi hanno sempre accompagnato
verso i miei sogni.

ii

Acknowledgements

Time has flown by and I have already reached the time to thank all the
people who have accompanied me on this journey.

First, I want to thank my supervisor, prof. Andrea Sorbi, simply for being
the special person he has been in these three years. He has been the most
helpful and patient supervisor I could have asked for and I will always be
thankful to have had the opportunity to work with him.

I also want to express my gratitude to all the wonderful colleagues I have
worked together during my PhD studies.

There are several reasons for which I want to thank prof. Laurent Bien-
venu, surely way more than the ones I could write here. Despite the distance,
made even more difficult to overcome by the pandemic situation we have all
had to face in the last years, he has been a present and forbearing mentor
and working with him has been a truly enriching experience in every respect.
I am especially grateful to him for hosting me in Bordeaux, in March 2021:
the month I have spent there has been very important for me.

Next, I want to thank Dr Wolfgang Merkle. This is already the second
thesis in which I thank him, and he really deserves it. For a few years now,
he has played a big role in my mathematical education and research work
and he is one of the main reasons I can consider Heidelberg as my second
university. I am particularly thankful to him for hosting me several times
there again during my PhD studies.

I also want to express my sincere gratitude to Dr Luca San Mauro, for
all the precious time we have spent working together: I have really learned
a lot from him and I am thankful for all the insightful discussions we had in
the last three years.

Finally, I want to offer my special thanks to Dr Tomasz Steifer, who has
been both a wonderful colleague and a helpful friend to me. I am truly
grateful to have met him and worked with him.

iii

I really wish that the professional and personal bond I have established
with each of them will continue for a long time to come.

Next, I want to thank all my friends for their love and support, without
which these years would have been much harder. So, I want to thank my
colleagues and friends from San Niccolò, Chiara, Ilaria and Luca: thank you
for all the time spent together studying and having fun, especially for our
summer holidays at the beach, which I will miss a lot. Special thanks to
Paola, Eva, Gasta, Rocco, Lele, Frenz and all the rest of the ESN Siena GES
family: I have been so lucky to have found such trustworthy friends here in
Siena. And to Daniela, for being almost my deputy mum and always keeping
me safe. Also, to Carlotta, Maria and Damiano, for having the strength to
be my lifelong friends: thank you for always being close to me, even if we
live far apart. And to Chiara, for loving me as I am and always supporting
me, thank you from the bottom of my heart.

Last, but not least, I want to express all my gratitude to my loving family:
without their unconditional help and support nothing I have done would have
been possible. I hope they are at least as proud of me as I am of them.

Valentino

iv

Abstract

This thesis collects some contributions to different fields of computability
theory and algorithmic randomness, on which I have been focusing during
my PhD studies.

The first line of research, on which I have worked jointly with Luca San
Mauro and Andrea Sorbi, concerns computable reducibility on the equiva-
lence relations on the set of natural numbers. Extending Ershov’s category-
theoretic approach (see [40]), we have investigated various properties of the
category of equivalence relations on N, where the morphisms from an equiv-
alence relation R to another equivalence relation S are those maps from
R-equivalence classes to S-equivalence classes, which are induced by com-
putable functions. We have also studied some important full subcategories
of Eq, such that the ones of c.e. equivalence relations, which we often referred
to simply as ceers, and of co-c.e. relations.

Moreover, we have studied the “expressiveness” of certain classes of effec-
tively presented algebraic structures using the tools of computable reducibil-
ity: namely, we have studied which ceers lie in the same degree (with respect
to the degree structure induced by computable reducibility) of the word prob-
lem of some member of various classes of familiar algebraic structures, such
as semigroups, groups and rings. Our main result, which answers an open
question from [45], is that, while in every degree there is the word problem of
some c.e. semigroup, there are ceers which are not bi-reducible to the word
problem of any finitely generated semigroup: in fact, it is even possible to
identify a natural computability-theoretic property (which we have called
hyperdarkness) preventing ceers from being in the same degree of the word
problem of any finitely generated semigroup.

The second project, joint with Laurent Bienvenu and Wolfgang Merkle,
focuses on logical depth. This notion has been introduced by Bennett in
[9] and aims to capture the intuitive idea of the internal organization of

v

information. In particular, we have studied how depth relativizes to various
classes of oracles, in order to better understand which oracles do actually
help in organizing information: the main results are that the class of deep
sequences with respect to the halting set is incomparable (with respect to
the inclusion) with the corresponding unrelativized class, while the class of
deep sets relative to any Martin-Löf random sequence strictly contains the
unrelativized one. A consequence of our results is that we slightly strengthen
a result in [7], stating that every PA-complete degree is the join of two ML-
random degrees: in fact, we show that every DNC2 function is truth-table-
equivalent to the join of two Martin-Löf random sets.

Finally, in the last project, which is joint work with Laurent Bienvenu and
Tomasz Steifer, we have compared deterministic forecasting schemes against
probabilistic ones, using the toolkit of algorithmic randomness and, in par-
ticular, the notion of martingales. We have introduced a new notion in the
“randomness zoo”: we call a sequence X almost everywhere computably ran-
dom if, for almost every sequence Y (i.e. up to a null class) X is computably
random relatively to Y . Notice that this approach is indeed equivalent to
consider probabilistically computable martingales, by simply assuming that
Y has been drawn at random in advance. Then, using the so-called fireworks
technique (see, e.g., [16, Section 1.4]), we have built a partial computable se-
quence (roughly speaking, a sequence on which no deterministic martingale
succeeds) which is not almost everywhere computably random, hence proving
that probabilistic martingales are actually stronger than deterministic ones.
It is worth noticing that this is a quite unusual result in computability the-
ory, starkly contrasting the classical result that the sequences which can be
computed by some probabilistic algorithm with positive probability coincide
with the deterministically computable ones [31].

vi

Contents

Acknowledgements . iii
Abstract . v

Outline of the thesis x

I Contributions to the theory of computable reducibil-
ity on equivalence relations on N 1

Introduction 2

1 Preliminaries 4

1.1 Computable reducibility among equivalence relations on N . . 4
1.2 Finite, light and dark ceers . 5
1.3 Isomorphisms and strong isomorphisms of ceers 9
1.4 Some universal ceers . 11

2 On the category of equivalence relations 14

2.1 Preliminaries on category theory 15
2.2 The category of equivalence relations on N 20

2.2.1 Monomorphisms and epimorphisms of equivalence re-
lations, ceers and coceers 22

2.2.2 Products and coproducts in Eq 26
2.2.3 Equalizers and coequalizers 28
2.2.4 Subcategories of Eq(Σ0

1) and closure under binary co-
products and coequalizers 31

2.3 Conclusion . 32

vii

3 The expressive power of algebraic structures by means of

computable reducibility 33

3.1 C.e. algebras . 34
3.2 Classes of algebras that are complete for the ceers 36

3.2.1 The word problem as a ceer on terms, or as a ceer on
the free algebra . 38

3.2.2 Semigroups . 39
3.2.3 Monoids . 40

3.3 Classes of algebras that are not complete for the ceers 40
3.3.1 Semigroups . 40
3.3.2 Monoids . 41

3.4 On finitely presented semigroups and a question of Gao and
Gerdes . 42

3.5 Transversals of word problems of finitely generated semigroups 50
3.5.1 More immunity and darkness notions 50
3.5.2 Π0

1 classes and≡-realizability by word problems of finitely
generated semigroups 51

3.5.3 The hyperdark ceers 56
3.6 Classes of algebras 's-realizing provable equivalence of Peano

Arithmetic . 62
3.7 Conclusion . 68

II Contributions to the theory of logical depth and
algorithmic randomness 70

Introduction 71

4 Relativization of Bennett’s notion of depth 74

4.1 Preliminaries . 76
4.1.1 Kolmogorov complexity 77
4.1.2 Lower-semicomputable discrete semimeasures 79
4.1.3 Martin-Löf randomness 80
4.1.4 Depth . 82

4.2 Relativized depth . 91
4.2.1 ∅′-depth . 95
4.2.2 Depth relative to ML-random oracles 97
4.2.3 A digression on a result about PA-complete degrees . . 103

viii

4.2.4 An open question about K-trivial oracles 106
4.3 Turing-relativized depth . 107

5 On the comparison between deterministic and probabilistic

forecasting schemes 111

5.1 Preliminaries . 113
5.1.1 Computable and partial computable randomness 113
5.1.2 Probabilistic martingales 115

5.2 Turing degrees of a.e.CR sequences 117
5.3 The main construction . 122

5.3.1 Defeating finitely many martingales 123
5.3.2 Defeating all partial computable martingales 124
5.3.3 Fireworks . 125

5.4 Conclusion and open questions 129

Bibliography 131

ix

Outline of the thesis

The underlying theme of this thesis is how the computational properties of
mathematical and logical objects relate to their expressive power, the com-
plexity of the information these objects encode and their usefulness in helping
solving certain problems. Naturally, this is a broad question, which can be
investigated from different perspectives and studied according to various ap-
proaches. In this thesis, we consider two main approaches to this wide and
general question: the first one is strongly related to positive structures and
c.e. equivalence relations on the natural numbers, while the second one makes
an essential use of tools from algorithmic information theory and algorithmic
randomness. Therefore, the thesis is divided into two parts, which we briefly
describe below.

The central notion of Part I is computable reducibility on equivalence
relations on the set N of natural numbers.

• In Chapter 1, we review useful concepts and results from the literature
on computable reducibility, on which this first part of the dissertation
is based.

• Chapter 2 concerns some category-theoretic properties of computable
reducibility: we investigate the category Eq of equivalence relations
on N and their full subcategories Eq(Σ0

1) and Eq(Π0
1) of, respectively,

c.e. and co-c.e. equivalence relations. This chapter is based on the
paper [34].

• In Chapter 3, we investigate the expressive power of various familiar
classes of algebraic structures using computable reducibility as main
tool: indeed, we look at the problem of which ceers can be realized by
word problems of computably enumerable structures (such as c.e. semi-
groups, groups, and rings), where being realized means to fall in the

x

same degree (with respect to the degree structure induced by com-
putable reducibility, or by some stronger variant). Most of the results
collected in this chapter have been published in [33].

In Part II, instead, we mainly use the toolkit provided by the theory of
algorithmic randomness.

• In Chapter 4, we investigate the relativization of Bennett’s notion of
logical depth. In fact, we propose two possible definitions of depth
relative to an oracle, although one receives here more attention, being,
in our opinion, more interesting as much closer to Bennett’s original
definition from a “philosophical” point of view. This chapter is mainly
based on [13].

• Finally, in Chapter 5, we develop the notion of almost everywhere com-
putable randomness, in order to compare the strength of probabilistic
forecasting schemes against deterministic ones. This chapter is based
on [14].

xi

Part I

Contributions to the theory of

computable reducibility on

equivalence relations on N

1

Introduction

In recent years there has been a growing interest in the investigation of the
relative complexity of equivalence relations on the set N of natural numbers
by means of the so called computable reducibility : given equivalence relations
R, S on N, we say that R is computably reducible to S if there exists a
computable function f such that for all pairs x, y ∈ N, x R y if and only if
f(x) S f(y).

The first systematic study of this reducibility is due to Ershov ([40]), as
an alternative way to look at monomorphisms in the category of numberings.

In Chapter 1, we review some definitions and known facts about com-
putable reducibility, which will be useful in the following chapters.

In Chapter 2, extending Ershov’s category-theoretic approach, we inves-
tigate some properties of the category Eq of equivalence relations, where a
morphism between two equivalence relations R, S is a mapping from the set
of R-equivalence classes to that of S-equivalence classes, which is induced
by a computable function. We also consider its full subcategories Eq(Σ0

1) of
computably enumerable equivalence relations (also called ceers), Eq(Π0

1) of
co-computably enumerable equivalence relations (or coceers) and Eq(Dark∗)
whose objects are the so-called dark ceers plus the ceers with finitely many
equivalence classes. Although in all these categories the monomorphisms
coincide with the injective morphisms, we show that in Eq(Σ0

1) the epimor-
phisms coincide with the surjective morphisms, but in Eq(Π0

1) there are epi-
morphisms that are not surjective. Moreover, Eq, Eq(Σ0

1), and Eq(Dark∗)
are closed under finite products, binary coproducts, and coequalizers. On the
other hand, we show that Eq(Π0

1) does not always have coequalizers. The
results collected in this chapter have been published in [34].

Finally, in Chapter 3, we use computable reducibility (and stronger vari-
ants) to study the expressive power of effectively presented algebraic struc-
tures. More precisely, we address the issue as to which ceers can be realized

2

by word problems of computably enumerable (or, simply, c.e.) structures
(such as c.e. semigroups, groups, and rings), where being realized means to
fall in the same degree (with respect to the degree structure induced by com-
putable reducibility), or in the same isomorphism type (with the isomorphism
induced by a computable function), or in the same strong isomorphism type
(with the isomorphism induced by a computable permutation of the natural
numbers). We observe for instance that every ceer is isomorphic to the word
problem of some c.e. semigroup, but (answering a question in [45]) not every
ceer is in the same reducibility degree of the word problem of some finitely
presented semigroup, nor is it in the same reducibility degree of some non-
periodic semigroup. Indeed, we identify a whole class of ceers which cannot
be realized by the word problem of any finitely generated semigroup, namely
those ceers whose infinite transversal (i.e. infinite sets such that all pairs of
distinct elements are not equivalent) are all hyperimmune. We also show that
the ceer provided by provable equivalence of Peano Arithmetic is in the same
strong isomorphism type as the word problem of some non-commutative and
non-Boolean c.e. ring. Most of the results presented in this chapter have
appeared in [33].

3

Chapter 1

Preliminaries

In this chapter, we review some useful terminology and known facts on the
computable reducibility among equivalence relations on the natural numbers.
The reader is referred to [89] for any unexplained notion from computability
theory.

1.1 Computable reducibility among equiva-

lence relations on N

A popular way to compare the relative complexity of two equivalence re-
lations R, S on the set N of natural numbers is by mean of the so-called
computable reducibility.

Definition 1.1.1. Let R, S be equivalence relations on N. We say that R is
computably reducibile (or simply reducible) to S (and write R ≤ S) if there
exists a computable function f : N → N such that

(∀x, y) [x R y ⇔ f(x) S f(y)] .

We write R < S to mean that R ≤ S but R 6≤ S.
If both R ≤ S and S ≤ R, we say that R and S are bi-reducible to

each other (denoted by R ≡ S). The class of equivalence relations that are
bi-reducible to some equivalence relation R is called the degree of R.

The above reducibility is stronger than usual m-reducibility among sub-
sets of N. Indeed, first notice that, if R ≤ S via some reduction f , then

4

R ≤m S via the computable function (x, y) 7→ 〈f(x), f(y)〉, where 〈 · , · 〉
denotes the Cantor pairing function (see, for instance, [89, p. xxxii]).

To give a counterexample to the converse implication, it is convenient to
introduce a special class of equivalence relations, called unidimensional after
[45].

Definition 1.1.2. Given a set X ⊆ N define the equivalence relation RX by

u RX v ⇔ u = v or u, v ∈ X,

namely the equivalence relation having X has its only equivalence class which
is not a singleton. RX is called the unidimensional ceer generated by X.

Then, for any set A, A ≤1 RA via the reduction f(x) = (x, a), where a is
some fixed element of A. It is also clear that RA ≤ RB implies A ≤m B.

Let us denote by Id the identity relation. Id is clearly computable, hence
Id <1 X ≤1 RX for any uncomputable set X. On the other hand, there are
c.e. sets X so that Id and RX forms incomparable degrees under computable
reducibility. To see this, we need to recall the classical notions of immunity
and simplicity for sets.

Definition 1.1.3. A set is immune if it is infinite but contains no infinite
c.e. subset. A c.e. set is simple if its complement is immune.

Clearly RX ≤ Id ≡ R∅ implies that X ≤m ∅. But then X would be
empty, whereas ∅ is obviously not simple. On the other hand, let Id ≤ RX

via some computable function f . First we notice that X ∩ range(f) contains
at most one element. Indeed, assume that there are x, y with f(x) 6= f(y) and
f(x), f(y) ∈ X: then f(x) RX f(y), implying that x = y, a contradiction.
But then range(f)rX is an infinite c.e. subset of X, meaning that X is not
simple. Hence, Id and RX are incomparable.

1.2 Finite, light and dark ceers

We say that an equivalence relation R is finite if it has finitely many equiv-
alence relations, infinite otherwise. Finite ceers are easy to classify. In fact,
it is straightforward to show that they are all computable. It is also obvious
that all ceers having exactly n equivalence classes are bi-reducible to each
other: we denote their degree by Idn. The prototype of ceer in Idn is the

5

congruence modulo n (where x ≡ y mod n means that x = qn+ y for some
integer q).

For the rest of the section, we only consider computably enumerable
equivalence relations, which we also call simply ceers. The following notions
have been proposed in [5].

Definition 1.2.1. Let R be an infinite ceer. R is called light if Id ≤ R, dark
otherwise.

Thus, ceers can be partitioned into finite, light and dark ceers. Moreover,
it is clear from the definition that those notions are degree invariant (meaning
that a degree contains a light ceer if and only if it contains only light ceers,
and similarly for dark ceers). We sometimes denote the class of (degrees of)
finite ceers by F , that of light ceers with Light, and that of dark ceers with
Dark. Finally, we also use the notation Dark∗ = Dark ∪ F .

Light and dark ceers can be characterized using the notion of transversal.

Definition 1.2.2. Let R be an equivalence relation: a transversal of R is a
set T such that, for every pair of distinct elements x, y ∈ T , x��Ry.

Light ceers can be characterized as those ceers having an infinite c.e. transver-
sal. Indeed, assume thatR is a light ceer, so that Id ≤ R via some computable
function f : then range(f) is an infinite c.e. transversal of R. Conversely, if
T is an infinite c.e. transversal of R and f is a computable function enumer-
ating T , then Id ≤ R via f . Similarly, a ceer is dark if and only if it does
not admit any infinite c.e. transversal, that is if and only if all its infinite
transversal are immune.

Definition 1.2.3. Given two ceers R and S, their uniform join is the ceer
R⊕ S defined as follows:

x R⊕ S y ⇔ (x = 2u& y = 2v & u R v) or (x = 2u+1 & y = 2v+1 & u S v),

for all x, y.

Clearly, R ⊕ S is an upper bound (with respect to ≤) of both R and S.
The uniform join of finite ceers is finite, as for every k, h ∈ N, we obviously get
Idk⊕ Idh ≡ Idk+h. Moreover, it is easy to see that dark ceers are closed under
⊕. Indeed, let R⊕S be light, as witnessed by the infinite c.e. transversal T :
then T must contain infinitely many even elements or infinitely many odd

6

ones, which form an infinite c.e. transversal of, respectively, R or S. Hence,
at least one among R and S must be light.

We have already seen that examples of dark ceers are given by one-
dimensional ceers RX where X is a simple set. Indeed, those are the only
dark one-dimensional ceers, as if X is not simple, then X contains an infinite
c.e. set, meaning that RX admits an infinite c.e. transversal and hence is
light. We conclude this section with the construction of a dark ceer having
only finite equivalence classes.

Remark 1.2.4. Throughout the chapter, when we build some ceer R in stages,
we usually mean that we define in stages a computable approximation of
R, namely a sequence of uniformly computable ceers {Rs}s∈N, such that
R0 = Id, Rs ⊆ Rs+1 (in fact, Rs+1 is obtained by collapsing at most a finite
number of Rs-equivalence classes, meaning that all but finitely many Rs+1-
equivalence classes are indeed singletons), and R =

⋃
s∈NRs. Furthermore,

for every s, we assume to know, through its canonical index, the finite set of
elements whose Rs-equivalence classes are not singletons. Finally, when in
the construction we say that we R-collapse sets X1, . . . , Xn at some stage s,
we mean that we let Rs+1 be the equivalence relation generated by the sets
of pairs Rs ∪ {(x, y) : x, y ∈ ⋃i≤nXi}, namely that we put all elements of
X1, . . . , Xn in a single R-equivalence class.

Proposition 1.2.5. There exists a dark ceer R such that every R-equivalence
class is finite.

Proof. We want to build a ceer R satisfying the following requirements:

Re : if We is infinite, then it is not a transversal of R,

where (We)e∈N is a suitable listing of all c.e. sets, and

Se : [e]R is finite.

The requirements of the first kind, namely requirements R0,R1, . . . , guar-
antee that no c.e. set can be a transversal of R, meaning that R is dark.
To satisfy some requirement Re it is enough to R-collapse, at some stage,
two distinct elements x, y ∈ We: by this single action, We is prevented to
be a transversal of R, so that requirement Re is permanently satisfied. To
satisfy each requirement S, we ensure to R-collapse two different elements
only to satisfy some requirement Re, and we simply order those requirements

7

according to the priority ordering R0 > R1, . . . , so that, if we R-collapse two
elements for sake of some requirement Re, then their R-equivalence classes
can be further enlarged only by the finitely many requirements R0, . . . ,Re−1.

Construction. We build such a ceer R in stages, starting with R0 = Id.
Together with R we enumerate, for each e, a set Be containing, intuitively
speaking, the elements which have been R-collapsed for sake of requirement
Re. For each e, we start with Be,0 = ∅. If Be is not explicitely redefined at
stage s+ 1, then it is understood that Be,s+1 = Be,s.

At stage s + 1, let Re be the highest priority R-requirement for which
Be,s = ∅ and there are x 6= y, x, y ∈ Wer

(⋃
i<eBi,s

)
with x��Rsy, if any, then

take such a pair x, y having least pseudocode and R-collapse the equivalence
classes of x and y, namely let Be,s = [x]Rs

∪ [y]Rs
and finally let Rs+1 be the

equivalence relation generated by the set of pairs Rs ∪ {(x, y) : x, y ∈ Be,s}.
In this case, we say that Re acts at stage s + 1. Next, we go to the next
stage.

Verification. It is clear that each requirement Re acts at most once, as
if it acts at stage s0, then for all s ≥ s0 we clearly have Be,s 6= ∅, so that
Re is never allowed to act at any later stage. In particular, for each e,
Be = lim

s→∞
Be,s is well-defined, as either Be = Be,s if Re acts at some stage s,

or Be = ∅ otherwise.
We first claim that R is dark. Indeed, we have already noticed that each

requirement Re acts at most once, and that whenever Re is allowed to act,
then this single action is enough to prevent We of being a transversal of R,
so that Re is permanently satisfied. It remains to show that, ifWe is infinite,
then Re eventually acts. Assume that all requirements R0, . . . ,Re−1 never
require attention after some stage s0 and thatWe is infinite. IfRe has already
acted at some stage s ≤ s0, then there is nothing to prove. Otherwise, as⋃
i<eBi,s0 =

⋃
i<eBi is a finite set, while We is infinite, there must be a stage

s > s0 such that suitable elements x, y are enumerated into We, hence Re is
the current higher priority requirement and therefore is allowed to act.

Finally, we show that each R-equivalence class is finite. We say that
x 6= e injuries requirement Se at stage s whenever x Rs e. Then, it suffices
to show that each such requirement is only injured by finitely many elements.
Indeed, either e is never R-collapsed to any other number, meaning that [e]R
is a singleton, or there is a highest priority requirement Re that, at some
stage, R-collapse e to some other number. Hence, e ∈ Be, so that no other
requirement j > e can further enlarge [e]R. But then Se is injured at most

8

by the finitely many elements of
⋃
i<eBi.

This concludes the verification and hence the proof.

1.3 Isomorphisms and strong isomorphisms

of ceers

Definition 1.1.1 leads to identify two equivalence relations if they belong to
the same degree with respect to computable reducibility, as this means that
they are “equally complex”. In this chapter we consider two additional ways
of identifying ceers, both based on the notion of “isomorphism”.

Definition 1.3.1. Given ceers R, S, we say that R and S are isomorphic
(and write R ' S) if R ≤ S via a computable function f : N → N such
that range(f) intersects each S-equivalence class. In this case, we say that
f induces an isomorphism from R to S.

The choice of the name “isomorphism” is justified by Lemma 1.3.2 below,
which has been first proven in [5]. Indeed, following the category theoretic
approach to numberings proposed by Ershov [40], equivalence relations on N
can be structured as objects of a category (which will be widely investigated
in Section 2). The lemma shows in fact that, when restricting attention only
to equivalence relations that are ceers, two objects are isomorphic in the
category theoretic sense if and only if they are isomorphic in the sense of our
Definition 1.3.1.

Lemma 1.3.2 (Inversion Lemma). Let R, S be ceers. Then a computable
function f induces an isomorphism from R to S if and only if S ≤ R via a
computable function g such that g(f(x)) R x, and f(g(x)) S x, for all x ∈ N.

Proof. Let f induce an isomorphism from R to S. For every x, let g(x) be
the first y for which we see that f(y) S x. Then S ≤ R via g. Indeed, let
g(u) = x and g(v) = y: then u S f(x) S f(y) S v ⇔ g(u) R g(v), by
definition of g and because R ≤ S via f . Moreover, by definition of g it is
clear that g(f(x)) R x, and f(g(x)) S x, for all x ∈ N.

Conversely, assume that g witnesses the reduction S ≤ R and satis-
fies both g(f(x)) R x and f(g(x)) S x, for all x ∈ N. Clearly, f(g(x)) ∈
range(f)∩[x]S 6= ∅, hence range(f) intersects all S-equivalence classes. More-
over, by the properties of f ◦ g and g ◦ f and since g is a reduction from S

9

to R, we get

x R y ⇔ g(f(x)) R g(f(y)) ⇔ f(x) S f(y),

meaning that f induce an isomorphism from R to S.

The isomorphism type of every ceer contains a ceer having only infinite
classes.

Fact 1.3.3. For every ceer R there exists a ceer S having only infinite classes
and such that R ' S.

Proof. Let 〈 , 〉 denote the Cantor pairing function, and let ()0 be its first
projection. Given R, let S be such that

x S y ⇔ (x)0 R (y)0.

Clearly, every S-equivalence class is infinite. As is immediate to see, the com-
putable function ()0 induces an isomorphism from S to R, since it provides
a reduction whose range intersects all R-equivalence classes.

An even stronger way to identify ceers is to consider only isomorphisms
(in the above sense) induced by computable permutations of N.

Definition 1.3.4. We say that ceers R and S are strongly isomorphic if
R ≤ S via a computable permutation f (denoted by R 's S). In this case,
we also say that f induces a strong isomorphism from R to S.

In contrast with Fact 1.3.3, it is clear that every ceer R having at least
one finite class cannot be strongly isomorphic to any ceer S with only infinite
classes. On the other hand, the isomorphism type and the strong isomor-
phism type of a ceer having only infinite classes coincide.

Fact 1.3.5. If R, S are ceers such that all R-classes and all S-classes are
infinite then

R 's S ⇔ R ' S.

Proof. The nontrivial implication R ' S ⇒ R 's S follows by a straight-
forward back-and-forth argument similar to the one used in the proof of
the Myhill Isomorphism Theorem. See for instance [2, Remark 1.2] and [1,
Lemma 2.3].

10

It is clear that strong isomorphism between two ceers implies two ceers
being isomorphic, which in turn implies that those ceers are bi-reducible to
each other.

Example 1.3.6. We have already seen that, for all ceers R, S, we have

R 's S ⇒ R ' S ⇒ R ≡ S.

Next, we see that all these implications are proper.
Let R be a ceer having one finite equivalence class: by Lemma 1.3.3, there

is a ceer S with only infinite equivalence classes such that R ' S. However,
we have already noticed that R 6's S, since there is a finite R-equivalence
class.

Furthermore, notice that, ifR-equivalence classes are uncomputable, while
S has at least one computable equivalence class, then R 6' S. Indeed, assume
that R ' S via a reduction f witnessing that R ≤ S and range(f) inter-
sects each S-equivalence class: then there must be an x such that [f(x)]S
is computable, which implies that [x]R must be computable as well. In Sec-
tion 1.4, we will see some examples of universal ceers, namely ceers U such
that R ≤ U , for every ceer R. Obviously, those ceers are all bi-reducible to
each other. A very natural example of universal ceer is given by provable
equivalence of PA ∼PA, defined by

x ∼PA y ⇔ PA ` g(x) ↔ g(y),

where g−1 is an bijective Gödel coding of all PA sentences. Notice that ∼PA

has only undecidable equivalence classes. Clearly, ∼PA ⊕ Id1 is universal
as well, as ∼PA ≤∼PA ⊕ Id1. Hence ∼PA ≡∼PA ⊕ Id1. On the other hand,
∼PA 6'∼PA ⊕ Id1, as the latter ceer has one computable class. Hence, all
implications above are proper.

1.4 Some universal ceers

The degree structure of ceers under computable reducibility has been widely
investigated. Much effort has naturally been given in the study of Σ0

1-
complete equivalence relation, meaning those ceers that can reduce any ceer
to themselves, which are usually called universal in this context.

Definition 1.4.1. A ceer U is universal if, for every ceer R, we have that
R ≤ U .

11

While in the cases of m-complete or 1-complete c.e. sets (and even pairs
of disjoint c.e. sets) there are well-known theorems stating that such sets
(respectively, pairs of disjoint c.e. sets) are all compubly isomorphic, there
are distinct isomorphism types of universal ceers (indeed, they are infinitely
many, as shown in [2]). Clearly, only light ceers can be universal.

The following important class of equivalence relations was first considered
in [61].

Definition 1.4.2. An equivalence relation R 6= Id1 is precomplete if there is
a computable function f(e, x) such that

(∀e, x) [ϕe(x) ↓ ⇒ ϕe(x) R f(e, x)] .

Such an f is called a totalizer for R. Moreover, we say that f(e, ·) makes ϕe
total modulo R.

The following result gives a useful characterization of precomplete equiv-
alence relations.

Fact 1.4.3 (Ershov’s Fixed Point Theorem). An equivalence relation R is

precomplete if and only if there exists a computable function f̂ such that, for
every n,

ϕn(f̂(n)) ↓ ⇒ ϕn(f̂(n)) R f̂(n).

Proof. Assume that R is precomplete, so that there is a computable function
f(n) which makes ϕn(n) total modulo R, i.e. for any n we have that

ϕn(n) ↓ ⇒ ϕn(n) R f(n).

Let ϕs(n) = ϕn ◦ f and define f̂ = f ◦ s. Assume that ϕn(f̂(n)) ↓. We have
that

ϕn(f̂(n)) = ϕn(f(s(n))) = ϕn ◦ f ◦ s(n) = (ϕn ◦ f) ◦ s(n) = ϕs(n)(s(n)),

and hence ϕn(f̂(n)) = ϕs(n)(s(n)) R f(s(n)) = f̂(n).

Conversely, assume that f̂ is a computable function such that, for every
n, if ϕn(f̂(n)) ↓, then ϕn(n) R f̂(n). Moreover, fix a partial computable
function ϕ. Define f so that, for all y, ϕf(n)(y) = ϕ(n). We claim that

g = f̂ ◦ f makes ϕ total modulo R. Indeed, if ϕ(n) ↓, then

ϕ(n) = ϕf(n)(f̂(f(n))) R f̂(f(n)) = g(n),

as required.

12

Let us call a diagonal function of an equivalence relation R any com-
putable function d such that d(x) ��R x, for all x. The following is an imme-
diate corollary of Fact 1.4.3.

Corollary 1.4.4. If an equivalence relation has a diagonal function, then it
is not precomplete.

It has been shown in [11] that all precomplete ceers are universal. More-
over, they are all isomorphic to each other, as shown in [56].

Example 1.4.5. Natural examples of precomplete ceers are considered in
[92], namely the ceers of Σn provable equivalence, i.e. the equivalence relation
∼n defined by

x ∼n y ⇔ PA ` gn(x) ↔ gn(y),

where g−1
n is a bijective Gödel coding of all Σn sentences of PA, where

n ≥ 1.

By Corollary 1.4.4, the PA provable equivalence ∼PA from Example 1.3.6
cannot be precomplete, (hence, in particular, belongs to a different isomor-
phism type), since logical negation ¬ induces a diagonal function. On the
other hand, ∼PA has the weaker property that any partial computable func-
tion ϕ with finite range can be totalized modulo ∼PA: in fact, we can effec-
tively found some n ≥ with range(ϕ) ⊆ g−1

n (Σn), so that we can actually
totalize modulo ∼n. The following definition, due to Montagna ([69]), gen-
eralizes this property.

Definition 1.4.6. An equivalence relation R is uniformly finitely precomplete
(or simply u.f.p.) if there is a computable function f(D, e, x) such that, for
every finite set D and every e, x ∈ N,

ϕe(x) ∈ [D]R ⇒ ϕe(x) R f(D, e, x),

where [D]R denotes the equivalence relation generated by the finite set D.

In the same paper [69], it has been shown that every u.f.p. ceer is univer-
sal. We conclude with a characterization of the strong isomorphism type of
∼PA.

Fact 1.4.7 (Bernardi and Montagna, [10]). R 's∼PA if and only if R is
u.f.p. and has a diagonal function.

13

Chapter 2

On the category of equivalence

relations

In his monograph [40] Ershov introduces ad thoroughly investigates the cat-
egory of numberings. We recall that a numbering is a pair N = 〈ν, S〉, where
S is a nonempty set and ν : N → S is a surjective function. Numberings
are the objects of a category Num, called the category of numberings ; the
morphisms from a numbering N1 = 〈ν1, S1〉 to a numbering N2 = 〈ν2, S2〉
are the functions µ : S1 → S2 for which there is a computable function f so
that the diagram

N N

S1 S2

f

ν1 ν2

µ

commutes. We say in this case that the computable function f induces the
morphism µ, and we write µ = µN1,N2(f).

Now, numberings are equivalence relations in disguise, see our Theorem
2.2.2 below, where we show that the equivalence relations on the set N of
natural numbers can be structured into a category Eq which is equivalent to
Num. In this paper, we rephrase in Eq some of the observations noticed by
Ershov about Num, and we point out some useful new facts about Eq, and
some of its full sabcategories, such as the category Eq(Σ0

1) of computably
enumerable equivalence relations (these relations are called ceers ; ceers have
been widely investigated in the literature, see e.g. [2, 5]), the category Eq(Π0

1)
of co-computably enumerable equivalence relations (called coceers ; coceers

14

have received much less attention than ceers, but they have been considered
in e.g. [8, 73]), and the category Eq(Dark∗) whose objects are the dark ceers
and the finite ceers. Although in all these categories the monomorphisms
trivially coincide with the injective morphisms, we see that in Eq(Σ0

1) the
epimorphisms coincide with the onto morphisms, but in Eq(Π0

1) there are
epimorphisms which are not onto. We also observe that Eq, Eq(Σ0

1), and
Eq(Dark∗) are closed under finite products, binary coproducts, and coequal-
izers. On the other hand, we give an example which shows that Eq(Π0

1) is
not closed under coequalizers.

Let us conclude this introduction by fixing some notations: we denote by
1N the identity function on N, i.e. 1N(x) = x. Moreover, for any equivalence
relation R on N, let N/R denotes the set of equivalence classes into which R
partitions N: Finally, by νR : N → N/R be given by νR(x) = [x]R, where [x]R
denotes the R-equivalence class of x.

2.1 Preliminaries on category theory

We recall some terminology of category theory which will be used in the rest
of the section. The reader is also referred to [60] for these notions.

Basic definitions and equivalence of categories

We start from the scratch, by recalling what a category is.

Definition 2.1.1. A category A consists of:

(i) A collection ob(A) of objects.

(ii) For each A,B ∈ ob(A), a collection A(A,B) of morphism from A to B.

(iii) For each A,B,C ∈ ob(A), a map

A(B,C)× A(A,B) → A(A,C)

(g, f) 7→ g ◦ f

called composition, and for each A ∈ ob(A) a function 1A ∈ A(A,A)
called the identity on A such that the composition is associative and,
for each f ∈ A(A,B), f ◦ 1A = f = 1B ◦ f .

15

Given a category, we can pick only certain of its objects and morphisms:
this gives rise to so-called subcategories.

Definition 2.1.2. A subcategory B of a category A consists of a subclass
ob(B) of ob(A) and, for each B,B′ ∈ ob(B), a subclass B(B,B′) of A(B,B′)
which is closed under composition and identities. Moreover, B is said to be
a full subcategory if B(B,B′) = A(B,B′) for every pair B,B′ ∈ ob(B).

We need to distinguish some special classes of morphisms.

Definition 2.1.3. The morphism f : A → B is a monomorphism if g = h
in every commutative diagram of the form

A B C
g

h

f

i.e. whenever f ◦ g = f ◦ h.
Dually, f : C → A is an epimorphism if g = h for every commutative

diagram of the form

C A B
f g

h

i.e. when g ◦ f = h ◦ f .
Finally, f ∈ A(A,B) is an isomorphism if there is g ∈ A(B,A) such that

g ◦ f = 1A and f ◦ g = 1B. In this case, A and B are said to be isomorphic,
and we write A ' B.

Another fundamental notions in category theory is the one of functors.

Definition 2.1.4. Let A and B be categories. A functor F : A → B consists
of a map

ob(A) → ob(B)

A 7→ F (A)

and, for each A,A′ ∈ ob(A), a function

A(A,A′) → B(F (A), F (A′))

f 7→ F (f)

such that

16

(i) F (f ′ ◦ f) = F (f ′) ◦F (f), for each pairs of composable morphisms f, f ′.

(ii) F (1A) = 1F (A), for each A ∈ ob(A).

Notice that, for any category A, one can define the functor 1A such that
1A(A) = A for every object A and 1A(f) = f for every morphism f . More-
over, the definition of composition is extended to functors in the obvious
way.

We now want to recall the notion of equivalence between categories, since
the first result we aim to show is that the categories Eq and Num are equiv-
alent (Theorem 2.2.2 below). To do so, we first introduce a class of maps
between functors called natural trasformations.

Definition 2.1.5. Let A,B be categories and F,G : A → B be functors. A
natural trasformations α : F → G is a sequence of morphism (αA : F (A) →
F (G))A∈A such that for every f ∈ A(A,A′) the diagram

F (A) F (A′)

G(A) G(A′)

F (f)

αA αA′

G(f)

commutes.

Note that we can compose natural trasformations: indeed, given natural
trasformations α : F → G, β : G → H between functors F,G,H : A → B,
it is well defined the composition β ◦ α = (βA ◦ αA)A∈A. Moreover, there
is an identity natural trasformation 1F for any functor F : A → B, namely
1F = (1F (A))A∈A. Thus, for any two categories A,B, there is a category BA,
called the functor category from A to B, whose objects are the functors from
A to B and whose morphisms are natural trasformations between them.
Since we have a suitable category, to give a good notion of “isomorphism
between functors” it is enough to look at isomorphisms in the appropriate
functor category.

Definition 2.1.6. Given two functors F,G ∈ ob(BA), a natural isomorphism
between them is a natural trasformation α ∈ BA(F,G) which is an isomor-
phism in BA. In this case, we say that F and G are naturally isomorphic.

17

It is easy to check that a natural transformation α is a natural isomor-
phism if and only if αA is an isomorphism, for every A ∈ ob(A).

Finally, natural isomorphisms give rise to a good definition for identifying
two categories.

Definition 2.1.7. An equivalence between categories A and B is given by
a pair of functors F : A → B and G : B → A such that G ◦ F ' 1A and
F ◦G ' 1B, where ' here denotes natural isomorphism of functors. If such
an equivalence exits, we say that A and B are equivalent.

Products and coproducts

We recall the definitions of products and coproducts in a category A, as we
will discuss their existence in Eq and in some of its subcategories of interest
in computability theory in Section 2.2.2 below.

Definition 2.1.8. Let A be a category and A,B ∈ ob(A). A product of
A and B consists of an object A × B and morphisms πA : A × B → A,
πB : A × B → B (called projections) such that for every X ∈ ob(A) and
every pair of morphisms fA : X → A, fB : X → B, there exists a unique
morphism fA×fB : X → A×B which makes the following diagram commute.

X

A A× B B

fA
f
B

fA×fB

πA πB

Products do not always exists. However, if two objects A and B do have
a product, then it must be unique up to isomorphism: hence, we can talk of
the product A× B.

The dual notion of a product is called a coproduct.

Definition 2.1.9. Given A,B ∈ ob(A), their (unique up to isomorphism,
whenever it exists) coproduct is an object A q B together with morphisms
iA : A → A q B, iB : B → A q B such that for every X ∈ ob(A) and every
pair of morphisms fA : X → A, fB : X → B, there exists a unique morphism
fA q fB : AqB → X which makes the following diagram commute.

18

X

A AqB b

fA

iA

fAqfB

f
B

iB

The definitions of products and coproducts of two objects in a category
A generalize in the obvious way to the ones for any family of objects. In
particular, we obtain a so-called terminal object when we consider an empty
product, while a so-called initial object corresponds to an empty coproduct.
Hence, initial and terminal objects do not always exist in a category, but, if
so, they are unique up to isomorphism.

Definition 2.1.10. Let A be a category. An object T ∈ ob(A) is terminal
if for every A ∈ ob(A), there is exactly one morphism A → T . Dually,
an object I ∈ ob(A) is initial if for every A ∈ ob(A), there is exactly one
morphism I → A.

Equalizers and coequalizers

Together with products and coproducts, equalizers and coequalizers form the
“basic bricks” to build all sorts of limits and colimits in a category. Indeed,
it is known that, if a category has all products, then it has all limits, while
having binary products, terminal object and equalizers is enough to have all
finite limits. Naturally, dual results hold for colimits.

Definition 2.1.11. In a given category, we call a fork objects and morphisms

A X Y
f s

t

such that s ◦ f = t ◦ f , and a cofork objects and morphisms

X Y A
s

t

f

such that f ◦ s = f ◦ t.
An equalizer of two morphism s, t : X → Y is an object E together with

a morphism i : E → X such that E X Yi s

t
is a fork and, for

19

any fork A X Y
f s

t
, there exists a unique morphism f : A → E

such that the diagram

A X

E

f

f
i

commutes.
Dually, a coequalizer of s, t : X → Y is an object C together with a

morphism i : C → X such that X Y C
s

t

i is a cofork and, for

any cofork X Y A
s

t

f
, there exists a unique morphism f : C → A

such that the diagram

Y C

A

i

f
f

commutes.

Equalizers and coequalizers do not always exists, but if a pair of mor-
phisms in a category has an equalizer or a coequalizer, this is unique up to
isomorphism.

2.2 The category of equivalence relations on

N

Following Ershov’s category theoretic approach, equivalence relations on N
can be structures as a category Eq.

Recall that, for any equivalence relation R on N, we let N/R denote the
set of equivalence classes into which R partitions N, and we let νR : N → N/R

be given by νR(x) = [x]R, where [x]R denotes the R-equivalence class of x.

Definition 2.2.1. If R, S are equivalence relations on N, we say that a
function f : N → N is (R, S)-equivalence preserving if

(∀x, y) [x R y ⇒ f(x) S f(y)] .

20

Each such f induces a well-defined map αR,S(f) : N/R → N/S given by
[x]R 7→ [f(x)]S, namely the unique map α such that the following diagram
commutes.

N N

R S

f

νR νS

α

The category Eq is then defined as follows: its objects are the equivalence
relations on N, and, for every pair of equivalence relations R, S, the mor-
phisms Eq(R, S) consist of all maps α : N/R → N/S such that α = αR,S(f)
for some (R, S)-equivalence preserving computable function f .

Eq is indeed equivalent (in the sense of Definition 2.1.7) to Ershov’s cat-
egory Num of numberings.

Theorem 2.2.2. Eq and Num are equivalent categories.

Proof. We need to exhibit functors F : Num → Eq and G : Eq → Num
such that 1Eq ' F ◦ G and 1Num ' G ◦ F , where here ' denotes natural
isomorphism between functors. We first define F as follows:

• For any numbering N = 〈ν, S〉, let F (N) be the equivalence relation
given by x F (N) y if and only if ν(x) = ν(y), for any x, y.

• For any morphism µ : N1 → N2 in Num, if f is a computable function
with µ = µN1,N2(f), then let F (µ) = αF (N1),F (N2)(f).

Moreover, let G be defined as follows:

• If R is an equivalence relation, let G(R) = 〈νR,N/R〉, with νR(x) = [x]R.

• If α = αR1,R2(f) is a morphism in Eq, let G(α) = µG(R1),G(R2)(f).

Then we have natural trasformations (〈N, ν〉 → 〈G(F (N)), νG(F (N))〉)〈N,ν〉∈Num
given by ν(x) 7→ νG(F (N))(x) and (R → F (G(R)))R∈Eq given by [x]R 7→
[νR(x)]F (G(R)), which provide 1Num ' G ◦ F and 1Eq ' F ◦G, as it can easily
be checked from the definitions.

21

2.2.1 Monomorphisms and epimorphisms of equivalence

relations, ceers and coceers

We have recalled the notions of monomorphism and epimorphism in Defini-
tion 2.1.3 above. First, we observe that, in Eq, the monomorphisms coincide
with the injective morphisms.

Proposition 2.2.3. In Eq, the the monomorphisms coincide with the injec-
tive morphisms

Proof. It is trivial to check that every injective morphism in Eq is a monomor-
phism.

Conversely, let γ : R → S be a monomorphism induced by some com-
putable function f and assume that γ is not injective. Then there must
be distinct equivalence classes [a1]R 6= [a2]R with γ([a1]R) = γ([a2]R). For
i = 1, 2, define constant (hence clearly computable) functions gi(x) = ai.
Then, for every equivalence relation E, the functions g1 and g2 induce distinct
morphisms α1 = αE,R(g1), α2 = αE,R(g2) : E → R, such that γ ◦α1 = γ ◦α2,
showing that γ is not a monomorphism.

Remark 2.2.4. Given equivalence relation R, S, it is easy to see that R ≤ S,
as defined in Definition 1.1.1, if and only if there exists an injective morphism
µ : R → S. Hence, from the point of view of category theory, R ≤ S may
also be expressed by saying that R is a subobject of S, see MacLane [60,
p. 122] and Ershov [39, 40].

Another easy observation is that any surjective morphism in Eq is, in
fact, an epimorphism. Indeed, let γ : R → S be a surjective morphism and
assume that α and β are morphisms with the property that α ◦ γ = β ◦ γ.
If α 6= β, then there must be some x such that α([x]S) 6= β([x]S). But
since γ is surjective, there is some y such that [x]S = γ([y]R), meaning that
α(γ([y]S)) 6= β(γ([y]S)), contradicting our assumption.

However, the converse implication is not always true.

Theorem 2.2.5. In Eq, there are epimorphisms which are not surjective.

Proof. Let A,B be two disjoint undecidable Π0
1 sets such that their union is

undecidable. For instance take A = 2K and B = 2K + 1, where K denotes
any uncomputable co-c.e. set, so that A ∪B = K ⊕K is still uncomputable
and Π0

1. Consider the coceer R whose equivalence classes are A,B and then
all singletons: i.e. x R y if and only if x = y or x, y ∈ A or x, y ∈ B.

22

Since C = A ∪ B is an infinite c.e. set, we can fix a computable bijection
f : N → C, which clearly provides a reduction f : Id ≤ R, such that the
range of f is C. Then the monomorphism α = αId,R(f) is not surjective,
as A,B * range(f). We claim that α is an epimorphism. To prove this
claim, let α1 = αR,S(f1), α2 = αR,S(f2), for some coceer S and computable
functions f1, f2, be distinct morphisms such that α1 ◦ α = α2 ◦ α. Given the
latter condition, these morphisms must be equal on C and may be distinct
only because of the values they take on A and B. Therefore, we distinguish
the following cases:

• α1(A) 6= α2(A) and α1(B) = α2(B). Then

(∀x)[x ∈ A⇔ f1(x) S f2(x)],

giving that A is co-c.e., hence A is computable, contradiction.

• α1(A) = α2(A) and α1(B) 6= α2(B). A similar argument as in the
previous item shows that B is computable, contradiction.

• α1(A) 6= α2(A) and α1(B) 6= α2(B). In this case

(∀x)[x ∈ A ∪ B ⇔ f1(x) S f2(x)],

showing that A ∪ B is computable, which is again a contradiction.

Thus, α gives an example of epimorphism which is not surjective, as claimed.

It is then natural to restrict our attention to full subcategories of Eq (as
in Definition 2.1.2) of major interest in computability theory, namely those
of ceers and coceers, which are denoted, respectively, by Eq(Σ0

1) and Eq(Π0
1).

Analogue notation is used for the full subcategory whose objects are the
equivalence relations sitting on a certain level of the arithmetical hierarchy.

In the proof of Theorem 2.2.5, we provide a co-ceer R and an epimorphism
α : Id → R which is not surjective. Therefore, we immediately get the
following corollary.

Corollary 2.2.6. In Eq(Π0
1) there are epimorphisms which are not surjec-

tive.

On the other hand, the coincidence between epimorphisms and surjective
morphisms holds in the realm of ceers.

23

Theorem 2.2.7. In Eq(Σ0
1) the epimorphisms coincide with the surjective

morphisms.

Proof. Let R, S be ceers and consider a morphism α : R → S which is
induced by some computable function f . Assume that α is not surjective, so
that there exists an element a with [a]S /∈ range(α). Moreover, let

A = {x : (∃y)[y ∈ range(h) and x S y]}.
Finally, let T be any precomplete ceer and f be a totalizer of T (as defined
in Definition 1.4.2).

We are going to define two (S, T)-equivalence preserving computable func-
tions g1, g2 inducing distinct morphisms α1 = αS,T (g1) and α2 = αS,T (g2)
which coincide (in fact, are costant) on range(α), thus witnessing that α
cannot be an epimorphism. Our construction is somewhat modelled on the
proofs of [85, Theorem 2.6 and Corollary 2.8].

It is easy to check that any precomplete ceer has infinitely many equiva-
lence classes: hence, let b, c1, c2 be such that their T -equivalence classes are
pairwise disjoint. Without loss of generality, we assume to work with com-
putable approximations (As)s∈N of A, (Ss)s∈N of S and (Ts)s∈N (see Remark
1.2.4) such that

(i) for every s, A2s+2 = A2s+1 and S2s+2 = S2s+1; and

(ii) if i /∈ As and i��Ss a and j Ss a, then j /∈ As.

We give the construction of g1 below: the construction of g2 is analogous,
but interchanging c1 and c2 at each stage.
Construction. First notice that, by property (i), neither S nor A change
at even stages, which are then devoted to ensure that [c2]T has not be placed
in the range of α1, and that g1 is (S, T)-equivalence preserving. We let
g1(i) = f(e, i), where e is an index of a partial computable function, which
we control by the Recursion Theorem. Therefore, we actually define ϕe
in stages. At any stage, we may call a special clause (?) which, if called,
“freezes” the construction. At stage s + 1, if clause (?) has not be called at
any previous stage, we want to satisfy the following inductive assumption:
If i /∈ As, i��Ss a and ϕe,s(i) ↓, then i is not least in its equivalence class. (†)

The construction then goes as follows.
Stage 0. Let ϕe,0(i) ↑ for all i.
Stage 2s+1. If we have called (?) at any previous stage, let ϕe,s+1 = ϕe,s.

Otherwise, if ϕe,s(i) ↑, then:

24

1. (a) if i ∈ As, let ϕe,s+1(i) = b;

(b) otherwise, if i Ss a, let ϕe,s+1(i) = c1;

2. otherwise, if i /∈ As, i��Ss a and there exists j < i such that j Ss i and
ϕe,s(j) ↑ (thus, by property (ii), j /∈ A − s), let ϕe,s+1(i) = f(e, j) for
the least such j.

It is straightforward to check that, in both cases, our inductive assumption
(†) is preserved.

Stage 2s+2. If we have called (?) at any previous stage, let ϕe,s+1 = ϕe,s.
Otherwise, if i 6= As. i��Ss a and ϕe,s(i) ↑, then do the following:

1. if f(e, i) Ts b or f(e, i) Ts c1, then let ϕe,s+1(i) = c2, and call clause (?);

2. otherwise, if f(e, i) Ts c2, then define ϕe,s+1(i) = c1, and call clause (?).

Notice that, by (†), if i is such that i /∈ As and i ��Ss a, there is some j < i
with j Ss i, j /∈ As and i ��Ss a, so that we certainly act on j at some odd
stage.
Verification. The verification is based on the following claims.

Claim 1. We never call clause (?).

Proof of claim. Assume that we call clause (?) in case 1. at some even stage.
Then there must be some i with ϕe(i) = c2 T f(e, i), but it also holds either
f(e, i) Ts b or f(e, i) Ts c1, which contradicts the fact that [b]T , [c1]T , [c2]T
are pairwise disjoint. Similarly, if we call (?) in case 2. at some even stage,
we must have some i with ϕe(i) = c1 T f(e, i), but also f(e, i) T c2, which
implies c1 T c2, another contradiction. �

Claim 2. If ϕe(i) ↑, then i /∈ A ∪ [a]S, and i is the least of its equivalence
class.

Proof of claim. If i is not least of its equivalence relation or i ∈ A∪ [a]S, it is
clear from the construction that we must define ϕe(i) at some odd stage. �

Claim 3. If i ∈ A then f(e, i) T b, and if i ∈ [a]S then f(e, i) T c1.

Proof of claim. By Claim 2, ϕe(i) is defined and there are i0 < i1 < · · · <
ik = i which satisfies ih S ik for every h, k ≤ n, and ϕe(ik) = f(e, ik−1) for
every 0 < k ≤ n (through case 2. at some odd stage), whereas ϕe(i) = b in

25

case i0 ∈ A (as case 1.(a) applies), or ϕe(i) = c1 if i0 ∈ [a]S (so that case
1.(b) applies). Since T is precomplete via the totalizer f , we have that

ϕe(i0) T f(e, i0) = ϕe(i1) T f(e, i) = ϕe(i2) T . . . · · · T f(e, in) = f(e, i).

Hence, we get that f(e, i) T b in case i ∈ A, or f(e, i) T c1 if i S a. �

Claim 4. If i, j /∈ A ∪ [a]S and i S j then f(e, i) T f(e, j).

Proof of claim. Assume that [i]S = [j]S = {i0 < i1 < . . . }. Then φe(i0) is
undefined, and by induction on n it is easy to see (by an argument similar
to the previous item, since if h > 0 then φe(ih) is defined through case 2. of
an odd stage), that f(e, ih) T f(e, i0). �

Claim 3 and Claim 4 together show that g1 is (S, T)-equivalence preserv-
ing, meaning that α1 is well-defined. Moreover, by Claim 1, [c2]T /∈ range(α1)
(as we never acted through 1. at even stages). On the other hand, α1([a]S) =
[c1]T .

In a similar way, but interchanging c1 and c2 at each stage, we define
a computable function g2 which induces a morphism α2 with the properties
that [c1]T /∈ range(α2) and α2([a]S) = [c2]T . We hence get that α1◦α = α2◦α,
as α1([x]S) = α2([x]S) = b for every [x]S ∈ range(α), but α1 6= α2, because
[c1]T ∈ range(α1) r range(α2) and [c2]T ∈ range(α2) r range(α1). Thus, α
cannot be an epimorphism.

2.2.2 Products and coproducts in Eq

This section is devoted to investigate the existence of products and coprod-
ucts (see Definitions 2.1.8 and 2.1.9) in the category of equivalence relations.
The following simple fact was already observed in [40].

Theorem 2.2.8. Eq has all nonempty finite products and nonempty finite
coproducts.

Proof. Given equivalence relations R, S, consider the triple (R × S, πR, πS),
where

〈x, y〉 R× S 〈u, v〉 ⇔ x R u and y S v,

with πR = αR×S,R(p0) and πS = αR×S,S(p1) induced, respectively by the first
and second projections of the Cantor pairing function 〈−,−〉. Let T be an
equivalence relation and consider morphisms ρR : T → R and ρS : T → S

26

induced, respectively, by computable functions fR and fS: to show that
(R × S, πR, πS) is a product in the category theoretical sense, we first need
to find a morphism ρR × ρS which makes the following diagram commute.

T

R R× S S

ρR
ρ
SρR×ρS

πR πS

But for this it is enough to take ρR×ρS = αT,R×S(fR×fS), where fR×fS(x) =
〈fR(x), fS(x)〉. To show uniqueness, suppose that β : T → R × S makes
the defining diagram commute. Then if β([x]T) = [〈u, v〉]R×S we have that
πR([〈u, v〉]R×S) = [u]R = ρR([x]T) = [fR(x)]R, and thus u R fR(x), and
similarly v S fS(x), giving 〈u, v〉 R× S 〈fR(x), fS(x)〉. This yields

ρR × ρS([x]T) = [〈fR(x), fS(x)〉]R×S = [〈u, v〉]R×S = β([x]T),

i.e., β = ρR × ρS.
Now, we show that the coproduct of equivalence relations R, S corre-

sponds to their uniform join (already introduced in Definition 1.2.3), i.e. the
equivalence relation R⊕ S generated by the set of pairs

{(2x, 2y) : x R y} ∪ {(2x+ 1, 2y + 1) : x S y},

together with morphisms iR = αR,R⊕S(x 7→ 2x), iS : αS,R⊕S(x 7→ 2x + 1).
Again, given an equivalence relation T together with morphisms ρR : T → R
and ρS : T → S induced, respectively, by computable functions fR and fS,
we need to show a morphism ρRqρS making the following diagram commute.

T

R R⊕ S S

ρR

iR

ρRqρS

ρ
S

iS

Then we take ρR q ρS = αR⊕S,T (fR ⊕ fS), where

fR ⊕ fS(x) =

{
fR(y), if x = 2y,

fS(y), if x = 2y + 1.

27

To show uniqueness, suppose that β : R⊕S → T makes the defining diagram
commute: then

β([2x]R⊕S) = β(iR([x]R)) = ρR([x]R) = (ρR q ρS)([2x]R⊕S),

and similarly β([2x+ 1]R⊕S) = (ρR q ρS)([2x+ 1]R⊕S).

Clearly, if both R and S are Σ0
n (respectively, Π0

n) equivalence relations,
then also R × S and R ⊕ S are are Σ0

n (Π0
n). This gives immediately the

following corollary.

Corollary 2.2.9. For every n, Eq(Σ0
n) and Eq(Π0

n) have all nonempty finite
products and coproducts.

We now turn to terminal and initial object in Eq, which corresponds,
respectively, to the empty product and the empty coproduct, which we have
presented in Definition 2.1.10.

Theorem 2.2.10. Eq has a terminal object (and hence it has all finite prod-
ucts), but has no inital object.

Proof. Recall that a terminal object in Eq would be an equivalence relation
T such that for every equivalence relation R there exists a unique morphism
R → T . But then it is easy to see that Id1 is indeed a terminal object.
Dually, an initial object in Eq is defined as an equivalence relation I such
that for any equivalence relation R there is a unique morphism I → R: thus,
no equivalence relation X can be initial, as there are always two distinct
morphisms X → Id2.

Since Id1 is computable, we immediately get the following corollary.

Corollary 2.2.11. For every n, Eq(Σ0
n) and Eq(Π0

n) have a terminal object
(hence, all finite products) but no initial object.

2.2.3 Equalizers and coequalizers

The terminology used in this section has been presented in Definition 2.1.11.
First, it is easy to see that equalizers do not always exists in Eq. For

example, consider the computable functions f0 and f1 defined by f0(x) = 0
and f1(x) = 1, for every x, and let α0 = αId,Id(f0), α1 = αId,Id(f1). Let
β : R → Id be a morphism induced by some computable function f : then

28

R Id Id
β α0

α1

cannot be a fork, since α0(β([x]R)) = α0([f(x)]Id) =

[f0(f(x))]Id = 0, but α1(β([x]R)) = α1([f(x)]Id) = [f1(f(x))]Id = 1, hence
α0 ◦ β 6= α1 ◦ β.

The situation of coequalizers is much more interesting.

Theorem 2.2.12. Eq has all coequalizers.

Proof. Let X, Y be equivalence relations, and α, β : X → Y be morphisms,
with αX,Y = α(f1) and β = αX,Y (f2), for suitable computable functions
f1, f2. Consider the equivalence relation Z generated by the set of pairs
Y ∪{(f1(x), f2(x)) : x ∈ N} and the surjective morphism γ : Y → Z induced
by 1N. We claim that (Z, γ) is the coequalizer of α and β. First, notice that

X Y Z
α

β

γ
is a cofork. Indeed, for any x we have f1(x) Z f2(x),

hence

γ(α([x]X)) = γ([f1(x)]Y) = [f1(x)]Z = [f2(x)]Z = γ([f2(x)]Y) = γ(β([x]X)).

Consider an equivalence relation U and a computable function g such that
αY,U(g) ◦ α = αY,U(g) ◦ β. It remains to check that αY,U(g) = αZ,U ◦ γ, but
this is obvious from the fact that [x]Y ⊆ [x]Z .

Notice that, if Y is a Σ0
n equivalence relation, then the equivalence relation

Z defined above (namely, Z generated by Y ∪ {(f : 1(x), f2(x)) : x ∈ N},
for any pair of computable functions f1, f2) is clearly Σ0

n as well. Thus, we
immediately obtain the following corollary.

Corollary 2.2.13. For every n, Eq(Σ0
n) has all coequalizers.

In particular, every ceer can be seen as the coequalizer of a pair of mor-
phisms α, β : Id → Id.

Corollary 2.2.14. Let R be an object of Eq(Σ0
1). Then there is a morphism

γ such that (R, γ) is a coequalizer of morphisms Id Id .
α

β

Proof. Since R is a ceer, there is a computable function h which enumerates
R, namely u R v if and only if 〈u, v〉 ∈ range(h). Let f1(x) : p0(h(x)) and
f2(x) = p1(h(x)), where p0 and p1 denote the projections of Cantor pairing
function. But then R is generated by the pairs {(f1(x), f2(x)) : x ∈ N}. By

29

the proof of Theorem 2.2.12, R, together with the morphism γ induced by
h, is therefore the coequalizer of the pair of morphisms induced by f1 and
f2.

Unfortunately, building a coequalizer as in Theorem 2.2.12 do not always
produce a Π0

n equivalence relation Z when starting from Π0
n equivalence re-

lations X and Y . We end this section by showing that this is the case even
for n = 1, which is a consequence of the following result.

Lemma 2.2.15. There exist computable functions f1 and f2 and a coceer
Y such that the equivalence relation Z generated by the set of pairs Y ∪
{(f1(x), f2(x)) : x ∈ N} has exactly two equivalence classes, at least one of
which is not Π0

1, and hence Z is not Π0
1.

Proof. We construct in stages a coceer Y and a c.e. set U : at each stage s,
we define an equivalence relation Ys, consisting of finitely many singletons
and a co-finite class, and a finite set Us such that (Ys)s∈N is a computable
approximation of Y (i.e. (Ys)s∈N is a computable sequence with Ys ⊇ Ys+1,
and Y =

⋂
s Ys) and (Us)s∈N is a computable approximation of U (namely,

Us is a computable sequence with Us ⊆ Us+1, and U =
⋃
s Us). We work with

computable approximations {Ve,s : e, s ∈ N} to the Π0
1 sets (meaning that the

predicate “x ∈ Ve,s” is computable in e, x, s, Ve,s ⊇ Ve,s+1 and Ve =
⋂
s Ve, s,

for all e, s). The construction is as follows.
Stage 0. Let Y0 be the equivalence relation consisting of the two equiv-

alence classes {0} and N r {0} (namely, x Y0 y ⇔ x = y = 0 or (x 6=
0 and y 6= 0)) and U0 = ∅.

Stage s+ 1. For every e, if e+ 2 ∈ Ve,s r Ve,s+1, then we Y -isolate e+ 2
at stage s + 1, namely we let Ys+1 be the equivalence relation generated by
the set of pairs Ys r {(e + 2, y) : e + 2 ∈ Ve,s r Ve,s+1, y 6= e + 2}, so that
[e+ 2]Ys+1

= {e+ 2}. Moreover, let Us+1 = Us ∪ {e+ 2 ∈ Ve,s r Ve,s+1}.
This ends the construction. Let f1(x) = 0 for all x and f2 be any com-

putable function with range(f2) = 2. Finally, let Z be the equivalence rela-
tion generated by Y ∪ {(f1(x), f2(x)) : x ∈ N}, namely by Y together with
the set of pairs {(0, e+2)} such that e+2 has been Y -isolated at some stage.

We now check that the equivalence relation Z so obtained has the required
properties. First, clearly [e+2]Y ∩([0]Y ∪ [1]Y) if and only if e+2 /∈ Ve, which
in turn implies 0 Z e+2 if and only if e+2 /∈ Ve. Hence, [0]Z 6= Ve for every
e, meaning that [0]Z is not Π0

1. On the other hand, for all numbers x distinct
from 0 and from those e + 2 which have been Y -isolated at some stage, we

30

have x Y 1 (as they were at stage 0), and consequently x Z 1. Thus, Z has
exactly two equivalence classes: since [0]Z is not Π0

1, Z cannot be Π0
1.

Theorem 2.2.16. There is a coceer Y and morphisms Id Y
α

β
such

that their coequalizer in Eq is properly Σ0
2. Hence, Eq(Π

0
1) is not closed under

coequalizers.

Proof. Let f1, f2, Y, Z be as in Lemma 2.2.15: notice that Z is a Σ0
2 relations,

indeed

x Z y ⇔ x = y or (x 6= 0 and (∃e∀s) y ∈ Ve,s) or (x = 0 and (∃e, s) y /∈ Ve,s).

Hence, by Theorem 2.2.12, the identity 1N induce a morphism γ : Y → Z
such that (Z, γ) is the coequalizer of α = αId,Y (f1) and β = αId,Y (f2) in the
category Eq(Σ0

2). On the other hand, Lemma 2.2.15 ensures that Z /∈ Π0
1.

While we show that Eq(Π0
1) is not closed under coequalizers, the above

observation does not let us conclude that Eq(Π0
1) does not have coequalizers:

we hence conclude this section by raising the following question.

Question 2.2.17. Does Eq(Π0
1) have coequalizers?

2.2.4 Subcategories of Eq(Σ0
1) and closure under binary

coproducts and coequalizers

A well-known fact in category theory is that a category has all finite colimits
if and only if it has coequalizers and finite coproducts (including the empty
coproduct, namely an initial object). We have already seen (Theorems 2.2.8
and 2.2.10 above) Eq has all nonempty finite colimits, but it lacks an initial
object: however, binary coproducts and coequalizers can be still used to build
all those finite colimits which do not need an initial object.

We have already observed that, for every n, Eq(Σ0
n) is closed under co-

equalizers and nonempty finite coproducts, although it does not have an
initial object: see Corollaries 2.2.9, 2.2.11 and 2.2.13 above.

Focusing on the full subcategory Eq(Σ0
1) of ceers, it might be of some

interest to know whether the classes of dark ceers and of light ceers, which
we have introduced in Definition 1.2.1, allows for the same constructions
of finite colimits, namely if the same closure properties holds. Corollary
2.2.14, which shows that every ceer can be seen as the coequalizer of suitable

31

morphisms Id Id,
α

β
excludes that Eq(Light) (or even Eq(Light∪F))

is closed under coequalizers, since Id is obviously light. Eq(Dark) is not
closed under coequalizers, too, because of the following observation.

Remark 2.2.18. The coequalizers of two dark ceers, as built in Theorem
2.2.12, can be finite. In fact, consider, for instance, the pair of morphisms

X X ⊕ Id,
α

β
, with α and β being induced, respectively, by the function

x 7→ 2x and x 7→ 1.

2.3 Conclusion

In this chapter we have studied several properties of the category Eq of
equivalence relations: this extends Ershov’s investigation of the category
Num of numberings, as these two categories are proven to be equivalent.

We have first observed that in Eq the monomorphisms coincide with
the injective morphisms. On the other hand, in Eq there are epimorphisms
which are not surjective: in particular, we have seen that epimorphisms and
surjective morphisms coincide in Eq(Σ0

1), but this is no longer the case in
Eq(Π0

1).
Furthermore, we have shown that Eq has all finite products (including the

empty one, namely a terminal object) and all non-empty finite coproducts,
but does not have the empty coproduct (i.e. an initial object): moreover, the
same results hold when we restrict ourselves to the equivalence relations in
each level of the arithmetical hierarchy.

Finally, we have observed that equalizers do not always exists in Eq, but
coequalizers do. In particular, we have shown that, for every n, Eq(Σ0

n) has
all coequalizers. However, this closure properties fails if we only consider the
subcategories of Eq(Σ0

1) of, respectively, light and dark ceers. On the other
Eq(Π0

1) is not closed under coequalizers: indeed, the question of whether
Eq(Π0

1) has coequalizers is open.

32

Chapter 3

The expressive power of

algebraic structures by means

of computable reducibility

Computably enumerable equivalence relations, or ceers, have been an active
field of research in recent years. A great deal of the interest in ceers certainly
is due to the fact that they appear quite often in mathematical logic (where
they appear, for instance, as the relations of provable equivalence in formal
systems), and in general mathematics and computer science where they ap-
pear as word problems of effectively presented familiar algebraic structures.
An important example in this sense is the word problem for finitely presented
(or, f.p.) groups. If 〈X;R〉 is a f.p. group and one codes the universe of the
free group FX on X with N, then the word problem of the group is the ceer
that identifies two elements x, y ∈ FX if xy−1 lies in the normal subgroup of
FX generated by the relators appearing in the relation R of the presentation
of the group. The word problem of a f.p. group can be decidable (i.e. the
corresponding ceer is decidable), but also undecidable, and in fact can be
of any c.e. Turing degree: this was obtained independently by Fridman [42],
Clapham [28] and Boone [21, 22, 23] (despite the difference in publication
dates, the work of these authors was essentially simultaneous).

Of course not every ceer can be the word problem of a f.p. group, or
even of a computably enumerable (c.e.) group, see Definition 3.1.1 below.
For instance, the equivalence classes of the word problem of a c.e. group
are uniformly computably isomorphic with each other: to show that the
equivalence class of u is isomorphic to the equivalence class of v, just use

33

the mapping x 7→ xu−1v. Therefore no ceer having both finite classes and
infinite classes, or even having at least two classes of different m-degree, can
be the word problem of a group. Therefore the question naturally arises as
to which ceers can be identified as word problems not only of groups, but of
other familiar computably enumerable structures, modulo the several ways
of “identifying” equivalence relations, based on natural measures of their
relative complexity, we have introduced in Definitions 1.1.1, 1.3.1 and 1.3.4.
The contents of this section are meant to be a contribution to this line of
research.

We first need of course to specify what we mean by “computably enu-
merable structures” and their “word problems”.

3.1 C.e. algebras

Following the tradition of Mal’cev and Rabin, it is common to postulate that
the complexity of the problem of presenting the particular copy of a structure
is captured by its atomic diagram. Yet, in algebra one naturally deals with
structures whose algebraic structure is easy to describe but it is hard to know
whether two terms represent the same element. The paradigmatic example
of this phenomenon is the construction, independently due to Boone [20]
and Novikov [78], of a finitely presented group with an undecidable word
problem. Moreover, the first homomorphism theorem ensures that every
countable algebra arises as the quotient of the term algebra on countably
many generators. So a countable algebra can always be represented in a
way in which the complexity of the structure is entirely encoded in its word
problem. This motivates the idea, often recurring in the literature, of looking
at c.e. structures as given by quotienting N modulo a ceer. In this paper, we
will only be concerned with structures that are algebras.

We recall that a type of algebras is a set τ of function symbols, such
that each member f ∈ τ is assigned a natural number n, called the arity
of f . An algebra of type τ is a pair A = 〈A,F 〉, where A is a nonempty
set, and F is a set of operations on A interpreting the type, i.e. in one-to-
one correspondence with the function symbols in τ , so that n-ary function
symbols of τ correspond to n-ary operations in F .

Definition 3.1.1. An algebra A of computable type τ , is computably enu-
merable (or, simply, c.e.) if there is a triple A− = 〈N, F, E〉 (called a posi-
tive presentation of A) such that: (1) F consists of computable operations

34

on N interpreting the type τ ; (2) E is a ceer, which is also a congruence with
respect to the operations in F ; (3) the quotient AE = 〈NE, FE〉 (called a
positive copy of A) is isomorphic with A, where FE = {fE : f ∈ F}, with
fE([x]E) = [f(x)]E.

For a thorough and clear introduction to c.e. structures see Selivanov’s
paper [84], where they are called positive structures, and Koussainov’s tuto-
rial [54].

We will consider c.e. algebras A = 〈A,F 〉 given by some positive presen-
tation A− = 〈N, F−, E〉, and we will work directly with the positive presen-
tation rather than the algebra itself. Thus, if we say a ∈ A we in fact mean
any a− ∈ N such that [a−]E = a. The ceer E will be often denoted also by
=A, as it yields equality in the quotient algebra.

Definition 3.1.2. The word problem of a c.e. algebra A is the ceer =A.
(Up to isomorphism of ceers, as in Definition 1.3.1, the word problem is
independent of the choice of the positive presentation).

Given a ceer E (having possibly some interesting computational property)
it is natural to ask which algebras A can be positively presented having E
as their equality relation =A (see, e.g., [46, 41]). Surprisingly, much less
is known about the reverse problem, namely, given a class of structures C,
which ceers are “realized” by members of C? This is the main topic of our
paper. But, of course, we still need to give a rigorous definition of what we
mean by a structure “realizing” a ceer.

We first briefly recap the various ways introduced to indentify ceers (in
Definitions 1.1.1, 1.3.1 and 1.3.4). Given ceers R and S, we say that:

1. R is bi-reducible to S (denoted by R ≡ S) if R ≤ S and S ≤ R;

2. R is isomorphic to S (denoted by R ' S) if R ≤ S via a reduction f
such that range(f) ∩ [x]S 6= ∅, for all x;

3. R is strongly isomorphic to S (denoted R 's S) if R ≤ S via a com-
putable permuation of N.

Definition 3.1.3. (i) If R is a ceer, A is a c.e. algebra, and≈ ∈ {≡,','s}
then we say that R is ≈-realized by A if R ≈=A. (Recall that =A

denotes the word problem of A.)

35

(ii) A class C of algebras of the same type is ≈-complete for a class C of
ceers (where ≈ ∈ {≡,','s}) if every ceer in C is ≈-realized by some
c.e. copy of an algebra from C. We simply say that C is ≈-complete for
the ceers if C is ≈-complete for the class of all ceers.

It is trivial to observe the following facts.

Fact 3.1.4. Let C be a class of ceers and C be a class of algebras.

(i) If C is '-complete for C, then it is ≡-complete for C; if C is 's-complete
for C, then it is '-complete for C-

(ii) If all members of C have no finite equivalence classes, then C is '
complete for C if and only if C is 's-complete for C.

Proof. Item (i) follows immediately from the definitions of bi-reducibility,
isomorphism and strong isomorphism among ceers, while item (ii) is an im-
mediate corollary of Fact 1.3.5.

3.2 Classes of algebras that are complete for

the ceers

We now begin to look at some natural classes of c.e. algebras in relation to the
problem of ≈-completeness for ceers, with ≈ ∈ {≡,','s}. Our examples
of c.e. algebras will be more conveniently introduced via the notion of a
computably enumerable presentation. In a variety of algebras with finite or
countable type, if the term algebra T (X) on a finite or countable set X (see
e.g. [24, §10]) exists (existence is guaranteed if, as in our future examples,
X is nonempty) then, up to isomorphisms, T (X) can be presented as a
computable algebra: we may assume that X is decidable, T (X) has decidable
universe (which is infinite in all our examples), computable operations, and
equality is syntactic equality. If, in addition the identities of the variety form
a c.e. binary relation on T (X), then we have the following definition.

Definition 3.2.1. In a variety as above, a c.e. presentation is a pair A =
〈X;R〉 where X is a set, R is a binary relation on T (X), and A denotes
the quotient algebra T (X)/NR

, where NR is the c.e. congruence on T (X)
generated by R together with the identities of the variety. An algebra A

36

of the variety is c.e. presented (c.e.p.), if it is of the form 〈X;R〉 as just
described.

A special case is provided by finite presentations, where both X and R
are finite.

The following fact is well known:

Lemma 3.2.2. In a variety as above, an algebra is c.e. if and only if it is
isomorphic to some c.e.p. algebra.

Proof. We sketch the proof. If A = 〈X;R〉 is a c.e. presentation, then there is
a computable isomorphism f of T (X) with an algebra having N as universe,
and equipped with a set F of suitable computable functions corresponding,
via the isomorphism, to the operations of A. Then B = 〈N, F, E〉 is a positive
presentation of A, where E is the ceer corresponding under the isomorphism
to the c.e. relation NR on T (X). Notice that according to Definition 3.1.2,
equality =B of B coincides with E.

For the converse, assume that A = 〈N, F, E〉 is a positive presentation.
By the universal property of T (N) (namely, the term algebra on the set
N of generators), there is a unique epimorphism ν : T (N) → AE which
commutes with the mapping x 7→ [x]E from N to AE, and the insertion of
generators x 7→ x from N to T (N). Namely, if p(x1, . . . , xk) ∈ T (N) is a
term, and pF interprets p using the operations in F , then ν(p(x1, . . . , xk)) =
[pF (x1, . . . , xk)]E, by the properties of E. It follows that the kernel R of ν is a
c.e. binary relation on T (X), and by universal algebra, the c.e. presentation
〈N;R〉 is isomorphic with AE.

To describe some of the consequences of Lemma 3.2.2 which are relevant
to our later examples, we first generalize Definition 1.3.1 to partial ceers,
i.e. c.e. equivalence relations having as domains c.e. subsets of N. If R, S
are partial ceers with domains X, Y respectively, we say that R and S are
isomorphic (R ' S: we use the same symbol as in Definition 1.3.1) if there
is partial computable function g : X → Y whose domain contains X, such
that x R y if and only if g(x) S g(y) for all x, y ∈ X, and range(g) intersects
all S-equivalence classes.

One direction of the proof of the previous lemma actually shows that
every c.e. presentation 〈X;R〉 has a positive presentation 〈N, F, E〉 such that
NR ' E as partial ceers, as witnessed by the computable isomorphism f :
T (X) → N. The other direction of the proof shows in fact that for every

37

positive presentation A = 〈N, F, E〉 there is a c.e. presentation 〈N;R〉 which
is isomorphic to A/E, and R ' E as partial ceers. This follows from the
fact that ν is onto, and therefore the computable mapping p(x1, . . . , xk) 7→
pF (x1, . . . , xk) provides a reduction from R to E whose range intersects all
E-equivalence classes.

3.2.1 The word problem as a ceer on terms, or as a

ceer on the free algebra

When trying to show that some ceer S is '-realized by a c.e. presentation
〈X;R〉, the above remarks suggest, in accordance to many algebra textbooks
(see e.g. [24, p.252]) to consider NR as the word problem of the c.e. presen-
tation, and show that S ' NR as partial ceers. This is fully consistent with
Definition 3.1.2, since, as we have seen, S ' E, where E is the ceer of the
positive presentation assigned to 〈X;R〉 in the proof of Lemma 3.2.2.

In fact, our examples of c.e. algebras will come from varieties (such as
semigroups, monoids, groups, rings) in which the identities of the variety
generate a decidable congruence I on T (X). By decidability of I, we mean
that we can fix a computable mapping p 7→ p : T (X) → T (X) with decidable
range, picking up exactly one element in each I-equivalence class, so that the
free algebra F (X), taken to be T (X)/I , can be presented as a computable
algebra having this range as universe. Let now 〈X;R〉 be a c.e. presentation.
By universal algebra, there is a c.e. congruence R on F (X) (namely, R =
NR/I , using common notation in universal algebra) such that T (X)/NR

is
isomorphic with F (X)/R and

p NR q ⇔ p R q,

for every p, q ∈ T (X). This gives an isomorphism of partial ceers between NR

and R. Conversely, given a binary c.e. relation R on X = {x : x ∈ X}, then
one can find a c.e. congruence R on T (X) such that T (X)/R is isomorphic
with F (X)/N

R
, where NR is the c.e. congruence on F (X) generated by R.

Moreover, R and NR are isomorphic as partial ceers.
This suggests to adopt, in these varieties, even a more simplified, yet

equivalent, approach to word problems of c.e. algebras, and agree that a
c.e. presentation is a pair 〈X;R〉 where R is a binary c.e. relation on F (X)
and, in this case, 〈X;R〉 denotes the quotient F (X)/NR

, where NR is the
congruence generated on F (X) by R, and we take NR as the word problem of

38

the c.e. algebra so presented. Of course, in general the elements of F (X) will
not be presented directly as certain elements of T (X) but in some simplified
“normal form”, obtaining in any case a computably isomorphic copy of the
free algebra, and up to isomorphism of partial ceers, the same word problem.

3.2.2 Semigroups

Throughout the section our references for terminology about semigroups and
monoids are the textbooks [29] and [49]. In view of Definition 3.2.1 (and the
subsequent adjustment in Subsection 3.2.1), towards an explicit description
of a c.e.p. semigroup it is sufficient to describe what the free semigroup F (X)
on X and the c.e. binary relation R on F (X) are. Hence, we recall that the
free semigroup on a set X can be taken to be 〈X∗r {λ}, ·〉, where in general
Y ∗ denotes the collection of finite words of letters from a set Y , λ is the
empty string, and · is concatenation of words.

Definition 3.2.3. A semigroup S is a right-zero band if ab = b for all a, b ∈ S.

Theorem 3.2.4. The class of right-zero bands is '-complete for the ceers.

Proof. Let R be a given ceer, and fix a computable set X = {xi : i ∈ N} of

generators. Consider the c.e. binary relation R̂ on F (X):

R̂ = {xi = xj : i R j} ∪ {xjxi = xi : i, j ∈ N}.

Let S = 〈X; R̂〉 be the c.e.p. semigroup so presented. In particular notice
that uxi =S xi for any word u and any generator xi.

It is easy to see that
i R j ⇔ xi =S xj,

so that R ≤=S by the reduction f(i) = xi. On the other hand, as the range
of f intersects all =S-equivalence classes (since u =S xi where xi is the last
bit of u, as follows from the relations), we have that =S' R.

Of course the same result holds if we replace right-zero bands with left-
zero bands, i.e. semigroups in which ab = a for all pairs a, b.

39

3.2.3 Monoids

Next, we consider the case of monoids. Recall in this case that the free
monoid F (X) onX can be taken to be 〈X∗, ·〉, where again · is concatenation.

Definition 3.2.5. A monoid M = 〈M, ·〉 is right-zero band-like if ab = b for
every a, b ∈M r {1} (where 1 denotes the identity element).

Theorem 3.2.6. The class of right-zero band-like monoids is '-complete for
the ceers.

Proof. Let R be a given ceer, and fix again a computable setX = {xi : i ∈ N}
of generators. Consider the c.e. binary relation R̂ on F (X):

R̂ = {xi = xj : i R j} ∪ {xjxi = xi : i ∈ Nr {0}, j ∈ N} ∪ {x0 = λ}.

Let M = 〈X; R̂〉 be the c.e.p. monoid so presented. The proof that R '=M

is as in the proof of Theorem 3.2.4.

Again, right-zero band-like monoids can be replaced by left-zero band-like
monoids in the result above.

3.3 Classes of algebras that are not complete

for the ceers

We try in this section to identify algebraic properties that prevent classes
of algebras sharing these properties to be ≈-complete for the ceers, with
≈ ∈ {≡,','s}.

3.3.1 Semigroups

For our first observation, we need the following definition.

Definition 3.3.1. A semigroup S is periodic if, for all a ∈ S, there are
numbers 1 ≤ n < m such that an = am.

Recall that a ceer R is dark if R has infinitely many equivalence classes
but it does not admit any infinite c.e. transversal, i.e. an infinite c.e. set W
such that if x, y ∈ W and x 6= y then x��Ry. We have discussed the existence
and properties of dark ceers in Section 1.2.

40

Theorem 3.3.2. The class of semigroups which are not periodic is not ≡-
complete for the ceers.

Proof. Let S be a non-periodic c.e. semigroup. Then there exists an element
a ∈ S such that am 6=S a

n if m 6= n. Thus {an : n ∈ N} is an infinite c.e
transversal, implying that =S cannot ≡-realize any dark ceer, as the property
of having an infinite c.e. transversal is invariant under bi-reducibility.

Recall that a diagonal function for an equivalence relation R is a com-
putable function d such that d(x)��Rx, for every x. The next theorem identifies
a natural class of semigroups which are not '-complete for the ceers. Exam-
ples of semigroups filling the description in the statement of the theorem are
for instance the semigroups without idempotent elements.

Theorem 3.3.3. The class of semigroups S for which there exists a number
n such that xn 6=S x for every x is not '-complete for the ceers.

Proof. Suppose S is a c.e. semigroup as in the statement of the theorem.
Take any x, and define d(x) = xn. Then d is a diagonal function for =S, and
thus S cannot '-realize any ceer which does not possess a diagonal function,
such as for instance the precomplete ones, see Definition 1.4.2 and Corollary
1.4.4 (or the survey paper [2]).

3.3.2 Monoids

We now take a quick look at monoids.

Definition 3.3.4. Let M be a monoid. A non-unit element x ∈ M is a
torsion element if there exists a number n > 0 such that xn = 1; otherwise
x is non-torsion. Moreover, a monoid is said to be torsion if every element
is a torsion element, non-torsion otherwise.

We observe:

Theorem 3.3.5. The class of non-torsion monoids is not ≡-complete for
the ceers.

Proof. Let x ∈ M be a non-torsion element. Then {x, x2, (x2)2, . . .} is an
infinite c.e. transversal for =M . The proof is now similar to the proof of
Theorem 3.3.2.

41

3.4 On finitely presented semigroups and a

question of Gao and Gerdes

After having looked at algebraic properties preventing completeness, we now
move to investigate what can happen if we restrict the complexity of the
presentation of the structure. In particular, in the following we will focus
mainly on finitely generated and finitely presented semigroups.

We recall the following observation of Gao and Gerdes [45, p.58] (where
the statement refers to finitely presented groups, but it is obviously extend-
able to all groups).

Fact 3.4.1. The class of groups is not ≡-complete for the ceers.

Proof. If R is an undecidable ceer with only finitely many undecidable equiv-
alence classes (it is easy to see that there are even undecidable ceers with
only finite equivalence classes: for instance, there are dark ceers with only
finite classes, see Proposition 1.2.5 (or [5, Corollary 4.15]) then there can-
not be any c.e. group G such that =G≡ R: for otherwise, by the reduction
=G≤ R we would have that either =G is finite, and thus R �=G, or there are
decidable =G-classes, but as observed in the introduction all =G-equivalence
classes are computably isomorphic with each other, which would imply that
[1]G is decidable and thus =G is decidable(u =G v if and only if uv−1 ∈ [1]=G

),
giving that R is decidable by the reduction R ≤=G.

For this reason, Gao and Gerdes (see [45, Problem 10.3]) ask whether the
class of f.p. semigroups is ≡-complete for the ceers. This is an interesting
question, motivated by a celebrated theorem due to Shepherdson [86] stating
that if {Ai : i ∈ N} is a uniformly c.e. sequence of c.e. sets (meaning that the
relation “x ∈ Ai”, in i, x, is c.e.), B is a c.e. set, and the relation “x ∈ Ai” is
≤T B, then there is a f.p. semigroup S with the following three properties: (1)
there is an effective correspondence wi 7→ Ai between a c.e. set {wi : i ∈ N}
of words and {Ai : i ∈ N} so that, effectively in i, one can find Turing
reductions establishing [wi]=S

≡T Ai; (2) the Turing degrees of the various
classes [w]=S

consist of the least Turing degree, together with all finite joins
of the various degrees degT (Ai) ; (3) =S≡T B.

The next theorem will provide a negative answer to Gao and Gerdes’
question.

42

Theorem 3.4.2. Suppose that {Ei : i ∈ N} is a uniformly c.e. sequence of
ceers such that the set {i : Ei is finite} is c.e. Then there exists an infinite
ceer E such that for every i,

Ei 6≤ E or Ei is finite (i.e. Ei has finitely many classes).

In particular, for every i, Ei 6≡ E.

Proof. Let V = {i : Ei is finite} be c.e., and let {Vs : s ∈ N} be a c.e. ap-
proximation to V , that is, a strong array of finite sets, with Vs ⊆ Vs+1 for
every s, and V =

⋃
s Vs. Let also {φj : j ∈ N} be an acceptable indexing of

the partial computable functions.
Our desired ceer must satisfy the following requirements:

Pn : E has at least n+ 1 classes,

Q〈i, j〉 : Ei 6≤ E via ϕj, or Ei is finite.

We order the requirements according to the priority ordering:

P0 < Q0 < . . . < Pn < Qn < . . . <

We say that R has higher priority than R′ (or R′ has lower priority than R)
if R < R′.

We construct E in stages. At stage s we define an equivalence relation
Es, so that: E0 = Id (the identity ceer); for every s, Es ⊆ Es+1, Es is a
finite extension of Id (the identity ceer) and, uniformly in s, Es r Id can
be presented by its canonical index; and finally E =

⋃
sEs is our desired

equivalence relation. Es+1 will be generated by Es plus finitely many pairs
of numbers which are, as we say, E-collapsed at s+ 1.

The strategy to satisfy Pn consists in picking n + 1 numbers which are
still pairwise E-non-equivalent, and restraining their equivalence classes from
future E-collapses.

The strategy to satisfy Q〈i,j〉 goes as follows. At a given stage s, we say
that evidence appears that φj is not a reduction from Ei to E if one of the
following happens:

(A) φj does not look total, i.e. we see some witness v such that φj is still
undefined on v;

(B) we see two witnesses x, y such that φj(x) and φj(y) both converge, and
at the given stage x��Eiy, but already φj(x) E φj(y).

43

Notice that, contrary to what one may expect, we do not bother to seek
evidence given by two witnesses x, y such that φj(x) and φj(y) both converge,
and at the given stage already x Ei y, but φj(x)��Eφj(y). Indeed, our action
on trying to meet Q〈i,j〉 will force the opponent to give up on totality of φi,
or leave non-Ei-equivalent two numbers whose φj-images we have already
E-collapsed.

Notice that, independently of our will, evidence due to (A) may be lost
at a later stage t, if φj,t(v) ↓; evidence due to (B) may be lost at a later stage
t if x Ei,t y.

Here is the description of our strategy in isolation:

(1) we wait to see i ∈ V ; if i gets enumerated into V then the requirement
is satisfied, so we stop worrying about it, and definitively move on to
satisfy the lower priority requirements;

(2) while waiting to see i ∈ V or for evidence to appear that φj is not a
reduction as in (B), we threaten to make E finite by E-collapsing all the
elements ≥ m, where m is a threshold indicated to Q〈i,j〉 by the restraint
placed by higher priority requirements;

(3) while waiting to see i ∈ V , if evidence has appeared that φj is not a
reduction as in (B) then

(a) while this evidence persists, we move on to satisfy the lower priority
requirements;

(b) when this evidence gets lost, we loop back to (2).

The outcomes of the strategy are evident: moving out of (1) is a finitary
outcome satisfying the requirement, as Ei is finite.

If (1) does not show up, then we claim that we cannot loop between (3b)
and (2) infinitely often. For otherwise φj would be total, E finite (as we
E-collapse all x, y > m), but then φj cannot be an injective reduction from
the equivalence classes of Ei (which is infinite) to the equivalence classes of
E (which would be finite). Therefore our strategy eventually stops at (3b)
because of (A) (outcome: φj is not total), or because of (B) (outcome: x��Eiy
but φj(x) E φj(y) for some x, y).

Since all strategies have finite outcomes, the conflicts between different
strategies are resolved by a straightforward finite priority argument.

44

The construction At each stage, requirements may be initialized, and
they are so at stage 0; or, in case of Q-requirements, they may be declared
permanently satisfied in which case they are met once and for all.

The construction makes use at each stage of the following parameters for
every requirement R: if R is initialized, then these parameters are undefined.
The parameter mR(s) denotes the restraint imposed at stage s by R, with
R ∈ {PQ}, to lower priority requirements, so that they can only E-collapse
pairs of elements x, y > mR(s).

The parameter M(〈i, j〉, s) (if Q〈i,j〉 is not initialized, and thus we may
suppose s > 0), is defined as follows: if there is v ≤ s such that either

1. φj,s(v)↑, or

2. v = 〈x, y〉 and φj,s(x) and φj,s(y) both converge and x
�

��Ei,sy, but φj,s(x) Es−1

φj,s(y).

then let M(〈i, j〉, s) = 〈v, 0〉 in the former case, otherwise M(〈i, j〉, s) =
〈v, 1〉. Let M(〈i, j〉, s) = 〈0, 2〉 if there exists no such v.

If not otherwise specified, at each stage s > 0 each parameter maintains
the same value as at the previous stage, or stays undefined if it was undefined
at the previous stage.

We say that Pn requires attention at s+ 1 if it is initialized.
We say that R = Q〈i,j〉 requires attention at s+ 1 if Q〈i,j〉 has not as yet

been declared permanently satisfied and (in order):

(1) Q〈i,j〉 is initialized; or

(2) i ∈ Vs; or

(3) M(〈i, j〉, s+ 1) 6=M(〈i, j〉, s).

Stage 0 Initialize all requirements, and setmR(k, 0) andM(k, 0) undefined
for all R ∈ {P ,Q}, and k ∈ N. Let E0 = Id.

Stage s+ 1 Let R be the least requirement that requires attention: there
is such a least requirement since almost all requirements are initialized when
we begin stage s+ 1.

45

Case 1 If R = Pn then R is initialized: pick the least n+1 numbers bigger
than any number so far used in the construction (thus these numbers are still
non-E-equivalent) and letmR(s+1) be the greatest one of the numbers which
have been picked; R stops being initialized.

Case 2 Suppose that R = Q〈i,j〉. We refer to the various cases for which
R may require attention:

(a) (Case (1) of requiring attention) let mR(s + 1) = max{mR′
(s) : R′ <

R} (notice that no R′ < R is initialized), so that R stops being ini-
tialized;

(b) (Case (2) of requiring attention) declare R permanently satisfied (and
will stay so forever);

(c) (Case (3) of requiring attention) E-collapse all x, y such that mR(s +
1) < x, y ≤ s;

Whatever the case, initialize all R′ > R, by setting mR′
(s + 1) ↑, and

M(〈i′, j′〉, s)↑ if Q〈i′, j′〉 > R.
Let Es+1 be the equivalence relation generated by Es plus the pairs of

numbers which have been E-collapsed at s+ 1.

Verification The verification is based on the following lemma.

Lemma 3.4.3. For every requirement R, R is initialized only finitely many
times, mR = limsm

R(s) exists, R eventually stops requiring attention, and
R is met.

Proof. Suppose that the claim is true of every R′ < R, and let s0 be the
greatest stage at which some R′ < R has received attention, with s0 = 0 if
R = P0. Let m = max{mR′

: R′ < R}.
At the beginning of stage s0+1, R is initialized, and thus requires atten-

tion, acts through (1) or (2a), and after this stage it will never be initialized
again.

46

Case R = Pn. If R = Pn, then R acts, picks n+1 unused numbers. These
numbers are still E-non-equivalent. R defines a value of mR(s0 + 1) which
will never change hereafter, and thus is the limit value mR of mR(s). This
limit value sets a restraint on lower priority requirements which therefore can
never E-collapse any pair of these n + 1 numbers. This shows also that Pn
is met, as the final E has at least n+ 1 equivalence classes.

Case R = Q〈i, j〉. At stage s0 + 1, Q〈i, j〉 defines the last value mR =
mR(s0 + 1) of its parameter mR: notice that this value will never change
again, and is in fact the same as mR′

, where R′ is the P -requirement imme-
diately preceding R in the priority ordering. If R receives attention at some
stage s1+1 > s0+1 and acts through Case (2b), then the action declares R
permanently satisfied, R will never receive attention again, Ei is finite then
R is met.

If we exclude action Case (2b) after s0 + 1, then Ei is infinite. We claim
that still R requires attention finitely many times after s0 + 1. For other-
wise, at infinitely many stages s we E-collapse all numbers mR < x, s ≤ s,
and therefore E is finite since we E-collapse all x, y > mR. On the other
hand Ei is infinite, so φj cannot induce a 1-1 mapping from Ei-equivalence
classes to E-equivalence classes, thus eventually M(〈i, j〉, s) stabilizes on a
value 〈v, k〉 with k ∈ {0, 1} and stops receiving attention again: contradic-
tion. So (if we never act through Case (2b)) we are forced to conclude that
M(〈i, j〉, s) stabilizes on some 〈v, 0〉, and thus φj is not total, R is satisfied,
and limsm

R(s) = m; or it stabilizes on some 〈〈x, y〉, 1〉, in which case x��Eiy
and φj(x) E φj(y), and R is met.

Corollary 3.4.4. No class A of finitely generated semigroups is ≡-complete
for the ceers.

Proof. Up to computable isomorphisms, we can assume that a finitely gener-
ated c.e.p. semigroup is of the form 〈{0, 1, . . . , n}, R〉 where R is a c.e. subset
of ({0, 1, . . . , n}∗)2. Let f be a computable function such that {Vf(n,i) : i ∈ N}
computably lists all c.e. subsets of ({0, 1, . . . , n}∗)2. From this we get a com-
putable listing {S〈n,i〉 : n, i ∈ N} (where S〈n,i〉 = 〈{0, 1, . . . , n}∗, Vf(n,i)〉) of all
finitely generated c.e.p. semigroups, and a corresponding computable listing
{E〈n,i〉 : n, i ∈ N} of their word problems.

47

In view of the previous theorem it suffices to show that {〈n, i〉 : E〈n,i〉 finite}
is c.e. Let X = {0, 1, . . . , n}. We claim that E〈n,i〉 is finite if and only if

(∃m > 0)(∀σ ∈ X∗)[|σ| = m⇒ (∃τ ∈ X∗)[|τ | < |σ|& τ E〈n,i〉 σ]], (?)

which is a c.e. expression (in which for a given string ρ, the symbol |ρ|
denotes the length of ρ). On the one hand, if E〈n,i〉 is finite, one can fix a
finite transversal A which meets all the equivalence classes of E〈n,i〉. Since
each word of S〈n,i〉 is equivalent to a word from A, we have that (?) holds for
m, where m = max{|σ| : σ ∈ A}+ 1.

On the other hand, assume that (?) holds, and fix such an m. We claim
in this case that every word is E〈n,i〉-equivalent to some word of length ≤ m.
Towards a contradiction, let n > m be the least number such that there
exists σ with |σ| = n, and [σ]E〈n,i〉

contains no word of length ≤ m. Now, let
σ0 = σ � m (i.e., the initial segment of σ of length m), and let σ1 be such that
σ = σ0σ1. Then σ0 is E〈n,i〉-equivalent to some ρ with |ρ| < m. Therefore,
by definition of 〈X;E〈n,i〉〉, we have that σ = σ0σ1E〈n,i〉ρ σ1, but |ρ σ1| < n,
contradicting the minimality of n.

As a particular case, this provides a negative solution to Gao and Gerdes’
question:

Corollary 3.4.5. The class of f.p. semigroups is not ≡-complete for the
ceers.

Proof. Immediate.

Next, we observe that, given a f.p. semigroup S, the number of finite and
infinite equivalence classes of the word problem =S gives us some information
about the ceers realized by S. We basically owe the following arguments to
[19], see also [59].

Lemma 3.4.6. If S is a f.p. semigroup then there is a partial computable
function ψ such that for every word w, ψ(w) ↓ if and only if the =S-equivalence
class of w is finite, and, when convergent, ψ(w) outputs the canonical index
of the equivalence class [w]=S

of w.

Proof. Given a word w, we can effectively generate its =S-equivalence class
in a treelike fashion as follows. The root of the tree is w. Each node u has as
children the words that can be obtained from u using the relations and which

48

have not yet appeared as a node in the path from the root to the present
node. Note that one relation produces only finitely many children, and there
are only finitely many relations: hence, this is a finitely branching tree. By
the König Lemma if the equivalence class of w is finite, we eventually stop
generating new nodes on any branch of the tree: when this happen we have
generated the entire equivalence class of w, and we can compute the canonical
index of this class.

Theorem 3.4.7. Let S be a f.p. semigroup.

(i) If S has finitely many infinite equivalence classes, then =S is decidable.
Therefore no undecidable ceer can be ≡-realized by such an S.

(ii) If S has infinitely many finite equivalence classes, then =S is light.
Therefore, neither finite nor dark ceers can be ≡-realized by such an S.

Proof. Suppose that =S has only finitely many infinite equivalence classes.
Assume that {vi : i ∈ I} is a finite set of words, with vi 6= Svj if i 6= j, span-
ning these infinite equivalence classes. Given words x, y, generate the equiv-
alence classes of x and y in a tree-like fashion as in the proof of Lemma 3.4.6,
until one of the following happens: (1) [x]=S

and [y]=S
cannot grow any more

(and we can decide this, as explained in the proof Lemma 3.4.6); (2) some vi
is generated in one equivalence class, and some vj is generated in the other
one; (3) some vi is generated in one of the two equivalence classes and the
other one has stopped (again, we can decide this latter outcome). In any
case we can decide if the two words are equal. This proves statement (i).

Now, we prove (ii). Let S be a f.p. semigroup with infinitely many fi-
nite equivalence classes and let ψ be the partial computable function of
Lemma 3.4.6. Using ψ we can build in stages an infinite c.e. transversal
{a0, a1, . . . } for =S:

Step 0. Let w0 be the first word such that ψ(w0) ↓ and define a0 to be
the least element of the finite set Dψ(w0).

Step n+ 1. Let wn+1 be the first word such that ψ(wn+1) ↓ and

Dψ(wn+1) ∩ (
⋃

i≤n

Dψ(wi)) = ∅

and let an+1 be the least element of Dψ(wn+1).

49

3.5 Transversals of word problems of finitely

generated semigroups

Following the line of the previous section, we single out several classes of
ceers which cannot be ≡-realized by any finitely generated semigroup: see
Theorem 3.5.12.

3.5.1 More immunity and darkness notions

In Section 1.2, we have seen that dark ceers can be conveniently character-
ized by the notion of a transversal for an equivalence relation, introduced in
Definition 1.2.2: in fact, a ceer R is dark if and only if it admits no infinite
c.e. tranversal, or equivalently that every infinite transversal of R is immune
(see Definition 1.1.3).

Other stronger immunity notions have been widely considered in classical
computability theory, and we briefly review their definitions.

Definition 3.5.1. We say that a set X ⊆ N is intersected by a disjoint
sequence (or array) (Xn)n∈N of subsets of N (disjoint means thatXn∩Xm = ∅
if n 6= m) if, for all n, Xn∩X 6= ∅. An infinite set is hyperimmune if it is not
intersected by any strong disjoint array, i.e. a disjoint array (Fn)n∈N of finite
sets, presented by their canonical indices: Fn = Df(n) for some computable
function f . A c.e. set is called hypersimple if its complement is immune.

Similarly, an infinite set is hyperhyperimmune if it is not intersected by
any weak disjoint array, i.e. a disjoint array (Fn)n∈N of finite sets, presented
by their c.e. indices: Fn = Wf(n) for some computable function f . A c.e. set
is hyperhypersimple if its complement is hyperhyperimmune.

This suggests also the following definition.

Definition 3.5.2. A ceer is hyperdark (respectively, hyperhyperdark) if all
its infinite transversals are hyperimmune (respectively, hyperhyperimmune).

Clearly every hyperhyperdark ceer is also hyperdark, and every hyperdark
ceer is also dark.

We have already seen in Section 1.2 that an obvious way to give exam-
ples of dark ceers is to consider unidimensional ceers generated by any sim-
ple set (unidimensional ceers have been introduced in Definition 1.1.2). We
can obtain easy examples of hyperdark and hyperhyperdark ceers similarly,

50

considering any hypersimple or, respectively, hyperhypersimple set, instead:
since a transversal T of RX satisfies that T r Xc has at most one element
(where Xc denotes the complement of X), and infinite subsets of immune
(respectively, hyperimmune, hyperhyperimmune) sets are immune (respec-
tively: hyperimmune, hyperhyperimmune), it is easy to see that RX is dark
(respectively: hyperdark, hyperhyperdark) if and only if X is simple (respec-
tively: hypersimple, hyperhypersimple). Using the known facts that there
exist sets which are hyperhypesimple but not hypersimple, and sets which
are hypersimple but not simple, one easily sees that the unidimensional ceers
are also enough to witness that the inclusions between the classes of dark,
hyperdark and hyperhyperdark ceers are proper. More interesting examples
of ceers lying in these classes will be given in Section 3.5.3.

3.5.2 Π0
1 classes and ≡-realizability by word problems

of finitely generated semigroups

We first review some old notation, and introduce some new one. If X is a set
then the symbol X∗ denotes the set of words of elements of X, while with XN

we denote the infinite sequences of elements of X; the symbol |σ| for a string
σ denotes the length of σ; if i < |σ| then σ(i) denotes the i-th projection of
σ; finally λ denotes the empty string.

Next, we review the notion of Π0
1 class of the Cantor space, which is

central for this section.

Definition 3.5.3. A subset A of the Cantor space 2N is called a Π0
1 class if

A has a Π0
1 definition, i.e. is of the form A = {X ∈ 2N : (∀n)R(X,n)}, for

some decidable predicate R ⊆ 2N×N. (The Π0
1 classes are also known as the

effectively closed subsets of the Cantor space; a subset A ⊆ 2N is a Π0
1 class

if and only if A coincides with the collection of the infinite paths of some
decidable tree.)

The reader is referred to Soare’s textbook [89] for all unexplained notions
regarding computability theory and Π0

1 classes. Throughout this section when
we talk about “degrees” without any further specification, we will mean
“Turing degrees”.

Finally, if R is an equivalence relation on N, let us denote

Tr(R) = {T ∈ 2N : T is a transversal of R}.

51

Lemma 3.5.4. For every ceer R, Tr(R) is a Π0
1 class of the Cantor space.

Proof. The claim follows from the observation that if R is a ceer then

T ∈ Tr(R) ⇔ (∀ x, y)[x, y ∈ X & x 6= y ⇒ x��Ry],

which is a Π0
1 description as the complement of R is co-c.e.

Throughout the rest of the section, the letter S will be used as a variable
for an infinite c.e. semigroup, presented by some given c.e. presentation hav-
ing word problem =S, using the same conventions introduced in section 3.2.2.
Lemma 3.5.6 below isolates a special property of the class of transversal of
the ceer =S when S is finitely generated.

The following observation is an easy rephrasing of Corollary 3.4.4.

Corollary 3.5.5. If S is an infinite c.e. finitely generated semigroup with X
as finite set of generators then

∀m > 0 ∃x ∈ X∗ [|x| = m&(∀y ∈ X∗)[|y| < m⇒ x 6=S y]].

Lemma 3.5.6. If S is an infinite c.e. finitely generated semigroup with X
as finite set of generators then there exists a nonempty Π0

1 class A ⊆ Tr(=S)
of the Cantor space whose members are all infinite.

Proof. Let S and X be as in the statement of the lemma. Identify X∗ with
N via a suitable Gödel numbering, and for every m ∈ N, let Xm denote the
strings on alphabet X having length m: clearly (Xm)m∈N is a strong disjoint
array. Define

A = Tr(=S) ∩ {A ∈ 2X
∗

: (∀m)[A ∩Xm 6= ∅]}.

Via identification X∗ = N and thus 2X
∗
= 2N, hence the second class in the

previous intersection is a Π0
1 class: since Tr(=S) is Π

0
1 too by Lemma 3.5.4, we

have that A is Π0
1. Since they are intersected by a disjoint array, all members

of A are infinite. To see that A 6= ∅ we build a set A ∈ A by specifying by
induction on m a string x ∈ A with |x| = m. Let λ ∈ A; having specified
the strings to place in A of length < m, use Fact 3.5.5 to pick and place in
A the least string x ∈ X∗ such that |x| = m and x 6=S y for all y ∈ X∗ such
that |y| < m.

52

In computability theory, Π0
1 classes are well-studied objects: a number

of theorems, known as basis theorems for non-empty Π0
1 classes, concerns

degrees of members of any such class. For the proofs of the following well-
known basis theorems, see e.g. [51].

Fact 3.5.7. Let A be a non-empty Π0
1 class of the Cantor space. Then:

(i) (Low Basis Theorem) A contains a set of low degree.

(ii) (Hyperimmune-free Basis Theorem) A contains a set of hyperimmune-
free degree.

(iii) (Kreisel-Shoenfield Basis Theorem) A contains a set A <T ∅′.

As an immediate corollary, we get the existence of certain transversals of
=S.

Corollary 3.5.8. The class Tr(=S) contains:

(i) A low infinite transversal;

(ii) a hyperimmune-free infinite transversal;

(iii) an infinite transversal A such that A <T ∅′.

Notice that every infinite ceer R contains a co-c.e. infinite transversal,
namely the transversal (called the principal transversal of R and denoted by
TR) which is the set comprised of the least elements of the various equivalence
classes.

The various items of the previous corollary help us find infinite ceers
which are not ≡-realized by the word problem of any infinite c.e. finitely
generated semigroup.

Definition 3.5.9. Throughout this definition, R ranges through the infinite
ceers. Let:

(a) non-low = {R : R does not contain any low infinite transversal};

(b) hdark = {R : all infinite transversals of R are hyperimmune};

(c) hhdark = {R : all infinite transversals of R are hyperhyperimmune};

(d) non-incomp = {R : if T is an infinite transversal of R then T 6 <T∅′}.

53

The following statement summarizes the respective relations among the
classes defined above.

Proposition 3.5.10. We have (with ⊂ denoting proper inclusion)

non-incomp∪hhdark ⊂ non-low ⊂ hdark;

moreover non-incomp * hhdark and hhdark * non-incomp.

Proof. Except for non-low ⊆ hdark (which will be proved as Theorem 3.5.15),
the various inclusions are straightforward. The inclusion hhdark ⊆ non-low
follows from the fact that if A is hyperhyperimmune then ∅′ <T A

′, as shown
in [50, Theorem 6.1].

In most cases, counterexamples witnessing proper inclusion can be found
by taking suitable unidimensional ceers RX and recalling the following well
know facts of classical computability theory. A set X is introreducible if, for
every infinite subset Y ⊆ X, X ≤T Y . In [32], it has been proven that, given
any c.e. set Y , there exists a hypersimple set X ≡T Y whose complement
Xc is introreducible, namely one can take as X the Dekker deficiency set of
Y (see also [89], Exercise 5.3.13). Moreover, it has been proven by Yates
([93]) that no deficiency set can be hyperhypersimple. For instance, if we
take X to be the deficiency set of a c.e. set which is neither low nor high,
then we can show that RX ∈ non-lowr(non-incomp∪hhdark) as follows:
RX ∈ non-low since every infinite transversal A of RX coincides (modulo
one element) with an infinite subset of Xc: therefore by introreducibility
Xc ≤T A, and thus ∅′ <T X

′ ≤T A
′; on the other hand RX /∈ non-incomp

as Xc is a transversal and Xc <T ∅′; finally RX /∈ hhdark by Martin’s result
[62, Corollary 3.1] stating that a c.e. degree is high if and only if it contains
a hyperhypersimple set, hence Xc is not hyperhyperimmune. To show that
non-incomp * hhdark take as X the deficiency set of ∅′. To show that
hhdark * non-incomp letX be a hyperhypersimple set withX <T ∅′ (such
a set exists again by [62, Corollary 3.1]): then RX ∈ hhdarkrnon-incomp.

Finally, hdark * non-low is proved as Theorem 3.5.14 below.

Next, we prove that each of the classes from Definition 3.5.9 is ≡-closed,
and in fact form an ideal with respect to computable reducibility ≤.

Proposition 3.5.11. If P ∈ {non-low,hhdark,hdark,non-incomp} then
(A) membership in P is ≡-invariant, in fact for all ceers E,R, such that

E ≤ R, we have that E ∈ P if R ∈ P;

54

(B) the ≡-degrees of the ceers in P form an ideal.

Proof. Let us first prove (A). We show that in each one of the specified cases
the class P corresponds to a property P of sets for which we have: if E,R
are ceers with E ≤ R and R satisfies P then E satisfies P as well. So, let h
be a computable function h witnessing that E ≤ R.

(a) Let T be a low infinite transversal of E. Then h[T] is an infinite transver-

sal of R. Clearly h[T] is c.e. in T , thus h[T] contains an infinite T̂ ≤T T .

But then T̂ is an infinite low transversal of R.

(b) Suppose that E intersects an infinite non-hyperimmune transversal T .
Then there is a strong disjoint array (Df(n))n∈N of finite sets which in-

tersects T . Again, T̂ = h[T] is an infinite transversal of R. In order
to remedy to the fact that the sequence of finite sets (Dg(n))n∈N, where
Dg(n) = h[Df(n)], need not be a disjoint array, let us consider a com-
putable function k such that, for every n,

Dk(n) = Dg(n) r

(
⋃

m<n

Dk(m)

)
.

Now, (Dk(n))n∈N is a strong disjoint array, and for every n, Dk(n)∩ T̂ 6= ∅,
yielding that T̂ is not hyperimmune.

(c) Similar to (b). Suppose that (Wf(n))n∈N is a weak disjoint array which
intersects an infinite non-hyperhyperimune transversal T of E, and this
time let g be a computable function such that Wg(n) = Wh(n). Let r be
a computable function of two variables such that

Wr(n,s) = Wg(n),s r

 ⋃

〈m,t〉<〈n,s〉

Wr(m,t)

(we refer of course to uniform computable approximations {Wg(n),s :
n, s ∈ N} to the sets of the array (Wg(n))n∈N); finally let k be a com-
putable function such that Wk(n) =

⋃
sWr(n,s). It is now easy to see

that the sequence (Wk(n))n∈N is a weak disjoint array which intersects

T̂ = h[T].

(d) Similar to item (a).

55

We now prove (B). It is easy to see that if E,R both have property P then
E ⊕R has property P . Assume for instance that E,R ∈ hdark, but E ⊕R
has a transversal T which is intersected by a strong disjoint array (Df(n))n∈N.
Without loss of generality, we can assume that T contains infinitely many
even numbers. Let g be a computable function such that

Dg(n) =
{
u : 2u ∈ Df(n)

}
.

Then (Dg(n))n∈N intersects an infinite transversal of E (namely the set T̂ =
{x : 2x ∈ T}), so that E cannot be hyperdark.

From this, and from the previously proven item (A), we conclude that
that the ≡-degrees of the ceers in P form an ideal.

We can now prove the main theorem of this section.

Theorem 3.5.12. If P ∈ {non-low,hhdark,hdark,non-incomp} and
R ∈ P (in fact, by the inclusion of Proposition 3.5.10 this can be summarized
by just taking R ∈ hdark) then R is not ≡-realized by any finitely generated
semigroup.

Proof. By Corollary 3.5.8 and Proposition 3.5.11(A).

3.5.3 The hyperdark ceers

The class hdark is the largest class, among the ones pointed out in the
previous section, having the property that no ceer in the class is c-realized
by some finitely generated semigroup. Moreover, it marks the line one has
to cross to get an immunity property guaranteeing this property: if we drop
from hyperimmunity to immunity then this property gets lost, as is shown
by the following remarkable result that there are in fact dark ceers which are
c-realized even by finitely generated groups.

Fact 3.5.13 (Myasnikov and Osin [72]). There is a c.e. finitely generated
group G such that =G is dark.

Up to this point our examples of ceers in hdark have been taken only from
the class of unidimensional ceers, which are ceers with both finite equivalence
classes (in fact, singletons), and infinite equivalence classes (in fact, at most
one infinite class: in our example exactly one infinite class). It is a trivial
matter to show that each of the classes of ceers presented in Definition 3.5.9

56

contains ceers with only infinite equivalence classes. Indeed, if R is a ceer
then R ≡c R∞ where R∞ is the ceer defined by

〈i, x〉 R∞ 〈j, y〉 ⇔ i = j & x R y,

whose equivalence classes are clearly all infinite.
Less trivial is to find examples of ceers lying in the classes of Definition

3.5.9, in which all the equivalence classes are finite. The rest of the section
is devoted to showing that there exist ceers in hdark with specified proper-
ties, having only finite equivalence classes. In the following construction, we
use the terminology and conventions of Remark 1.2.4: indeed, the following
theorem may be seen as a strengthening of Proposition 1.2.5.

Theorem 3.5.14. There is a hyperdark ceer R such that all R-equivalence
classes are finite and its principal transversal is low. It follows that hdark *
non-low.

Proof. We define in stages a sequence of uniformy decidable ceers {Rs}s∈N,
such that R0 = Id, Rs ⊆ Rs+1 (more precisely, Rs+1 is obtained by collapsing
finitely many classes of Rs), and R =

⋃
s∈NRs satisfies the claim. Therefore

the sequence of the principal transversals (TRs
)s∈N is uniformly computable,

satisfies TR0
⊇ TR1

⊇ . . . , and thus yields a co-c.e. approximation to the
principal transversal TR of R. Notice that if x, t are such that for all y < x
the equivalence class of y does not change after t, i.e. [y]Rt

= [y]Rs
for all

s ≥ t, then TRs
� x = TR � x. We want to make R satisfy for every e ∈ N the

following requirements:

Pe : if (Dϕe(n))n∈N is a strong disjoint array

then it does not intersect any transversal of R;

Ne : (∃∞s)
[
ϕTRs
e,s (e) ↓

]
⇒ ϕTRe (e) ↓;

Fe : [e]R is finite.

Satisfaction of all Pe clearly ensures that R is hyperdark. Satisfaction of all
Ne will ensure that TR is low (see also [89, pp. 149-151]). Indeed, to decide

whether e ∈ (TR)
′, search for a stage s0 such that either ϕ

TRs
e,s (e) ↓ for all

s ≥ s0 (in which case e ∈ (TR)
′), or ϕ

TRs
e,s (e) ↑ for all s ≥ s0 (in which case

e /∈ (TR)
′). From the satisfaction of all N -requirements it follows that such

an s0 can be effectively found using oracle ∅′. We also wanto to keep each

57

R-equivalence class finite by satisfying all F -requirements, in a way similar
to the one used in the proof of Proposition 1.2.5.

We prioritize the requirement as follows: N0 < P0 < N1 < P1 < · · · .
The strategy pursued by requirementNe will be to preserve a computation

ϕ
TRs
e,s (e) whenever such a computation shows up. To keep track of the restraint

imposed by Ne, we consider the computable sequence (rs(e))s∈N, where rs(e)

denotes the use of the computation ϕ
TRs
e,s (e) (that is, the greatest element of

the oracle As queried during the computation ϕ
TRs
e,s (e), if this computation

converges, or 0 otherwise; see [89, pp. 53; 57] for more details).
To satisfy requirement Pe the construction will typically R-collapse a

certain finite set of numbers into a single R-equivalence class. Finally, in
order to satisfy F -requirements, namely to keep each R-equivalence class
finite, for every e we will define in stages a parameter Be,s, starting with
Be,0 = ∅, whereas Be,s contains the elements which have been R-collapsed
by the action of requirement Pe by the end of stage s, and we will prevent
all requirements having lower priority than Pe to modify the R-equivalence
classes of these elements. If Be is not explicitly redefined at s+ 1, then it is
understood that Be,s+1 = Be,s.

Construction. We say that a requirement Pe requires attention at stage
s+1 if Be,s = ∅ and there exists u, v such that u 6= v, ϕe,s(u) ↓, ϕe,s(v) ↓ and

min
(
Dϕe(u) ∪Dϕe(v)

)
> max {x : (∃y)(∃i < e)[x Rs y& [y ≤ rs(i) ∨ y ∈ Bi]}

(where we understand max ∅ = 0).
At stage s+1, if there is no Pe with e ≤ s which requires attention, then

go directly to stage s+2. Otherwise, let Pe with e ≤ s be the highest priority
requirement currently requiring attention, and choose the pair u, v with least
pseudocode by which it requires attention. Let Be,s+1 = Dϕe(u) ∪Dϕe(v), and
let Rs+1 be the equivalence relation generated by Rs∪{(x, y) : x, y ∈ Be,s+1}.
Say that Pe acts at s+ 1 and go to the next stage.

Verification. It is clear that each requirement Pe acts at most once, as if it
acts at stage s, then for all t ≥ s we have Be,t 6= ∅, hence Pe never requires
attention (nor does it possibly acts) at any later stage. In particular, for each
e, Be = lim

s→∞
Be,s is well-defined: more precisely, either Be = Be,s if Pe acts

at some (unique) stage s, or Be = ∅ otherwise.
We say that a number x injures requirement Ne at stage s+1 if x ≤ rs(e)

but x belongs to either of the two sets Dϕe(u), Dϕe(v) which are R-collapsed

58

at stage s+ 1 by the action of some Pi. Notice that each Ne is injured only
by finitely many elements, and thus only finitely many times: indeed, we R-
collapse an element x ≤ rs(e) only if some requirement Pi acts, with i < e.
But each such requirement acts at most once, and therefore it R-collapses
only finitely many elements.

We now prove that each requirement Ne is satisfied. For each e, we have
seen that there must be a stage s0 such that Ne is not injured at any stage
s > s0. If ϕ

TRs
e,s (e) ↓ for s > s0 then for all t ≥ s we have that rt(e) = rs(e).

Therefore TRs
� rs(e) = TR � rs(e), as after stage s we never modify the

equivalence class of any element below rs(e). This shows that ϕTRe (e) ↓ and
hence Ne is satisfied. By satisfaction of all the N -requirements it follows
that TR is low.

Our next claim is that R is hyperdark, as a consequence of the fact tat
every requirement Pe is satisfied. Notice that if Pe is ever allowed to act, then
just this one action is enough to have that if {Dϕe(n)}n∈N is a disjoint strong
array, then the array does not intersect any transversal T for R. Indeed,
whenever Pe acts, it R-collapses two disjoint finite sets Dϕe(u), Dϕe(v) into a
single R-equivalence class. Hence, if an infinite set T is intersected by the
array (Dϕe(n))n∈N, then there are t ∈ T ∩Dϕe(u) and t

′ ∈ T ∩Dϕe(v) such that
t 6= t′ (since the array is disjoint) but t R t′, implying that T cannot be a
transversal of R.

It remains to show that, if (Dϕe(n))n∈N is a strong disjoint array (thus,
in particular ϕe is total and unbounded), then Pe eventually acts. By what
shown above, assume that s0 is a stage such that there is no s > s0 and no
i < e such that ri or Bi changes at s. Then either Pe has already acted at
some stage s ≤ s0, or there must be a stage s > s0 so that ϕe,s converges on
two suitable elements, as ϕe is unbounded and (Dϕe(n))n∈N is a strong disjoint
array. In any case, Pe eventually acts, hence it is eventually satisfied.

Finally, the verification that each F -requirement is satisfied is the same
as in the proof of Proposition 1.2.5. To see that for every x, the equivalence
class [x]R is finite, indeed, just observe that either x is never R-collapsed to
other numbers by any P-requirement, and thus [x]R is a singleton, or there
is some i such that x is R-collapsed by Pi at some stage s. But then after s,
the number x can be R-collapsed only by P-requirements Pj with j < i, and
thus the equivalence class of x changes only finitely many times, since each
Pj acts at most once.

On the other hand we have:

59

Theorem 3.5.15. non-low ⊆ hdark.

Proof. Suppose that R is a ceer containing a transversal A which is not hy-
perimmune as witnessed by the strong disjoint array (Df(n))n∈N, and consider
the class of sets

A = Tr(R) ∩ {A : (∀n)[A ∩ {x ∈ Df(n) & x ≥ n} 6= ∅]}.

It is easy to see that A is a Π0
1 class of the Cantor space, as A is the in-

tersection of two Π0
1 classes. Moreover it is clear by the definition that all

members of A must be infinite, and A 6= ∅ as A ∈ A. Therefore, by the Low
Basis Theorem, A contains a low member, that is a infinite low transversal
of R. By contrapositive this shows that non-low ⊆ hdark.

Remark 3.5.16. It might be worth noticing the following easy consequence of
the previous theorem: every co-c.e. set X which is not hyperimmune contains
an infinite low subset. Indeed, the unidimensional ceer RXc is not hyperdark,
hence it admits an infinite low transversal, which obviously is, in particular,
a subset of X (modulo one element).

We conclude by exhibiting a ceer R having all finite equivalence classes,
and such that every transversal of R is of hyperhyperimmune degree. In fact,
our next example is built so that every transversal of R computes ∅′, hence, in
particular, it is high. Then every transversal has hyperhyperimmune degree
since every high degree is hyperhyperimmune (as shown by Jockusch, see
[50]). Clearly R ∈ non-incomp, and thus is one more example of a ceer
that cannot be ≡-realized by and finitely generated semigroup.

Theorem 3.5.17. There is a ceer R such that all R-equivalence classes are
finite and, if A is a transversal of R, then ∅′ ≤T A.

Proof. Given an infinite set A, we denote by pA the principal function of A,
namely the function which enumerates the elements of A in strict order of
magnitude. It is clear that, if T is a transversal of R, then pTR(n) ≤ pT (n)
(where we recall that TR denotes the principal transversal of R). We will then
make use of the well-known result (proved by Martin [63], and independently
by Tennenbaum [90]) that a sufficient condition for ∅′ ≤T A is the existence
of a function g ≤T A which dominates every partial computable function,
i.e. for every e there exists e0 such that for every i ≥ e0, if ϕe(i) ↓ then
ϕe(i) < g(i). Hence, to complete our task, it is enough to build a ceer R

60

with only finite equivalence classes and such that the function pTR(n + 1)
dominates every partial computable function. This would show, as argued
at the end of the proof, that for every infinite transversal T the function
g(n) = pT (n + 1) dominates all partial computable functions, and clearly
g ≤T T .

Without loss of generality, we assume that for every e, i, s, if ϕe,s(i) ↓
then ϕe,s(i) < s. For every e, s, let

fs(e) = max{0, ϕi,s(j) ↓: i, j ≤ e}.
For all e, s, it holds that fs(e) ≤ fs(e+1) and fs(e) ≤ fs+1(e). Moreover, for
every e there is a stage s0 so that, for every s ≥ s0, fs(e) = fs0(e). Hence,
f(e) = lim

s→∞
fs(e) is well-defined for every e. To achieve our goal, for every e

it is enough to satisfy the requirement

Re : f(e) < pTR(e+ 1),

Se : [e]R is finite.

Notice that if f(e) < pTR(e+1) for every e, then for every i ≥ e, if ϕe(i) ↓ then
ϕe(i) < pTR(i + 1). For the R-requirements, consider the priority ordering
Ri < Rj if i < j. Moreover, notice that, in the following construction, we
satisfy the S-requirements directly by letting R induce a partition of N into
consecutive finite intervals.

Construction. We define R in stages. At each stage s, our uniformly com-
putable approximation Rs to R will be an equivalence relation partitioning
N in consecutive closed finite intervals {re,s : e ∈ N}, almost all of which
will be singletons, in such a way that Rs ⊆ Rs+1. Let te,s = max re,s: then
te,s + 1 = min re+1,s.

At stage 0 we start up with re,0 = {e}, thus te,0 = e; thus R0 = Id.
We say that a requirement Re requires attention at stage s+1 if fs+1(e) >

te,s. By our assumption on how to approximate the partial computable func-
tions, we may suppose that fs+1(e) < s+ 1.

At stage s+1, see if there is a requirement Re with e ≤ s which requires
attention: if not, then go to stage s + 2, leaving unchanged each ri. Other-
wise let Re be the highest priority requirement requiring attention. Define
(assuming t−1 = −1)

rj,s+1 =

rj,s, if j < e,

[te−1,s + 1, s+ 1], if j = e,

{s+ 1 + j − e}, if j > e.

61

This yields Rs+1 as well. It is easy to see that Rs ⊆ Rs+1. We say in this
case that Re acts. Go to the next stage.

Verification. The construction is a standard priority argument with finite
injury. Notice that, ifRe acts at a stage s0 such that fs0(e) = f(e), then it will
never require attention again at a later stage. A straightforward argument
by induction on the priority of the requirements shows that for every e the
requirement Re eventually stops requiring attention, re and its maximum te
reach their limits, with re = [te−1 +1, te] (where again we assume that t−1 =
−1), and f(e) ≤ te, so that f(e) < te + 1 = pTR(e+ 1), and the requirement
Re is satisfied. Moreover, this trivially implies that each S-requirement is
satisfied, namely that all R-equivalence classes are finite. Notice that

TR = {te−1 + 1 : e ∈ N}.

Indeed, let s0 be the least stage such that for all i < e, we have that Ri does
not receive attention, and ri does not change at any later stage. If Re never
requires attention at any s+ 1 > s0 then re = re,s0 and f(e) ≤ te < te + 1 =
pTR(e+1). On the other hand, Re may require attentions only finitely many
times at stages s + 1 > s0 as fs(e) may change only finitely many times: if
s + 1 > s0 is the last stage such that Re requires attention and Re acts at
s+ 1, then we have that te = s+ 1 and for every u ≥ s+ 1, fu(e) ≤ te, thus
again f(e) ≤ te < te + 1 = pTR(e+ 1).

It trivially follows from this that the function pTR(e + 1) dominates all
partial computable functions. It remains to show that if T is any transver-
sal then the principal function pT dominates all partial recursive functions.
Given n, let an be such that pTR(an) is the least element in [pT (n)]R, so
that pTR(an) ≤ pT (n). Since the equivalence classes of R are consecutive
closed intervals, we have n ≤ an, whence pTR(n) ≤ pTR(an) ≤ pT (n). There-
fore pT (n + 1) dominates all partial computable functions because so does
pTR(n+ 1).

3.6 Classes of algebras 's-realizing provable

equivalence of Peano Arithmetic

Although by Fact 3.4.1 there are ceers R such that R ��≡ =G, for every
c.e. group G, it is known that there are f.p. groups G such that =G is uni-
versal. This was first proved by Miller III [68]. Another example, due to [76]

62

refers to the computability theoretic notion of effective inseparability. We
recall that a disjoint pair (U, V) of sets of numbers is effectively inseparable
(e.i.) if there exists a partial computable function ψ such that for each pair
(u, v), if U ⊆ Wu and V ⊆ Wv and Wu ∩Wv = ∅ then ψ(u, v) converges and
ψ(u, v) /∈ Wu ∪Wv. A f.p. group G is built in [76] such that =G is uniformly
effectively inseparable i.e. uniformly in x, y one can find an index of a partial
recursive function ψ witnessing that the pair of sets ([x]=G

, [y]=G
) is e.i., if

[x]=G
∩ [y]=G

= ∅. Such a f.p. group has universal word problem, since it is
known ([3]) that every uniformly effectively inseparable ceer is universal.

An important 's-type among the universal ceers is given by the 's-type
of the relation ∼T of provable equivalence of any consistent formal system
T extending Robinson’s systems Q or R (see for instance Smorynski [87] for
an introduction to formal systems of arithmetic), i.e. x ∼T y if (identifying
sentences with numbers through a suitable Gödel numbering) T ` x ↔ y.
For example, let us take T to be Peano Arithmetic.

The question naturally arises as to which algebras 's-realize ∼T . Notice
that by Fact 1.3.5, “'s-realizing ∼T” is equivalent to “'-realizing ∼T”. Here
are some initial remarks about this question:

1. As far as we know, the question of whether there are f.p. semigroups,
or f.p. groups, having word problems strongly isomorphic to ∼T is still
open.

2. On the other hand, by Theorem 3.2.4 there exist c.e. semigroups whose
word problem is strongly isomorphic to ∼T . We do not know if there
are c.e. groups 's-realizing ∼T .

3. If one computably identifies with numbers the sentences of our chosen
formal system T , and considers the computable operations provided by
the connectives ∧, ∨, ¬, ⊥, > (where ⊥ and > denote any contradiction
and any theorem, respectively), then

〈N,∧,∨,¬,⊥,>, E〉

(where x E y if T ` x ↔ y) is a positive presentation of the Linden-
baum algebra of the sentences of T , which is therefore a c.e. Boolean
algebra. It is known that the word problem of this c.e. Boolean algebra
is strongly isomorphic to ∼T : see [80] (see also [70]).

63

The above item (3) identifies a very special class of rings which 's-realize
∼T , namely Boolean rings, i.e. rings satisfying x2 = x for all x. Is that
all? Can we find non-Boolean rings 's-realizing ∼T ? We will identify in the
following a c.e. ring R which is neither Boolean nor commutative, such that
=R's∼T .

The 's-type of ∼T can be characterized through the already given notion
of a diagonal function, and the notion of uniformly finite precompleteness,
originating from [69] (see also [85]) and introduced in Definition 1.4.6 above.
We have also seen that, for every ceer S, S 's∼T if and only if S is u.f.p. and
possesses a diagonal function (see Fact 1.4.7).

The rest of the section is devoted to seeing that there is a non-commutative
and non-Boolean c.e. ring whose word problem is strongly isomorphic to ∼T .
The following result is essentially a rephrasing of Theorem 4.1 of [4].

Lemma 3.6.1. Let A be a c.e. algebra whose type contains two binary opera-
tions +, ·, and two constants 0, 1 such that + is associative, the pair (U0, U1)
is e.i., where

Ui = {x : x =A i},
and, for every a,

a+ 0 =A a, a · 0 =A 0, a · 1 =A a.

Then =A is a u.f.p. ceer.

Proof. For the convenience of the reader, we recall the argument in [4],
adapting it to our context and notations. We look for a computable func-
tion f(D, e, x) such that if φe(x) ↓, and φe(x) =A d for some d ∈ D then
f(D, e, x) =A φe(x).

Let p be a productive function for the pair (U0, U1): it is well known that
we may assume that p is total. Let

{ud,D,e,x, vd,D,e,x : D finite subset of N, d ∈ D, e, x ∈ N}

be a computable set of indices we control by the Recursion Theorem. For a
pair (ud,D,e,x, vd,D,e,x) in this set let cd,D,e,x = p(ud,D,e,x, vd,D,e,x) and ad,D,e,x =
d · cd,D,e,x. Define

f(D, e, x) =
∑

d∈D

ad,D,e,x.

64

Let us define two c.e. sets Wud,D,e,x
and Wvd,D,e,x

for each d ∈ D, which
are computably enumerated as follows. Wait for φe(x) to converge to some
y which is =A to some element in D, and while waiting, we let Wud,D,e,x

and Wvd,D,e,x
enumerate U0 and U1, respectively. If we wait forever then for

all d ∈ D we end up with Wud,D,e,x
= U0 and Wvd,D,e,x

= U1. If the wait
terminates, let d0 ∈ D be the first seen so that φe(x) =A d0, enumerate also
cd0,D,e,x into Wud0,D,e,x

: this ends up with Wud0,D,e,x
= U0 ∪ {cd0,D,e,x} and

Wvd0,D,e,x
= U1, thus forcing cd0,D,e,x =A 1 (since it must be that Wud0,D,e,x

∩
Wvd0,D,e,x

6= ∅, for otherwise cd0,D,e,x = p(ud0,D,e,x, vd0,D,e,x) ∈ Wud0,D,e,x
∪

Wvd0,D,e,x
, a contradiction) and thus ad0,D,e,x =A d0. For all d ∈ D with

d 6= d0, we let Wud,D,e,x
= U0 and Wvd,D,e,x

= U1 ∪ {cd,D,e,x}: this forces
cd,D,e,x =A 0 and thus ad,D,e,x =A 0 for each such d. Therefore f(D, e, x) =∑

d∈D ad,D,e,x =A d0 =A φe(x).

In order to prove the existence of a ring with the desired properties,
let us first recall the notion of free ring. For more details on the following
construction see for instance paragraph IV.2 of [30].

Let R be a ring and M be a monoid. The monoid ring of M over R,
denoted RM , is the set

{ϕ :M → R : supp(ϕ) is finite} ,

where supp(ϕ) = {m ∈M : ϕ(m) 6= 0}, equipped with the following opera-
tions. Given ϕ, ψ ∈ RM , their sum is the function ϕ + ψ : M → R given
by

(ϕ+ ψ) (m) = ϕ(m) + ψ(m),

and their product is the function ϕψ :M → R given by

(ϕψ) (m) =
∑

hk=m

ϕ(h)ψ(k).

Remark 3.6.2. Equivalently, as is easily seen, RM is the set of formal sums

∑

m∈M

rmm,

where rm ∈ R, m ∈ M and rm = 0 for all but finitely many m, equipped
with coefficient-wise sum, and product in which the elements of R commute
with the elements of M .

65

Definition 3.6.3. The free ring on a set X (denoted ZX∗) is the monoid
ring of the free monoid X∗ over the ring Z of the integers.

Theorem 3.6.4. There exist non-commutative (and hence non-Boolean)
c.e. rings R satisfying that =R's∼T .

Proof. Assume that X = {xi : i ∈ N} is a decidable set and consider the
free ring R− = ZX∗. Notice that, up to coding, we can identify the universe
of R− with N and assume that its operations are computable and equality is
decidable.

Let U, V ⊆ N be an e.i. pair of c.e. sets, and consider the ideal K of ZX∗

generated by
{xi : i ∈ U} ∪ {1− xj : j ∈ V } .

Thus, any element of K is of the form
∑

i∈I

riτix
U
i ρi +

∑

j∈J

sjµj(1− xVj)νj. (†)

where each of ri, sj is in Z, and each of τi, ρi, µj, νj is in X∗, and finally
I ⊆ U and J ⊆ V are finite sets. Up to shrinking the sets of indices, we can
suppose that no further simplification can be made in either sum.

The ideal K gives rise to a congruence, which we still denote with K,
such that [0]K = K. We claim that 1 /∈ K, which implies

[0]K ∩ [1]K = ∅.

To see that our claim is true, we show in fact that no nonzero integer can be
written as in (†). Calculating we get

∑

i∈I

riτix
U
i ρi +

∑

j∈J0

sjµjνj −
∑

j∈J0

sjµjx
V
j νj +

∑

j∈J1

sj −
∑

j∈J1

sjx
V
j , (††)

where J0 = {j ∈ J : µjνj 6= λ} and J1 = {j ∈ J : µjνj = λ}. By our
assumptions, neither the first, nor the third, nor the last sum of (††) contain
any pair of like monomials, so that in these sums no further simplification
can be made. In order to get a nonzero integer s from this sum we must have
that

0 =
∑

i∈I

riτix
U
i ρi +

∑

j∈J0

sjµjνj −
∑

j∈J0

sjµjx
V
j νj −

∑

j∈J1

sjx
V
j , (‡)

∑
j∈J1

sj = s, and J1 6= ∅.

66

We are going to see that the assumption J1 6= ∅ leads to a contradiction,
by showing that there would be an infinite sequence αn = sσn (n ≥ 1), with
σn ∈ {xj : j ∈ V }∗ of length n, and s ∈ Z r {0}, such that each αn occurs
as an summand in the second sum of (‡).

Take j ∈ J0 and let s = sj. So −sjxVj occurs in the fourth sum of (‡).
To cancel the monomial sjx

V
j in (‡), there must be a monomial of the form

sµj1νj1 (hence from the second sum) such that µj1νj1 = xVj . Let σ1 = xVj , and
α1 = sσ1. So α1 satisfies the claim. Now suppose that we have found already
αn = sσn in the second sum and satisfying the claim. Then σn is of the form
µjnνjn which (via multiplication sµjn(1 − xjn)νjn in (†)) corresponds to an
summand in the third sum −sµjnxjnνjn , so that σn+1 = µjnxjnνjn has length
n + 1, and lies in {xj : j ∈ V }∗. Again, this cannot cancel with anything in
the first sum, for each summand in the first sum contains an element indexed
from U ; it cannot cancel with anything in the fourth sum, nor can it cancel
with anything in the third sum, because we have assumed that it does not
contain like monomials; so it must cancel with something in the second sum,
which therefore contains αn+1 = sσn+1 satisfying the claim.

Lemma 3.6.5. (U, V) ≤m ([0]K , [1]K), hence the pair ([0]K , [1]K) is e.i.

Proof. We want to show that (U, V) ≤m ([0]K , [1]K) via f(i) = xi. Thus we
must verify that

xi ∈ [0]K ⇔ i ∈ U,

and
xj ∈ [1]K ⇔ j ∈ V.

The facts that i ∈ U implies xi ∈ [0]K and j ∈ V implies xj ∈ [1]K are
obvious.

On the other hand, if xi ∈ [0]K , then xi must be of the form (†), from
which we obtain again the expression (††), with the same assumptions on
already done simplifications. Assume that there is an xi ∈ [0]k with i /∈ U .
Since no nonzero integer must appear, either J1 = ∅ or J1 has at least two el-
ements. Assume the latter. Then in the last sum there is a monomial −sjxVj
which must cancel with a like monomial, which can be nowhere but in the
second sum. But the existence of such a monomial implies that there is a
monomial of the form sjx

V
j x

V
j′ or sjx

V
j′x

V − j which in turn leads to a contra-
diction, by an argument similar to the one above. Thus J1 must be empty.
Now assume J0 is non-empty, so that there is j ∈ J0 with µjνj = xi, where
i /∈ U . But then in the third sum there must be a corresponding monomial

67

(−xixVj or −xVj xi), whose existence, by reasoning as in the argument used
to see that non nonzero integer lies in K, leads again to a contradiction.

Since xj ∈ [1]K if and only if 1−xj ∈ [0]K , a completely similar argument
shows that xj ∈ [1]K implies j ∈ V .

Effective inseparability of the pair ([0]K , [1]K) follows from the fact that
(U, V) is e.i., and effective inseparability is a≤m-upwards closed property.

Consider the ring R obtained by dividing R− by the congruence K. R
is a c.e. ring according to Definition 3.1.1, as it can be positively presented
as 〈N, F, E〉 where we effectively identify modulo coding R− with N, F is
the set of computable operations on N which correspond via coding to the
operations of R−, and E is the ceer induced on N by the congruence K.

Moreover, R is equipped with two binary operations +, · (which are its
ring binary operations) and two constants 0, 1 (again, its ring zero-ary op-
erations). Therefore =R is a u.f.p. ceer by Lemma 3.6.1. To conclude that
=R is strongly isomorphic to ∼T is then enough by Fact 1.4.7 that we find a
diagonal function for =R. For this, just take any v 6=R 0, and consider the
function d(u) = u + v. It immediately follows that d(u) 6=R u, for otherwise
v =R 0.

3.7 Conclusion

In this chapter we have investigated the problem of which ceers can be real-
ized as word problems of which algebraic structures.

We have given examples of algebraic properties preventing structures hav-
ing these properties to realize certain classes of ceers: for instance, we ob-
served that non-periodic semigroups (and, similarly, non-torsion monoids)
cannot ≡-realize dark ceers. On the other hand, we have shown the exis-
tence of a non-commutative ring whose word problem is in the same strong
isomorphism type as ∼PA, the provable equivalence in Peano Arithmetic,
hence showing that commutativity (and, in particular, the property of being
Boolean) is not necessary for a ring to 's-realize ∼PA.

Furthermore, motivated by the observation that the class of groups is
not ≡-complete (i.e. not every ceer can be ≡-realized by the word problem
of a c.e. group), we have shown that semigroups and monoids are not only
≡-complete, but even '-complete. On the other hand, answering a ques-
tion by Gao and Gerdes in [45], we have shown that ≡-completeness does

68

not hold for finitely generated semigroups. More precisely, we have pointed
out an immunity property, namely hyperdarkness, which guarantees that no
ceer sharing this property can be ≡-realized by some finitely generated semi-
group:notice that, in contrast, there are dark ceers that can be ≡-realized
even by finitely generated groups, as shown in [72].

69

Part II

Contributions to the theory of

logical depth and algorithmic

randomness

70

Introduction

This second part of the thesis collects several results in the field of algorithmic
randomness. The aim of algorithmic randomness is to give a satisfactory
formalization to the intuitive notion of random individual objects. Our main
references for algorithmic randomness are [37] and [75].

Chapter 4 investigate the relativization of the so-called logical depth (or,
simply, depth), introduced by Bennett in [9]. Bennett’s notion of depth is
usually considered to describe, roughly speaking, the usefulness and internal
organization of the information encoded into an object such as an infinite
binary sequence, which as usual will be identified with a set of natural num-
bers: in this context, a set is said to be deep if, for any given computable
time bound t, the difference between the length of the shortest description
of the prefix of length n that can be decoded in time t(n) and the length
of its “true” optimal description goes to infinity. In Section 4.1, we review
some terminology and known facts from algorithmic randomness which will
be useful throughout the rest of the thesis.

We next consider two possible relativizations of the notion of depth to an
oracle A. For the first one, which we have called simply A-depth, we compare,
again for any computable time bound t, the shortest descriptions relative to
A that can be decoded within the time bound t against its “true” optimal
descriptions relative to A. For the second one, we do the same, but we con-
sider not only computable time bounds, but all A-computable time bounds.
For this reason, we refer to this notion as A-Turing-depth. While both these
notions are quite interesting from the mathematical point of view, the first
one certainly is, from a philosophical perspective, the most natural one, as
it sticks to computable time bound: talking about usefulness of information,
we want to consider only “fast” time bounds, which are reasonably identified
with computable time bounds, while A-time bounds can be unfeasible even
when having access to A.

71

In Section 4.2, we consider the first kind of relativization, namely A-
depth, and we investigate for various kinds of oracles A whether and how the
unrelativized and the relativized version of depth differ. It turns out that the
classes of deep sets and of sets that are deep relative to the halting set ∅′ are
incomparable with respect to set-theoretical inclusion. On the other hand,
the class of deep sets is strictly contained in the class of sets that are deep
relative to any given Martin-Löf-random oracle. The set built in the proof of
the latter result can also be used to give a short proof of the known fact that
every PA-complete degree is Turing-equivalent to the join of two Martin-
Löf-random sets. In fact, we slightly strengthen this result by showing that
every DNC2 function is truth-table-equivalent to the join of two Martin-Löf
random sets. Furthermore, we observe that the class of deep sets relative to
any given K-trivial oracle either is the same as or is strictly contained in the
class of deep sets. Obviously, the former case applies to computable oracles.
We leave it as an open problem which of the two possibilities can occur for
noncomputable K-trivial oracles. The results presented in this section are
collected in [13].

Finally, in Section 4.3, we consider the “full” relativization, that is A-
T-depth. We prove the basic properties of this notion, and observe that
A-T-depth and A-depth certainly coincide for any A of hyperimmune-free
degree, but the class of A-T-deep sets is strictly contained in the one of
A-deep sets whenever A is high.

In Chapter 5, we propose a model of probabilistically computable fore-
casting scheme using the toolkit of algorithmic randomness.

One way to formalize randomness for infinite binary sequences is via
the unpredictability approach: namely, we fix a certain class of gambling
strategies (which are called martingales in this context) that bet on the
values of each bit of the sequences and are fairly rewarded when right, and
we consider a sequence X random (with respect to the given class) if no such
gambling strategy becomes arbitrarily rich while betting on the bits of X.
We will talk of computable randomness when we allow only total computable
martingales, and of partial computable randomness if we also consider partial
computable martingales.

Notice that, in both cases, we consider deterministic martingales. But
what does it happen if we allow probabilistically computable martingales,
too? To answer this question, we have considered a new randomness no-
tion: we call a sequence X almost everywhere (a.e.) computably random if,
for almost every sequence Y , X is computably random relative to Y (this

72

is indeed equivalent to consider probabilistically computable martingales, as
we can assume that Y has been drawn at random by our gamblers in ad-
vance). We have then built a partial computable random sequence which
is not a.e. computably random, hence proving that probabilistic martingales
are actually stronger than deterministic ones. The results of this section have
been published in [14].

73

Chapter 4

Relativization of Bennett’s

notion of depth

The notion of depth introduced by Bennett can be seen as a formalization of
the idea that the same information can be organized in different ways, making
certain encodings more or less useful for certain computational purposes. In
particular, depth goes beyond just measuring the information encoded into a
finite object by its Kolmogorov complexity, i.e., by the length of an optimal
effective description of the object as a binary string.

Computability theory provides a paradigmatic example of organizing the
same information in different ways by the halting set ∅′ and Chaitin’s Ω.
Since ∅′ is a c.e. set, describing ∅′ � n, the prefix of its characteristic se-
quence of length n, requires not more than O(log n) bits. On the other hand,
Chaitin [27] demonstrated that Ω is ML-random, so describing Ω � n requires
approximately n bits. It is well-known that Ω ≡T ∅′, that is, Ω and ∅′ can be
mutually computed from each other, and in this sense the two sets encode
the same information. More specifically, Ω is a compressed version of ∅′ since
the first O(log n) bits of Ω are sufficient to decide effectively whether ϕn(n)
halts, i.e., whether n is in ∅′. On the other hand, computing ∅′ from Ω must
necessarily be “slow” as one can show that ∅′ is not truth-table reducible to
Ω, i.e., ∅′ cannot be computed from Ω by an oracle Turing machine that runs
within some computable time bound. In fact, ∅′ is not truth-table reducible
to any ML-random set. Direct proofs of the statements above can be found
in [26]. Some of these results are also shown below, using a different approach
related to depth.

This situation is captured quite well within the framework of depth.

74

Depth has been introduced by Bennett [9] in order to distinguish “useful”
or “organized” information from other information such as random noise. In
particular, a set is said to be deep if, for any given computable time bound
t, the difference between the length of the shortest description of the prefix
of length n that can be decoded in time t(n) and the length of its “true”
optimal description goes to infinity. In other words, no prefix of a deep set
can be optimally described within any computable time bound. It turns out
that neither ML-random nor computable sets are deep, whereas the halting
problem ∅′ is deep. Moreover, by a key property of depth, known in literature
as “Slow Growth Law”, no deep set is truth-table reducible to a nondeep set,
in other words, no deep set can be computed from a nondeep set in a “fast”
way.

Depth has received renewed attention by several authors in the last decade,
with different goals, such as making precise the interplay between depth and
computational strength [79], or finding other natural examples of deep sets
other than ∅′ [17]. Moreover, witnessing the profundity of Bennett’s intuition,
several variants of the notion of depth have been proposed in the literature,
both in computability theory and complexity theory (e.g. [36], [57], [71], [79]),
for different purposes.

In this chapter, we consider two ways of relativizing the notion of depth,
with the aim of better understanding how an oracle may help in organizing
information.

Section 4.1 is devoted to review central definitions and known facts in
algorithmic randomness, as well as to present the main known results con-
cerning Bennett’s depth.

The core of the chapter is section 4.2, where we investigate a natural
relativization of depth. The relativization of depth gains additional interest
since it differs in the following respect from most other relativizations consid-
ered in computability theory. Usually, when relativizing a class, trivially for
all oracles the relativized class contains the unrelativized class or the other
way round, i.e., for all oracles the unrelativized class contains the relativized
one. Examples are given by the classes of computable and of Martin-Löf
random sets, respectively. For the class of deep sets the situation is different
since depth is defined in terms of the difference between time-bounded and
unbounded Kolmgorov complexity. With access to any given oracle, trivially
each individual value of the two latter quantities stays the same or decreases
but a priori for any given argument the two corresponding values may de-
crease by different amounts, hence their difference may increase or decrease.

75

As a consequence, a priori none of the following four cases can be ruled for
a given oracle when comparing the classes of deep sets and of sets that are
deep relative to the oracle: first, the two classes may be incomparable with
respect to set-theoretical inclusion, second, the unrelativized class may be
strictly contained in the relativized class, third, the relativized class may be
strictly contained in the unrelativized class and, fourth, the two classes may
be the same. We prove that the first case applies to the oracle ∅′, while
the second case applies to all ML-random oracles. As a byproduct of our
proof, we slightly strengthen a result due to Barmpalias, Lewis and Ng [7],
which states that every PA-complete degree is the join of two ML-random
degrees: in fact, we show that every DNC2 function is truth-table-equivalent
to the join of two Martin-Löf random sets. Finally, we observe that every
K-trivial oracle falls under the third or fourth case, while case four holds for
all computable oracles. We leave it as an open problem whether the third
case holds for some or all noncomputable K-trivial oracles. The results pre-
sented in this section are included in [13]. This relativization is designed in
order to keep focusing on the same class of “fast” computations in so far as
it is defined in terms of computable time bounds and not in terms of time
bounds computable in the oracle.

Finally, in section 4.3, we consider the case in which full access to the
oracle is allowed, namely when the time bounds are merely computable in
the oracle. We observe that the Slow Growth Law for this notion of depth
holds not only for truth-table reducibility, but for a larger class of reduc-
tions, which, in fact, can be seen as tt-reductions relative to a given oracle.
Moreover, we show that, for every high oracle, this notion of depth is strictly
stronger than the one considered in section 4.2.

4.1 Preliminaries

This section is devoted to review known notions from computability theory
and algorithmic randomness used throughout the chapter. We first introduce
our notation, which is quite standard and follows mostly the textbooks [37],
[75] and [88].

The quantifier
∞

∀ is used to mean “for all but finitely many”, while
∞

∃
means “there exists infinitely many”. For two real-valued functions f, g and

76

a quantifier Q, we write

(Qx)[f(x) ≤+ g(x)] (respectively, (Qx)[f(x) ≤× g(x)]).

to mean that there exists a constant c > 0 such that for all x in the range of
Q, f(x) ≤ g(x) + c (respectively f(x) ≤ c · g(x)).

We denote by 2<N the set of all finite binary strings, while 2N denotes the
Cantor space of all infinite binary sequences (that is, the subsets of N). The
empty string is denoted by λ. Given a string σ, its length is denoted by |σ|.
The set of all strings of length n is denoted by 2n. Given a set X ∈ 2N, we
write X � n to denote X(0)X(1) . . . X(n− 1), namely the string of the first
n bits of X. The same notation for prefixes is used for strings. Moreover, we
denote the concatenation of two strings τ and σ by τ_σ, or also by τσ.

For a string σ, the cylinder [σ] is the set of X ∈ 2N such that X � |σ| = σ.
We work with the product topology on 2N, i.e. the topology generated by all
cylinders [σ]. Moreover, we denote the Lebesgue measure on 2N by µ, that
is, the unique Borel measure such that µ([σ]) = 2−|σ| for all σ.

Given a partial computable function ϕ, where it is understood that ϕ is
computed by some Turing machine which we also denote by ϕ, and σ ∈ 2<N,
we write ϕ(σ)[t] to denote the output of ϕ(σ) after t steps of computation.
Moreover, if ϕ(σ) ↓= ρ, we call σ a code for ρ (with respect to ϕ).

4.1.1 Kolmogorov complexity

Recall that a set A ⊆ 2<N is prefix-free if no member in A is a prefix of
another member of the set. A partial computable function ϕ : 2<N → 2<N is
prefix-free if its domain is a prefix-free set. For the rest of the paper, we fix a
prefix-free machine U which is universal in the sense that for every prefix-free
partial computable function ϕ there exists ρϕ ∈ 2<N such that

(∀σ) [U(ρϕσ) ∼= ϕ(σ)] ,

where ∼= means that either both sides of the above equation are undefined,
or they are both defined and equal. Moreover, we can assume that, if the
computation ϕ(σ) halts within t steps, then U(ρϕσ) halts (e.g.) within t2

steps (as shown in [47]).
A classical approach to measure the information contained in some string

is given by its prefix-free complexity, which is, roughly speaking, the length
of its shortest code with respect to some universal prefix-free machine. We

77

are also interested in time-bounded versions of prefix-free complexity. We
call a function t : N → N a time bound if it is total and non decreasing: then
the t-time-bounded Kolmogorov complexity of a string σ is the length of its
shortest code running in at most t(|σ|) steps.

Definition 4.1.1. The prefix-free complexity of σ ∈ 2<N is

K(σ) = min {|τ | : U(τ) ↓= σ} .

Given a time bound t, the t-time-bounded prefix-free complexity of σ is

Kt(σ) = min {|τ | : U(τ)[t(|σ|)] ↓= σ} .

Note that while the functionK only depends on the choice of the universal
machine by an additive constant, this is no longer the case for its time-
bounded version. However, the assumption on the universal machine that it
can simulate any other machine up to a quadratic blow-up in computation
time is enough to make all notions presented in this paper independent from
the particular choice of universal machine.

We can also equip our universal prefix-free machine U with some oracle
A ∈ 2N. Given a string σ, its prefix-free complexity relative to A, denoted
by KA(σ), is defined by relativizing Definition 4.1.1 in the obvious way. The
same applies to its t-time-bounded prefix-free complexity relative to A, which
we denote by KA,t(σ). Recall that A ∈ 2N is Turing reducible to B ∈ 2N, and
we write A ≤T B, if there is an oracle machine ϕ such that ϕB(n) = A(n)
for all n. Moreover, A is truth-table reducible (or tt-reducible) to B, and we
write A ≤tt B, if A ≤T B via some oracle machine ϕ such that ϕX is total for
every oracle X. Equivalently, A ≤tt B if there is a computable time bound
t and an oracle machine ϕ such that ϕB(n)[t(n)] ↓= A(n) for every every
n (see, e.g., [75, Prop. 1.2.22]). The following lemma shows how reductions
among sets relate with their relative strength in compressing strings.

Lemma 4.1.2. Let A,B ∈ 2N.

(i) If A ≤T B, then KB(σ) ≤+ KA(σ).

(ii) If A ≤tt B, then for every computable time bound t there is a computable
time bound t′ such that KB,t′(σ) ≤+ KA,t(σ).

78

Proof. To prove (i), just observe that any optimal A-code τ for σ is also a
B-code for σ, as we may consider a Turing machine which first computes the
required bits of A using oracle B and then simulates the computation UA(τ).

Moreover, whenever A is computable from B in some computable time
bound (that is, A ≤tt B), clearly every A-t-fast-code for σ is also a B-t′-fast-
code for σ, for any computable time bound t′ which allows to compute the
required bits of A from B and to perform the remaining required computa-
tion.

4.1.2 Lower-semicomputable discrete semimeasures

Another way to look at the prefix-free Kolmogorov complexity function,
which will be very useful in this paper, is via lower-semicomputable discrete
semimeasures.

Definition 4.1.3. (i) A discrete semimeasure (which we call also simply
a semimeasure) is a function m : 2<N → [0,∞) such that

∑
σm(σ) ≤ 1.

It is lower-semicomputable if there is a uniformly computable family of
functions ms : 2

<N → Q such that, for any string σ,

(∀s)[ms+1(σ) ≥ ms(σ)] and lim
s→∞

ms(σ) = m(σ).

We will write lss for lower-semicomputable discrete semimeasure.

(ii) A lss m is universal if, for each lss m′,

(∀σ)
[
m′(σ) ≤× m(σ)

]
.

We recall the following known facts about lss.

Theorem 4.1.4 (Levin, see paragraph 3.9 of [37]).
(i) There exists a universal lss, and from now on we fix one of them which
we denote by m.
(ii) The function σ 7→ 2−K(σ) is a universal lss. Since two universal lss are,
by definition, within a multiplicative constant of one another, it follows that
K(σ) =+ − logm(σ).

Sincem is lower-semicomputable it can be represented by a non-decreasing
family of uniformly computable functions (ms). This allows us to define the
time-bounded version of m.

79

Definition 4.1.5. Let t : N → N be a computable time bound. The t-time-
bounded version mt of m is the function defined for all σ by

mt(σ) = mt(|σ|)(σ)

We will constantly make use of the following easy lemma which will allow
us to switch between time-bounded Kolmogorov complexity, time-bounded
semimeasures and computable semimeasures.

Lemma 4.1.6. For any given computable time bound t, mt is a computable
semimeasure. Conversely, if m is a computable semimeasure, there exists
a computable time bound t such that m ≤× mt. In particular, for any
given time bound t, 2−K

t

is a computable semimeasure, hence there ex-
ists a computable time bound t′ such that 2−K

t ≤× mt′ (or equivalently,
− logmt′ ≤+ Kt).

Proof. That mt is a computable semimeasure is immediate from the defini-
tion. Let now m be a computable semimeasure. It is in particular lower-
semicomputable hence there is a constant c > 0 such that m < c ·m. Since
m = limsms, for all n, it suffices to take t(n) to be the smallest s such that
m(σ) < c ·ms(σ) for all σ of length n. It is immediate that t is computable.
The rest of the lemma follows.

Moreover, we have the following time-bounded version of Theorem 4.1.4:
for a proof of the theorem below, see [58, Theorem 7.6.1].

Theorem 4.1.7. For every computable time bound t, there exists a com-

putable time bound t′ such that mt ≤× 2−K
t′

(or, equivalently, Kt′ ≤+

− logmt).

4.1.3 Martin-Löf randomness

We are often interested in the information encoded into the prefixes of some
set. The most studied effective randomness notion for sets, Martin-Löf ran-
domness, can be defined in terms of incompressibility of their prefixes (this
is also called the “incompressibility” approach to ML-randomness).

Definition 4.1.8. X ∈ 2N is Martin-Löf random (or simply ML-random) if

(∀n) [K(X � n) ≥+ n].

80

One reason for which Martin-Löf’s definition of algorithmic randomness
is considered to be so important is its robustness, in that one can naturally
get this same notion by different approaches. The other two main equivalent
approaches to define Martin-Löf randomness are in terms of ML-tests and of
lower-semicomputable martingales.

Definition 4.1.9. (i) A ML-test is a sequence of uniformly Σ0
1 classes

(Un)n∈N such that
(∀n)[µ(Un) ≤ 2−n].

(ii) A martingale is a function d : 2<N → [0,∞) such that, for every string
σ, 2d(σ) = d(σ0) + d(σ1).

A ML-test corresponds to an atypical (i.e. having measure 0) property,
which can be effectively tested at different levels of confidence: therefore,
according to the “stochastic” approach, a ML-random set should be one that
withstands all effective statistical tests. On the other hand, a martingale
represents the outcome of a gambling strategy in a fair game where debts are
not allowed and where the gambler must guess the bits of a sequence one by
one, by betting some money at each stage: if the guess is correct, the stake
is doubled, lost otherwise. Thus, we can introduce the “unpredictability”
approach, according to which we would consider a sequence random whenever
its bits cannot be guessed with better-then-average accuracy. We state the
well-known equivalence of the three approaches above, first proven by Schnorr
[82].

Proposition 4.1.10. For X ∈ 2N, the following statements are equivalent.

(i) X is ML-random.

(ii) For any ML-test (Un)n∈N,

X /∈
⋂

n∈N

Un.

(iii) For any lower-semicomputable martingale d,

lim sup
n→∞

d(X � n) <∞.

81

(iv) For any lower-semicomputable martingale d,

lim inf
n→∞

d(X � n) <∞.

For a proof, see Theorems 6.3.2 and 6.3.4 in [37], or Theorem 3.2.9 and
Proposition 7.2.6 in [75].

It is well-known that there exists a universal ML-test, namely a ML-test
(Un)n∈N such that if X /∈ ∩nUn, then X is Martin-Löf random (see Theorem
6.2.5 in [37], or Fact 3.2.4 in [75]). Similarly, there exists a universal lower-
semicomputable martingale, namely a lower-semicomputable martingale d

such that lim infn d(X � n) <∞ if and only if X is Martin-Löf random (see
Corollary 6.3.5 in [37], or Theorem 7.2.8 in [75]).

Finally, we recall that relativized ML-randomness can be equivalently
defined by relativizing all three approaches above in the obvious way.

4.1.4 Depth

In many cases, the same information may be organized in different ways,
making it more or less useful for various computational purposes. The notion
of depth was introduced by Bennett in [9] as an attempt to separate useful
and organized information from random noise and trivial information.

Definition 4.1.11. X ∈ 2N is deep if, for every computable time bound
t : N → N

lim
n→∞

Kt(X � n)−K(X � n) = +∞.

If X is not deep, it is called shallow.

By Lemma 4.1.6, we can equivalently define a set X to be deep if and
only if, for every computable time bound t,

lim
n→∞

m(X � n)

mt(X � n)
= +∞,

or also, if and only if, for every computable semimeasure m,

lim
n→∞

m(X � n)

m(X � n)
= +∞.

82

Bennett’s original definition of depth and the Slow Growth Law

According to Bennett’s original definition of depth, a sequence is deep if each
code τ of almost every prefix of that sequence which can be decoded in some
computable time have optimal description which is arbitrarily shorter than
the code τ itself. Formally, we say that a set X is Bennett-deep if, for any
computable time bound t and c ∈ N,

(
∞

∀n∀τ ∈ U [t]−1(X � n)

)
[K(τ) ≤ |τ | − c] , (4.1)

where U [t]−1(σ) = {τ : U(τ)[t(|σ|)] ↓= σ}.
The equivalence between Bennett’s original definition and Definition 4.1.11,

though already stated in [9], has been proven in [53]. In the following, we
give a shorter and more direct proof of this equivalence. Notice that, roughly
speaking, the equivalence of these definitions says that sequences whose t-
fast codes have optimal description arbitrarily shorter than themselves are
the same whose optimal description is arbitrarly shorter than any t-fast op-
timal description.

Theorem 4.1.12. Let t be a computable time bound. Then:

(i) If σ is a string such that

(
∀τ ∈ U [t]−1(σ)

)
[K(τ) ≤ |τ | − c] ,

then Kt(σ)−K(σ) ≥+ c.

(ii) There is a computable time bound t′, depending only on t, such that, if
σ is a string with Kt′(σ)−K(σ) ≥ c, then

(
∀τ ∈ U [t]−1(σ)

) [
K(τ) ≤+ |τ | − c

]
.

In particular, X ∈ 2N is deep (according to Definition 4.1.11) if and only
if X is Bennett-deep, that is if and only if (4.1) holds for every computable
time bound t and constant c.

Proof. We start by proving item (i). We first observe that, if τ is a description
of σ, then an optimal description of σ must be shorter than an optimal
description of τ , up to an additive constant depending only on the underlying
fixed universal prefix-free machine.

83

Claim. For all τ ∈ U−1(σ), K(σ) ≤+ K(τ).

Proof of claim. Let τ ∈ U−1(σ) and let τ ∗ be an optimal description of τ .
Moreover, consider a prefix-free machine M such that, on input ρ, simulates
the computation U(U(ρ)). Clearly, τ ∗ ∈M−1(σ), hence

K(σ) ≤+ KM(σ) ≤+ |τ ∗| = K(τ),

where the equality holds as τ ∗ is an optimal description of τ . �

Now suppose that
(
∀τ ∈ U [t]−1(σ)

)
[K(τ) ≤ |τ | − c] ,

and let τ be an optimal t-fast description of σ. Then

K(σ) ≤+ K(τ) ≤ |τ | − c = Kt(σ)− c,

where the first inequality follows by the above claim, while the equality holds
as τ is an optimal t-fast description of σ.

We now prove item (ii). Consider the function m defined by

m(σ) =
∑

τ∈U [t]−1(σ)

2−|τ |.

Since U [t]−1(σ) is always finite and uniformly computable from σ, m is com-
putable. Moreover,

∑

σ

m(σ) =
∑

σ

∑

τ∈U [t]−1(σ)

2−|τ | ≤
∑

τ∈dom(U)

2−|τ | ≤ 1,

meaning that m is a computable discrete semimeasure. By Lemma 4.1.6 and

Theorem 4.1.7, there is a computable time bound t′ such that 2−K
t′ (σ) ≥×

m(σ). Let σ satisfy Kt′(σ) − K(σ) ≥ c, so that also m(σ)
m(σ)

≥× 2c holds.

Finally, consider the function m′ defined by

m′(τ) =

{
2−|τ |

m(σ)
m(σ)

, if τ ∈ U [t]−1(σ)

0, otherwise
.

Clearly, m′ is lower-semicomputable. Moreover,

∑

τ

m′(τ) =
∑

σ

m(σ)

m(σ)

∑

τ∈U [t]−1(σ)

2−|τ | =
∑

σ

m(σ) ≤ 1,

84

meaning that m′ is a lss. Hence

m(τ) ≥× m′(τ) = 2−|τ |m(σ)

m(σ)
≥ 2−|τ |+c.

Then, the thesis follows by Theorem 4.1.4.

Bennett’s definition is particularly convenient to adopt in order to prove
a fundamental property of depth, which is known in literature as the Slow
Growth Law and states that depth is upwards-preserved under tt-reductions.
Since tt-reductions can be regarded, in some sense, as “fast” oracle compu-
tations, the Slow Growth Law may be interpreted as saying that no deep
object can be fast computed by shallow objects. We give a simple proof of
the Slow Growth Law, which follows the line of the one given in [53].

Proposition 4.1.13 (Slow Growth Law). Let X be deep and X ≤tt Y . Then
Y is also deep.

Proof. Since X ≤tt Y , there are total computable functions Φ : 2<N → 2<N

and f : N → N such that Φ(Y � n) = X � f(n), for every n. Without
loss of generality, we can assume that f is non-decreasing and unbounded.
Assume that Y is shallow, so that there exist a computable time bound t
and a constant c such that, for infinitely many n, there is a t-fast code τ for
Y � n with K(τ) > |τ | − c.

Consider the prefix-free machine M defined as follows. On input ρ, first
M simulates U(ρ). Then, whenever this computation halts, M outputs the
string Φ(U(ρ)). Let τ be a t-fast code for Y � n with K(τ) > |τ | − c: clearly
M(τ) = X � f(n), hence τ is a t′-fast code for X � f(n), for some computable
time bound t′, which only depends on t and the tt-reduction Φ. Since we
can find such a τ for arbitrary long prefixes of Y , hence for infinitely many
prefixes of X, X must be shallow, too.

Examples of deep and shallow sets

The fact that ML-random sequences must be shallow was already noticed by
Bennett in [9], and proven in [53]. We give an easy proof of this fact, along
the line of the proof in [53]. As an immediate consequence of this fact and
the Slow Growth Law (Proposition 4.1.13), we get, as expected, that also
computable sequences are shallow.

85

Proposition 4.1.14. (i) Every ML-random set is shallow.

(ii) Every computable set is shallow.

Proof. We begin by proving item (i). Consider the Turing machineM defined
as follows. On input τ , M looks for strings σ and ρ such that τ = σρ and
U(σ) halts in exactly |ρ| steps. Whenever such strings are found, M outputs
U(σ)ρ. Notice that M can be assumed to run in some time bound t which
is polynomial in the length of the output.

Let X be a ML-random set and d(n) = K(X � n)− n. Recall that, as X
is ML-random, lim

n→∞
d(n) = ∞ (see, e.g., [75, Proposition 3.2.21]). Hence,

(
∞

∃n)(∀n′ > n)[d(n′) > d(n)].

For such an n, let σ be an optimal code for X � n and ρ be such that U(σ)
halts in exactly |ρ| steps and (X � n)ρ = X � n′. Then

Kt(X � n′) ≤+ |σ|+ |ρ| = d(n)+n+ |ρ| = d(n)+n′ ≤ d(n′)+n′ = K(X � n′),

witnessing that X is shallow.
Since, by item (i), there exist shallow sets, item (ii) follows immediately

by Proposition 4.1.13.

The information contained in computable sets is thus regarded as triv-
ial by means of Bennett’s depth. A strictly larger class which is typically
regarded as computationally weak in algorithmic randomness is that of the
so-called K-trivial sets, whose definition is recalled below.

Definition 4.1.15. A set X ∈ 2N is K-trivial if, for all n, K(X � n) ≤+

K(n).

Hence, K-trivial sets are those whose every prefix has minimal Kolmogorov
complexity, thus encoding minimal possible information. The following is a
well-known characterization of the K-trivial sets.

Proposition 4.1.16 (Nies, [74]). For a set X ∈ 2N, the following statements
are equivalent.

(i) X is K-trivial.

(ii) X is low for K, namely for every string σ, K(σ) ≤+ KA(σ).

86

(iii) X is low for ML-randomness, namely every ML-random set is also
ML-random relative to X.

In [79], it has been proven that every K-trivial set must be shallow.
Concerning examples of deep sets, Bennett has noticed in [9] that the

halting problem ∅′ is deep. Though a proof of this fact can be found in [53],
we give below a more direct proof.

Proposition 4.1.17. The halting problem ∅′ is deep.

Proof. Notice that we consider ∅′ = {〈e, x〉 : ϕe(x) ↓}.
Given any computable time bound t, we construct a Turing machine

M . By the Recursion Theorem, we can use an index e for M during the
construction.

Let I0, I1, . . . and J0, J1, . . . be partitions of N into consecutive intervals
such that

max Ik = 2k+1 and max Jk =
〈
e, 2k+1

〉
,

hence, for k > 0, each interval Ik contains 2k elements.
Recall that the standard pairing function 〈·, ·〉 has the following proper-

ties:

• if e+ i ≤ e′ + i′, then 〈e, i〉 ≤ 〈e′, i′〉;

• 〈e, i〉 ≤ (e+ i)2.

Thus, in particular, the function y 7→ 〈e, y〉 maps elements in Ik to elements
in Jk.

Since ∅′ is c.e., for all n ∈ Jk+1 we get

K(∅′ � n) ≤ 4 log n ≤ 4 log (max Jk+1) ≤ 4 log(e+ 2k+2)2.

Let

Pk =
{
p : |p| < 2k and U(p) = w in at most t(max Jk+1) steps where |w| ∈ Jk+1

}
.

We will define M in such a way that for all n ∈ Jk+1

Kt(∅′ � n) ≥ 2k, (4.2)

so that
Kt(∅′ � n)−K(∅′ � n) ≥ 2k − 4 log(e+ 2k+2)2,

87

which is clearly eventually larger than any constant, meaning thatH is indeed
deep.

To show (4.2), it is enough to ensure that there is no p ∈ Pk such that
U(p) = ∅′ � |U(p)|. To ensure that, we use the 2k inputs for M in Ik to
diagonalize against the at most 22

k

programs in Pk. We define M as follows.
On input y, first M computes the index k such that y ∈ Ik and the sets Ik
and Pk. Then, M computes the set

Py = {p ∈ Pk : (∀y′ < y, y′ ∈ Ik) [U(p) (〈e, y′〉) = ∅′ (〈e, y′〉)]} .

Finally, M halts if and only if for at least half of the programs p ∈ Py it
holds that

U(p) (〈e, y〉) = 0.

Hence, M(y) diagonalizes against at least half of the programs p ∈ Py, in the
sense that

∅′(〈e, y〉) =M(y) 6= U(p) (〈e, y〉) .
Thus, for each y ∈ Ik, we make sure that, for at least half of the remaining
programs p ∈ Pk, U(p) 6= ∅′ � |U(p)| and, since Pk contains at most 22

k

programs and Ik has 2k many elements, we eventually diagonalize against
the whole set Pk.

A set X is said to be order-deep if there exists a computable, non-
decreasing and unbounded function g such that, for all computable time
bounds t, (

∞

∀n
)[

Kt(X � n)−K(X � n) ≥ g(n)
]
.

Notice that the above proof of Proposition 4.1.17 shows, in fact, that ∅′
is order-deep.

Depth and computational strength

It has been proven in [53] that every high degree contains a deep set. More-
over, in [79], it has been investigated the computational strength of the order-
deep sets. In particular, it has been shown that every order-deep set is either
high or it computes a diagonally non-computable function f (i.e. a function
f : N → N with f(e) 6= ϕe(e) for all e). As every left-c.e. set which computes
a diagonally non-computable function is Turing equivalent to ∅′, hence is

88

high (as follows easily from Arslanov’s Completeness Criterion, [6]), we have
in particular that every left-c.e. order-deep set must be high.

We next prove that, in fact, the c.e. degrees containing an order-deep set
are exactly the high c.e. degrees. Indeed, by the following theorem, in every
such degree, one can construct a c.e. order-deep set.

Theorem 4.1.18. Let A ∈ 2N be high and of c.e. degree. Then there exists
a c.e. B ∈ 2N which is order-deep and such that A ≡T B.

Proof. In the following, by order, we mean a non-decreasing, unbounded
function f : N → N. Since A is high, there exists a function T ≤T A which
dominates any computable function. Moreover, we can assume that T is a
left-computable order, namely that we deal with a computable approximation
{Ts}s∈N to T such that

(∀s∀n) [Ts(n) ≤ Ts+1(n) & Ts(n) ≤ Ts(n+ 1)] .

Indeed, let C be a c.e. set such that A ≡T C and let T̂ ≤T C a function dom-
inating any computable function. Moreover, let {Cs}s∈N be a computable

approximation to C and M be an oracle Turing machine computing T̂ ac-
cording to this approximation, namely

(∀s∀n)
[
T̂s(n) =MCs(n)[s]

]
.

Then we can define T with the desired properties by letting, for each s, n ∈ N,

Ts(n) = max
i≤s; j≤n

{
MCi(j)[i] : MCi(j)[i] ↓

}
∪ {0} .

Partition N into consecutive intervals I0, I1, . . . such that

I0 = {0, 1} , Im =
{
2m, . . . , 2m+1 − 1

}
, for m ≥ 1.

Furthermore, let δ < 1
2
and h be any computable order with h(n) ≤ δn and,

for each m ∈ N, let

km = 2h(m) and lm = 2m−h(m).

Then we partition each interval Im into km consecutive subintervals I0m, . . . , I
km−1
m

of length lm.

89

Let ϕ0, ϕ1, . . . be an effective listing of all partial computable functions.
For each m ∈ N, define

Jm = {0 ≤ e ≤ km − 2 : ϕe(max Im+1)[Tm(m)] ↓} .

Moreover, for each m ∈ N and e ∈ Jm, let

P e
m = {p ∈ 2<N : |p| ≤ lm & U(p) ↓= w in at most

ϕe(max Im+1) steps, with |w| ∈ Im+1}.

Now we define the set B by specifying the bits of B at each subinterval
Iem. Namely, for each m ∈ N and 0 ≤ e ≤ km − 2, let us denote

B [Iem] = B(2m + elm) . . . B(2m + (e+ 1)lm − 1).

Then define each B [Iem] as follows:

• We use the first subintervals to code one bit of A, in order to ensure
B ≡T A, thus define

B
[
I0m
]
= A(m)0lm−1

• In case e /∈ Jm, let B [Ie+1
m] = 0lm .

• Otherwise, ϕe (max Im+1) is defined. Thus we use the lm bits of the
intervals Ie+1

m to diagonalize against the at most 2lm possible codes for
B � max Im+1 which runs in at most ϕe (max Im+1) steps. Namely, for
each y ∈ Ie+1

m , compute

Py =
{
p ∈ P e

m :
(
∀y′ < y ∈ Ie+1

m

)
[U(p)(y′) = B(y′)]

}

and define B(y) = 1 if and only if U(p)(y′) = 0 for at least half of the
codes p ∈ Py.

Clearly, the set B constructed in this way is c.e.
Moreover, by construction, for every computable time bound t, we have

diagonalized against all possible t-fast codes of length at most lm. Hence, for
every n ∈ Im+1, we have

Kt(B � n) > lm = 2m−h(m).

90

Note that 2m+1 ≤ n ≤ 2m+2 − 1, thus dlog ne = m+ 2. For simplicity, define
log n = dlog ne−2 = m. Then we get that, for every computable time bound
t and every n ∈ N,

Kt(B � n) > 2logn−h(logn).

On the other hand, the bits B[Iem], with e ≥ 1, are uniformly computable,
given the information whether e ∈ Jm. Hence, in order to describe B � n it
is enough to give the length n and the information whether e ∈ Jm, for each
m ≤ log n and each 0 ≤ e < 2h(m). Thus, we get that, for any n ∈ Im+1,

K(B � n) ≤+ m · 2h(m),

so that, for any n ∈ N,

K(B � n) ≤+ log n · 2h(logn).
Hence, we finally get that, for every computable time bound t,

Kt(B � n)−K(B � n) ≥+ 2logn−h(logn) − log n · 2h(logn).
Thus, the set B above is g-deep, where

g(n) = 2logn−h(logn) − log n2h(logn) > n1−δ − log n(nδ) > nε,

for some ε < 1.

On the other hand, in the same paper [79], it is observed that there exists
a non-empty Π0

1 class C in which every member is a deep set, which (by well-
known basis theorems, see [52]) implies the existence of, e.g., deep sets which
are low, superlow, or of hyperimmune-free degree. As a further corollary of
this result, we observe in Lemma 4.2.14 below that all DNC2 functions (i.e.,
diagonally non-computable functions whose range is {0, 1}) are deep.

4.2 Relativized depth

In this part, we propose a first relativized notion of depth, in order to better
understand the power of oracles in organizing information.

Definition 4.2.1. Given an oracle A ∈ 2N, we say that X ∈ 2N is A-deep if,
for every computable time bound t,

lim
n→∞

KA,t(X � n)−KA(X � n) = +∞

Otherwise, we say that X is A-shallow.

91

The choice of focusing only on computable time bounds, instead of con-
sidering also A-computable ones, in the above definition is mainly due to
obtain a relativized version of the Slow Growth Law that still works with tt-
reductions. In other words, we want to stick to “fast” oracle computations.

For the rest of the chapter, we consider universal A-lss mA (notice that
Definition 4.1.3 relativizes in the obvious way). Moreover, similarly to Def-
inition 4.1.5, given a time bound t, we let mA,t be the function defined, for
every string σ, by mA,t(σ) = mA

t(|σ|)(σ). We notice that Lemma 4.1.6 and
Theorem 4.1.7 relativize in the following way.

Lemma 4.2.2. Let A ∈ 2N. For any given computable time bound t, mA,t is
a semimeasure and mA,t ≤tt A. Conversely, if m is a semimeasure tt-below
A, there exists a computable time bound t such thatm ≤× mA,t. In particular,
for any given computable time bound t, 2−K

A,t

is a semimeasure that is tt-
below A, hence there exists a computable time bound t′ such that 2−K

A,t ≤×

mA,t′ (or equivalently, − logmA,t′ ≤+ KA,t). Moreover, for every computable

time bound t there is a computable time bound t′ such that mA,t ≤× 2−K
A,t′

(or equivalently, KA,t′ ≤+ − logmA,t)).

Proof. The first part of the lemma is immediate, provided one recalls that the
relativized version mA of the universal lower semicomputable semimeasure
can (and should!) be defined uniformly, that is there is a two-place function
Φ : 2N × N → R+ such that

(i) The set {(A, n, q) ∈ 2N × N×Q | Φ(A, n) > q} is Σ0
1

(ii) For every A, n 7→ Φ(A, n) is a semi-measure

(iii) For any other function Ψ with property (i), there exists a constant
c > 0 such that for each B, if n 7→ Ψ(B, n) is a semimeasure, then
Φ(B, n) > c ·Ψ(B, n) for all n.

(see for example [44] for a proof of the existence of such a Φ) and thus
one may define mA(n) to be Φ(A, n) for all A and n (and mA,t its time-
bounded version, canonically defined by adding a time bound on Φ). With
this definition, we do get mA,t ≤tt A.

Conversely, supposem is a semimeasure which is tt-below A. Let Ψ be the
total functional such that m = ΨA. By item (iii) above, let c be a constant

92

such that mB(n) > c · ΨB(n) for all n whenever ΨB is a semimeasure. This
means that for all n the Π0

1 class

{
B | ΨB is a semimeasure and c ·ΨB(n) >mB(n)

}

must be empty, hence by effective compactness of 2N one can effectively
compute some t(n) such that

{
B | ΨB is a semimeasure and c ·ΨB(n) >mB(n)[t(n)]

}
= ∅

Since ΨA = m is a semimeasure, it follows that c ·m ≤ mA,t.
Finally, the last statement is the relativization to A of Theorem 4.1.7.

Now, it is possible to prove that the following properties holds for rela-
tivized depth, by relativizing the proofs of the corresponding properties of
unrelativized depth (namely Propositions 4.1.13, 4.1.14 and 4.1.17).

Proposition 4.2.3. Let A ∈ 2N.

(i) (Relativized SGL) Let X ≤tt Y and X be A-deep. Then Y is A-deep.

(ii) Every A-ML-random set is A-shallow.

(iii) Every A-tt-computable set is A-shallow.

(iv) A′ is A-deep.

Next theorem shows how relativized depth is preserved when considering
different oracles.

Theorem 4.2.4. Let A,B ∈ 2N such that A ≤tt B and A ≡T B. Then every
B-deep set is also A-deep.

Proof. Let X ∈ 2N be A-shallow. Hence, there is a computable time bound
t such that (

∞

∃n
)[

KA,t(X � n) =+ KA(X � n)
]
.

Since A ≡T B, by Lemma 4.1.2 (i), we get

(∀n)
[
KA(X � n) =+ KB(X � n)

]
.

93

Moreover, by Lemma 4.1.2 (ii), since A ≤tt B, we also have that

(∀n)
[
KB,t′(X � n) ≤+ KA,t(X � n)

]
.

Hence, we get

(
∞

∃n
)[

KB,t′(X � n) ≤+ KA,t(X � n) =+ KA(X � n) =+ KB(X � n)
]
,

so that X is B-shallow.

Notice that usually, in computability theory, relativizing a class C defines
a class CA such that either CA ⊆ C (e.g., when C is the class of ML-random
sets) or C ⊆ CA (e.g., when C is the class of computable sets), for all oracles
A.

Being defined in terms of two quantities which decrease mutually inde-
pendently when an oracle is applied, this is not the case of the classes of deep
and shallow sets. A priori, for an oracle A, we have four possible different
scenarios:

1. The classes of A-deep sets and deep sets are incomparable, meaning
that there are both shallow but A-deep sets and deep but A-shallow
sets. In section 4.2.1, we show that ∅′ is an example for this scenario.

2. All deep sets remain deep relative to A, but there are shallow sets which
look deep relative to A, so that depth implies A-depth, but the reverse
implication fails: Section 4.2.2 is devoted to show that this is the case
of ML-random oracles.

3. All shallow sets remain shallow relative to A, but there are deep sets
which look shallow relative to A, hence A-depth implies depth, but the
converse does not hold.

4. The class of A-deep sets and the one of deep sets coincide.

In Section 4.2.4, we observe that K-trivial oracles are examples of either
scenario 3 or 4. However, while the latter obviously applies to all computable
sets, we do not know which of them holds for uncomputable K-trivial oracles.
Notice that, a priori, different K-trivial oracles may give different answers.

94

4.2.1 ∅′-depth
In this section, we build a ∆0

2 set which is ∅′-deep but ML-random, hence
shallow. This construction shows, in particular:

(i) There are oracles A such that some A-computable sets are A-deep.
(Notice that, by Proposition 4.2.3 (iii), this is not the case for A-tt-
computable sets, namely sets computable with oracle A within some
computable time bound).

(ii) There are oracles A such that the class of A-deep sets is incomparable
with the corresponding unrelativized class: indeed, every c.e. deep set
(including ∅′) is clearly ∅′-shallow (as tt-below ∅′), while the set we
construct in Theorem 4.2.6 is ∅′-deep but shallow.

The construction is based on the following technical lemma (stated in the
following form in [66, Remark 3.1], see also [43]).

Lemma 4.2.5 (Space Lemma). For a rational δ > 1 and positive integer k,
let l(δ, k) = d k+1

1−1/δ
e. For every martingale d and σ ∈ 2<N,

∣∣{τ ∈ 2l(δ,k) : d(στ) < δd(σ)
}∣∣ ≥ k.

Let us now prove the main theorem of this section.

Theorem 4.2.6. There exists a set X ∈ ∆0
2 such that X is ML-random and

X is ∅′-deep.
Proof. Let d be a universal lower-semicomputable martingale and let T :
N → N be a ∆0

2 function such that for any computable time bound t we have
∞

∀n t(n) ≤ T (n). For n > 0 let δn = 1 + 1/n2.
The construction of X will be done by a finite extension method, that

is, we will build X as the limit of an increasing (with respect to the prefix
relation) sequence of strings (τn), the construction being effective in ∅′. We
set σ0 to be the empty string λ. Having built σn, σn+1 is chosen as follows.
By the Space Lemma, the set

An+1 =
{
τ ∈ 2l(δn+1,2n+1) : d(σnτ) < δn+1 · d(σ)

}

has at least 2n+1 elements. Thus, there must exist some τ ∈ An+1 such
that K∅′(σnτ) > n and a fortiori there must exist some τ in An+1 such that

95

K∅′,F (σnτ) > n. Since the latter is a ∅′-decidable property and An+1 is ∅′-c.e,
one can ∅′-effectively find such a τ and set σn+1 = σnτ .

We verify that this construction works via a series of claims.

Claim 5. X is ∆0
2

Proof of claim. This is clear because the whole construction is effective rel-
ative to ∅′. �

Claim 6. For all n, d(σn) ≤ d(λ) ·∏n
i=1(1+1/i2). Thus the sequence d(σn)

is bounded, and thus X is Martin-Löf random.

Proof of claim. The inequality is proved by induction. It is obvious for n = 0
and if we have it for some n, then by choice of τ and σn+1, we have

d(σn+1) ≤ δn+1d(σn) ≤ (1+1/(n+1)2)d(σn) ≤ (1+1/(n+1)2)·d(λ)·
n∏

i=1

(1+1/i2)

which finishes the induction. Thus we have, for all n, d(σn) is bounded by
d(λ) ·∏∞

i=1(1 + 1/i2) which is a finite real. Since all σn are initial segments
of X, this means that lim infk d(X � k) is finite, hence X is Martin-Löf
random. �

Claim 7. |σn| = n2/2 +O(n log n).

Proof of claim. Indeed we have by construction

|σn+1| = |σn|+l(δn+1, 2
n+1) = |σn|+

⌈
log

(
2n+1 + 1

1− 1
1+1/(n+1)2

)⌉
= |σn|+n+O(log n)

and thus, by summation, |σn| = n2

2
+O(n log n). �

Claim 8. For any computable time bound t, K∅′,t(σn) ≥ n while K∅′(σn) =
O(log n)

Proof of claim. Let t be a computable time bound. For almost all k, t(k) ≤
F (k) hence for almost all τ , K∅′,t(τ) ≥ K∅′,F (τ). In particular, for almost
all n, K∅′,t(σn) ≥ K∅′,F (σn) ≥ n (the last inequality is by choice of σn+1 in the
construction). On the other hand, since the sequence of σn is ∅′-computable,
we have K∅′(σn) =

+ K∅′(n) = O(log n). �

96

Claim 9. X is ∅′-deep
Proof of claim. Let t be a computable time bound. For any k, by construc-
tion of X, there is an n such that

σn � (X � k) � σn+1

We can recover σn from |σn| and X � k by just truncating the latter to its
first |σn| bits. Since |σn| is computable in n, this means that if t′ is sufficiently
fast-growing,

K∅′,t(X � k) ≥ K∅′,t′(σn)−K∅′,t(n) ≥ n−O(log n)

(the last inequality following from Claim 4).
By the same reasoning, we can recover X � k from σn+1 and k, hence

K∅′(X � k) ≤ K∅′(σn+1) +K∅′(k) ≤ O(log n) +O(log k)

Moreover, since |σn| ≤ k ≤ |σn+1|, by Claim 3, k ∼ n2/2, meaning that
one can replace O(log k) by O(log n) in the above expression. Putting both
inequalities together, we get

K∅′,t(X � k)−K∅′(X � k) ≥ n−O(log n) ≥
√
2k − o(

√
k)

which finally shows that

K∅′,t(X � k)−K∅′(X � k) → ∞
�

This finishes the proof.

4.2.2 Depth relative to ML-random oracles

The main goal of this section is to prove that depth is strictly implied by
depth relative to any ML-random oracle. We will first prove that ML-random
sets are non-trivial examples of oracles for which all deep sets remain deep
relative to them. We successively show that shallowness is a notion preserved
by almost every oracle, namely that if a set is shallow, then it is shallow rela-
tively to a class of oracles of measure 1. Despite this fact, every ML-random
set “adds” deep sets: for every ML-random oracle we can find a shallow set
which is deep relatively to that oracle. Interestingly, as a consequence of the
existence of such sets, we can give a quite short and easy proof of the fact,
originally proved by Barmpalias, Lewis and Ng [7], that every PA-complete
degree is the join of two ML-random degrees.

97

Deep sets remain deep relative to ML-random oracles

In order to prove that no deep set can be shallow relative to ML-random
oracles, we recall another characterization of ML-randomness.

Definition 4.2.7. Ψ : 2N → [0,∞] is an integral test if

• Ψ is lower-semicomputable, i.e. it is the supremum of a computable
sequence of computable functions Ψn : 2N → [0,∞), and

•
∫
X∈2N Ψ(X) dµ ≤ 1.

Integral tests characterize ML-randomness, in the following sense. (For a
proof of the statement below, see [15]).

Proposition 4.2.8. X is not ML-random if and only if there is an integral
test Ψ such that Ψ(X) = ∞.

We can now turn to the main result.

Theorem 4.2.9. Let A ∈ 2N be ML-random. Then every deep set is A-deep.

Proof. We prove, in particular, that, if A ∈ 2N is ML-random, then for every
computable time bound t there exists a computable time bound t′ such that

(∀σ)
[
Kt′(σ)−K(σ) ≤+ KA,t(σ)−KA(σ)

]

which will immediately imply the theorem.

For any string σ and time bound t, let m(σ) = 2−K(σ), mt(σ) = 2−K
t(σ),

mA(σ) = 2−K
A(σ) and mA,t(σ) = 2−K

A,t(σ).
For every A ∈ 2N and every computable time bound t, it clearly holds

that ∑

σ∈2<N

mA,t(σ) ≤
∑

σ∈2<N

mA(σ) ≤ 1.

Hence, ∫

A∈2N

∑

σ∈2<N

mA,t(σ) dµ ≤ 1

and, by interchanging the sum with the integral,

∑

σ∈2<N

(∫

A∈2N

mA,t(σ) dµ

)
≤ 1,

98

which means that the map σ 7→
∫
A∈2N m

A,t dµ is a discrete semimeasure.
Moreover, it is computable. Thus, by Lemma 4.1.6,

∫

A∈2N

mA,t(σ) dµ ≤ c ·mt′(σ),

for some computable time bound t′.
Now, consider the map Ψ : 2N → [0,∞] given by

Ψ(A) =
∑

σ∈2<N

mA,t(σ)m(σ)

c ·mt′(σ)
.

Then Ψ is lower-semicomputable and, by the above computations,
∫

A∈2N

Ψ(A) dµ ≤ 1,

that is, Ψ is an integral test. Let A be a ML-random set, so that Ψ(A) < k
for some k ∈ N. By definition of Ψ this means that

∑

σ∈2<N

mA,t(σ)m(σ)

c ·mt′(σ)
< k

and thus σ 7→ m
A,t(σ)m(σ)

kc·mt′ (σ)
is an A-lss. It follows that for every σ ∈ 2<N,

mA,t(σ)m(σ)

mt′(σ)
≤× mA(σ),

which, by taking the logarithm of both sides, implies

Kt′(σ)−K(σ) ≤+ KA,t(σ)−KA(σ),

which is what we wanted.

As a consequence, we get our first example of an oracle making the class
of deep sets strictly smaller.

Corollary 4.2.10. The class of Ω-deep sets strictly contains the class of deep
sets.

Proof. Since Ω is ML-random, every deep set is Ω-deep. It is then enough
to find a set X which is shallow but Ω-deep. Let X be the set built in
Theorem 4.2.6. Recall that Ω ≤tt ∅′ and Ω ≡T ∅′, hence, by Theorem 4.2.4,
X is Ω-deep.

99

A shallow sets which is deep relative to a ML-random oracle

This section is mainly devoted to showing that what we observe for Ω in
Corollary 4.2.10 holds, in fact, for every ML-random oracle. To show this
fact, we need to recall some terminology.

Definition 4.2.11. f : N → N is a Solovay function if

(∀n)[f(n) ≤+ K(n)] and

(
∞

∃n
)
[K(n) ≤+ f(n)].

As shown in [48], for any superlinear time bound t, the time-bounded
Kolmogorov complexity Kt is a computable Solovay function.

We first observe that any shallow set remains shallow relative to almost
every oracle, where “almost every” is meant in the measure-theoretic sense.
Namely, we have the following result.

Theorem 4.2.12. If X ∈ 2N is shallow, then

µ ({A : X is A-shallow}) = 1.

In particular, X is A-shallow for every A which is 2-random relative to
X (i.e. A /∈ ∩nUX

n , where (UX
n)n∈N is any sequence of uniformly ΣX

2 classes,
with µ(UX

n) ≤ 2−n for all n).

Proof. Since X is shallow, there are a computable time bound t and c ∈ N
such that (

∞

∃n
)[

m(X � n)

mt(X � n)
< c

]
.

Recall that the map

σ 7→
∫

A∈2N

mA(σ) dµ

is a lower-semicomputable discrete semimeasure. Hence, by the universal-
ity of m, we get that m(σ) ≥×

∫
A∈2N m

A(σ) dµ for all σ ∈ 2<N. On the
other hand, there exists a constant c′ such that c′mA > m for any A, hence∫
2N m

A(σ) ≥× m(σ). Putting the two together,

m(σ) =×

∫

A∈2N

mA(σ) dµ. (4.3)

100

For any k ∈ N let

Lk =
{
Y :

(
∞

∀n
)[

mY (X � n)

mt(X � n)
≥ k

]}
.

Now, suppose that X is A-deep, so that, in particular,
(
∀k

∞

∀n
)[

mA(X � n)

mt(X � n)
≥ k

]
,

meaning that A ∈ Lk for every k. It is then enough to show that

µ

(
⋂

k∈N

Lk
)

= 0,

namely that
lim
k→∞

µ(Lk) = 0.

Observe that
Lk = lim inf

n→∞
Uk
n ,

where

Uk
n =

{
Y :

[
mY (X � n)

mt(X � n)
≥ k

]}
.

We claim that (
∞

∃n
)[

µ
(
Uk
n

)
≤× 1

k

]
.

Indeed, since Kt is a Solovay function,
(

∞

∃n
)[

mt(X � n) ≥× m(X � n)
]
.

Then, for any such n, if Y ∈ Uk
n , then

mY (X � n) ≥× k ·mt(X � n) ≥× k ·m(X � n) ≥× k ·
∫

A∈2N

mA(X � n) dµ,

where the last inequality follows from (4.3). Our claim follows then by
Markov’s inequality. Therefore, we get

µ(Lk) = µ(lim inf
n→∞

Uk
n) ≤ lim inf

n→∞
µ(Uk

n) ≤× 1

k
,

101

where the first inequality follows by Fatou’s Lemma, and hence

lim
k→∞

µ(Lk) ≤× lim
k→∞

1

k
= 0.

Finally, observe that Lk is the limit inferior of a uniformly c.e. sequence
of Σ0,X

1 classes with bounded measure. Hence, as proven in [9], each Lk is
contained in a Σ0,X

2 class of bounded measure. Hence, the classes Lk form a
test for 2-randomness relative to X, so that X must be A-shallow for any A
which is 2-random relative to X.

It is then natural to ask whether for a “very random” oracle every set must
be shallow. In other words, whether there is a randomness notion sufficiently
strong to make any such oracle totally useless in organizing information.
We answer this question in the negative. Indeed, we show that every ML-
random oracle makes some shallow set deep. Intuitively, the proof of this
fact is similar to the one-time pad protocol in cryptography: we can “mix”
together some important piece of information x with some random string a
we know, so that the output x4a still looks important for us (as we can
distinguish the added random noise a), while looking random to the others.

In order to prove formally our claim, we recall some well-known notions
and facts.

Definition 4.2.13. Let (φe) be an effective enumeration of all partial com-
putable functions from N to N. A total function f is diagonally non-computable
(DNC) if f(e) 6= φe(e) whenever φe(e) is defined. We say that f is DNC2 if it
is DNC and its range is {0, 1}. The set DNC2 of such functions is a Π0

1 class.
A set X is said to bePA-complete if it computes some member of DNC2.

(The terminology ‘PA-complete’ comes from the equivalent definition
where one replaces the class DNC2 by the class of complete coherent ex-
tensions of Peano Arithmetic).

A well-known property of the class DNC2 is that it is universal (a.k.a.
Medvedev-complete) among Π0

1 classes, that is, for every non-empty Π0
1 class C,

there exists a total functional Φ such that ΦX ∈ C for any X ∈ DNC2. Com-
bined with a result of Moser and Stephan, this yields the following lemma.

Lemma 4.2.14. Every X ∈ DNC2 is deep.

Proof. Indeed, in [79], it is shown that there exists a non-empty Π0
1 class

C in which every member is a deep set. Since DNC2 is universal, every

102

X ∈ DNC2 tt-computes some member of C (via the same functional). Since
depth is tt-closed upwards, this proves our result.

Thus we can use well-known basis theorems to obtain deep sets with some
desired properties. In particular, we will use the following fact (for a proof,
see [38]).

Proposition 4.2.15 (Randomness Basis Theorem). Let R be a ML-random
set. Every non-empty Π0

1 class contains an element X such that R is X-ML-
random.

We are now ready to prove the main result of this section.

Theorem 4.2.16. If a set A is ML-random, then there exists a shallow set
which is A-deep.

Proof. Let A be a ML-random set. By Proposition 4.2.15, there exists a
deep set X such that A is ML-random relative to X. On the other hand, by
Theorem 4.2.9, X is also A-deep. We then consider the set

A4X = (ArX) ∪ (X r A).

We first notice that, for every pair of sets S, T , clearly KS(S4T � n) =+

KS(T � n), and the same holds when considering time bounds.
Hence, since A is ML-random relative to X, A4X is also ML-random

relative to X, and hence shallow.
On the other hand, since X is A-deep, (A4X) must also be A-deep.

4.2.3 A digression on a result about PA-complete de-

grees

In this section we observe that the existence of sets as in the proof of The-
orem 4.2.16 can improve upon (and give a simpler proof of) a theorem of
Barmpalias, Lewis and Ng ([7]), who proved that for every PA-complete A,
there exist two Martin-Löf random X, Y such that A ≡T X ⊕ Y . We will
prove the following.

Theorem 4.2.17. Let A ∈ DNC2. Then there exist two Martin-Löf random
X, Y such that A = X4Y (in particular A ≡tt X ⊕ Y).

103

In order to prove Theorem 4.2.17, we need the following property of uni-
versal Π0

1 classes.

Lemma 4.2.18. Let C be a non-empty universal Π0
1 class.

(i) For any A ∈ DNC2, there is a set B ∈ C such that A ≡tt B

(ii) For any A which Turing-computes some DNC2 function, there exists
some B ∈ C such that A ≡T B.

Proof. (i) Let Φ witness the universality of C, that is, ΦX ∈ DNC2 whenever
X ∈ C.

The construction of B is done via an A-effective forcing argument: we
define a sequence C0 ⊇ C1 ⊇ . . . of Π0

1 classes such that the sequence of
indices for the Ci is A-computable, each of these classes is non-empty and
that their intersection ∩sCs is a singleton which will be our B.

To ensure that ∩sCs will be singleton, we will have at each step a string
σs such that |σs| = s and Cs ⊆ [σs].

Let C0 = C and σ0 = λ. Inductively, assume that we have already built
non-empty Π0

1 classes C0 ⊇ · · · ⊇ Cs and strings σ0 � σ1 � . . . � σs such that
Ci ⊆ [σi] for all i ≤ s.

Using an index for Cs, one can compute some ns such that φns
(ns) returns

the first i ∈ {0, 1} found such that if Cs ∩ [σsi] = ∅ (and stays undefined if
no such i is found). Since A ∈ DNC2, we have φns

(ns) 6= A(ns). Let thus
σs+1 = σsA(ns), so that Cs ∩ [σs+1] is non-empty.

Now, by the Recursion Theorem, let ms be an index such that φms
waits

for some i ∈ {0, 1} to be such that

(∀X ∈ Cs ∩ [σs+1]) Φ
X(ms) = i

(since Cs ∩ [σs+1] is a Π0
1 class, this property is a c.e. event) and if such an i

is found returns φms
(ms) = 1− i (staying undefined otherwise).

Since the image of Cs ∩ [σs+1] is contained in DNC2, one must have
ΦX(ms) 6= φms

(ms) for any X ∈ Cs. This means that in fact φms
(ms) must

be undefined, which in turns implies that for all i ∈ {0, 1},

Cs ∩ [σs+1] ∩ {X : ΦX(ms) = i} 6= ∅.
Now define

Cs+1 = Cs ∩ [σs+1] ∩ {X : ΦX(ms) = A(s)}

104

Finally, define B to be the unique element of
⋂
s Cs (or equivalently the

limit of the σs). We claim that B is as wanted.
To see that A computes B, observe that the whole construction is A-

tt-effective. If we have already A-tt-computed an index for Cs and σs, ns
can be effectively tt-computed and σs+1 = σsA(ns) can be computed from A.
Likewise, since the Recursion Theorem is effective, ms can then be computed,
and an index for Cs+1 tt-effectively obtained from ms and A.

But the whole construction (indices for the Cs and strings σs) can also be
tt-recovered from B. Indeed, σs is the prefix of B of length s, thus A(ns) can
be tt-computed from B for all s, and to compute an index for Cs+1 knowing
one for Cs we only need to know ms (which can be tt-computed from the
index of Cs and σs+1) and A(s) which is just ΦB(ms) (and recall that Φ is a
tt-functional). This implies that B tt-computes the sequence of ms and thus
A(s) for each s since A(s) = ΦB(ms).

(ii) The proof of this part is almost identical. If A ≥T F for some DNC2

function, make the same construction only replacing A(ns) by F (ns). Then
A computes B (not necessarily in a tt-way since it needs to compute F (ns)
for all s to do so) and B tt-computes A.

We can now prove Theorem 4.2.17.

Proof of Theorem 4.2.17. For any k ∈ N, let

MLRk = {X : (∀n)K(X � n) ≥ n− k}.
(which is a Π0

1 class). By the characterization of Martin-Löf randomness
in terms of prefix-free Kolmogorov complexity, a set X is Martin-Löf random
if and only if X ∈ MLRk for some large enough k.

In the proof of Theorem 4.2.16 we saw that for k large enough, the Π0
1

class

C = {F ⊕X ⊕ Y : F ∈ DNC2, X, Y ∈ MLRk, F = X4Y }
is non-empty. Moreover, the class C is universal , as witnessed by the

first projection. Let A ∈ DNC2. By the previous lemma, A ≡tt F ⊕X ⊕ Y
for some F ⊕ X ⊕ Y ∈ C. Clearly, X ⊕ Y ≤tt F ⊕ X ⊕ Y . On the other
hand, since F = X4Y , we also have that F ≤tt X ⊕ Y and hence A ≡tt

F ⊕X ⊕ Y ≡tt X ⊕ Y .

105

Corollary 4.2.19 (Barmpalias, Lewis, Ng). If A has PA-complete Turing
degree, there are two Martin-Löf random sets X, Y such that A ≡T X ⊕ Y .

Proof. Since A has PA-complete Turing degree, by Lemma 4.2.18 (where C is
taken to be the class DNC2), A is Turing equivalent to some Ã ∈ DNC2. By
the previous theorem, Ã is in turn tt-equivalent (hence Turing equivalent) to
the join of two Martin-Löf random sets.

4.2.4 An open question about K-trivial oracles

The intuitive notion of being far from being ML-random turned out to be a
central notion in algorithmic randomness. This is formally expressed by the
property of K-triviality, which we have recalled in Definition 4.1.15 above.
Intuitively speaking, describing a prefix of a K-trivial set is at most as hard
as describing its length. Another lowness property related to prefix-free com-
plexity is when an oracle does not help in further compressing strings. More-
over, as already mentioned, Moser and Stephan proved in [79] that every
K-trivial set is shallow.

It is easy to realize that every shallow set remains shallow relatively to
any K-trivial oracle.

Theorem 4.2.20. Let A ∈ 2N be K-trivial. Then every shallow set is A-
shallow.

Proof. Let X ∈ 2N be shallow. Hence, there is a computable time bound t
such that (

∞

∃n
)[

Kt(X � n) =+ K(X � n)
]
.

Then, for any such n,

KA,t(X � n) ≤+ Kt(X � n) =+ K(X � n) ≤+ KA(X � n),

where the last inequality follows because every K-trivial set is low for K
(Proposition 4.1.16). Hence, X is A-shallow.

It follows from the previous result that the class of deep sets relative to
a K-trivial oracle is never larger than the class of deep sets. The following
natural question remains open.

Question 4.2.21. Let A be a K-trivial set. Does A-depth always strictly
imply depth? Or does A-depth and depth always coincide? Or does the
answer depend on the particular oracle?

106

4.3 Turing-relativized depth

In this last part of the chapter, we investigate a further notion of relativized
depth, in which we consider not only computable time bounds, but more
generally time bounds which are Turing computable in the given oracle, thus
the choice of the name Turing-relativized-depth. Formally, we give the follow-
ing definition, which is, in some sense, the “full” relativization of Definition
4.1.11 to an oracle A.

Definition 4.3.1. Given an oracle A ∈ 2N, we say that X ∈ 2N is A-T-deep
if, for every time bound t ≤T A,

lim
n→∞

KA,t(X � n)−KA(X � n) = +∞

Otherwise, we say that X is A-T-shallow.

Note that, a priori, the class of A-deep sets, as defined in Definition 4.2.1,
contains the class of A-T-deep sets: that is, for every oracle A, every A-T-
deep set is, in particular, A-deep.

By a straightforward relativization of Lemma 4.1.6 and Theorem 4.1.7,
we get the following result.

Lemma 4.3.2. Let A ∈ 2N. For any given time bound t ≤T A, mA,t is a
semimeasure and mA,t ≤T A. Conversely, if m ≤T A is a discrete semimea-
sure, there exists a computable time bound t such that m ≤× mA,t. In par-
ticular, for any time bound t ≤T A, 2

−KA,t

is an A-computable semimeasure,
hence there exists a time bound t′ ≤T A such that 2−K

A,t ≤× mA,t′ (or equiv-
alently, − logmA,t′ ≤+ KA,t). Moreover, for any time bound t ≤T A, there

exists a time bound t′ ≤T A such that mA,t ≤× 2−K
A,t′

(or, equivalently
KA,t′ ≤+ − logmA,t).

As an immediate consequence, we have that X ∈ 2N is A-T-deep if and
only if, for every time bound t ≤T A,

lim
n→∞

mA(X � n)

mA,t(X � n)
= +∞,

or also, if and only if, for every A-computable semimeasure m,

lim
n→∞

mA(X � n)

m(X � n)
= +∞.

107

Finally, a straightforward relativization of Theorem 4.1.12 shows that X is
A-T-deep if and only if, for every time bound t ≤T A and constant c,

(
∞

∀n∀τ ∈ UA[t]−1(X � n)

)[
KA(τ) ≤ |τ | − c

]
.

Recall that a set A is called computably dominated if, for each function
g ≤T A, there is a computable function f which dominates g, namely

(
∞

∀n
)
[g(n) ≤ f(n)].

In the literature such sets are also called of hyperimmune-free degree, because
of the fact that a set A is not computably dominated if and only if there exists
an hyperimmune setX ≡T A ([67]). It is easy to see that, ifA is a computably
dominated set and f ≤T A, then f ≤tt A (see, e.g., [75, Proposition 1.5.11]).
It is also immediate to check that, if A is computably dominated, then the
classes of A-deep sets and of A-T-deep sets coincide.

It is a trivial matter to check that, similarly to A-depth, A-T-depth is also
preserved upwards under tt-reductions. However, it is natural to ask whether
there is a strictly larger class of reductions for which the Slow Growth Law
for A-T-depth applies. In this section, we positively answer this question. We
start by looking at the following class of reductions, which can be regarded
as tt-functionals with respect to the oracle A.

Definition 4.3.3. Given an oracle A ∈ 2N we say that a set X is tt(A)-
reducible to a set Y (and write X ≤tt(A) Y), if there is an oracle Turing
machine ϕ and a time bound t ≤T A such that ϕY⊕A(n)[t(n)] ↓= X(n).

The following lemma shows a characterization of tt(A)-reductions similar
to the characterization of tt-reductions in terms of total oracle machines.

Lemma 4.3.4. X ≤tt(A) Y if and only if there is an oracle machine Φ which
is total on every oracle of the form S ⊕ A and such that ΦY⊕A = X.

Proof. Assume that X ≤tt(A) Y via the oracle machine ϕ and the time bound
t ≤T A. Then, for every S ∈ 2N and n, it suffices to define ΦS⊕A(n) =
ϕS⊕A(n), if ϕS⊕A(n) halts within t(n) steps, or ΦS⊕A(n) = 0, otherwise.

Conversely, assume that the oracle machine Φ is total on every oracle of
the form S ⊕ A and that ΦY⊕A = X. For every n, consider the set

Tn =
{
σ ≺ S ⊕ A : S ∈ 2N & Φσ(n) ↓

}
:

108

by compactness, for every n we can A-compute t(n) such that, for every σ ∈
Tn, Φ

σ(n) halts in at most t(n) steps. In particular, ΦY⊕A(n)[t(n)] = X(n)
for all n.

Trivially, X ≤tt Y implies X ≤tt(A) Y . On the other hand, for every
hyperimmune set A, A ≤tt(A) ∅, but clearly A 6≤tt ∅.

Straightforward relativizations of the proofs of Propositions 4.1.13, 4.1.14
and 4.1.17 gives the following results.

Proposition 4.3.5. Let A ∈ 2N.

(i) (Slow Growth Law for A-T-depth) Let X be A-T-deep and X ≤tt(A) Y .
Then Y is also A-T-deep.

(ii) Every A-ML-random set is A-T-shallow.

(iii) Every A-computable set is A-T-shallow.

(iv) A′ is A-T-deep.

We conclude by showing that, whenever A is high, the class of A-T-
deep sets is strictly contained in the one of A-deep sets. Indeed, in every
high degree we can construct an A-computable (hence, A-T-shallow) but
A-deep set. Notice that this construction is similar in spirit to the one of
Theorem 4.1.18 above, as it is based on computing a dominating function T
and diagonalizing against all too long T -fast codes.

Theorem 4.3.6. Let A ∈ 2N be high. Then there exist a set X ≡T A (in
particular, X is A-T-shallow) which is A-deep.

Proof. Since A is high, there is a function T ≤T A such that T dominates
every computable time bound. Partition N into consecutive intervals I0 =
{0, 1}, I1, . . . so that each interval Im contains exactly 2m−1 elements, for
m > 0. Moreover, for any m, define

Pm =
{
τ : |τ | < |Im| − 1 & UA(τ)[T (max Im+1)] ↓= σ with |σ| ∈ Im+1

}
.

We define a set X by specifying its bits at each interval Im, which are
denoted by X[Im], as follows. The first bit of X[Im] is used to code A, so
that A ≤T X. The remaining |Im|−1 bits are used to diagonalize against the
at most 2|Im|−1 codes in Pm: in fact, if UA(τ)[T (max Im+1))] � max Im+1 6=

109

X � max Im+1 for all τ ∈ Pm, then K
A,T (X � n) > |Im| − 1 = 2m − 1, for all

n ∈ Im+1. Hence, for each i ∈ Im, we compute

Pi = {τ ∈ Pm : UA(τ)(j) = X(j), for all j ∈ Im with j < i},

and let B(i) = 1 if and only if UA(τ)(i) = 0 for at least half of the codes
τ ∈ Pi.

As T dominates all computable time bounds we get that, for every com-
putable time bound t and sufficiently large m,

KA,t(X � n) > KA,T (X � n) > |Im| − 1 = 2m−1 − 1,

for all n ∈ Im+1. Notice that, if n ∈ Im+1, then 2m ≤ n ≤ 2m+1, therefore we
have dlog ne = m+1 and, for simplicity, we set log n = dlog ne − 1 = m. On
the other hand, since X ≤T A, we have KA(X � n) ≤+ 2 log n. Thus, at the
end we get that, for every computable time bound t and almost all n,

KA,t(X � n)−KA(X � n) > 2logn − 2 log n ≥+ n− 2 log n,

which is eventually larger than any constant. Hence, X is A-deep.

110

Chapter 5

On the comparison between

deterministic and probabilistic

forecasting schemes

Is it possible for a gambler using a probabilistic betting strategy to become
arbitrarily rich when all gamblers betting according to a deterministic strat-
egy earn only a bounded capital?

We investigate this question in the context of algorithmic randomness,
introducing the new notion of almost everywhere computable randomness.

The theory of algorithmic randomness aims at formalizing the intuitive
concept of randomness for single outcomes, namely for infinite binary se-
quences. Obviously, from the perspective of classical computability theory,
any infinite binary sequence drawn at random (with respect to the uniform
distribution) has the same probability 0 to occur. Yet, as already mentioned
in the previous chapter, there are many possible approaches to formalize
effective notions of randomness, namely different ways to formalize the in-
tuitive idea that effectively random outcomes are those which do not posses
any untypical property which can be effectively tested. A popular way to
do so is to look for “unpredictable” sequences: roughly speaking, we may
consider random any sequence whose bits cannot be predicted with better-
then-average accuracy. More precisely, we fix a certain class C of effective
gambling strategies, which are usually called martingales in this context, for
the following game. The bits of an infinite sequence X are revealed in as-
cending order. When the martingale d ∈ C has already seen n many bits of
X, d bets a certain amount α of its capital that the n + 1-th bit of X is,

111

say, 0: if d is right, then d wins α, otherwise d loses α. We say that the
martingale d succeeds on X if its capital tends to infinity throughout the
infinite game above, and we consider a sequence X random (with respect
to the given class C) if no martingale in C succeeds on X. In particular,
we talk of computable randomness when we consider only total computable
martingales, and of partial computable randomness if we also allow partial
computable ones. In both cases, however, these strategies are deterministic.

In our framework, instead, we also consider probabilistically effective bet-
ting strategies: intuitively speaking, we consider effective betting strategies
which, in addition, are allowed to flip a fair coin before placing their bet
(and possibly betting accordingly). More formally, we assume that the infi-
nite sequence Y of coin tosses has been drawn in advance and given as an
oracle to a partial computable martingale d (thus obtaining a Y -computable
martingale which we denote by dY): hence, we say that a sequence X is
almost everywhere computably random if, for any partial oracle martingale
d, we have that

µ
({
Y : dY is total and succeeds on X

})
= 0.

We show that probabilistic martingales are in fact stronger than deter-
ministic ones, by building a partial computable random sequence which is
not almost everywhere computably random. It is worth noticing that this
is an unusual and unexpected result in computability theory, because of a
classical theorem stating that every sequence which can be computed by a
probabilistic algorithm with positive probability is in fact deterministically
computable ([31]). We also prove the separation between a.e. computable
randomness and partial computable randomness, which happens exactly in
the uniformly almost everywhere dominating Turing degrees.

We should also note that probabilistic martingales were already consid-
ered by Buss and Minnes [25]. However, the applicability of their results for
our purpose is limited. In particular, they studied two cases: probabilistic
martingales which are total almost surely and probabilistic martingales which
may be partial but nevertheless almost surely succeed on a given sequence.
It is fairly easy to show that these cases reduce to computable and partial
computable martingales respectively. The results presented in this chapter
are different and require more involved proofs. Moreover, these results have
been published in [14].

112

5.1 Preliminaries

We have already discussed in the previous chapter that algorithmic random-
ness’ goal is to assign a meaning to the notion of individual random string
or sequence. While for strings we cannot reasonably hope for a clear sep-
aration between random and non-random (instead we have a quantitative
measure of randomness: Kolmogorov complexity, see section 4.1.1), for infi-
nite binary sequences one can get such a separation. There are in fact many
possible definitions. The most important one is called Martin-Löf random-
ness: the reason Martin-Löf’s definition of randomness is considered to be
the central one is that it is both well-behaved (Martin-Löf random sequences
possess most properties one would expect from ‘random’ sequences, including
computability-theoretic properties) and robust, in that one can naturally get
to the same notion by different approaches (which we have already discussed
in section 4.1.3). As discussed above a natural paradigm to define random-
ness is via unpredictability. In the next section, we review this approach and
two related notions of effective randomness, other than ML-randomness.

5.1.1 Computable and partial computable randomness

According to the unpredictability approach, we want to say that a sequenceX
is random if its bits cannot be guessed with better-than-average accuracy.
This is formalized via the notion of martingale, which we have already in-
troduced in Definition 4.1.9. For convenience, we recall here the related
terminology.

A function d : 2<N → R>0 is called a martingale if for all σ ∈ 2<N:

d(σ) =
d(σ0) + d(σ1)

2

Moreover, we say that a martingale d succeeds on a sequence X if

lim sup
n→∞

d(X � n) = ∞.

A martingale represents the outcome of a gambling strategy in a fair game
where the gambler guesses bits one by one by betting some amount of money
at each stage, doubling the stake if correct, losing the stake otherwise, debts
not being allowed. The quantity d(σ) represents the capital of the gambler
after having seen σ. Usually in the literature martingales are allowed to take

113

value 0 but not allowing it makes no difference for the definitions that follow
and avoids some pathological cases later in the chapter.

Armed with the notion of martingale, we can now formulate an important
definition of “randomness”, known as computable randomness.

Definition 5.1.1. A sequence X ∈ 2N is called computably random if no
computable martingale succeeds on X.

In the above definition, we consider only martingales that are total com-
putable. We would also like to allow partial computable martingales, but
since they are not total functions in general, they are not even martingales
in the above sense. To remedy this, one can simply define a partial mar-
tingale as a function d taking values in R>0 whose domain is contained in
2<N and closed under the prefix relation (if d(σ) is defined, d(τ) is defined
for every prefix τ of σ) and furthermore for every σ, d(σ0) is defined if and
only if d(σ1) is defined and in case both are defined, the fairness condition
d(σ) = (d(σ0)+d(σ1))/2 applies. Finally, success is defined in the same way
as for martingales: we say that d succeeds on X if d(X � n) is defined for all n
and lim supn→∞ d(X � n) = ∞. We can now get the following strengthening
of computable randomness.

Definition 5.1.2. A sequence X ∈ 2N is called partial computably random
if no partial computable martingale succeeds on X.

It is well-known that partial computable randomness is strictly stronger
than computable randomness, but nonetheless strictly weaker than Martin-
Löf randomness (see [75]).

Computable randomness and partial computable randomness are pretty
robust notions. For example, it makes no difference whether we define success
as achieving unbounded capital or as having a capital that tends to infinity.

Lemma 5.1.3 (folklore, see [37]). For every total (resp. partial) computable
martingale d there exists a (resp. partial) computable martingale d′ such that
d and d′ succeed on exactly the same sequences and for every A ∈ 2N we have
lim supn→∞ d(A � n) = ∞ iff limn→∞ d′(A � n) = ∞. Moreover, an index for
d′ can be found effectively from an index for d.

Another important fact is that instead of considering computable real-
valued martingales, we can restrict ourselves to rational valued martingales
that are computable as functions from 2<N to Q (which we sometimes refer
to as exactly computable martingales).

114

Lemma 5.1.4 (Exact Computation lemma, see [83]). For every total (resp.
partial) computable martingale d, there exists a total (resp. partial) exactly
computable martingale d′ such that d′ succeeds on every sequence on which d
succeeds. Moreover, an index for d′ can be effectively obtained from an index
for d.

5.1.2 Probabilistic martingales

The above definitions assume computable martingales (partial or total) are
deterministic. Our goal is to understand whether probabilistic martingales
(i.e., obtained by a probabilistic algorithm) can do better. Usually, to cap-
ture the idea of probabilistic algorithm, one appeals to probabilistic models
of computation, such as probabilistic Turing machines. However, from a
computability-theoretic perspective, where relativization to an oracle is a
bread-and-butter object of study, it is equivalent to assume that an infinite
sequence of random bits is drawn in advance and given as oracle to a de-
terministic Turing machine which then uses it as a source of randomness.
Thus, we will consider partial computable oracle martingales, that is, Turing
functionals d where for every oracle Y , dY (the function computed by the
functional with Y given as oracle) is a partial martingale.

Definition 5.1.5. A sequence X ∈ 2N is called a.e. computably random if
for every partial computable oracle martingale d the set of oracles Y such
that dY is a total martingale and succeeds on X has measure zero, i.e.

µ

({
Y ∈ 2N : dY is total and lim sup

n→∞
dY (X � n) = ∞

})
= 0.

X is said to be a.e. partial computably random if for every partial computable
oracle martingale d the set of oracles Y such that dY succeeds on X has
measure zero.

Note that we could have equivalently defined a.e. (partial) computably
randomness directly from the relativization of (partial) computable random-
ness: a sequence X is a.e. (partial) computably random if for almost every Y ,
X is (partial) computably random relative to Y .

The informal question ‘do probabilistic gamblers perform better than de-
terministic ones’ can now be fully formalized by the following two questions:

115

• Is a.e. computable randomness equal to computable randomness?

• Is a.e. partial computable randomness equal to partial computable ran-
domness?

In [25], Buss and Minnes studied a restricted version of this problem.
They considered a model of probabilistic martingales where one further re-
quires dY (σ) to be defined for all σ and almost all Y . This is a strong
restriction which allows one to use an averaging technique. If d is a prob-
abilistic martingale with this property, it is easy to prove that the average
D defined by D(σ) =

∫
Y
dY (σ) is a computable martingale. If X is com-

putably random, D fails against X, that is, there is a constant c such that
D(X � n) < c for all n. Moreover, by Fatou’s lemma:

∫

Y

lim inf
n

dY (X � n) ≤ lim inf
n

D(X � n) < c (?)

which in turn implies that the set {Y : lim infn d
Y (X � n) = ∞} has mea-

sure 0. In other words, the set of Y such that dY strongly succeeds against X
has measure 0. By Lemma 5.1.3, this means that if a sequence X is com-
putably random if and only if for every probabilistic martingale with the
Buss-Minnes condition, d fails on X with probability 1.

Our main result is that, in the general case, we no longer have an equiv-
alence of the two models: probabilistic martingales are indeed stronger than
deterministic ones.

Theorem 5.1.6. There exist a sequence X which is partial computably ran-
dom but not a.e. partial computably random and indeed not even a.e. com-
putably random.

We will devote the next sections to proving Theorem 5.1.6, but let us
say a few words on why we believe it to be an interesting result. First of
all, it is in stark contrast with Buss and Minnes’ result that probabilistic
martingales do not do any better than deterministic ones when they are
required to be total with probability 1: in the general case, probabilistic
martingales do better! Second, this is to our knowledge the first result of
this kind in algorithmic randomness. If we were to define a.e. Martin-Löf
randomness following the same idea (i.e., saying that X is a.e. Martin-Löf
random if for almost all Y , X is Martin-Löf random relative to oracle Y), we

116

would not get anything new, because a.e. Martin-Löf randomness coincides
with Martin-Löf randomness. This is a direct consequence of the famous
van Lambalgen theorem [91], which states that for every A,B ∈ 2N, the join
A ⊕ B = A(0)B(0)A(1)B(1) . . . is Martin-Löf random if and only if A is
Martin-Löf random and B is Martin-Löf relative to A, if and only if B is
Martin-Löf random and A is Martin-Löf random relative to B. Now, let X
be Martin-Löf random. For almost all Y , Y is Martin-Löf random relative
to X (this is simply the fact that the set of Martin-Löf random sequences has
measure 1, relativized to X), thus X ⊕ Y is Martin-Löf random, and thus
X is Martin-Löf random relative to Y . This shows that X is a.e. Martin-
Löf random. We see that van Lambalgen’s theorem is key in this argument.
It was already known that the analogue of van Lambalgen for computable
randomness fails [94], but Theorem 5.1.6 shows that it fails in a very strong
sense.

Let us also remark that van Lambalgen’s theorem shows that Martin-Löf
randomness implies a.e. (partial) computable randomness: if X is Martin-Löf
random, it is also Martin-Löf random relative to Y for almost every Y , and
thus also (partial) computably random relative to Y for almost every Y .

5.2 Turing degrees of a.e.CR sequences

Before moving to the proof of Theorem 5.1.6, we give a simple degree-
theoretic proof of a weaker result, namely a separation between computable
randomness and a.e. computable randomness.

Recall that every Martin-Löf random sequence is computably random but
a computable random sequence is not necessarily Martin-Löf random.This
separation has some interesting connections with classical computability the-
ory, as witnessed by the following theorem (recall that a sequence Y has high
Turing degree, or simply is high if it computes some function F : N → N such
that for every total computable function f , f(n) ≤ F (n) for almost all n).

Theorem 5.2.1 (Nies, Stephan, Terwijn [77]). Let Y ∈ 2N. If Y computes a
sequence X such that X is computably random but not Martin-Löf random,
then Y has high Turing degree. Conversely, if Y has high Turing degree,
then it computes some X which is computably random but not Martin-Löf
random.

It turns out that one can get an exact analogue of this theorem for

117

a.e. computable randomness by replacing highness with a stronger notion:
almost everywhere domination. A sequence Y is said to have almost every-
where dominating Turing degree, or a.e. dominating Turing degree if it com-
putes an almost everywhere dominating function F , that is, a function F such
that for every Turing functional Γ and almost every Z, if ΓZ is total, then
ΓZ(n) ≤ F (n) for almost all n. See [75] for a more complete presentation of
the history of this notion, originally due to Dobrinen and Simpson [35].

Theorem 5.2.2. Let Y ∈ 2N. If Y computes a sequence X such that X is
a.e. computably random but not Martin-Löf random, then Y has a.e. dom-
inating Turing degree. Conversely, if Y has a.e. dominating Turing degree,
then it computes some X which is a.e. computably random but not Martin-Löf
random (in fact, it even computes some X which is a.e. computably random
but not partial computably random).

Remark 5.2.3. Nies et al.’s theorem actually states a little more than what
we wrote above, namely that the sequence X in the second part of the the-
orem can be chosen to be Turing equivalent to Y . The analogue theorem is
also true for a.e. computable randomness and a.e. domination but the proof
becomes substantially more technical (we would need to introduce techniques
to encode information into a computably random sequence) for only a small
gain.

Proof. Let us prove the first part of the theorem by its contrapositive. Let
X ∈ 2N whose degree is not almost everywhere dominating. Suppose also
X is not Martin-Löf random, i.e., X ∈ ⋂n Un for (Un)n∈N a sequence of uni-
formly effectively open sets with µ(Un) ≤ 2−n. Consider the function tX

defined by tX(n) := min{s | X ∈ Un[s]}. Since X does not have a.e. domi-
nating degree, there must exist a functional Γ such that

µ{Z | ΓZ is total and ∃∞n ΓZ(n) > tX(n)} > 0

When ΓZ is total and ΓZ(n) > tX(n) for infinitely many n, we have X ∈
Un[ΓZ(n)] for infinitely many n. Note that in that case Un[ΓZ(n)] is a clopen
set which is Z-uniformly computable in Z. It is well-known that this type of
test characterizes Schnorr randomness (a notion we will no discuss here but
suffices to say that Schnorr randomness is weaker than computable random-
ness): a sequence X is Schnorr random if and only if for every computable
sequence of clopen sets Dn such that µ(Dn) ≤ 2−n, X belongs to only finitely

118

Dn (see for example [12, Lemma 1.5.9]). Relativized to Z, this fact shows
that X is not Z-Schnorr random for a positive measure of Z’s, thus not Z-
computably random for a positive measure of Z’s.

The strategy to prove the second part of the theorem is to take the func-
tion F computed by Y and use it as a time bound on oracle martingales in
order to ‘totalize’ them, which then allows us to use the averaging argument
presented on page 116. In order for this to work, we must first prove that F
can be assumed to be ‘simple’ (in terms of Kolmogorov complexity).

Lemma 5.2.4. If Y has a.e. dominating Turing degree, it computes an
a.e. dominating function F such that K(F (n)) = O(log n).

Proof. Let (Φi)i∈N be an enumeration of all Turing functionals and consider
the universal functional Ψ where Ψ0i1A = ΦA

i . It is easy to see that a function
F is almost everywhere dominating if for almost all Z, either ΨZ is not total
or ΦZ(n) ≤ F (n) for almost every n. For each Z, let tZ(n) be the minimum t,
if it exists, such that ΦZ(k) converges in time ≤ t for all k ≤ n and let
fZ(n) = tZ(n) + maxk≤nΦ

Z(k).
Let Y be of a.e. dominating degree and F ≤T Y an almost everywhere

dominating function.
For each n, let

Un = {Z | fZ(n) ↓<∞}
which is Σ0

1 uniformly in n. We can write

Un =
⋃

k

Un,k

where
Un,k = {Z | fZ(n) ↓< k}

and note that Un,k is a clopen set, computable uniformly in n, k.
Since F is almost everywhere dominating, we have that for almost all Z

and almost all n, either fZ(n) is undefined or fZ(n) ≤ F (n). Said otherwise,
the set

N0 = lim sup(Un \ Un,F (n))

is a nullset.

119

Now, for all n, let an ∈ [0, n2] be the largest integer with µ(Un,F (n)) ≥
an/n

2 and F ′(n) be the smallest k such that µ(Un,k) ≥ an/n
2. We see that

F ′(n) is computable from F and furthermore,

K(F ′(n)) ≤ K(an) +O(1) ≤ 2 log(n2) +O(1) ≤ 4 log n+O(1)

By definition, we have µ(Un,F (n)) \ Un,F ′(n)) ≤ 1/n2. By the Borel-Cantelli
lemma,

N1 = lim sup(Un,F (n) \ Un,F ′(n))

is a nullset. Thus, N0 ∪N1 is a nullset, which means that

lim sup(Un \ Un,F ′(n))

is also a nullset, which in turn means that for almost all Z, for almost all n,
if fZ(n) is defined, then fZ(n) ≤ F ′(n). By definition of f , a fortiori, for
almost all Z, if ΦZ is total, then ΦZ(n) ≤ F ′(n) for almost all n. Thus the
function F ’

• is almost everywhere dominating

• is computable in F , hence computable in Y

• satisfies K(F ′(n)) = O(log n)

which finishes the proof of the lemma.

As alluded to above, the function F is going to be used as a time bound.
To see what we mean by this, consider a total (not necessarily computable)
non-decreasing function ψ : N → N. Let d be a (partial) exactly computable
martingale. The time-bounded version of d with time bound ψ is the martin-
gale dψ which mimics d but only allows it a time ψ(n) to compute its bets on
strings of length n. If d has not made a decision by this stage (either because
it is in fact undefined, or because the time of computation is greater than
ψ(n))), the casino exclaims “End of bets, nothing goes on the table!” and the
martingale is assumed to have placed an empty bet. Formally, dψ(λ) = d(λ)
and for any string σ and b ∈ {0, 1}:

dψ(σb) =

{
dψ(σ) · d(σb)/d(σ) if both d(σ0)[ψ(n+ 1)] ↓ and d(σ1)[ψ(n+ 1)] ↓
dψ(σ) otherwise

120

By definition dψ is always total, and when d is total, if the bound ψ
dominates the convergence time of d (that is, for almost all σ, d(σ)[ψ(|σ|)] ↓),
then dψ and d are within a multiplicative constant of one another, which in
particular implies that dψ succeeds on the same sequences as d.

Now, let (di) be the effective enumeration of all (partial) exactly com-
putable martingales with oracle. Without loss of generality, assume that di
has a delay i imposed on it. Let F be the a.e dominating function as above.
Let d̂ be the oracle martingale defined by

d̂Z(σ) =
∑

i

2−idZ,Fi (σ)

(dZ,Fi is the time-bounded version of dZi with time bound F).
It is a total martingale for every Z as all dZ,Fi are total martingales. Thus,

its average D defined by

D(σ) =

∫

Z

d̂Z(σ)

is also a martingale.
Moreover, D is F - (exactly)computable. Indeed, because of the time

bound F , the value of dZ,Fi (σ) only depends of the first F (|σ|) bits of Z,
and because of the delay on the di, only the martingales (di)i≤|σ| matter in

the computation of D(σ). Thus the integral
∫
Z
d̂Z(σ) is in fact a finite sum,

can be computed from F (|σ|), hence the F -computability of D. Even more
precisely, the set of values {D(σ) | |σ| ≤ n} is computable from F (n), and
thus the Kolmogorov complexity of this set is at most K(F (n)) + O(1) =
O(log n).

Let then X be the sequence which diagonalizes against D (that is, the
sequence X constructed bit by bit where at each stage the chosen value of the
next bit is the one that makes the martingale D lose money; all this will be
detailed in the next section). Computing the first n bits of X only requires
to know the set of values {D(σ) | |σ| ≤ n}. Thus, we have established:

• X ≤T F

• K(X � n) ≤ K(F (n)) +O(1) = O(log n).

Since D does not succeed on X, by the exact same calculation as (?) (see
page 116), for almost all Z, d̂Z does not succeed on X, and thus dZ,Fi does
not succeed on X for any i.

121

But we also know, since F is a.e. dominating, for all i, for almost every Z,
either dZi is partial, or dZi is total and its computation time is dominated by F ,
hence dZ is within a multiplicative constant of dZ,F .

Putting the two together, this entails that for almost all i and almost
all Z, either dZi is partial or it is total and does not succeed on X. In other
words, X is a.e. computably random.

X has therefore all the desired properties:

• It is a.e. computably random,

• It is computable in F and thus computable in Y ,

• K(X � n) = O(log n), ensuring that X is not only not Martin-Löf
random, but not even partial computably random using a result of
Merkle [65] (no partial computably random sequence can be of loga-
rithmic complexity).

An important result of Binns et al. [18] is that a.e. domination is strictly
stronger than highness. This gives us the promised weaker version of Theo-
rem 5.1.6.

Corollary 5.2.5. There exists a sequence X which is computably random
but not a.e. computably random.

Proof. Indeed, by Binn et al.’s result, take a high Turing degree a which
is not a.e. dominating. By Theorem 5.2.1, there is an X in a which is
computably random but not Martin-Löf random. By Theorem 5.2.2, X is
not a.e. computably random either.

5.3 The main construction

We now turn to the full proof of Theorem 5.1.6. We first recall the stan-
dard method to build a partial computably random sequence (see for exam-
ple [75]). Next, we combine this construction with the so-called ‘fireworks’
technique which can be viewed as a probabilistic forcing to see how to de-
feat, with probabilistic martingales, sequences that have been built using this
construction.

122

5.3.1 Defeating finitely many martingales

Let us begin by explaining how to construct a partial computably random
sequence. Let us first consider the simple case where we are trying to defeat a
single martingale d, which we assume for the moment to be total computable,
by making sure its capital does not go above a certain threshold. Up to mul-
tiplying d by a small rational, we may assume that d(λ) < 1. By induction,
suppose we have already built X � n in a way that d(X � i) < 1 for all i ≤ n.
By the fairness condition, either d((X � n)_0) < 1 or d((X � n)_1) < 1.
If the former is true, we set X � (n + 1) = (X � n)_0, otherwise we set
X � (n + 1) = (X � n)_1. Continuing in this fashion we ensure that the
martingale d does not succeed against X as its never reaches 2. Observe that
when the martingale d is exactly computable, the sequence X is computable
(uniformly in a code for d).

Suppose now that we have a finite family of total martingales d1, . . . dn. If
we want to diagonalize against all of them at the same time, one can simply
find positive rationals q1, . . . , qn such that

∑n
i=1 qi · di(λ) < 1 and proceed as

before against the martingale
∑n

i=1 qi · di. Again, the sequence X obtained
by diagonalization against this finite family of martingales is computable
uniformly in a code for the family of di’s. But suppose now that some of the
martingales in this family are partial instead of total. This does not cause
much difficulty: having already built X � n, consider only the sub-family F
of indices of martingales that are still defined on (X � n)_0 and (X � n)_1.
The other martingales are undefined and thus will not succeed by fiat on the
sequenceX. Now, if

∑
i∈F qi·di((X � n)_0) < 1, setX � (n+1) = (X � n)_0,

otherwise set X � (n + 1) = (X � n)_1. Once again the sequence X defeats
all of the di’s, some of them because they become undefined at some stage,
some of them because their capital never exceeds 1/qi. Moreover, X is still
a computable sequence. It is not however computable uniformly in a code
for the family of di’s because one needs to specify which martingales become
undefined in the construction and when (this is a finite amount of information
but it cannot be uniformly computed) but this is not an obstacle for our
purposes.

To summarize these preliminary considerations, we can make the follow-
ing definition.

Definition 5.3.1. Let (d1, q1), . . . (dn, qn) be a finite family where each di is
a (code for) a partial computable martingale and qi a positive rational. Let
σ ∈ 2<N such that, calling F the family of indices i such that di(σ) converges,

123

we have
∑

i∈F qi · di(σ) < 1. Consider the computable sequence X defined
inductively by X � |σ| = σ and if X � n is already built, letting Fn be the
family of indices such that di((X � n)_0) converges, then X � (n+1) = (X �

n)_0 if
∑

i∈Fn
qi · di(X � n)_0) < 1 and X � (n+ 1) = (X � n)_1 otherwise.

This sequence is called the diagonalization against (d1, q1), . . . , (dn, qn) above
σ.

5.3.2 Defeating all partial computable martingales

When we have a countable family of martingales to diagonalize against, the
standard way to proceed is to introduce them one by one during the game so
that at any step we only have to diagonalize against a finite family as above.
The delays between the introduction of martingales is flexible and therefore
will be a parameter of the construction.

The diagonalizing sequence ∆((te)e∈N).

Let (di)i∈N be a standard enumeration of partial computable rational
valued martingales. Let (te)e∈N be a family of positive integers. The sequence
∆((te)e∈N) is constructed by finite extension as follows. Start with the empty
string σ0 = λ and recursively do the following. Having built σn, let qn+1

be a rational such that
∑

i∈F qi · di(σn) < 1 where F is the set of indices
i ∈ [1, n+1] such that di(σn) converges. Let A be the diagonalization against
(d1, q1), . . . , (dn+1, qn+1) above σn. The sequence A is an extension of σ and
is computable (see above), so let e be a code for it (say the smallest one).
Define σn+1 = A � (|σn|+ te). Finally, set

∆((te)e∈N) =
⋃

n

σn

It is easy to check that ∆((te)e∈N) defeats all partial computable martingales.
Moreover, the construction ensures the following important fact, which will
be key for the rest of our proof:

Remark 5.3.2. For infinitely many e (namely, those codes that show up in
the construction), the sequence ∆((te)e∈N) coincides with the computable
sequence A of index e on a prefix of length ≥ te.

124

5.3.3 Fireworks

Let (P,≤) be a computable order, that is, each element p ∈ P can be encoded
by a natural number and for a given pair (n,m) of natural numbers, it is
decidable whether n and m are indeed codes for two elements of p and q in
P and whether p ≤ q. We say that a sequence (pi)i∈N of elements of P is
P-generic if p0 ≥ p1 ≥ p2 ≥ . . . and for every c.e. subset W of P:

• either there exists an i such that pi ∈ W

• or, there exists a j such that for any q ≤ pj, q /∈ W

In particular, if W is dense (that is, for every p ∈ P there exists q ≤ p
such that q ∈ W), then for every generic sequence (pi)i∈N there must be some
i such that pi ∈ W , in which case we say that P meets W .

For most computable orders of interest, there cannot exist a computable
generic sequence. However, there is a way to probabilistically obtain one,
using the so-called fireworks technique. This was first proven by Kurtz [55]
who showed that one can probabilistically obtain a generic sequence when P
is the set of strings and σ ≤ τ when τ is a prefix of σ (Kurtz himself drew
upon an argument of Martin [64] who had shown that one can probabilis-
tically construct a hyperimmune set). The probabilistic nature of Kurtz’s
and Martin’s arguments was somewhat hidden in their proof (they used a
different framework sometimes referred to as “risking measure”). Rumyant-
sev and Shen [81] simplified Kurtz’s presentation of this technique (although
they only focused on Martin’s result about hyperimmunity) by giving an ex-
plicit probabilistic algorithm. They illustrated their algorithm by a metaphor
about a buyer who tries to buy fireworks in a shop, hence the name. Shen
and Rumyantsev’s presentation allowed Bienvenu and Patey [16, Section 1.4]
to make the following generalization to any computable order.

Theorem 5.3.3 (Fireworks master theorem [16]). For any computable order
P, there exists a Turing functional Φ with range P such that for a set of Z’s
of positive measure, we have that ΦZ(i) is defined for all i and the sequence
(ΦZ(i))i∈N is generic.

Proof. We sketch the proof, which is taken from [16, Section 1.4]. Fireworks
technique can been seen as a sort of “probabilistic forcing” for Σ0

1 formulas:
given a computable order P, we want to uniformly get, with positive proba-
bility, a P-generic sequence, namely an infinite sequence p0 ≥ p1 ≥ . . . such
that, for all i, the following requirement is satisfied:

125

Ri : (∃j)[pj ∈ Wi ∨ (∀q ≤ pj)[q /∈ Wi]],

where (Wi)i∈N is a suitable list of the c.e. subsets of P.
The algorithm for the sequence p0 ≤ p1 ≤ . . . works as follows. We

start with an arbitrary p0 ∈ P. For each i, we initialize a counter ci = 0
and pick a corresponding integer ni ∈ [1, N(i)] at random, where N is some
fixed computable function. Each ni is meant to be a cap for the counter ci.
Assume we have already built p0, . . . , pk. Then there are two possibilities:

• ∀q ≤ pk, q /∈ Wi: in this case, requirementRi is automatically satisfied.
We call this the Π1 case.

• ∃q ≤ pk, q ∈ Wi: then, our strategy is to effectively search for such q
and set pk+1 = q. This is called the Σ1 case.

At each step k, for each i, we do the following.

• If ci < ni, we make a passive guess, i.e. we assume that we are in the
Π1 case. If at any later stage k′ we find out that our guess is wrong
(namely, there is q ≤ pk′ such that q ∈ Wi), we add 1 to the counter ci
and take another passive guess.

• Otherwise, we make an attive guess, namely we assume that we are
in the Σ1 case. Hence, we stop whatever we were doing for other
requirements and start to search for some q ≤ pk such that q ∈ Wi: if
such a q is found, we let q = pk+1.

We must now verify that the above algorithm produce a P-generic se-
quence with positive probability. First, observe that there is only one possi-
ble bad case, namely that we take an incorrect active guess for some Ri, so
that the algorithm gets stuck while waiting waiting for some small enough q
entering Wi.

Claim. Assume that {nj : j 6= i} is fixed. Then there is at most one value of
ni for which the algorithm above gets stuck while trying to satisfy requirement
Ri.

Proof of claim. Assume that we get stuck while trying to satisfy requirement
Ri having chosen the value ni. This means that we have made ni−1 incorrect
passive guesses and then one incorrect active guess. Then, for any n′

i < ni we

126

would have been fine: indeed, if the n′
i-th guess would have been an active

one, we would have found our witness for Ri, as the n
′
i-th passive guess was

incorrect. Moreover, any choice of n′
i > ni would also have been fine, as

our ni-th guess would then have been a passive one, and it would have been
correct. �

Thus, for any requirement Ri, the probability to get stuck while trying to
satisfy Ri is at most 1

N(i)
. Hence, the probability of success of the algorithm

is at least 1−∑i
1

N(i)
, which can be made arbitrarily close to 1 by choosing

a suitable N .

It is not difficult to observe that, in fact, any 2-random (that is, ∅′-ML-
random) computes, via some fireworks functional Φ, a P-generic sequence.
First notice that a fireworks argument actually gives us a uniform family of
functionals: indeed, for any m, we can get a functional Φm which fails with
probability at most 2−m, by simply choosing N such that

∑
i

1
N(i)

< 2m. For
each m, let

Um = {R : ΦR
m is either undefined or for some i Ri is not satisfied}.

Then µ(Um) < 2m. Moreover, each Um is open, as the only case in which the
algorithm Φm fails is when it waits in vain for a small enough q to enter Wi:
but such a situation happens at some finite stage, hence having seen only a
finite initial segment of R. Finally, we can check whether Φm is stuck at a
given stage by using ∅′, as we need to check a Π0

1 statement. Hence (Um)m∈N

is a ∅′-ML-test: thus, for every 2-random sequence Z, there is a sufficiently
large m for which Z /∈ Um, meaning that ΦZ

m is defined and produces a
P-generic sequence.

For our proof of Theorem 5.1.6, we are going to use the order P whose ele-
ments are finite approximations of martingales with positive rational values.
Specifically, a member of P is a total function f whose domain is {0, 1}≤n
for some n – which we call length of f and denote by lh(f) – whose range is
Q>0, such that f(λ) = 1 and f(σ) = (f(σ0) + f(σ1))/2 for all σ of length
< lh(f). We say that g ≤ f if g is an extension of f (i.e., the domain of f is
contained in the domain of g and the two coincide on the domain of f). It is
clear that (P,≤) is a computable order. It is also clear that if f1 ≥ f2 ≥ . . . is
a sequence of elements of P such that lh(fi) tends to +∞, then D =

⋃
fi is a

total rational valued martingale. This is in particular the case when (fi)i∈N
is a P-generic sequence, because for every n, the set of elements of P of length

127

at least n is dense; in this case, we say that the martingale D =
⋃
fi is a

P-generic martingale.

Lemma 5.3.4. Let D be a P-generic martingale. For every computable
sequence A and integer k there exists s such that D reaches capital at least
k while playing against the prefix of A of length s (that is, D(A � l) > k for
some l < s).

Proof. Fix a computable A and consider the set

W = {g ∈ P | (∃l) g(A � l) > k}
We claim that W is a dense c.e. subset of P. That it is c.e. is clear. Now,
take any f ∈ P. Let n = lh(f). By definition of P, f(A � n) is positive, so we
can pick an m > n such that 2m−n · f(A � n) > k. Let g be the martingale
of length m which behaves like f up to length n and after that stage plays
the doubling strategy on A (and stops betting outside of A). Formally:

g(τ) =

f(τ) if |τ | ≤ n
f(τ � n) if |τ | ≥ n and τ � n 6= A � n
0 if τ � n = A � n but τ is not a prefix of A
f(A � n) · 2|τ |−n if τ is a prefix of A

It is easy to check that g is a finite approximation of martingale which
extends f and by construction g(A � m) = 2m−n · f(A � n) > k. Thus W is
indeed dense.

We can now finish the proof of our main result.

Proof of Theorem 5.1.6. By Theorem 5.3.3 applied to our partial order (P,≤
), there is a Turing functional Φ and a set G of positive measure such that for
every Z ∈ G, ΦZ(n) is a P-generic sequence. Thus for Z ∈ G, DZ =

⋃
nΦ

Z(n)
is a P-generic martingale.

Let A be a computable sequence and e be a code for A. By Lemma 5.3.4,
for every Z ∈ G, there exists some lZe such that DZ – being a P-generic
martingale – reaches capital at least e at some point while playing against
the prefix A � lZe .

Now, for each e which is the code of a computable sequence choose some
se large enough to have

µ{Z ∈ G | lZe ≤ se} ≥ (1− 2−e−1)µ(G)

128

(and for e which is not a code for a computable sequence, choose se arbitrar-
ily).

This guarantees that

µ{Z ∈ G | (∀e code for a computable seq.) lZe ≤ se} ≥ µ(G)/2 > 0

Let H be the set of the left-hand side of this inequality.
Let us consider the sequence ∆((se)e∈N), which by construction is partial

computably random. For every Z ∈ H, for every computable sequence A
of code e, the martingale DZ reaches capital at least e on A � se. On the
other hand, by Fact 1, we know that for infinitely many e, the sequence
∆((se)e∈N) coincides with the computable sequence A of index e on a prefix
of length ≥ se. Thus this guarantees that for Z ∈ H, DZ reaches capital at
least e while playing on ∆((se)e∈N). Thus ∆((se)e∈N) is partial computably
random but not almost everywhere computably random since H has positive
measure.

5.4 Conclusion and open questions

In this chapter, we have compared the power of deterministic and proba-
bilistic prediction. To this end, we have introduced two notions—a.e. partial
computable randomness and a.e. computable randomness. In contrast with
Buss and Minnes’ results [25], where (due to the stronger limitations on
the class of martingales considered) the authors obtained equivalent char-
acterizations of partial computable and computable randomness in terms of
probabilistic martingales, our notions do not correspond to their determin-
istic counterparts, but are, indeed, strictly stronger. The following diagram
summarizes the mutual relationships between these notions.

a.e.PCR
(

(

PCR

a.e.CR

(

(
CR6⊆

6⊆

The main results of this chapter, in fact, concern the incomparability of the
notions of a.e. computable randomness and partial computable randomness:
on the one hand, by Theorem 5.1.6, partial computable randomness does not
imply a.e. computable randomness; on the other hand, Theorem 5.2.2 states

129

that every a.e. dominating degree computes (actually, contains) a sequence
which is a.e. computably random but not partial computably random.

We conclude this chapter by pointing out interesting further directions to
be investigated on this topic.

The main goal we have achieved is the construction of a partial com-
putable random sequence X which is not a.e. computably random: from the
perspective of algorithmic randomness, this amounts to say that any suf-
ficiently random sequence Z derandomizes X, in the sense that X is not
computably random relative to Z. But how much randomness is actually
needed to derandomize such a sequence? In particular, is Martin-Löf ran-
domness enough? In this regard, we ask the following question.

Question 5.4.1. Given a partial computably random sequence X which is
not a.e. computably random, can there be a Martin-Löf random sequence Z
such that X is still computably random relative to Z? If so, is there always
such a Z?

The second open question is more general, and strongly related with one
of the main theoretical motivations leading to this work, namely the failure
of the analogue of van Lambalgen’s theorem for computable randomness.
Theorem 5.1.6, in fact, can be regarded as a strong failure of this result
for computable randomness, because of the existence of computably random
sequences that, nevertheless, can be derandomized by almost every oracle.
It is known that the analogue of van Lambalgen’s theorem fails for other
randomness notions studied in the literature, such as Schnorr randomness,
Kurtz randomness and Demuth randomness (see [37]). However, we do not
know if it fails in the strong sense mentioned above.

Question 5.4.2. Are there other randomness notions for which an analogue
of Theorem 5.1.6 holds (namely, for which there is a random sequence which
is not a.e. random)?

In particular, it seems that our constructions may be easily modified to
get results about a.e. Schnorr randomness.

130

Bibliography

[1] U. Andrews and S. Badaev. On isomorphism classes of computably enumer-
able equivalence relations. J. Symbolic Logic, 85(1):61–86, 2020.

[2] U. Andrews, S. Badaev, and A. Sorbi. A survey on universal computably
enumerable equivalence relations. In A. Day, M. Fellows, N. Greenberg,
B. Khoussainov, A. Melnikov, and F. Rosamond, editors, Computability and
Complexity. Essays Dedicated to Rodney G. Downey on the Occasion of his
60th Birthday, volume 10010 of LNCS, pages 418–451. Springer, Cham, 2017.

[3] U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. San Mauro, and A. Sorbi.
Universal computably enumerable equivalence relations. J. Symbolic Logic,
79(1):60–88, March 2014.

[4] U. Andrews and A. Sorbi. Effective inseparability, lattices, and pre-ordering
relations. Review of Symbolic Logic, pages 1–28, 2019.

[5] U. Andrews and A. Sorbi. Joins and meets in the structure of ceers. Com-
putability, 8(3-4):193–241, 2019.

[6] M. M. Arslanov. On some generalizations of a fixed point theorem. Sov.
Math., 25(5):1–10, 1981.

[7] G. Barmpalias, A. E. M. Lewis, and K. M. Ng. The importance of Π0
1 classes

in effective randomness. J. Symbolic Logic, 75(1):387–400, 2010.

[8] N. Bazhenov, M. Mustafa, L. San Mauro, A. Sorbi, and M. Yamaleev. Classi-
fying equivalence relations in the ershov hierarchy. Archive for Mathematical
Logic, 59(7-8):835–864, 2020.

[9] C. H. Bennett. Logical depth and physical complexity. In The universal
Turing machine: a half-century survey, Oxford Sci. Publ., pages 227–257.
Oxford Univ. Press, New York, 1988.

131

[10] C. Bernardi and F. Montagna. Equivalence relations induced by extensional
formulae: classification by means of a new fixed point property. Fundamenta
Mathematicae, 124(3):221–233, 1984.

[11] C. Bernardi and A. Sorbi. Classifying positive equivalence relations. J. Sym-
bolic Logic, 48(3):529–538, 1983.

[12] L. Bienvenu. Game-theoretic characterizations of randomness: unpredictabil-
ity and stochasticity. PhD thesis, Université de Provence, 2008.

[13] L. Bienvenu, V. Delle Rose, and W. Merkle. Relativized depth, 2021. Under
review.

[14] L. Bienvenu, V. Delle Rose, and T. Steifer. Probabilistic vs Determin-
istic Gamblers. In Petra Berenbrink and Benjamin Monmege, editors,
39th International Symposium on Theoretical Aspects of Computer Science
(STACS 2022), volume 219 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 11:1–11:13, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[15] L. Bienvenu, P. Gács, M. Hoyrup, C. Rojas, and A. Shen. Algorithmic tests
and randomness with respect to classes of measures. Tr. Mat. Inst. Steklova,
274(Algoritmicheskie Voprosy Algebry i Logiki):41–102, 2011.

[16] L. Bienvenu and L. Patey. Diagonally non-computable functions and fire-
works. Information and Computation, 253:64–77, 2017.

[17] Laurent Bienvenu and Christopher P. Porter. Deep classes. Bulletin of Sym-
bolic Logic, 22(2):249–286, 2016.

[18] S. Binns, B. Kjos-Hanssen, M. Lerman, and R. Solomon. On a conjecture of
Dobrinen and Simpson concerning almost everywhere domination. Journal of
Symbolic Logic, 71(1):119–136, 2006.

[19] L. A. Bokut’ and G. P. Kukin. Undecidable algorithmic problems for semi-
groups, groups and rings. In Algebra. Topology. Geometry, Vol. 25 (Rus-
sian), Itogi Nauki i Tekhniki, pages 3–66. Akad. Nauk SSSR, Vsesoyuz. Inst.
Nauchn. i Tekhn. Inform., Moscow, 1987. Translated in J. Soviet Math. 45
(1989), no. 1, 871–911.

[20] W. W. Boone. The word problem. Ann. of Math., 70(2):207–265, 1959.

[21] W. W. Boone. Word problems and recursively enumerable degrees of un-
solvability. A first paper on Thue systems. Ann. of Math., 83(3):520–571,
1966.

132

[22] W. W. Boone. Word problems and recursively enumerable degrees of unsolv-
ability. A sequel on finitely presented groups. Ann. of Math., 84(1):49–84,
1966.

[23] W. W. Boone. Word problems and recursively enumerable degrees of unsolv-
ability. An emendation. Ann. of Math., 94:389–391, 1971.

[24] S. Burris and H. P. Sankappanavar. A course in Universal Algebra. Graduate
Texts in Mathematics. Springer-Verlag, New York, Heidelberg, Berlin, 1981.
The Millennium Edition, 2012 Update.

[25] S. Buss and M. Minnes. Probabilistic algorithmic randomness. Journal of
Symbolic Logic, 78(2):579–601, 2013.

[26] C. S. Calude and A. Nies. Chaitin Ω numbers and strong reducibilities. In
Proceedings of the First Japan-New Zealand Workshop on Logic in Computer
Science (Auckland, 1997), volume 3, pages 1162–1166, 1997.

[27] G. J. Chaitin. A theory of program size formally identical to information
theory. J. ACM, 22(3):329–340, 1975.

[28] C. R. J. Clapham. Finitely presented groups with word problems of arbi-
trary degrees of insolubility. Proceedings of the London Mathematical Society,
3(4):633–676, 1964.

[29] A. H. Clifford and G. B. Preston. The algebraic theory of semigroups. Vol. I.
Mathematical Surveys, No. 7. American Mathematical Society, Providence,
R.I., 1961.

[30] P. M. Cohn. Universal Algebra, volume 6 ofMathematics and Its Applications.
D. Reidel Publishing Company, Dordrecht, Boston, London, 2 edition, 1981.

[31] K. de Leeuw, E. Moore, C. Shannon, and N. Shapiro. Computability by prob-
abilistic machines. In Automata Studies. Princeton University Press, 1956.

[32] J. C. E. Dekker. A theorem on hypersimple sets. Proc. Amer. Math. Soc.,
5:791–796, 1954.

[33] V. Delle Rose, L. San Mauro, and A. Sorbi. Word problems and ceers. Math.
Log. Q., 66(3):341–354, 2020.

[34] V. Delle Rose, L. San Mauro, and A. Sorbi. The category of equivalence
relations. Algebra and Logic, 60(5):295–307, 2021.

133

[35] N. Dobrinen and S. Simpson. Almost everywhere domination. Journal of
Symbolic Logic, 69(3):914–922, 2004.

[36] D. Doty and P. Moser. Feasible depth. In Conference on Computability in
Europe, pages 228–237. Springer, 2007.

[37] R. G. Downey and D. R. Hirschfeldt. Algorithmic randomness and complexity.
Theory and Applications of Computability. Springer, New York, 2010.

[38] R. G. Downey, D. R. Hirschfeldt, J. S. Miller, and A. Nies. Relativizing
Chaitin’s halting probability. J. Math. Log., 5(2):167–192, 2005.

[39] Yu. L. Ershov. Positive equivalences. Algebra and Logic, 10(6):378–394, 1973.

[40] Yu. L. Ershov. Theory of Numberings. Nauka, Moscow, 1977. (Russian).

[41] E. Fokina, B. Khoussainov, P. Semukhin, and D. Turetsky. Linear orders re-
alized by c.e. equivalence relations. The Journal of Symbolic Logic, 81(2):463–
482, 2016.

[42] A. A. Fridman. Degrees of unsolvability of the problem of identity in finitely
presented groups. Soviet. Math., 3(Part 2):1733–1737, 1962.

[43] P. Gács. Every sequence is reducible to a random one. Inform. and Control,
70(2-3):186–192, 1986.

[44] P. Gács. Lecture notes on descriptional complexity and randomness. 2021.

[45] S. Gao and P. Gerdes. Computably enumerable equivalence relations. Studia
Logica, 67(1):27–59, 2001.

[46] A. Gavruskin, S. Jain, B. Khoussainov, and F. Stephan. Graphs realised by
r.e. equivalence relations. Ann. Pure Appl. Logic, 165(7-8):1263–1290, 2014.

[47] F. C. Hennie and R. E. Stearns. Two-tape simulations of multitape turing
machines. JACM, 4(13):533–546, 1966.

[48] R. Hölzl, T. Kräling, and W. Merkle. Time-bounded kolmogorov complexity
and solovay functions. In Proceedings of the 34th International Symposium on
Mathematical Foundations of Computer Science 2009, pages 392–402, 2009.

[49] J. M. Howie. Fundamentals of semigroup theory, volume 12 of London Math-
ematical Society Monographs. New Series. The Clarendon Press, Oxford Uni-
versity Press, New York, 1995. Oxford Science Publications.

134

[50] C. G. Jockusch, Jr. The degrees of hyperhyperimmune sets. J. Symbolic
Logic, 34:489–493, 1969.

[51] C. G. Jockusch, Jr. and R. I. Soare. Degrees of members of Π0
1 classes. Pacific

J. Math., 40:605–616, 1972.

[52] C. G. Jockusch, Jr. and R. I. Soare. Π0
1 classes and degrees of theories. Trans.

Amer. Math. Soc., 173:33–56, 1972.

[53] D. W. Juedes, J. I. Lathrop, and J. H. Lutz. Computational depth and
reducibility. Theor. Comput. Sci., 132:37–70, 1994.

[54] B. Khoussainov. A journey to computably enumerable structures (tutorial
lectures). In F. Manea, R. G. Miller, and D. Nowotka, editors, Sailing Routes
in the World of Computation, 14th Conference on Computability in Europe,
CiE 2018 Kiel, Germany, July 30 August 3, 2018 Proceedings, volume 10936
of LNCS, pages 1–19. Springer, Cham, 2018.

[55] S. Kurtz. Randomness and Genericity in the Degrees of Unsolvability. PhD
thesis, University of Illinois at Urbana–Champaign, 1982.

[56] A. H. Lachlan. A note on positive equivalence relations. Zeitschrift fur math-
ematische Logik und Grundlagen der Mathematik, 33(1):43–46, 1987.

[57] J. I. Lathrop and J. H. Lutz. Recursive computational depth. In Pier-
paolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors,
Automata, Languages and Programming, pages 132–142, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.

[58] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and its
applications. Springer-Verlag, 2 edition, 1997.

[59] Z. K. Litvinceva. The complexity of individual identity problems in semi-
groups. Algebra i Logika, 9:172–199, 1970.

[60] S. MacLane. Categories for the Working Mathematician, volume 5 of Gradu-
ate Texts in Mathematics. Springer-Verlag, New York, 1971.

[61] A.I. Mal’tsev. Sets with complete numberings. Algebra i Logika, 2(2):4–29,
1963. (Russian).

[62] D. A. Martin. Classes of recursively enumerable sets and degrees of unsolv-
ability. Z. Math. Logik Grundlagen Math., 12:295–310, 1966.

135

[63] D. A. Martin. Classes of recursively enumerable sets and degrees of unsolv-
ability. Mathematical Logic Quarterly, 12(1):295–310, 1966.

[64] D. A. Martin. Measure, category, and degrees of unsolvability. Unpublished
manuscript, 1967.

[65] W. Merkle. The complexity of stochastic sequences. Journal of Computer
and System Sciences, 74(3):350–357, 2008.

[66] W. Merkle and N. Mihailović. On the construction of effectively random sets.
J. Symbolic Logic, 69(3):862–878, 2004.

[67] W. Miller and D. A. Martin. The degrees of hyperimmune sets. Mathematical
Logic Quarterly, 14:159–166, 1968.

[68] C. F. Miller III. Group-Theoretic Decision Problems and their Classification.
Number 68 in Annals of Mathematical Studies. Princeton University Press,
Princeton, New Jersey, 1971.

[69] F. Montagna. Relative precomplete numerations and arithmetic. J. Philosph-
ical Logic, 11(4):419–430, 1982.

[70] F. Montagna and A. Sorbi. Universal recursion theoretic properties of r.e.
preordered structures. J. Symbolic Logic, 50(2):397–406, 1985.

[71] P. Moser and F. Stephan. Limit-depth and DNR degrees. Information Pro-
cessing Letters, 135:36–40, 2018.

[72] A. Myasnikov and D. Osin. Algorithmically finite groups. J. Pure Appl.
Algebra, 215(11):2789–2796, 2011.

[73] K.M. Ng and H. Yu. On the degree structure of equivalence relations under
computable reducibility. Notre Dame J. Formal Log., 60:733–761, 2019.

[74] A. Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305,
2005.

[75] A. Nies. Computability and randomness, volume 51 of Oxford Logic Guides.
Oxford University Press, Oxford, 2009.

[76] A. Nies and A. Sorbi. Calibrating word problems of groups via the complexity
of equivalence relations. Mathematical Structures in Computer Science, pages
1–15, 2018.

[77] A. Nies, F. Stephan, and S. Terwijn. Randomness, relativization and Turing
degrees. Journal of Symbolic Logic, 70:515–535, 2005.

136

[78] P. S. Novikov. On the algorithmic unsolvability of the word problem in group
theory. Trudy Mat. Inst. Steklov., 44:143, 1955. (Russian).

[79] Moser P. and Stephan F. Depth, highness and DNR degrees. Discret. Math.
Theor. Comput. Sci., 19(4), 2017.

[80] M. B. Pour-El and S. Kripke. Deduction preserving “Recursive Isomorphisms”
between theories. Fund. Math., 61:141–163, 1967.

[81] A. Rumyantsev and A. Shen. Probabilistic constructions of computable ob-
jects and a computable version of Lovász local lemma. Fundamenta Infor-
maticae, 132(1):1–14, 2014.

[82] C. Schnorr. A unified approach to the definition of random sequences. Math-
ematical systems theory, 5(3):246–258, 1971.

[83] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit, volume 218 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, 1971.

[84] V. Selivanov. Positive structures. In S. B. Cooper and S. S. Goncharov,
editors, Computability and Models, pages 321–350. Springer, New York, 2003.

[85] V. Shavrukov. Remarks on uniformly finitely precomplete positive equiva-
lences. Mathematical Logic Quarterly, 42(1):67–82, 1996.

[86] J. C. Shepherdson. Machine configuration and word problems of given degree
of unsolvability. Z. Math. Logik Grundlagen Math., 11:149–175, 1965.

[87] C. Smoryński. Logical Number Theory I: An Introduction. Springer-Verlag,
Berlin, Heidelberg, 1991.

[88] R. I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathe-
matical Logic. Springer-Verlag, Berlin, 1987. A study of computable functions
and computably generated sets.

[89] R. I. Soare. Turing computability. Theory and Applications of Computability.
Springer-Verlag, Berlin, 2016. Theory and applications.

[90] S. Tennenbaum. Degree of unsolvability and the rate of growth of functions.
In Proc. Sympos. Math. Theory of Automata (New York, 1962), pages 71–73.
Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y., 1963.

[91] M. van Lambalgen. Random sequences. PhD dissertation, University of Am-
sterdam, Amsterdam, 1987.

137

[92] A. Visser. Numerations, λ-calculus and arithmetic. In To HB Curry: Es-
says on Combinatory Logic, Lambda-Calculus and Formalism., pages 259–284.
Academic Press, New York, 1980.

[93] C. E. M. Yates. Recursively enumerable sets and retracing functions. Z. Math.
Logik Grundlagen Math., 8:331–345, 1962.

[94] L. Yu. When van Lambalgen’s theorem fails. Proceedings of the American
Mathematical Society, 135(3):861–864, 2007.

138

		2022-06-10T23:28:52+0000
	DELLE ROSE VALENTINO

