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In this work we study the notions of structural and universal completeness 
both from the algebraic and logical point of view. In particular, we provide 
new algebraic characterizations of quasivarieties that are actively and passively 
universally complete, and passively structurally complete. We apply these general 
results to varieties of bounded lattices and to quasivarieties related to substructural 
logics. In particular we show that a substructural logic satisfying weakening is 
passively structurally complete if and only if every classical contradiction is explosive 
in it. Moreover, we fully characterize the passively structurally complete varieties 
of MTL-algebras, i.e., bounded commutative integral residuated lattices generated 
by chains.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The main aim of this paper is to explore some connections between algebra and logic; mainly, we try to 
produce some bridge theorems. A bridge theorem is a statement connecting logical (and mostly syntactic) 
features of deductive systems and properties of classes of algebras; this connection is usually performed 
using the tools of general algebra and the rich theory that is behind it. The main reason behind this kind 
of exploration is in the further understanding one can gain by connecting two apparently distant fields. In 
this way, we can explore logical properties in purely algebraic terms; at the same time statements can be 
imported from logic that have an important and often new algebraic meaning.
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The set of logical problems we want to explore is connected with the concept of structural completeness of 
a logic, the latter seen as a single-conclusion consequence relation that is substitution invariant and finitary. 
For a logic, being structurally complete means that each of its proper extensions admits new theorems. This 
notion can be formalized in a more rigorous way, using the concept of admissible rule. A rule is admissible 
in a logic if, whenever there is a substitution making its premises a theorem, such substitution also makes 
the conclusion a theorem. A logic is then structurally complete if all its admissible rules are derivable in 
the system. It is well-known that classical logic is structurally complete; intuitionistic logic is not but it 
satisfies a weaker although still interesting notion: it is passively structurally complete. We will see that 
this is not just a feature of intuitionism but it can be explained in a much more general framework, and it 
is connected to the way the contradictions of classical logic are treated. In more details, passive structural 
completeness means that all rules that do not apply to theorems are derivable. Naturally, the dual notion 
of active structural completeness also arises, which instead isolates the derivability of those admissible rules 
for which there exists a substitution making their premises a theorem. The latter notion has been explored 
in generality in [35]. Structural completeness and its hereditary version have been deeply studied in the 
literature: e.g., in general algebraic terms in [13], in substructural logics in [71], in fuzzy logics in [29], in 
intermediate logics in [30].

A natural extension of this kind of problems is to consider multiple-conclusion rules, i.e. formal pairs 
Σ ñ Δ, where both Σ and Δ are finite sets of formulas over a suitable language. We say that a multiple-
conclusion rule is derivable in a logic if at least one of the formulas δ in Δ is derivable from Σ in the logic 
(i.e. the pair pΣ, δq belongs to the consequence relation defining the logic); likewise a multiple-conclusion 
rule Σ ñ Δ is admissible if a substitution making all the formulas in Σ into theorems makes at least one of 
the formulas in Δ a theorem. We mention that while the previous definition of admissibility for a (single-
conclusion) rule corresponds to saying that one can add it to the consequence relation without obtaining 
new theorems, and both these definitions are widely used in the literature, the analogous correspondence 
does not hold for multiple-conclusion rules (and multiple-conclusion consequence relations, see [53,66] and 
the discussion in Subsection 2.4).

Now, a logic is universally complete if every admissible multiple-conclusion rule is derivable in it. It is 
then also possible to investigate the situation in which admissible multiple-conclusion rules are active or 
passive in a logic, and thus the corresponding notions of universal completeness. Universal completeness in 
connection to admissibility has been studied in [22].

The way in which our bridge theorems will be created exploits the machinery of the so-called Blok-Pigozzi 
connection [18]. Without going into details, this machinery allows one to express purely logical concepts in 
an algebraic language. The advantage of doing so is evident: on one hand we can use the entire wealth of 
results about classes of algebras and various algebraic operators. On the other hand, very often by means of 
this translation one ends up with algebraic results that are interesting in their own nature, irregardless of 
their logical origin. While not every logical system admits this translation, many interesting and/or classical 
systems do: classical and intuitionistic logic, relevance logics, substructural logics, many-valued logics, many 
modal logics and so on. In this framework, one can translate the previously described notions of structural 
and universal completeness into properties of the quasiequational or universal theory of the ω-generated free 
algebra in a quasivariety. In this setting, we will rephrase the notions of interest not in terms of formulas, 
but in terms of equations in a suitable language.

In this manuscript our aim is twofold; on one side we will try to describe in a complete and organic way 
(as much as it is possible) the phenomena mentioned above and the relations among them. In particular, 
we will recall the existing results trying to put them in a coherent perspective, which we believe is currently 
lacking, and we will provide many examples. On the other side, we will provide new results and novel char-
acterizations of those notions that are missing an effective algebraic description. More specifically, we will 
first show how the characterization of active structural completeness in [35] can be extended to describe 
active universal completeness. Moreover, we will give algebraic descriptions of the notions of passive uni-
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versal and structural completeness and the latter will result in a useful characterization. As a particularly 
interesting consequence, we show that a substructural logic satisfying the weakening rule is passively struc-
turally complete if and only if every contradiction of classical logic is explosive in it. This generalizes and 
explains the passive structural completeness of intuitionistic logic. Moreover, it entails that all substructural 
logics (with weakening) with the Glivenko property with respect to classical logic are passively structurally 
complete. Further specializing the general result, we build on it to provide a clear characterization (and an 
axiomatization) of the minimal passively structurally complete logic that is an axiomatic extension of the 
t-norm based logic MT L. From the algebraic side, this means that we characterize the passively structurally 
complete varieties of bounded commutative integral residuated lattices generated by chains.

The techniques we will employ in our study are the ones proper of general algebra. In particular, we 
will use the understanding of algebraic objects such as projective and exact algebras. The same objects are 
known to be relevant for the algebraic study of unification problems in algebraizable logics [47]. In fact, we 
will show how the notion of unifiability of a set of formulas (or, equivalently, a set of equations) plays a 
major role in our results.

The structure of this manuscript is as follows. In the next section we will discuss the needed preliminary 
notions. In particular, the Blok-Pigozzi connection, projective and exact algebras, algebraic unification, and 
finally, we define the notions of structural and universal completeness. Section 3 is devoted to universal 
completeness, and Section 4 to structural completeness, both in their various declinations. The last section 
is devoted to a deeper understanding of some relevant examples from the realms of algebra and (algebraic) 
logic respectively. In particular, in Subsection 5.1 we apply our results to the variety of (bounded) lattices; 
finally, in Subsection 5.2, we prove the aforementioned results and more about substructural logics.

2. Preliminaries

2.1. Universal algebra and the Blok-Pigozzi connection

Let K be a class of algebras; we denote by I, H, P, S, Pu the class operators sending K to the class of 
all isomorphic copies, homomorphic images, direct products, subalgebras and ultraproducts of members of 
K. The operators can be composed in the obvious way; for instance SPpKq denotes all algebras that are 
embeddable in a direct product of members of K; moreover there are relations among the classes resulting 
from applying the operators in a specific orders, for instance PSpKq Ď SPpKq and HSPpKq is the largest 
class we can obtain composing the operators. We will use all the known relations without further notice, 
but the reader can consult [72] or [21] for a textbook treatment.

If ρ is a type of algebras, an equation is a pair p, q of ρ-terms (i.e. elements of the absolutely free algebra 
Tρpωq) that we write suggestively as p « q; a clause in ρ is a formal pair pΣ, Γq that we write as Σ ñ Γ, 
where Σ, Γ are finite sets of equations; a clause is a quasiequation if |Γ| “ 1 and it is negative if Γ “ H. 
Clearly an equation is a quasiequation in which Σ “ H.

Given any set of variables X, an assignment of X into an algebra A of type ρ is a function h mapping 
each variable x P X to an element of A, that extends (uniquely) to a homomorphism (that we shall also call 
h) from the term algebra Tρpωq to A. An algebra A satisfies an equation p « q with an assignment h (and 
we write A, h ( p « q) if hppq “ hpqq in A. An equation p « q is valid in A (and we write A ( p « q) if for 
all assignments h in A, A, h ( p « q; if Σ is a set of equations then A ( Σ if A ( σ for all σ P Σ. A clause is 
valid in A (and we write A ( Σ ñ Δ) if for all assignments h to A, hppq “ hpqq for all p « q P Σ implies that 
there is an identity s « t P Δ with hpsq “ hptq; in other words a clause Σ ñ Δ can be understood as the 
universal sentence @xp

Ź

Σ Ñ
Ž

Δq, where x are the variables occurring in Σ YΔ and 
Ź

H “ 1, 
Ž

H “ 0. 
Conversely, note that an arbitrary universal formula of the language may be associated (by putting the 
quantified formula into conjunctive normal form) with a finite set of clauses. A clause Σ ñ Δ is valid in a 
class K if it is valid in all algebras in K, and we write K ( Σ ñ Δ or (K Σ ñ Δ.
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A class of algebras is a variety if it is closed under H, S and P, a quasivariety if it is closed under I, 
S, P and Pu and a universal class if it is closed under I, S, and Pu. The following facts were essentially 
discovered by A. Tarski and J. Łòs in the pioneering phase of model theory; for proof of this and similar 
statements the reader can consult [26].

Lemma 2.1. Let K be any class of algebras. Then:

1. K is a universal class if and only if ISPupKq “ K if and only if it is the class of algebras in which a set 
of universal sentences is valid;

2. K is a quasivariety if and only if ISPPupKq “ K if and only if it is the class of algebras in which a set 
of quasiequations is valid;

3. K is a variety if and only if HSPpKq “ K if and only if it is the class of algebras in which a set of 
equations is valid.

Notation 1. We will often write V for HSP and Q for ISPPu.

For the definition of free algebras in a class K on a set X of generators, in symbols FKpXq, we refer to 
[21]; we merely observe that every free algebra on a class K belongs to ISPpKq. It follows that every free 
algebra in K is free in ISPpKq and therefore for any quasivariety Q, FQpXq “ FVpQqpXq.

There are two fundamental results that we will be using many times and deserve a spotlight. Let B, pAiqiPI

be algebras in the same signature; we say that B embeds in 
ś

iPI Ai if B P ISp
ś

iPI Aiq. Let pi be the i-th 
projection, or better, the composition of the embedding and the i-th projection, from B to Ai; the embedding 
is subdirect if for all i P I, pipBq “ Ai and in this case we will write

B ďsd

ź

iPI

Ai.

An algebra B is subdirectly irreducible if it is nontrivial and for any subdirect embedding

B ďsd

ź

iPI

Ai

there is an i P I such that B and Ai are isomorphic. It can be shown that A is subdirectly irreducible if 
and only if the congruence lattice ConpAq of A has a unique minimal element different from the trivial 
congruence. If V is a variety we denote by Vsi the class of subdirectly irreducible algebras in V.

Theorem 2.2.

1. (Birkhoff [16]) Every algebra can be subdirectly embedded in a product of subdirectly irreducible algebras. 
So if A P V, then A can be subdirectly embedded in a product of members of Vsi.

2. (Jónsson’s Lemma [57]) Suppose that K is a class of algebras such that VpKq is congruence distributive; 
then Vsi Ď HSPupKq.

If Q is a quasivariety and A P Q, a relative congruence of A is a congruence θ such that A{θ P Q; relative 
congruences form an algebraic lattice ConQpAq. Moreover, for an algebra A and a set H Ď A ˆ A there 
exists the least relative congruence θQpHq on A containing H. When H “ tpa, bqu, we just write θQpa, bq. 
When Q is a variety we simplify the notation by dropping the subscript Q.

For any congruence lattice property P we say that A P Q is relative P if ConQpAq satisfies P . So for 
instance A is relative subdirectly irreducible if ConQpAq has a unique minimal element; since clearly ConQpAq
is a meet subsemilattice of ConpAq, any subdirectly irreducible algebra is relative subdirectly irreducible for 
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any quasivariety to which it belongs. For a quasivariety Q we denote by Qrsi the class of relative subdirectly 
irreducible algebras in Q. We have the equivalent of Birkhoff’s and Jónsson’s results for quasivarieties:

Theorem 2.3. Let Q be any quasivariety.

1. (Mal’cev [64]) Every A P Q is subdirectly embeddable in a product of algebras in Qrsi.
2. (Czelakowski-Dziobiak [32]) If Q “ QpKq, then Qrsi Ď ISPupKq.

The following fact will be used in the sequel.

Lemma 2.4. Let A be an algebra such that VpAq is congruence distributive. Then QpAq “ VpAq if and only 
if every subdirectly irreducible algebra in HSPupAq is in ISPupAq.

Proof. Suppose first that QpAq “ VpAq, and let A be a subdirectly irreducible algebra in HSPupAq. Thus 
A is subdirectly irreducible in VpAq “ QpAq, and by Theorem 2.3 A P ISPupAq.

Conversely assume that every subdirectly irreducible algebra in HSPupAq is in ISPupAq. Since VpAq is 
congruence distributive, by Theorem 2.2(2) every subdirectly irreducible algebra in VpAq is in HSPupAq, 
thus in ISPupAq. Now every algebra in VpAq is subdirectly embeddable in a product of subdirectly irre-
ducible algebras in VpAq (Theorem 2.2(1)). Therefore, VpAq Ď ISPISPupAq Ď ISPPupAq “ QpAq and 
thus equality holds. l

In this work we are particularly interested in quasivarieties that are the equivalent algebraic semantics 
of a logic in the sense of Blok-Pigozzi [18]. We will spend some time illustrating the machinery of Abstract 
Algebraic Logic that establishes a Galois connection between algebraizable logics and quasivarieties of logic, 
since it is relevant to understand our results. For the omitted details we refer the reader to [18,40,43].

A (single-conclusion) consequence relation on the set of terms Tρpωq (also called algebra of formulas) of 
some algebraic language ρ is a relation $Ď PpTρpωqq ˆ Tρpωq (and we write Σ $ γ for pΣ, γq P$) such 
that:

1. if α P Γ then Γ $ α;
2. if Γ $ δ for all δ P Δ and Δ $ β, then Γ $ β.

We call substitution any endomorphism of Tρpωq; $ is substitution invariant (also called structural) if Γ $ α

implies tσpγq : γ P Γu $ σpαq for each substitution σ. Finally, $ is finitary if Γ $ α implies that there is 
a finite Γ1 Ď Γ such that Γ1 $ α. By a logic L in what follows we mean a substitution-invariant finitary 
consequence relation $L on Tρpωq for some algebraic language ρ, $LĎ PpTρpωqq ̂ Tρpωq.

Now, a theorem of a logic L (given by $L) is a formula ϕ such that H $L ϕ; in this case we will usually 
omit H and just write $L ϕ. A multiple-conclusion rule of L is an ordered pair pΣ, Γq where Σ, Γ are finite 
sets of formulas. We usually write a multiple-conclusion rule as Σ ñ Γ. We will call single-conclusion rules 
just rules. We say that a multiple-conclusion rule Σ ñ Δ is derivable in L if Σ $L δ for some δ P Δ. A 
(single-conclusion) rule Σ ñ δ is then derivable in L if and only if Σ $L δ. If $1 and $2 are two logics over 
the same language, $2 is an extension of $1 if $1Ď$2; $2 is an axiomatic extension of $1 if there is a set 
of formulas Γ such that $2 is the smallest logic that is an extension of $1 satisfying $2 γ for all γ P Γ.

In loose terms, to establish the algebraizability of a logic L with respect to a quasivariety of algebras QL
over the same language ρ, one needs a finite set of one-variable equations

τpxq “ tδipxq « εipxq : i “ 1, . . . , nu

over terms of type ρ and a finite set of formulas of L in two variables
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Δpx, yq “ tϕ1px, yq, . . . , ϕmpx, yqu

that allow to transform equations, quasiequations and clauses in QL into formulas, single- and multiple-
conclusion rules of L; moreover this transformation must intuitively respect both the consequence relation 
of the logic and the semantical consequence of the quasivariety; more precisely, for all sets of formulas Γ of 
L and formulas ϕ P Tρpωq

Γ $L ϕ iff τpΓq (QL τpϕq

where τpΓq is a shorthand for tτpγq : γ P Γu, and also

px « yq )(QL τpΔpx, yqq.

If a logic has a variety as its equivalent algebraic semantics it is said to be strongly algebraizable. We mention 
that algebraizability is preserved by extensions (and strong algebraizability by axiomatic extensions).

A quasivariety Q is a quasivariety of logic if it is the equivalent algebraic semantics for some logic LQ; 
the Galois connection between algebraizable logics and quasivarieties of logic is given by

LQL “ L QLQ “ Q.

Not every quasivariety is a quasivariety of logic; for instance no idempotent quasivariety, such as any 
quasivariety of lattices, can be a quasivariety of logics. Nonetheless quasivarieties of logic are plentiful. In 
fact any ideal determined variety is such, as well as any quasivariety coming from a congruential variety with 
normal ideals (see [9] for details). Moreover, every quasivariety is categorically equivalent to a quasivariety 
of logic [68]. This means that if an algebraic concept is expressible through notions that are invariant 
under categorical equivalence, and it holds for a quasivariety Q, then it holds for its categorically equivalent 
quasivariety of logic Q1; and hence it can be transformed into a logical concept in LQ1 using the Blok-
Pigozzi connection. The following result hints at what kind of properties can be transferred by categorical 
equivalence.

Theorem 2.5 ([12]). Let K be a class closed under subalgebras and direct products. If K is categorically 
equivalent to a quasivariety Q, then K is a quasivariety.

Suppose now that Q and R are quasivarieties and suppose that F : Q ÝÑ R is a functor between the two 
algebraic categories witnessing the categorical equivalence. Now, F preserves all the so-called categorical 
properties, i.e., those notions that can be expressed as properties of morphisms. In particular, embeddings 
are mapped to embeddings (since in algebraic categories they are exactly the categorical monomorphisms), 
surjective homomorphisms are mapped to surjective homomorphisms (since they correspond to regular
epimorphisms in the categories). Moreover, we observe that direct products are preserved as well, since they 
can be expressed via families of surjective homomorphisms (see e.g. [21]). Therefore, if Q1 is a subquasivariety 
of Q, then the restriction of F to Q1 witnesses a categorical equivalence between Q1 and

R1 “ tB P R : B “ F pAq for some A P Q1u.

It follows from Theorem 2.5 that R1 is a subquasivariety of R, and that R1 is a variety whenever Q1 is such. 
Given a quasivariety Q, we denote by ΛqpQq the lattice of subquasivarieties of Q. Hence the correspondence 
sending Q1 ÞÝÑ R1 is a lattice isomorphism between ΛqpQq in ΛqpRq that preserves all the categorical 
properties. Moreover, we observe that, since ultraproducts in an algebraic category admit a categorical 
definition which turns out to be equivalent to the algebraic one (see for instance [37]), the functor F also 
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maps universal subclasses to universal subclasses; more precisely, U Ď Q is a universal class if and only if 
F pUq Ď R is a universal class.

Let us show an example of how we can use these correspondences, that is also a preview of what we will 
see in the coming sections; if Q is a quasivariety, a subquasivariety Q1 is equational in Q if Q1 “ HpQ1q XQ. 
A quasivariety is primitive if every subquasivariety of Q is equational in Q. It is clear from the discussion 
above that this concept is preserved by categorical equivalence and that the lattice isomorphism described 
above sends primitive subquasivarieties in primitive subquasivarieties.

2.2. Projectivity, weak projectivity and exactness

We now introduce the algebraic notions that will be the key tools for our investigation: projective, weakly 
projective, exact, and finitely presented algebras.

Definition 2.6. Given a class K of algebras, an algebra A P K is projective in K if for all B, C P K, any 
homomorphism h : A ÞÝÑ C, and any surjective homomorphism g : B ÞÝÑ C, there is a homomorphism 
f : A ÞÝÑ B such that h “ gf .

A C

B

h

f
g

Determining the projective algebras in a class is usually a challenging problem, especially in a general 
setting. If however K contains all the free algebras in K (in particular, if K is a quasivariety), projectivity 
admits a simpler formulation. We call an algebra B a retract of an algebra A if there is a homomorphism 
g : A ÞÝÑ B and a homomorphism f : B ÞÝÑ A with gf “ idB (and thus, necessarily, f is injective and g
is surjective). The following theorem was proved first by Whitman for lattices [78] but it is well-known to 
hold for any class of algebras.

Theorem 2.7. Let Q be a quasivariety. Then the following are equivalent:

1. A is projective in Q;
2. A is a retract of a free algebra in Q;
3. A is a retract of a projective algebra in Q.

In particular every free algebra in Q is projective in Q.

Definition 2.8. Given a quasivariety Q we say that an algebra A is finitely presented in Q if there exists a 
finite set X and a finite set H of pairs of terms over X such that A – FQpXq{θQpHq.

The proof of the following theorem is standard (but see [47]).

Theorem 2.9. For a finitely presented algebra A P Q the following are equivalent:

1. A is projective in Q;
2. A is projective in the class of all finitely presented algebras in Q;
3. A is a retract of a finitely generated free algebra in Q.
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As a consequence we stress that if Q is a quasivariety and V “ VpQq then all the algebras that are 
projective in Q are also projective in V (and vice versa). Moreover, all the finitely generated projective 
algebras in Q lie inside QpFQpωqq.

Definition 2.10. An algebra A is weakly projective in an algebra B if A P HpBq implies A P SpBq; an algebra 
is weakly projective in a class K if it is weakly projective in any algebra B P K.

Definition 2.11. If Q is a quasivariety of algebras and A P Q, A is exact in Q if it is embeddable into some 
free algebra in Q.

Clearly any projective algebra in Q is weakly projective in Q and any weakly projective algebra in Q is 
exact in Q. Observe also the following consequence of the definition.

Lemma 2.12. Let Q be a quasivariety and let A be a κ-generated algebra in Q, for some cardinal κ; then the 
following are equivalent:

1. A is exact in Q;
2. A P ISpFQpκqq.

Remark 2.13. For finitely generated algebras our definition of exactness coincides with the one in [23], i.e. 
a finitely generated algebra A is exact in Q if and only if A P ISpFQpωqq.

We close this subsection with a couple of results connecting projectivity and weak projectivity.

Proposition 2.14. Let A be a finite subdirectly irreducible algebra; if A is weakly projective in QpAq, then it 
is projective in QpAq.

Proof. Let Q “ QpAq; since A is finite, Q is locally finite. Let F be a finitely generated (hence finite) free 
algebra in Q such that A P HpFq; since A is weakly projective, A is embeddable in F and without loss of 
generality we may assume that A ď F. Consider the set

V “ tα P ConQpFq : αXA2
“ 0Au,

where we denote by 0A the minimal congruence of A. It is easy to see that V is an inductive poset so we 
may apply Zorn’s Lemma to find a maximal congruence θ P V . Clearly a ÞÝÑ a{θ is an embedding of A
into F{θ. We claim that F{θ is relative subdirectly irreducible and to prove so, since everything is finite, it 
is enough to show that θ is meet irreducible in ConQpFq; so let α, β P ConQpAq such that α^ β “ θ. Then

0A “ θ XA2
“ pα^ βq XA2

“ pαXA2
q ^ pβ XA2

q;

But A is subdirectly irreducible, so 0A is meet irreducible in ConpAq; hence either αXA2 “ 0A or βXA2 “ 0A, 
so either α P V or β P V . Since θ is maximal in V , either α “ θ or β “ θ, which proves that F{θ is relative 
subdirectly irreducible. Therefore, by Theorem 2.3(2), F{θ P ISpAq; since F{θ and A are both finite and each 
one is embeddable in the other, they are in fact isomorphic. Thus A ď F, and there is a homomorphism from 
F onto A that maps each a P A to itself. This shows that A is a retract of F, and therefore A is projective 
in QpAq. l

For varieties we have to add the hypothesis of congruence distributivity, since the use of Theorem 2.2(2) 
is paramount; for the very similar proof see [54, Theorem 9].
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Proposition 2.15. Let A be a finite subdirectly irreducible algebra such that VpAq is congruence distributive; 
if A is weakly projective in VpAq, then it is projective in VpAq.

We observe that in algebraic categories projectivity is a property preserved by categorical equivalence 
and the same holds for weak projectivity and exactness. Finally by [42] being finitely presented and being 
finitely generated are also categorical properties preserved by equivalences.

2.3. Algebraic unification

The main objects of our study, i.e., the notions of universal and structural completeness, are closely related 
to unification problems. The classical syntactic unification problem given two terms s, t finds a unifier for 
them; that is, a uniform replacement of the variables occurring in s and t by other terms that makes s and 
t identical. When the latter syntactical identity is replaced by equality modulo a given equational theory 
E, one speaks of E-unification. S. Ghilardi [47] proved that there is a completely algebraic way of studying 
(E-)unification problems in varieties of logic, which makes use of finitely presented and projective algebras 
and thus is invariant under categorical equivalence.

Let us discuss Ghilardi’s idea in some detail showing how it can be applied to quasivarieties. If Q is a 
quasivariety and Σ is a finite set of equations in the variables X “ tx1, . . . , xnu we can identify a substitution 
σ with an assignment from X to FQpωq, extending to a homomorphism from FQpXq to FQpωq.

Definition 2.16. A unification problem for a quasivariety Q is a finite set of identities Σ in the language of 
Q; Σ is unifiable in Q if there is a substitution σ such that Q ( σpΣq, i.e.

Q ( ppσpx1q, . . . , σpxnqq « qpσpx1q, . . . , σpxnqq

for all p « q P Σ. The substitution σ is called a unifier for Σ.

Observe that Σ is unifiable in Q if and only if it is unifiable in VpQq. Let us now present the algebraic 
approach, where a unification problem can be represented by a finitely presented algebra in Q.

Definition 2.17. If A is in Q, a unifier for A is a homomorphism u : A ÝÑ P where P is a projective algebra 
in Q; we say that an algebra is unifiable in Q if at least one such homomorphism exists. A quasivariety Q
is unifiable if every finitely presented algebra in Q is unifiable.

Notation 2. When we write FQpXq{θQpΣq, θQpΣq is the relative congruence generated in FQpXq by the set 
tpp, qq : p « q P Σu.

Remark 2.18. Let Q be a quasivariety. Consider a set of identities Σ over variables in a set X, in the language 
of Q, and an assignment h : FQpXq Ñ A P Q such that A, h ( Σ; i.e. such that the kernel kerphq contains 
θQpΣq (or equivalently its set of generators tpp, qq : p « q P Σu). Then the Second Homomorphism Theorem 
yields directly that h can be lifted to a homomorphism uh : FQpXq{θQpΣq Ñ A that closes the following 
diagram:

FQpXq A

FQpXq{θQpΣq

h

uh

πΣ
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where πΣ : FQpXq Ñ FQpXq{θQpΣq is the natural epimorphism; i.e. h “ uh ˝ πΣ. We will often use this fact 
in proofs.

The following summarizes the needed results of [47] applied to quasivarieties.

Theorem 2.19. Let Q be a quasivariety, and let Σ be a finite set of equations in the language of Q with 
variables in a (finite) set X; then:

1. if Σ is unifiable via σ : FQpXq Ñ FQpY q then uσ : FQpXq{θQpΣq Ñ FQpY q defined by

uσpt{θQpΣqq “ σptq

is a unifier for FQpXq{θQpΣq;
2. conversely let A “ FQpXq{θQpΣq. If there is a unifier u : A Ñ P, where P is projective and a retract of 

FQpY q witnessed by an embedding i : P Ñ FQpY q, the substitution

σu : x ÞÝÑ ipupx{θQpΣqqq

is a unifier for Σ in Q.

Proof. For the first claim, consider σ : FQpXq Ñ FQpY q; then since θQpΣq is the least congruence of FQpXq

containing the set of pairs S “ tpp, qq : p « q P Σu, and given that S Ď kerpσq, by Remark 2.18 we can 
obtain the map uσ that is indeed a unifier for FQpXq{θQpΣq.

The second claim is easily seen, since σu is defined by a composition of homomorphism and as above the 
set of pairs S “ tpp, qq : p « q P Σu is contained in its kernel, which yields that σu is a unifier for Σ in 
Q. l

Corollary 2.20. A finite set of identities Σ is unifiable in Q if and only if the finitely presented algebra 
FQpXq{θQpΣq is unifiable in Q.

The following observation shows how to characterize unifiability in quasivarieties.

Definition 2.21. For a quasivariety Q, we let FQ be the smallest free algebra, i.e. FQpHq (if there are constant 
operations) or else FQpxq.

We have the following observation:

Lemma 2.22. Let Q be a quasivariety and let A P Q. Then the following are equivalent:

1. A is unifiable in Q;
2. there is a homomorphism from A to FQ.

Proof. Note that (2) trivially implies (1), since FQ is projective. Vice versa, if A is unifiable, there is a 
homomorphism from A to some projective algebra P. Since P is a retract of some free algebra in Q, and FQ
is a homomorphic image of every free algebra in Q, the claim follows. l

Remark 2.23. Note that being unifiable for an algebra A in a quasivariety Q really means having a homo-
morphism to some free algebra; now, given any two free algebras F, G, there always is a homomorphism 
from F to G. The reader can then observe that one could rewrite the previous lemma substituting to FQ
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FVpXq{θ FVpXq{θ
1 P FVpωq

Fig. 1. FVpXq{θ
1 is exact.

any factor of a free algebra that is also a subalgebra, so in particular any weakly projective or exact algebra. 
We stated the previous lemma for convenience, since we will use that specific instance often in the proofs.

The above lemma implies for instance that if FQ is trivial, then Q is unifiable since every algebra admits 
a homomorphism onto a trivial algebra. Hence, examples of unifiable algebras include lattices, groups, 
lattice-ordered abelian groups, residuated lattices. On the other hand, both bounded lattices and bounded 
residuated lattices (explored in Subsection 5.1 and 5.2 respectively) are unifiable if and only if they admit 
a homomorphism to the algebra with two elements 0 and 1 (over the appropriate signature), which is the 
smallest (0-generated) free algebra.

We observe in passing that if A – FQpXq{θQ is a finitely presented unifiable algebra in Q, witnessed by 
a unifier u : A ÝÑ P, then u can be split into a homomorphism onto its image upAq, and an embedding 
from upAq to P. By the Third Homomorphism Theorem there is a θ1 P ConpFQpXqq corresponding to the 
kernel of the onto homomorphism u : A ÝÑ upAq, θ1 ě θ, such that FVpXq{θ

1 embeds in P; note that 
θ1 P ConQpFQpXqq, since P P Q. The diagram in Fig. 1 shows that indeed FVpXq{θ

1 is exact.
Let us now introduce the usual notion of order among unifiers. Given two unifiers u1, u2 for A we say that 

u1 is less general then u2 (and we write u1 ĺ u2), if there is a homomorphism h that makes the following 
diagram commute.

A P2

P1

u2

u1
h

Clearly ĺ is a preordering and so the equivalence classes of the associated equivalence relation (i.e. the 
unifiers that are equally general) form a poset UA; using the maximal sets of that poset it is possible to 
define a hierarchy of unification types (see [47]). In particular, the unification type is unitary if there is one 
maximal element, that is called the most general unifier or mgu, and is thought of as a best solution to the 
unification problem.

Definition 2.24. We say that a quasivariety Q has projective unifiers if every finitely presented unifiable 
algebra in Q is projective, and that it has exact unifiers if every finitely presented unifiable algebra in Q is 
exact.

If Q has projective unifiers, then (from the algebraic perspective) the identity map is a unifier, and it is 
also the most general unifier.

Next we have a lemma whose proof is straightforward (modulo Lemma 2.22).

Lemma 2.25. Let Q be a quasivariety; then the following are equivalent:

1. Q has projective (exact) unifiers;
2. for any finitely presented A P Q, A admits a homomorphism to FQ if and only if A is projective (exact).

If Q is locally finite, then we have a necessary and sufficient condition.
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Lemma 2.26. Let Q be a locally finite quasivariety of finite type, then the following are equivalent:

1. Q has projective unifiers;
2. every finite unifiable algebra in Q is projective in the class of finite algebras in Q.

Proof. (1) implies (2) is obvious. Assume (2), let A be unifiable and finite and let B P Q such that f : B ÝÑ A
is a onto homomorphism. Let a1, . . . , an be the generators of A and let b1, . . . , bn P B with fpbiq “ ai for 
i “ 1 . . . n; if B1 is the subalgebra generated by b1, . . . , bn then f restricted to B1 is onto. Clearly B1 is finite. 
Hence by hypothesis there exists a g : A ÝÑ B1 such that fg is the identity on A. This shows that A is 
projective in B and hence in Q. Thus (1) holds. l

Having exact unifiers is weaker than having projective unifiers:

Example 2.27. The variety D of distributive lattices is unifiable, indeed it has no constants and it is idem-
potent; hence its least free algebra is trivial. But D does not have projective unifiers: a distributive lattice 
is projective if and only if the meet of join irreducible elements is again join irreducible [11], so there are 
finite non projective distributive lattices. However every finitely presented (i.e. finite) distributive lattice is 
exact [22].

Example 2.28. A different example is the variety ST of Stone algebras; a Stone algebra is a pseudocomple-
mented bounded distributive lattice in the signature p^, _, ̊ , 0, 1q such that x˚ _ x˚˚ « 1 holds. A Stone 
algebra is unifiable if and only if it has a homomorphism to the two element Boolean algebra if and only 
if it is nontrivial. While there are nontrivial Stone algebras that are not projective, any nontrivial finitely 
presented Stone algebra is exact ([22, Lemma 17]). Hence ST has exact unifiers.

Moreover, there are examples of varieties with a most general unifier that do not have projective unifiers.

Example 2.29. From the results in [48], the variety SH of Stonean Heyting algebras (that is, Heyting algebras 
such that �x _��x « 1 holds) is such that every unifiable algebra A P SH has a most general unifier. How-
ever, SH does not have projective unifiers. The algebra FSHpx, y, zq{θ, where θ is the congruence generated 
by the pair p�x Ñ py _ zq, 1q, is unifiable but not projective. We observe that Ghilardi’s argument relies 
heavily on some properties of Heyting algebras and uses Kripke models, making it difficult to generalize.

Trivial examples show that having projective or exact unifiers is not inherited in general by subvarieties 
(see for instance [35, Example 7.2]). The following lemma (that we extract from [35, Lemma 5.4]) gives a 
sufficient condition for having projective unifiers. We write a detailed proof for the reader’s convenience.

Lemma 2.30 ([35]). Let Q be a quasivariety and let Q1 be a subquasivariety of Q such that if B “

FQ1pXq{θQ1pΣq is finitely presented and unifiable in Q1, then A “ FQpXq{θQpΣq is unifiable in Q. If Q
has projective unifiers then Q1 has projective unifiers.

Proof. It is an easy exercise in general algebra to show that if Θ “
Ş

tθ P ConpFQpXqq : FQpXq{θ P Q1u
then

FQ1pXq{θQ1pΣq – FQpXq{pθQpΣq _Θq.

It follows that B is a homomorphic image of A via the natural surjection

p : a{θQpΣq ÞÝÑ a{pθQpΣq _Θq
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composed with the isomorphism. Moreover if f : A ÝÑ C is a homomorphism and C P Q1, then kerppq ď
kerpfq and by the Second Homomorphism Theorem there is a f 1 : B ÝÑ C with f 1p “ f .

Now let B “ FQ1pXq{θQ1pΣq be finitely presented and unifiable and let A “ FQpXq{θQpΣq; then A is 
finitely presented and unifiable as well, so, since Q has projective unifiers, A is projective in Q. We now show 
that B is projective. Suppose there are algebras C, D P Q1 Ď Q and homomorphisms h : B Ñ D, g : C Ñ D
with g surjective. Then, there is a homomorphism hp : A Ñ D, and since A is projective by the definition 
of projectivity there is a homomorphism f : A Ñ C such that gf “ hp. Factoring f as above, there is f 1
such that f 1p “ f . Therefore since gf 1p “ gf “ hp and p is surjective, we get that gf 1 “ h which means 
that B is projective in Q1. l

We will see later in Section 3.2 (Example 3.30) that Lemma 2.30 does not hold with “projective unifiers” 
replaced by “exact unifiers”. We can build on the previous lemma and obtain the following.

Lemma 2.31. Suppose that Q is a quasivariety such that FQ “ FQ1 for all nontrivial Q1 Ď Q. If Q has 
projective unifiers, then every subquasivariety Q1 has projective unifiers.

Proof. First we observe that the trivial quasivariety has projective unifiers. Now, let Q1 be a nontrivial sub-
quasivariety of Q, let B “ FQ1pXq{θQ1pΣq be finitely presented and unifiable in Q1 and let A “ FQpXq{θQpΣq. 
Then B is a homomorphic image of A and, since B is unifiable there is a homomorphism from B to FQ1 “ FQ. 
Hence A is unifiable as well; thus the hypothesis of Lemma 2.30 is satisfied, and so Q1 has projective unifiers. 
Given that the trivial quasivariety clearly has projective unifiers, the thesis holds. l

We close this subsection with a corollary appearing also in [35] that is useful to some examples we will 
explore in what follows. We reproduce the easy proof for the reader’s convenience.

Corollary 2.32. Let Q be a quasivariety and let VpQq “ V; if V has exact (projective) unifiers, then so does 
Q.

Proof. First recall that Q and V have the same free algebras. Consider the two finitely presented algebras 
A “ FQpXq{θVpΣq and B “ FQpXq{θQpΣq; if B is unifiable then, as B is a homomorphic image of A via 
the epimorphism p described in the proof of Lemma 2.30, A is unifiable as well hence it is exact. Therefore 
there is an embedding u : A ÝÑ FQpωq by Lemma 2.12; then by (the proof of) Lemma 2.30 there is a 
g : B ÝÑ FQpωq with gp “ u. Since u is injective, so is p and hence A and B are isomorphic. This proves 
the thesis. l

2.4. Structural and universal completeness

We now introduce the main notions of interest of this work, that is, structural and universal completeness.

Definition 2.33. Let L be a logic over an algebraic language ρ, given by a substitution invariant finitary 
consequence relation $Ď PpTρpωqq ̂ Tρpωq. A multiple-conclusion rule Σ ñ Γ is passive in L if there is no 
substitution σ such that $ σpαq for all α P Σ; a multiple-conclusion rule is active otherwise. Finally, Σ ñ Δ
is negative if Δ “ H.

The following is a key notion for the rest of the work.

Definition 2.34. A multiple-conclusion rule Σ ñ Δ is admissible in a logic L if for every substitution σ:

$ σpαq for all α P Σ implies $ σpβq for some β P Δ;
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in particular, a negative multiple-conclusion rule Σ ñH is admissible if and only if there is no substitution 
σ making all the premises in Σ a theorem of L.

The notion of admissible rule was first introduced by Lorenzen in the 1950s in the context of intuitionistic 
logic [63]; there a rule is considered to be admissible in a logic if, when added to its consequence relation, 
it does not produce new theorems. We mention that the latter notion can be used interchangeably with the 
one of Definition 2.34 for single-conclusion rules, and both definitions are used in the literature. However, 
interestingly, the equivalence between these two definitions does not hold if one considers multiple-conclusion 
rules (and multiple-conclusion consequence relations), the interested reader can check [66] and [53] for a 
detailed discussion.

We also observe that every passive multiple-conclusion rule is necessarily admissible, and that admissible 
negative multiple-conclusion rules are necessarily passive. Importantly, an admissible clause is not necessarily 
derivable; a popular example is Harrop’s rule for intuitionistic logic

t�pÑ pq _ rqu ñ tp�pÑ qq _ p�pÑ rqu

which is admissible but not derivable.

Definition 2.35. A logic is said to be

‚ universally complete if every admissible multiple-conclusion rule is derivable;
‚ structurally complete if every admissible rule is derivable;
‚ actively universally complete if every active admissible multiple-conclusion rule is derivable;
‚ actively structurally complete if every active admissible rule is derivable1;
‚ passively universally complete if every passive admissible multiple-conclusion rule is derivable;
‚ passively structurally complete if every passive admissible rule is derivable;
‚ non negatively universally complete if every non negative admissible multiple-conclusion rule is derivable.

Modulo algebraizability, one obtains the corresponding notions for a quasivariety. In particular, we can 
express admissibility and derivability of multiple-conclusion rules in LQ using the (quasi)equational logic 
of Q; this is because the Blok-Pigozzi Galois connection transforms (sets of) formulas in LQ into (sets of) 
equations in Q in a uniform way. The obtained notions make sense for quasivarieties that do not necessarily 
correspond to a logic.

Definition 2.36. Let Q be a quasivariety. A clause Σ ñ Δ is admissible in Q if for every substitution σ:

(Q σpαq for all α P Σ implies (Q σpβq for some β P Δ;

in particular, a negative clause Σ ñ H is admissible if and only if there is no substitution σ making all 
the equations in Σ valid in Q. A clause is passive if there is no substitution unifying its premises, active
otherwise. Q is (actively/passively/non-negatively) universally/structurally complete if every (active/pas-
sive/non-negative) admissible clause/quasiequation is valid in Q.

If P is one of those properties, then we say that a logic (or a quasivariety) is hereditarily P if the logic 
and all its extensions (or the quasivariety and all its subquasivarieties) have the property P . Some of these 
properties are well-known to be distinct: for instance classical logic is non-negatively universally complete 

1 Logics with this property have been more often called almost structurally complete but here we follow A. Citkin’s advice (see 
[35, footnote 2, page 8]).
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but not universally complete, while intuitionistic logic is not structurally complete (thanks to Harrop’s 
example) but it is passively structurally complete (as reported by Wroński in 2005, see [29]). The following 
is a consequence of algebraizability.

Theorem 2.37. Let Q be a quasivariety of logic, Σ, Δ sets of equations in the language of Q and Σ1, Δ1 the 
corresponding sets of formulas in LQ. Then:

1. Σ1 ñ Δ1 is admissible in LQ if and only if Σ ñ Δ is admissible in Q;
2. Σ1 ñ Δ1 is derivable in LQ if and only if Q ( Σ ñ Δ.

Moreover, by Corollary 2.20 we get the following.

Proposition 2.38. Let Q be a quasivariety of logic, Σ, Δ sets of equations in the language of Q and Σ1, Δ1
the corresponding sets of formulas in LQ. Then:

1. Σ1 ñ Δ1 is active in LQ if and only if FQpXq{θQpΣq is unifiable in Q;
2. Σ1 ñ Δ1 is passive in LQ if and only if FQpXq{θQpΣq is not unifiable in Q.

The next lemma (also derivable from [22, Theorem 2]) characterizes admissibility of clauses. Given a 
quasivariety Q, and Σ ñ Δ a clause in the language of Q, let

QΣñΔ “ tA P Q : A ( Σñ Δu. (2.1)

Lemma 2.39. Let Q be any quasivariety, and let Σ ñ Δ be a clause in the language of Q. Then the following 
are equivalent:

1. Σ ñ Δ is admissible in Q;
2. FQpωq ( Σ ñ Δ;
3. HpQq “ HpQΣñΔq.

Proof. The equivalence between (1) and (2) follows directly from the definition of admissibility. Assume 
now FQpωq ( Σ ñ Δ, then FQpωq P QΣñΔ. Clearly HSPupFQpωqq Ď HpQΣñΔq Ď HpQq. Now every 
algebra is embeddable in an ultraproduct of its finitely generated subalgebras and every finitely generated 
algebra is a homomorphic image of FQpωq. Therefore if A P Q, then A P SPuHpFQpωqq Ď HSPupFQpωqq. 
So HSPupFQpωqq “ HpQq and thus (3) holds.

Conversely assume (3). Since FQpωq P HpQq “ HpQΣñΔq, there is A P QΣñΔ such that FQpωq P HpAq. 
Since FQpωq is projective in Q, it follows that FQpωq P SpAq Ď SpQΣñΔq Ď QΣñΔ. Therefore, FQpωq ( Σ ñ
Δ and (2) holds. l

To conclude the preliminaries, we present the following lemma which will be particularly useful in our 
proofs.

Lemma 2.40. Let Q be a quasivariety, and Σ, Δ be finite sets of equations over variables in a finite set X. 
The following are equivalent:

1. Q ( Σ ñ Δ;
2. FQpXq{θQpΣq ( Σ ñ Δ;
3. there is p « q P Δ such that p{θQpΣq “ q{θQpΣq in FQpXq{θQpΣq.
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Proof. It is clear that (1) implies (2) and (2) implies (3). We now show that (3) implies (1).
Let A P Q. If there is no assignment of the variables in X to A that models Σ, then A ( Σ ñ Δ. Otherwise, 

suppose there is an assignment h such that A, h ( Σ. Then, by Remark 2.18 there is a homomorphism uh :
FQpXq{θQpΣq Ñ A such that h “ uhπΣ, where πΣ is the natural epimorphism from FQpXq to FQpXq{θQpΣq. 
Now by (3) there is at least an identity p « q P Δ such that pp, qq P kerpπΣq. Since h “ uhπΣ, pp, qq P kerphq, 
which means that A, h ( p « q and therefore A ( Σ ñ Δ. Since A is an arbitrary algebra of Q this shows 
that Q ( Σ ñ Δ. l

3. Universal completeness

In this section we study from the algebraic perspective the notion of universal completeness and its 
variations: active, non-negative, passive universal completeness, together with their hereditary versions. 
That is, we shall see which algebraic properties correspond to the notions coming from the logical perspective 
(detailed in the preliminaries Subsection 2.4). For each notion, we will present a characterization theorem 
and some examples. While the characterizations of active and passive universal completeness (to the best 
of our knowledge) are fully original, we build on existing ones for the other notions, presenting some new 
results and a coherent presentation in our framework.

3.1. Universal quasivarieties

We start with universal completeness. The following expands [22, Proposition 6] with point (4).

Theorem 3.1. For any quasivariety Q the following are equivalent:

1. Q is universally complete;
2. for every universal class U Ď Q, HpUq “ HpQq implies U “ Q.
3. Q “ ISPupFQpωqq;
4. every finitely presented algebra in Q is in ISPupFQpωqq.

Proof. (2) implies (1) via Lemma 2.39. We show that (1) implies (2). Let U Ď Q be a universal class such 
that HpUq “ HpQq and suppose that U ( Σ ñ Δ; then

HpQq “ HpUq Ď HpQΣñΔq Ď HpQq.

So HpQΣñΔq “ HpQq and by Lemma 2.39 Σ ñ Δ is admissible in Q. By (1), Q ( Σ ñ Δ; therefore U
and Q are two universal classes in which exactly the same clauses are valid, thus they are equal. Hence (2)
holds, and thus (2) and (1) are equivalent.

(1) implies (3) follows by Lemma 2.39. Moreover, (3) clearly implies (4). We now show that (4) implies 
(1), which completes the proof. Consider a clause Σ ñ Δ that is admissible in Q, or equivalently (by 
Lemma 2.39), such that FQpωq ( Σ ñ Δ. The finitely presented algebra FQpXq{θQpΣq P ISPupFQpωqq by 
(4), and thus FQpXq{θQpΣq ( Σ ñ Δ. By Lemma 2.40, Q ( Σ ñ Δ and thus Q is universally complete. l

Remark 3.2. Note that condition (2) of Theorem 3.1 does not hold for any quasivariety Q in which the trivial 
algebra is not embedded in any nontrivial algebra. Thus any such quasivariety is not universally complete.2

By algebraizability we get at once:

2 We thank an anonymous reviewer for this remark.
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Corollary 3.3. For a quasivariety of logic Q the following are equivalent:

1. Q is universally complete;
2. LQ is universally complete.

The following theorem and lemma show a sufficient and a necessary condition respectively for a quasiva-
riety to be universally complete.

Theorem 3.4. If every finitely presented algebra in Q is exact then Q is universally complete.

Proof. If every finitely presented algebra in Q is exact, it is in ISpFQpωqq, and thus also in ISPupFQpωqq. 
The claim then follows from Theorem 3.1. l

Theorem 3.5. If Q is universally complete, then Q is unifiable.

Proof. Suppose by counterpositive that there is a finite set of identities Σ that is not unifiable in Q. Then 
Σ ñ H is (passively) admissible but not derivable; indeed it does not hold in the trivial algebra. This 
implies that Q is not universally complete, and the claim is proved. l

Since projectivity implies exactness, we observe the following immediate consequence of Theorem 3.4.

Corollary 3.6. If every finitely presented algebra in Q is projective then Q is universally complete.

For locally finite varieties there is a stronger result, observed in [22].

Lemma 3.7. [22] Let Q be a locally finite quasivariety; then A P ISPupFQpωqq if and only if every finite 
subalgebra B of A is in ISpFQpωqq.

Theorem 3.8 ([22]). Let Q be a locally finite variety of finite type. Then Q is universally complete if and 
only if Q is unifiable and has exact unifiers.

Proof. Suppose that Q is universally complete; then, by Theorem 3.5, Q is unifiable. Since it is universally 
complete, every finite algebra in Q is in ISPupFQpωqq, hence in ISpFQpωqq (by Lemma 3.7). Thus every finite 
unifiable algebra in Q is exact and Q has exact unifiers. The converse claim follows from Theorem 3.4. l

Remark 3.9. We observe that Theorem 3.5 limits greatly the examples of universally complete quasivarieties. 
In particular, in quasivarieties with finite type the trivial algebra is finitely presented, and thus if Q is 
universally complete, it must be unifiable. This means that a quasivariety with more than one constant in 
its finite type cannot be universally complete if there are nontrivial models where the constants are distinct; 
similarly if there is only one constant, then it must generate the trivial algebra in nontrivial models, or 
equivalently, in FQ. If there are no constants, then FQ “ FQpxq and, in order to be able to embed the trivial 
algebra, there has to be an idempotent term.

Let us now discuss some different examples of universally complete (quasi)varieties.

Example 3.10. Let us consider lattice-ordered abelian groups (or abelian �-groups for short). These are 
algebras G “ pG, ̂ , _, ̈ ,´1 , 1q where pG, ̈ ,´1 , 1q is an abelian group, pG, ̂ , _q is a lattice, and the group 
operation distributes over the lattice operations. Every finitely presented abelian �-groups is projective [15]; 
thus, the variety of abelian �-groups is universally complete by Corollary 3.6.
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The same holds for the variety of negative cones of abelian �-groups. Given an �-group G, the set of 
elements G´ “ tx P G : x ď 1u can be seen as a residuated lattice (see Section 5.2) G´ “ pG´, ̈ , Ñ, ̂ , _, 1q
where p¨, ̂ , _, 1q are inherited by the group and x Ñ y “ x´1 ¨ y ^ 1. The algebraic category of negative 
cones of abelian �-groups is equivalent to the one of abelian �-groups [46], thus every finitely presented 
algebra is projective and the variety of negative cones of �-groups LG´ is universally complete. Observe that 
in all these cases the unique constant 1 is absorbing w.r.t. any basic operation, and it generates the trivial 
algebra.

Example 3.11. Hoops are a particular variety of residuated monoids related to logic which were defined in 
an unpublished manuscript by Büchi and Owens, inspired by the work of Bosbach on partially ordered 
monoids (see [17] for details on the theory of hoops). Hoops have a constant which is absorbing w.r.t. any 
basic operation; hence the least free algebra is trivial in any variety of hoops and any variety of hoops 
is unifiable. In [8] it was shown that every finite hoop is projective in the class of finite hoops which via 
Lemma 2.26 entails that every locally finite variety of hoops has projective unifiers. Since any locally finite 
quasivariety is contained in a locally finite variety, every locally finite quasivariety of hoops is universally 
complete. The same holds in the variety of Ñ-subreducts of hoops, usually denoted by HBCK; again locally 
finite varieties of HBCK-algebras have projective unifiers [8] and hence they are universally complete. For 
a non-locally finite example, we say that a hoop is cancellative if the underlying monoid is cancellative; 
cancellative hoops form a variety C that is categorically equivalent to the one of abelian �-groups [17]. 
Hence C is a non locally finite variety of hoops which is universally complete.

The classes of algebras in the above examples all have projective unifiers. However:

Example 3.12. In lattices there are no constants but any variety of lattices is idempotent; hence the least free 
algebra is trivial and every lattice is unifiable. Every finite distributive lattice is exact [22] and distributive 
lattices are locally finite, so distributive lattices are universally complete by Theorem 3.8. Moreover, as we 
have already observed in Example 2.27, distributive lattices do not have projective unifiers.

We now consider the hereditary version of universal completeness.

Definition 3.13. A quasivariety Q is primitive universal if all its subquasivarieties are universally complete.

All the above examples of universally complete varieties are primitive universal and this is not entirely 
coincidental. Distributive lattices are trivially primitive universal, since they do not have any trivial sub-
quasivariety. For all the other examples, we have a general result.

Theorem 3.14. Let Q be a quasivariety with projective unifiers and such that FQ is trivial; then Q is primitive 
universal.

Proof. Observe that for any subquasivariety Q1 Ď Q, FQ1 is trivial as well. Hence every algebra in Q is 
unifiable in any subvariety to which it belongs. Let B “ FQ1pXq{θQ1pΣq be finitely presented in Q1; then 
A “ FQpXq{θQpΣq is finitely presented in Q and thus it is projective in Q. But then Lemma 2.30 applies 
and B is projective; thus Q1 has projective unifiers and thus it is universally complete by Corollary 3.6. l

Is the same conclusion true if we replace “projective unifiers” with “unifiable, locally finite with exact 
unifiers”? We do not know, but we know that we cannot use an improved version of Lemma 2.30 since it 
cannot be improved to account for exact unifiers (see Example 3.30).
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3.2. Non-negative and active universal quasivarieties

The situation in which universal completeness fails due only to the trivial algebras has been first investi-
gated in [22]. Given Q a quasivariety, let Q` be the class of nontrivial algebras in Q; the following expands 
[22, Proposition 8] by (4).

Theorem 3.15. For a quasivariety Q the following are equivalent:

1. Q is non-negatively universally complete;
2. every admissible clause is valid in Q`;
3. every nontrivial algebra is in ISPupFQpωqq;
4. every nontrivial finitely presented algebra is in ISPupFQpωqq.

Proof. The equivalence of the first three points is in [22, Proposition 8], and (3) clearly implies (4). Assume 
now that (4) holds, we show (1). Let Σ ñ Δ be a non-negative admissible clause with variables in a finite 
set X, we show that FQpXq{θQpΣq ( Σ ñ Δ. If FQpXq{θQpΣq is trivial, then it models Σ ñ Δ (given 
that Δ is not H). Suppose now that FQpXq{θQpΣq is nontrivial, then it is in ISPupFQpωqq by hypothesis 
and then it models Σ ñ Δ since the latter is admissible, and thus FQpωq ( Σ ñ Δ by Lemma 2.39. By 
Lemma 2.40, Q models Σ ñ Δ and (1) holds. l

Moreover we observe again:

Theorem 3.16. If Q is a quasivariety of logic the following are equivalent:

1. Q is non-negatively universally complete;
2. LQ is non-negatively universally complete.

We can also obtain an analogue of Theorem 3.4.

Theorem 3.17. If every nontrivial finitely presented algebra in Q is exact (or projective), then Q is non-
negatively universally complete.

Proof. If every nontrivial finitely presented algebra is exact (or projective), then it is in ISpFQpωqq, and 
therefore in ISPupFQpωqq. The claim then follows from Theorem 3.15. l

Analogously to the case of universal completeness, we get a stronger result for locally finite quasivarieties.

Theorem 3.18. Let Q be a locally finite quasivariety. Then Q is non-negatively universally complete if and 
only if every nontrivial finitely presented algebra is exact.

Proof. Suppose that Q is locally finite and there is a finite nontrivial algebra A P Q that is not exact. 
Then A R ISpFQpωqq and thus, by Lemma 3.7, A R ISPupFQpωqq. Therefore Q cannot be non-negatively 
universally complete by Theorem 3.15. The other direction follows from Theorem 3.17. l

Example 3.19. Boolean algebras are an example of a non-negatively universally complete variety that is 
not universally complete. It is easily seen that every nontrivial finite Boolean algebra is exact (indeed, 
projective), which shows that Boolean algebras are non-negatively universally complete by Theorem 3.18. 
However, there are negative admissible clauses: e.g., the ones with premises given by the presentation of 
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the trivial algebra, which is finitely presented but not unifiable. Thus Boolean algebras are not universally 
complete.

Example 3.20. Stone algebras are a different example; in [22] the authors proved, using the duality between 
Stone algebras and particular Priestley spaces, that every finite nontrivial Stone algebra is exact; hence 
Stone algebras are non-negatively universally complete.

We now move on to describe active universal completeness from the algebraic perspective.

Theorem 3.21. Let Q be a quasivariety. The following are equivalent:

1. Q is actively universally complete;
2. every unifiable algebra in Q is in ISPupFQpωqq;
3. every finitely presented and unifiable algebra in Q is in ISPupFQpωqq;
4. every clause admissible in Q is satisfied by all finitely presented unifiable algebras in Q;
5. for every A P Q, Aˆ FQ P ISPupFQpωqq.

Proof. We start by showing that (1) implies (2). Assume (1), and let Σ ñ Δ be such that FQpωq ( Σ ñ Δ; 
equivalently, by Lemma 2.39, Σ ñ Δ is an admissible clause in Q. If Σ is unifiable, by hypothesis Σ ñ Δ is 
valid in Q. Suppose now that Σ has variables in a finite set X and it is not unifiable, that is, via Corollary 2.20
there is no homomorphism from FQpXq{θQpΣq to FQ. Let A be a unifiable algebra in Q; we argue that there 
is no assignment of the variables in Σ that validates Σ in A. Indeed otherwise the following diagram would 
commute and FQpXq{θQpΣq would be unifiable, yielding a contradiction.

FQpXq A FQ

FQpXq{θQpΣq

Therefore, Σ ñ Δ is vacuously satisfied in A, which is any unifiable algebra in Q, thus (2) holds. Now, 
clearly (2) implies (3), and (3) and (4) are equivalent by the definitions.

Let us show that (4) implies (1). Let Σ ñ Δ be an active admissible clause in Q with variables in a finite 
set X; we want to show that it is also valid in Q. Since by hypothesis Σ ñ Δ is active admissible, Σ is 
unifiable, and therefore so is FQpXq{θQpΣq by Corollary 2.20. Then by (4), FQpXq{θQpΣq ( Σ ñ Δ, which 
implies that Q ( Σ ñ Δ by Lemma 2.40. Therefore the first four points are equivalent.

Finally, we show that (1) implies (5) and (5) implies (2), which completes the proof. We start with (1)
ñ (5). Let A P Q, and consider a clause Σ ñ Δ valid in FQpωq. We show that A ˆ FQ ( Σ ñ Δ. Now, 
if Q ( Σ ñ Δ, in particular A ˆ FQ ( Σ ñ Δ. Suppose that Q * Σ ñ Δ. Since Q is actively universally 
complete, Σ ñ Δ must be a passive rule, thus Σ is not unifiable. Equivalently, there is no assignment h of 
the variables in Σ such that FQ, h ( Σ. Thus, there is also no assignment h1 of the variables in Σ such that 
Aˆ FQ, h1 ( Σ, thus Aˆ FQ ( Σ ñ Δ.

It is left to prove (5) ñ (2). Let A be a unifiable algebra in Q, then there is a homomorphism h : A Ñ FQ
(Lemma 2.22). Consider the map h1 : A Ñ AˆFQ be defined as h1paq “ pa, hpaqq. Clearly, h1 is an embedding 
of A into Aˆ FQ P ISPupFQpωqq (by (5)). Thus also A P ISPupFQpωqq, which completes the proof. l

We observe that the previous characterization extends to clauses some of the results in [35] about active 
structural completeness. We also get the usual result.
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Theorem 3.22. For a quasivariety of logic Q the following are equivalent:

1. Q is actively universally complete;
2. LQ is actively universally complete.

Moreover, we have the following lemma whose proof is the same as the one of Theorems 3.4 and 3.8.

Theorem 3.23. If Q has exact (or projective) unifiers, then Q is actively universally complete. If Q is also 
locally finite then it is actively universally complete if and only if it has exact unifiers.

Example 3.24. A discriminator on a set A is a ternary operation t on A defined by

tpa, b, cq “

#

a, if a ‰ b;
c, if a “ b.

A variety V is a discriminator variety [73] if there is a ternary term that is the discriminator on all the 
subdirectly irreducible members of V. Discriminator varieties have many strong properties: for instance they 
are congruence permutable and congruence distributive.

In [20, Theorem 3.1] it has been essentially shown that discriminator varieties have projective unifiers, 
and therefore they are all actively universally complete by Theorem 3.23.

Example 3.25. Let us now consider some examples within the algebraic semantics of many-valued logics; 
in [8] it has been shown that in any locally finite variety of bounded hoops or BL-algebras (the equivalent 
algebraic semantics of Hájek Basic Logic [51]), the finite unifiable algebras are exactly the finite projective 
algebras. It follows that any of such varieties has projective unifiers and hence it is actively universally 
complete. This holds also for any locally finite quasivariety of bounded hoops or BL-algebras, or their 
reducts, i.e., bounded HBCK-algebras.

In contrast with the case of (unbounded) hoops, not all of them are non-negatively universally complete, 
as we will now discuss. Let us call chain a totally ordered algebra. Every finite BL-chain is an ordinal sum 
of finite Wajsberg hoops, the first of which is an MV-algebra [4]. No finite MV-chain different from the 
2-element Boolean algebra 2 is unifiable (they are all simple and the least free algebra is 2), and thus not 
exact. It follows by basic facts about ordinal sums that if a locally finite quasivariety Q of BL-algebras 
contains a chain whose first component is different from 2, Q is not non-negatively universally complete. 
The same holds, mutatis mutandis, for bounded hoops and bounded HBCK-algebras. In Section 5.2 we shall 
see a different class of (discriminator) varieties coming from many-valued logics that are actively universally 
complete.

Definition 3.26. We call a quasivariety Q active primitive universal if every subquasivariety of Q is actively 
universally complete.

It is evident from the characterization theorem of actively universally complete quasivarieties that a 
quasivariety of logic Q is active primitive universal if and only if LQ is hereditarily actively universally 
complete. We have the following fact:

Theorem 3.27. Suppose that Q is a quasivariety such that FQ “ FQ1 for all nontrivial Q1 Ď Q. If Q has 
projective unifiers then it is active primitive universal.

Proof. The proof follows from Theorem 3.23 and Lemma 2.31. l
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All varieties in Example 3.25 satisfy the hypotheses of Theorem 3.27 (as the reader can easily check). 
For discriminator varieties all the examples of lattice-based varieties in Section 5.2 of this paper have the 
same property (but see also [20] or [31] for more examples); hence they are all active primitive universal.

Now, a variety is q-minimal if it does not have any proper nontrivial subquasivariety; so a q-minimal 
variety is necessarily equationally complete. We have this result by Bergman and McKenzie:

Theorem 3.28. [14] A locally finite equationally complete variety is q-minimal if and only if it has exactly 
one subdirectly irreducible algebra that is embeddable in any nontrivial member of the variety. Moreover, 
this is always the case if the variety is congruence modular.

It follows immediately that every actively universally complete q-minimal variety is active primitive 
universal.

Example 3.29. Discriminator varieties are actively universally complete as seen in Example 3.24. Now, given 
a finitely generated discriminator variety V, it is generated by a finite algebra A having a discriminator 
term on it, also called a quasi-primal algebra. By [77] V is equationally complete and, since it is congruence 
modular, it is q-minimal; hence V is active primitive universal.

Finally, we observe that Lemma 2.31 cannot be improved to “having exact unifiers” and the counterex-
ample is given by De Morgan lattices; we will see below that they form an actively universally complete 
variety that is not active primitive universal.

Example 3.30. A De Morgan lattice is a distributive lattice with a unary operation � which is involutive and 
satisfies the De Morgan Laws. It is well-known that the variety DM of De Morgan lattices is locally finite 
and has exactly two proper non trivial subvarieties, i.e. the variety BLa of Boolean lattices (axiomatized by 
x ď y_�y) and the variety KL of Kleene lattices (axiomatized by x ̂ �x ď y_�y). It is easily seen that all 
these nontrivial varieties have the same one-generated free algebra whose universe is tx, �x, x _�x, x ̂ �xu. 
It follows that all the nontrivial subquasivarieties of De Morgan lattices have the same least free algebra 
and DM satisfies the hypotheses of Theorem 3.27. Admissibility in De Morgan lattices has been investigated 
in [67] and [22]. Now for a finite algebra A P DM the following are equivalent:

1. A is unifiable;
2. the clause tx « �xu ñH is valid in A;
3. A P ISpFDMpωqq.

The equivalence of (2) and (3) has been proved in [22, Lemma 28], while (3) implies (1) trivially. If we 
assume that (2) does not hold for A, then there is an a P A with �a “ a; so if f : A ÝÑ FDMpxq is a 
homomorphism and fpaq “ ϕ, then ϕ “ �ϕ. But there is no element in FDMpxq with that property, so A
cannot be unifiable. This concludes the proof of the equivalence of the three statements.

Therefore DM has exact unifiers and thus it is actively universally complete by Theorem 3.23. Now 
consider the subvariety of DM of Kleene lattices. In [22] it is shown that the clause

Φ :“ tx ď �x, x^�y ď �x_ yu ñ �y ď y

is admissible in KL. It is also active, as the reader can easily check that the substitution x ÞÝÑ z ^ �z, 
y ÞÝÑ �z unifies the premises of Φ. However it fails in the three element Kleene lattice K3 in Fig. 2, with 
the assignment x “ a, y “ �a; hence KL is not actively universally complete. So DM is a variety that is 
actively universally complete but not active primitive universal.
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�b “ b

�a

a

Fig. 2. The lattice K3.

Note that in KL there must be a finite unifiable algebra that is not exact (since KL cannot have exact 
unifiers). Now a finite Kleene lattice A is exact if and only if both tx « �xu ñ H and Φ are valid in A
[22, Lemma 38]. Let A “ K3 ˆ 2; the reader can easily check that A is unifiable in KL (since it satisfies 
tx « �xu ñ H and hence it is unifiable in DM) but does not satisfy Φ. This shows (as promised) that 
Lemma 2.30 cannot be improved.

3.3. Passive universal quasivarieties

We will now see that passive universal completeness in a quasivariety corresponds to an algebraic notion 
we have already introduced: unifiability. Moreover, we shall see that it corresponds to the apparently weaker 
notion of negative universal completeness, that is, every (passive) admissible negative clause is derivable. 
We recall that a quasivariety Q is unifiable if every finitely presented algebra in Q is unifiable.

Theorem 3.31. For every quasivariety Q the following are equivalent:

1. Q is passively universally complete;
2. Q is negatively universally complete;
3. Q is unifiable.

Proof. Assume (1) and let Σ ñH be a negative admissible clause; then it is necessarily passive, since there 
is no substitution that unifies H. Thus, by (1), Σ ñH is valid in Q.

We prove that (2) implies (3) by contrapositive. Suppose that Q is not unifiable, that is, there exists a 
finite set of identities Σ that is not unifiable. Then the negative clause Σ ñH is (passively) admissible, but 
it is not derivable (in particular, it fails in the trivial algebra).

Finally, if (3) holds, then (1) trivially holds, since if every set of identities is unifiable there is no passive 
admissible clause. l

In some cases, we can improve the previous result.

Lemma 3.32. Let Q be a quasivariety such that IpFQq “ IPupFQq, then the following are equivalent.

1. Q is unifiable;
2. every algebra in Q is unifiable.

Proof. Notice that if FQ is trivial all algebras are unifiable and then the two statements are verified; let 
us then assume FQ nontrivial. We prove the nontrivial direction by contraposition. Consider an arbitrary 
algebra A P Q and assume that it is not unifiable; without loss of generality we let A “ FQpXq{θ for some 
set X and some relative congruence θ. Since A is not unifiable, there is no assignment h : FQpXq Ñ FQ
such that FQ, h ( Σθ, where Σθ “ tt « u : pt, uq P θu. Equivalently, iff FQ ( Σθ ñ H. Now, the equational 
consequence relation relative to a class of algebras K is finitary if and only if K is closed under ultraproducts 
(see for instance [74]); thus by hypothesis the equational consequence relation relative to FQ is finitary, and 
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we obtain that FQ ( Σ1θ ñ H, for Σ1θ some finite subset of Σθ. That is, Σ1 is finite and not unifiable, thus 
Q is not unifiable and the proof is complete. l

Observe that a quasivariety Q such that FQ is finite satisfies the hypothesis of the previous lemma. We 
do not know whether the condition IpFQq “ IPupFQq is necessary.

Corollary 3.33. Let Q be a quasivariety such that IpFQq “ IPupFQq, then the following are equivalent.

1. Q is passively universally complete;
2. Q is negatively universally complete;
3. Q is unifiable;
4. every algebra in Q is unifiable.

We also have the following.

Corollary 3.34. A quasivariety of logic Q is passively universally complete if and only if LQ is passively 
universally complete.

4. Structural completeness

In this section we investigate the algebraic counterparts of structural completeness and its variations. The 
main new results are about the characterization of passively structurally complete quasivarieties; moreover, 
we also show a characterization of primitive quasivarieties grounding on the results in [50].

4.1. Structural quasivarieties

The bridge theorems for structural completeness have been first established by Bergman [13]. We present 
the proof for the sake of the reader, expanding with point (6).

Theorem 4.1 ([13]). For a quasivariety Q the following are equivalent:

1. Q is structurally complete;
2. Q “ QpFQpωqq;
3. any proper subquasivariety of Q generates a proper subvariety of HpQq;
4. for all Q1 Ď Q if HpQ1q “ HpQq, then Q “ Q1;
5. for all A P Q if VpAq “ HpQq, then QpAq “ Q;
6. every finitely presented algebra in Q is in QpFQpωqq.

Proof. First, (1) is equivalent to (2) via Lemma 2.39. The implications (3) ô (4) ñ (5) ñ (2) are straight-
forward. (2) implies (4) since if Q1 Ď Q and HpQ1q “ HpQq, we get that FQ1pωq “ FHpQ1qpωq “ FHpQqpωq “
FQpωq; thus Q “ QpFQpωqq “ QpF1Qpωqq Ď Q1 and then equality holds. Thus the first five points are equiv-
alent; Finally, clearly (2) implies (6), and (6) implies (2) since a quasivariety is generated by its finitely 
presented algebras ([50, Proposition 2.1.18]). l

Corollary 4.2. A variety V is structurally complete if and only if every proper subquasivariety of V generates 
a proper subvariety; therefore if A is such that VpAq is structurally complete, then VpAq “ QpAq.

As usual we get also:
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Corollary 4.3. Let Q be a quasivariety of logic; then Q is structurally complete if and only if LQ is structurally 
complete.

Let us extract some sufficient conditions for structural completeness.

Lemma 4.4. Let Q be a quasivariety; if

1. Q “ QpKq and every A P K is finitely generated and exact in Q, or
2. every finitely generated algebra in Q is exact, or
3. every finitely presented algebra in Q is exact, or
4. every finitely generated relative subdirectly irreducible in Q is exact,

then Q is structurally complete. Moreover if every A P K is exact in VpKq and every subdirectly irreducible 
member of VpKq is in ISpKq, then VpKq is structurally complete.

Proof. Assume first that Q “ QpKq, with K a class of finitely generated and exact algebras in Q; then 
K Ď ISpFQpωqq; therefore Q “ QpKq Ď QpFQpωqq and thus equality holds. Hence Q is structurally complete 
by the characterization theorem (Theorem 4.1).

The other points follow; in particular, note that any algebra in a quasivariety Q is embeddable in an 
ultraproduct of its finitely generated subalgebras, thus Q “ QpKq where K is the class of finitely generated 
algebras in Q. Moreover, every quasivariety is generated by its finitely presented algebras, and also by its 
finitely generated relative subdirectly irreducible algebras.

For the last claim, every subdirectly irreducible member of VpKq lies in ISpKq and thus is exact in VpKq. 
Since any variety is generated as a quasivariety by its finitely generated subdirectly irreducible members, 
VpKq is structurally complete. l

We observe that none of the previous conditions is necessary. For locally finite quasivarieties we have a 
necessary and sufficient condition for structural completeness because of the following:

Lemma 4.5 ([22]). Let Q be a locally finite quasivariety and A a finite algebra in Q. Then A P QpFQpωqq if 
and only if A P ISPpFQpωqq.

The following theorem improves [22, Corollary 11].

Theorem 4.6. For a locally finite quasivariety Q of finite type the following are equivalent:

1. Q is structurally complete;
2. each finite algebra in Q is in ISPpFQpωqq;
3. every finite relative subdirectly irreducible in Q is exact.

Proof. Assume (1); then each finite algebra in Q is in QpFQpωqq and thus, by Lemma 4.5, is in ISPpFQpωqq

and (2) holds. If (2) holds and A is finite relative subdirectly irreducible, then it is in ISpFQpωqq, i.e. it is 
exact. Finally if (3) holds, then Q is structurally complete by Lemma 4.4. l

4.2. Primitive quasivarieties

We now consider the hereditary notion of structural completeness.
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Definition 4.7. A class of algebras K in a quasivariety Q is equational relative to Q if K “ VpKq X Q. In 
particular, a subquasivariety Q1 of Q is equational relative to Q if Q1 “ HpQ1q X Q; a quasivariety Q is 
primitive if every subquasivariety of Q is equational relative to Q.

Clearly primitivity is downward hereditary and a variety V is primitive if and only if every subquasivariety 
of V is a variety. We can show the following.

Theorem 4.8. For a quasivariety Q the following are equivalent:

1. Q is primitive;
2. every subquasivariety of Q is structurally complete;
3. for all subdirectly irreducible A P HpQq and for any B P Q, if A P HpBq, then A P ISPupBq.

Proof. We first show the equivalence between (1) and (2). Suppose that Q is primitive and let Q1 Ď Q; if 
Q2 Ď Q1 and HpQ2q “ HpQ1q then

Q1 “ HpQ1q X Q “ HpQ2q X Q “ Q2

so Q1 is structurally complete by Theorem 4.1.
Conversely assume (2), let Q1 Ď Q and let Q2 “ HpQ1q X Q (it is clearly a quasivariety); then HpQ2q “

HpQ1q and thus Q2 “ Q1, again using the characterization of Theorem 4.1. So Q1 is equational in Q and Q
is primitive.

Assume (1) again, and let A, B P Q with A subdirectly irreducible and A P HpBq. Since Q is primitive 
we have

QpBq “ HpQpBqq X Q

and hence A P QpBq. Since A is subdirectly irreducible, A P ISPupBq by Theorem 2.3 and (3) holds.
Conversely, assume (3) and let Q1 be a subquasivariety of Q; if B P HpQ1q X Q, observe that B P HpQq

and hence B ďsd

ś

Ai where the Ai are subdirectly irreducible in HpQq XHpQ1q. Then for all i there is 
Bi P Q1 such that Ai P HpBiq and hence by hypothesis Ai P SPupBiq and so Ai P Q1 for all i. Therefore 
B P Q1, so HpQ1q XQ “ Q1 and Q1 is equational in Q. Therefore Q is primitive and (1) holds. l

As commented in the preliminary section (Subsection 2.1):

Corollary 4.9. Let Q be a quasivariety of logic; Q is primitive if and only if LQ is hereditarily structurally 
complete.

We will see how Theorem 4.8 can be improved in the locally finite case. Let Q be a quasivariety and let 
A P Q; we define

rQ : As “ tB P Q : A R ISpBqu.

The following lemma describes some properties of rQ : As; the proofs are quite standard with the exception 
of point (3). As a matter of fact a proof of the forward implication of (3) appears in [50, Corollary 2.1.17]. 
However the proof is somewhat buried into generality and it is not easy to follow; so we felt that a suitable 
translation would make it easier for the readers.

Lemma 4.10. Let Q be a quasivariety; then



P. Aglianò, S. Ugolini / Annals of Pure and Applied Logic 175 (2024) 103391 27
1. if A P Q is finite and Q has finite type, then rQ : As is a universal class;
2. if A is relative subdirectly irreducible and finitely presented, then rQ : As is a quasivariety;
3. A is weakly projective in Q if and only if rQ : As is closed under H if and only if rQ : As is equational 

relative to Q;
4. if A is relative subdirectly irreducible, finitely presented and weakly projective in Q, then rQ : As is a 

variety.

Moreover if Q is locally finite of finite type, the converse implications in (1), (2) and (4) hold.

Proof. For (1), if A is finite, then there is a first order universal sentence Ψ such that, for all B P Q, B ( Ψ
if and only if A P ISpBq. More in detail, if |A| “ n,

Ψ :“ Dx1 . . . Dxnp
ľ

txi ‰ xj : i, j ď n, i ‰ ju
ľ

DpAqq,

where DpAq is the diagram of A, that is, a conjunction of universal sentences that describe the operation 
tables of A (identifying each element of A with a different xi), and 

Ź

is first order logic conjunction. Now 
consider B P ISPuprQ : Asq, we show that A R ISpBq; if A P ISpBq, then A P ISPuprQ : Asq. Hence there 
exists a family pAiqiPI Ď rQ : As and an ultrafilter U on I such that C “ ΠiPIAi{U and A P ISpCq. So 
C ( Ψ; but then by Łòs Lemma there is a (necessarily nonempty) set of indexes I 1 P U such that Ψ is valid 
in each Ai with i P I 1, which is clearly a contradiction, since each Ai P rQ : As. Thus A R ISpBq, B P rQ : As, 
and therefore ISPuprQ : Asq “ rQ : As which is a universal class by Lemma 2.1.

Conversely let Q be locally finite of finite type; every algebra in Q is embeddable in an ultraproduct of 
its finitely generated (i.e. finite) subalgebras, say A P ISPuptBi : i P Iuq. If A is not finite, then A R SpBiq

for all i, so Bi P rQ : As for all i. Since rQ : As is universal, we would have that A P rQ : As, a clear 
contradiction. So A P ISpBiq for some i and hence it is finite.

For (2), suppose that A is relative subdirectly irreducible and finitely presented, i.e. A – FQpxq{θQpΣq
where x “ px1, . . . , xnq and Σ “ tpipxq « qipxq : i “ 1, . . . , mu. We set ai “ xi{θQpΣq; since A is relative 
subdirectly irreducible, it has a relative monolith μ, i.e. a minimal nontrivial relative congruence. Since μ is 
minimal, there are c, d P A such that μ is the relative congruence generated by the pair pc, dq. Now let tc, td
terms in FQpxq such that tcpa1, . . . , anq “ c and tdpa1, . . . , anq “ d and let Φ be the quasiequation

m
ľ

i“1
pipxq « qipxq ÝÑ tcpxq « tdpxq.

Then A * Φ; moreover if C P Q is a homomorphic image of A which is not isomorphic with A, then 
C ( Φ. We claim that rQ : As “ tB P Q : B ( Φu and since Φ is a quasiequation this implies that 
rQ : As is a quasivariety. Clearly if B ( Φ, then A R ISpBq; conversely assume that B * Φ. Then there 
are b1, . . . , bn P B such that pipb1, . . . , bnq “ qipb1, . . . , bnq but tcpb1, . . . , bnq ‰ tdpb1, . . . , bnq. Let g be the 
homomorphism extending the assignment xi ÞÝÑ bi; then θQpΣq Ď kerpgq so by the Second Homomorphism 
Theorem there is a homomorphism f : A ÝÑ B such that fpaiq “ bi. Observe that fpAq P Q (since it is a 
subalgebra of B P Q) and fpAq * Φ, so by what we said above fpAq – A; this clearly implies A P ISpBq, so 
B R rQ : As as wished.

For the converse, let Q be locally finite of finite type; by (1) A is finite. Suppose that A ďsd

ś

iPI Bi

where each Bi is relative subdirectly irreducible in Q. Since A is finite, each Bi can be taken to be finite; if 
A R ISpBiq for all i, then Bi P rQ : As for all i and hence, being rQ : As a quasivariety we have A P rQ : As
which is impossible. Hence there is an i such that A P ISpBiq, so that |A| ď |Bi|; on the other hand 
Bi P HpAq, so |Bi| ď |A|. Since everything is finite we have A – Bi and then A is relative subdirectly 
irreducible.



28 P. Aglianò, S. Ugolini / Annals of Pure and Applied Logic 175 (2024) 103391
For the first forward direction of (3), suppose that B P HprQ : Asq. If A P ISpBq, then A P SHprQ : Asq Ď
HSprQ : Asq. Now rQ : As Ď Q and A is weakly projective in Q; so A P SprQ : Asq which is impossible. It 
follows that A R ISpBq and B P rQ : As; thus rQ : As is closed under H. For the second forward direction, 
it is easy to see that if rQ : As is closed under H then rQ : As is equational relative to Q. Assume now that 
rQ : As is closed under H, we show that A is weakly projective in Q. Suppose that A P HpBq for some B P Q; 
if A R ISpBq, then B P rQ : As and, since rQ : As is closed under H, A P rQ : As, again a contradiction. 
Hence A P ISpBq and A is weakly projective in Q. A completely analogous proof shows that if rQ : As is 
equational relative to Q then A is weakly projective, which completes the proof of (3).

(4) follows directly from (1), (2) and (3). l

Thus if A is relative subdirectly irreducible and finitely presented, rQ : As is a quasivariety; this is the 
key to prove the following result, appearing in [50, Proposition 5.1.24]. We present a self-contained proof 
for the sake of the reader.

Theorem 4.11 ([50]). If Q is a locally finite quasivariety of finite type, then the following are equivalent.

1. Q is primitive;
2. for all finite relative subdirectly irreducible A P Q, rQ : As is equational relative to Q;
3. every finite relative subdirectly irreducible A P Q is weakly projective in Q;
4. every finite relative subdirectly irreducible A P Q is weakly projective in the class of finite algebras in Q.

Proof. (2) and (3) are equivalent by Lemma 4.10, and (3) and (4) are equivalent in locally finite quasivari-
eties.

Now, (1) implies (2) by Lemma 4.10, since if A is a finite relative subdirectly irreducible algebra then 
rQ : As is a quasivariety, and if Q is primitive every subquasivariety is equational relative to Q by definition.

Finally, assume (3) and let Q1 be a subquasivariety of Q; consider a finite algebra B P HpQ1q XQ, then B
is a subdirect product of finite relative subdirectly irreducible algebras in Q, that is, B ďsd

ś

iPI Ai where 
each Ai is finite relative subdirectly irreducible in Q, and thus it is also weakly projective in Q by hypothesis. 
Since B P HpQ1q, there is A P Q1 such that B P HpAq. But then for each i P I, Ai P HpAq; since each Ai is 
weakly projective in Q, it is also isomorphic to a subalgebra of A. Thus, B P ISPpAq Ď Q1, and therefore 
Q1 “ HpQ1q X Q, which means that Q is primitive and (1) holds. l

Most results in the literature are about structurally complete and primitive varieties of algebras and 
the reason is quite obvious; first the two concepts are easier to formulate for varieties. Secondly being 
subdirectly irreducible is an absolute concept (every subdirectly irreducible algebra is relative subdirectly 
irreducible in any quasivariety to which it belongs) while being relative subdirectly irreducible depends on 
the subquasivariety we are considering. Of course when a quasivariety is generated by a “simple” class (e.g. 
by finitely many finite algebras), then Theorem 2.3(2) gives a simple solution, but in general describing the 
relative subdirectly irreducible algebras in a quasivariety is not an easy task.

Now, it is clear that if Q is non-negatively universally complete, then it is structurally complete. Finding 
examples of (quasi)varieties that are structurally complete but not primitive is not easy; in [31] an example 
is given of an intermediate logic (Medvedev’s logic) which is structurally complete but not hereditarily 
structurally complete. Through the Blok-Pigozzi connection this translates into a variety of Heyting algebras 
that is structurally complete but not primitive. A different idea is to find a finite algebra A such that A
satisfies the hypotheses of Lemma 4.4, but VpAq contains some strict (i.e. not a variety) subquasivariety. 
We will see an example of this in Section 5.1. Let us now show some different kinds of examples of primitive 
(quasi)varieties.
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Example 4.12. The variety of bounded distributive lattices is primitive (as we will discuss in Section 5.1), 
since it is equationally complete and congruence modular and so is q-minimal by Theorem 3.28.

It is well-known (and easy to check) that the variety of distributive lattices is a dual discriminator variety; 
a dual discriminator on a set A is a ternary operation d on A defined by

dpa, b, cq “

#

c, if a ‰ b;
a, if a “ b.

A variety V is a dual discriminator variety [41] if there is a ternary term that is the dual discriminator 
on all the subdirectly irreducible members of V. Dual discriminator varieties, as opposed to discriminator 
varieties, do not necessarily have projective unifiers. However, recently in [24] the authors have extended 
the results in [14] (such as Theorem 3.28) in two directions: every minimal dual discriminator variety is 
q-minimal, hence primitive and, if the variety is also idempotent, then minimality can be dropped and the 
variety is primitive. This last fact gives raise to different examples of primitive varieties.

Example 4.13. A weakly associative lattice is an algebra xA, _, ̂ y where _ and ^ are idempotent, commu-
tative and satisfy the absorption laws but (as the name reveals) only a weak form of associativity. In [41]
the authors proved that there is a largest dual discriminator variety U of weakly associative lattices; since 
weakly associative lattices are idempotent, U is a primitive variety of weakly associative lattices.

Example 4.14. The pure dual discriminator variety D (see [41, Theorem 3.2]) is a variety with a single 
ternary operation dpx, y, zq satisfying

dpx, y, yq « y

dpx, y, xq « x

dpx, x, yq « x

dpx, y, dpx, y, zqq « dpx, y, zq

dpu, v, dpx, y, zqq « dpdpu, v, xq, dpu, v, yq, dpu, v, zqq

which is enough to prove that D is a dual discriminator variety. Since d is idempotent D is an idempotent 
dual discriminator variety and so it is primitive.

A different example is given by the following.

Example 4.15. A modal algebra is a Boolean algebra with a modal operator l, that we take as a basic unary 
operation, satisfying l1 « 1 and lpx ̂ yq « lx ̂ ly; there is an extensive literature on modal algebras (see 
for instance [80] and the bibliography therein). A modal algebra is a K4-algebra if it satisfies lx ď llx; 
in [75] V.V. Rybakov classified all the primitive varieties of K4-algebras. However very recently [25] J. Carr 
discovered a mistake in Rybakov’s proof; namely Rybakov in his description missed some varieties that 
all have the properties of containing a finitely presented unifiable weakly projective algebra that is not 
projective. So any of such varieties, though primitive, does not have projective unifiers.

We now present some examples of (quasi)varieties that are the equivalent algebraic semantics of axiomatic 
extensions (and their fragments) of Basic Logic; in particular, of infinite-valued Łukasiewicz logic.

Example 4.16. Wajsberg algebras are the equivalent algebraic semantics of infinite-valued Łukasiewicz logic 
in the signature of bounded commutative residuated lattices p¨, Ñ, ̂ , _, 0, 1q and they are term-equivalent 
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to the better known MV-algebras [27]; Wajsberg hoops are their 0-free subreducts. There are some recent 
results about structural completeness and primitivity for these algebras. There are exactly two structurally 
complete varieties of Wajsberg algebras: the variety of Boolean algebras and the variety generated by perfect 
MV-algebras. They are also the only primitive varieties of Wajsberg algebras (this is implicit in [49], but 
see also [1, Section 8]). Whereas a variety of Wajsberg hoops is structurally complete if and only if it is 
primitive if and only if every subdirectly irreducible algebra is either finite or perfect [1].

If we look instead at quasivarieties, the structurally complete quasivarieties of Wajsberg algebras have 
been characterized in [49], while the structurally complete quasivarieties of Wajsberg hoops have been char-
acterized in [2]. Moreover, it has been shown that there are nontrivial primitive quasivarieties of Wajsberg 
algebras [1] and of Wajsberg hoops [2].

Let us now consider the variety of Ñ-subreducts of Wajsberg hoops, that is a subvariety of BCK-algebras 
usually denoted by LBCK; every locally finite subvariety of LBCK-algebras is a variety of HBCK-algebras, 
so it is universally complete. However: the only non locally finite subvariety is the entire variety LBCK [60]; 
LBCK is generated as a quasivariety by its finite chains [3], and every infinite chain contains all the finite 
chains as subalgebras [60]. So if Q is a quasivariety which contains only finitely many chains, then VpQq
is locally finite, hence universally complete and so Q “ VpQq; otherwise Q contains infinitely many chains 
and so VpQq “ Q “ LBCK. Hence every subquasivariety of LBCK is a variety and LBCK is primitive.

Another related class of examples is given by basic hoops [3], i.e. the equivalent algebraic semantics of 
the 0-free fragment of Basic Logic [51]; they are hoops and hence by Example 3.11 any locally finite variety 
of basic hoops is primitive universal, hence primitive. Cancellative hoops are basic hoops and so (again 
by Example 3.11) they form a non-locally finite variety of hoops that is primitive. We note that Wajsberg 
hoops are basic hoops and Wajsberg algebras are BL-algebras. In general, outside the cases outlined above, 
the status of (locally finite) (quasi)varieties of BL-algebras, of non locally finite varieties of basic hoops, and 
of quasivarieties of basic hoops is unclear and it is the subject of a current investigation.

4.3. Actively structurally complete quasivarieties

The problem of active structural completeness has been tackled in [35]; it is an extensive and profound 
paper touching many aspects and there is no need to reproduce it here. We will only state the main result 
and display an example.

Theorem 4.17 (Theorem 8.1 in [35]). For a quasivariety Q the following are equivalent:

1. Q is actively structurally complete;
2. every unifiable algebra of Q is in QpFQpωqq;
3. every finitely presented unifiable algebra in Q is in QpFQpωqq;
4. every admissible quasiequation in Q is valid in all the finitely presented unifiable algebras in Q;
5. for every A P Q, Aˆ FQ P QpFQpωqq.
6. for every A P Qrsi, Aˆ FQ P ISPupFQpωqq.

We have as usual:

Corollary 4.18. Let Q be a quasivariety of logic; Q is actively structurally complete if and only if LQ is 
actively structurally complete.

Example 4.19. An S4-algebra is a K4-algebra satisfying lx ď x; if we define �x :“ �l�x, then a monadic
algebra is an S4-algebras satisfying �x ď l�x. We extract this example by the results in [35, Section 8]. 
Let A, B be the monadic algebra and the S4-algebra in Fig. 3 and let V “ VpAq and W “ VpBq.
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0 “ l0 “ la “ lb

1 “ l1

ba

A

0 “ l0 “ lc

1 “ l1

b “ lb “ la1a “ la “ lb1 c

b1 a1lc1c1

B

Fig. 3. A and B.

Let U “ V _W “ VptA, Buq, then by [35, Theorem 8.12] U is actively structurally complete but not 
structurally complete, and U does not have exact unifiers. Since U is generated by two finite algebras it 
is locally finite, and by Theorem 3.23 it cannot be actively universally complete; so U is an example of a 
variety that is actively structurally complete but not actively universally complete.

4.4. Passive quasivarieties

Passively structurally complete quasivarieties have been studied in [69] in relation to the joint embedding 
property (which is shown to be a consequence of passive structural completeness). Moreover, it is shown that 
if Q is a quasivariety of finite type, with a finite nontrivial member, Q is PSC if and only if the nontrivial 
members of Q have a common retract (see [69, Theorem 7.6]). We here take a different path, and we start 
with the following observation.

Proposition 4.20. A quasivariety Q is passively structurally complete if and only if every non-negative passive 
admissible clause is derivable in Q.

Proof. For the non-trivial direction, suppose Q is passively structurally complete, and let Σ ñ Δ be a non-
negative (Δ ‰ H) passive admissible clause. This means that Σ is not unifiable, and thus, each quasiequation 
Σ ñ δ, for any δ P Δ, is passive admissible. By hypothesis, each such Σ ñ δ is valid in Q, thus so is Σ ñ Δ
and the conclusion holds. l

It is clear that a key concept to study passive clauses is understanding the unifiability of the premises. 
In order to do so, we introduce the following notion.

Definition 4.21. We say that a finite set of identities Σ is trivializing in a class of algebras K if the quasiequa-
tion Σ ñ px « yq is valid in K, where the variables x, y do not appear in Σ.

Notice that such a quasiequation Σ ñ px « yq is valid in an algebra A if and only if either A is trivial, 
or there is no assignment of the variables of Σ in A that makes Σ valid in A.

Lemma 4.22. Let Q be a quasivariety, and let Σ be a finite set of equations in its language. The following 
are equivalent:

1. Σ is not unifiable in Q;
2. FQ is nontrivial and Σ is trivializing in QpFQq;
3. FQ ( Σ ñH.

Proof. It is easy to see that (2) and (3) are equivalent, modulo the fact that a set of identities is trivializing 
in QpFQq if and only if it is trivializing in FQ.
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Let us now assume that the identities in Σ are on a (finite) set of variables X. Then, given Lemma 2.22, Σ
is not unifiable in Q if and only if there is no homomorphism h : FQpXq{θQpΣq Ñ FQ. We show that the latter 
holds if and only if there is no homomorphism k : FQpXq Ñ FQ such that kptq “ kpuq for each t « u P Σ. 
Indeed, for the non-trivial direction, suppose that there is a homomorphism k : FQpXq Ñ FQ with the above 
property. Then the following diagram commutes, i.e., there is a homomorphism h : FQpXq{θQpΣq Ñ FQ:

FQpXq FQ

FQpXq{θQpΣq

k

hπ

Notice that there is no homomorphism k : FQpXq Ñ FQ such that kptq “ kpuq for each t « u P Σ if and 
only if there is no assignment of variables in X validating Σ in FQ. The latter is equivalent to FQ ( Σ ñH, 
and we have proved that (1) and (3) are equivalent. l

We are now ready to prove the characterization theorem for passive structural completeness.

Theorem 4.23. Let Q be a quasivariety, then the following are equivalent.

1. Q is passively structurally complete;
2. FQ ( Σ ñH implies Σ is trivializing in Q;
3. either FQ is trivial, or Σ is trivializing in QpFQq implies Σ is trivializing in Q;
4. every nontrivial finitely presented algebra is unifiable.

Proof. We first show that (1) and (2) are equivalent. By definition, Q is passively structurally complete if 
and only if each quasiequation Σ ñ δ where Σ is not unifiable in Q is valid in Q. That is, Σ not unifiable 
in Q implies Q ( Σ ñ δ, for all identities δ. By Proposition 4.22, the latter is equivalent to: FQ ( Σ ñ H

implies Q ( Σ ñ δ, for all identities δ. From this it follows the particular case where δ “ tx « yu, with x, y
not appearing in Σ. In turn, if FQ ( Σ ñ H implies Q ( Σ ñ px « yq, then clearly it also implies that 
Q ( Σ ñ δ for any δ, and thus (1) ô (2).

Now, (2) and (3) are equivalent by Lemma 4.22, thus the first three points are equivalent. Let us now 
assume (2) and prove (4). We consider a nontrivial finitely presented algebra in Q, FQpXq{θQpΣq. If it 
is not unifiable, by Lemma 4.22 FQ ( Σ ñ H. By (2) this implies that Σ is trivializing in Q, that is, 
Q ( Σ ñ px « yq (with x, y new variables). This clearly implies that FQpXq{θQpΣq is trivial, a contradiction. 
Thus FQpXq{θQpΣq is unifiable and (4) holds.

Finally, we prove that (4) implies (1). Suppose Σ ñ δ is a passive quasiequation over variables in X, that 
is, Σ is not unifiable in Q. By Lemma 4.22 FQ ( Σ ñ H. Let x, y be variables not in X, X 1 “ X Y tx, yu, 
and consider the finitely presented algebra FQpX

1q{θQpΣq; suppose by way of contradiction that it is not 
trivial. By (4) it is unifiable, that is, there is a homomorphism h : FQpX

1q{θQpΣq Ñ FQ. Then, considering 
the natural epimorphism πΣ : FQpX

1q Ñ FQpX
1q{θQpΣq, the composition hπΣ is an assignment from X 1 to 

FQ satisfying Σ; but FQ ( Σ ñH, a contradiction. Thus FQpX
1q{θQpΣq is trivial, and therefore x{θQpΣq “

y{θQpΣq. By Lemma 2.40 Q ( Σ ñ px « yq, and thus Q ( Σ ñ δ and (1) holds. l

Analogously to the case of passive universal completeness, if the smallest free algebra is isomorphic to 
all its ultraproducts we can improve the previous result.

Lemma 4.24. Let Q be a quasivariety such that IpFQq “ IPupFQq, then the following are equivalent.
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1. every nontrivial finitely presented algebra in Q is unifiable;
2. every nontrivial algebra in Q is unifiable.

Proof. Notice that if FQ is trivial all algebras are unifiable and then the two statements are verified; let 
us then assume FQ nontrivial. The proof is analogous to the one of Lemma 3.32; we prove the nontrivial 
direction by contraposition. Consider an arbitrary algebra A “ FQpXq{θ P Q and assume that it is not 
unifiable. Then there is no assignment h : FQpXq Ñ FQ such that FQ, h ( Σθ, where Σθ “ tt « u : pt, uq P θu. 
Equivalently, iff FQ ( Σθ ñ H. Now, the equational consequence relation relative to FQ is finitary (since 
all ultraproducts of FQ are isomorphic to FQ); thus we obtain that FQ ( Σ1θ ñ H, for Σ1θ some finite 
subset of Σθ. But FQpXq{θ * Σ1θ ñ px « yq (with x, y R X), since it is nontrivial, which contradicts (2) of 
Theorem 4.23; equivalently it contradicts (1) and thus the proof is complete. l

Corollary 4.25. Let Q be a quasivariety such that IpFQq “ IPupFQq, then the following are equivalent.

1. Q is passively structurally complete;
2. FQ ( Σ ñH implies Σ is trivializing in Q;
3. either FQ is trivial, or Σ is trivializing in QpFQq implies Σ is trivializing in Q;
4. every nontrivial finitely presented algebra is unifiable;
5. every nontrivial algebra in Q is unifiable.

Remark 4.26. The previous corollary can be applied whenever FQ is finite, therefore to all locally finite 
quasivarieties, but also to more complex classes of algebras, e.g., all subquasivarieties of FLw (see Subsection 
5.2). We observe that we do not know whether the condition IpFQq “ IPupFQq is necessary to add the last 
point to Corollary 4.25.

Moreover as usual a quasivariety of logic Q is passively structurally complete if and only if LQ is pas-
sively structurally complete. We will see an interesting application of Theorem 4.23 (or Corollary 4.25) in 
substructural logics in Subsection 5.2; let us now show some other consequences. Given a quasivariety Q, 
let us consider the following set:

PQ “ tΣñ tx « yu : FQ ( Σ ñH, and x, y R Σu.

PQ axiomatizes a subquasivariety of Q, that we denote with PQ. From Theorem 4.23 we get the following.

Corollary 4.27. Let Q be a quasivariety such that the smallest free algebra FQ1 of every nontrivial subqua-
sivariety Q1 Ď Q is isomorphic to FQ. Then every passively structurally complete subquasivariety of Q is 
contained in PQ, which is the largest subquasivariety of Q that is passively structurally complete.

Moreover, for locally finite quasivarieties the characterization theorem reads as follows.

Corollary 4.28. Let Q be a locally finite quasivariety, then the following are equivalent.

1. Q is passively structurally complete;
2. every nontrivial algebra in Q is unifiable;
3. every nontrivial finite algebra in Q is unifiable;
4. every finite subdirectly irreducible in Q is unifiable.

We call a nontrivial algebra A Kollár if it has no trivial subalgebras, and a quasivariety Q is a Kollár 
quasivariety if all nontrivial algebras in Q are Kollár. By [59] if A belongs to a Kollár quasivariety, 1A, the 
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largest congruence of A, is compact in ConQpAq; from there a straightforward application of Zorn’s Lemma 
yields that if A is nontrivial there is at least one maximal congruence θ P ConQpAq below 1A (i.e. A{θ is 
relative simple).

Theorem 4.29. If Q is a Kollár quasivariety and FQ is the only finitely generated relative simple algebra in 
Q, then Q is passively structurally complete.

Proof. Let A be a nontrivial finitely presented algebra in Q; since Q is a Kollár quasivariety, A has a relative 
simple homomorphic image, that must be finitely generated. Hence it must be equal to FQ, so A is unifiable; 
by Theorem 4.23 Q is passively structurally complete. l

Corollary 4.30. For a locally finite Kollár quasivariety Q such that FQ has no proper subalgebra the following 
are equivalent:

1. FQ is the only finite relative simple algebra in Q;
2. Q is passively structurally complete.

Proof. If (1) holds, than (2) holds by Theorem 4.29. Conversely assume (2); then every nontrivial finitely 
presented algebra in Q is unifiable. Since Q is locally finite FQ is finite and nontrivial since Q is Kollár and FQ
is a subalgebra of all free algebras; now since FQ has no proper subalgebra no finite relative simple algebra 
different from FQ can be unifiable, but Q must contain at least a relative simple algebra [50, Theorem 3.1.8]. 
Hence FQ must be relative simple and (1) holds. l

The next results will allow us to find interesting applications in varieties of bounded lattices, which we 
will explore in Section 5.1. We say that an algebra A in a variety V is flat if HSpAq does not contain any 
simple algebra different from FV.

Theorem 4.31. Let V be a Kollár variety; if every finitely generated algebra in V is flat then V is passively 
structurally complete. If V is locally finite and FV has no proper subalgebras, then the converse holds as well.

Proof. First, if FV is trivial then V is vacuously passively structurally complete. If FV is nontrivial and every 
finitely generated algebra is flat, then the only finitely generated simple lattice in V must be FV; since V is 
Kollár, V is passively structurally complete by Theorem 4.29.

For the converse if V is locally finite and passively structurally complete, then FV is the only finite simple 
algebra in V by Corollary 4.30. It follows that no finite simple algebra different from FV can appear in 
HSpAq for any finite A P V. So every finite algebra in V must be flat. l

Theorem 4.32. Let V be a congruence distributive Kollár variety and let W be a finitely generated subvariety 
of V. Then:

1. if each generating algebra is flat, then W is passively structurally complete;
2. if W is passively structurally complete and FW has no proper subalgebras, then each generating algebra is 

flat.

Proof. For (1), suppose that W “ VpKq where K is a finite set of finite algebras; by Jónsson Lemma any 
simple algebra in V is in HSpKq. If K consists entirely of flat algebras, then there cannot be any simple 
algebra in V different from FW, so W is passively structurally complete by Theorem 4.29.

For (2) if A P K is not flat, then there is an algebra B P HSpKq which is simple and different from FV. 
Clearly B P W, so by Corollary 4.30 W is not passively structurally complete. l
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5. Applications to algebra and logic

In this last section we will see some relevant examples and applications of our results in the realm of 
algebra and (algebraic) logic that deserve a deeper exploration than the examples already presented in the 
previous sections. We will start with focusing on varieties of lattices and bounded lattices, and then move 
to residuated lattices; these are the equivalent algebraic semantics of substructural logics, the latter seen as 
extensions of the Full Lambek Calculus FL (see [43]).

As a main result, in the last subsection we present the logical counterpart of the characterization of 
passive structural completeness in substructural logics with weakening, that is, such a logic is passively 
structurally complete if and only if every classical contradiction is explosive in it; building on this, from 
the algebraic perspective, we are able to axiomatize the largest variety of semilinear bounded commutative 
integral residuated lattices that is passively structurally complete (and such that all of its quasivarieties 
have this property). Notice that this characterization establishes negative results as well: if a logic (or a 
quasivariety) is not passively structurally complete, a fortiori it is not structurally complete either.

5.1. (Bounded) lattices

In this subsection we start with some results about primitive (quasi)varieties of lattices, and then move 
to bounded lattices, where in particular we obtain some new results about passively structurally complete 
varieties.

5.1.1. Primitivity in lattices
Many examples of quasivarieties that are primitive can be found in lattices satisfying Whitman’s condition

(W); Whitman’s condition is a clause that holds in free lattices:

tx^ y ď u_ vu ñ tx ď u_ v, y ď u_ v, x^ y ď u, x^ y ď vu. (W)

We say that a finite algebra is finitely projective in a class K if it is projective in the subclass of the finite 
algebras in K. Now a finite lattice is finitely projective in the variety of all lattices if and only if it satisfies 
(W) ([33]), which implies:

Lemma 5.1. Let K be a finite set of finite lattices. If every lattice in K satisfies (W) then QpKq is primitive.

Proof. QpKq is locally finite and by Theorem 2.3(2) every relative subdirectly irreducible lies in ISpKq; as 
(W) is a universal sentence it is preserved under subalgebras, thus they all satisfy (W) and hence they 
are all finitely projective in the variety of lattices and then also in QpKq. By Theorem 4.11(4), QpKq is 
primitive. l

Luckily finite lattices satisfying (W) abound, so there is no shortage of primitive quasivarieties of lattices. 
For varieties of lattices the situation is slightly different; in particular, Lemma 4.4 may suggest that it is not 
enough that all lattices in K are weakly projective in VpKq to guarantee that VpKq is structurally complete.

First we introduce some lattices: Mn for 3 ď n ď ω are the modular lattices consisting of a top, a bottom, 
and n atoms while the lattices M3,3 and M`

3,3 are displayed in Fig. 4.
Observe that all the above lattices, with the exception of M3,3, satisfy (W). Now Gorbunov ([50], Theorem 

5.1.29) showed that M`
3,3 is splitting in the lattice of subquasivarieties of modular lattices. This means that 

for any quasivariety Q of modular lattices, either M`
3,3 P Q or else Q “ QpMnq for some n ď ω. Observe 

that, for n ă ω, QpMnq is primitive by Lemma 5.1 and VpMnq “ QpMnq by Lemma 2.4; then the only 
thing left to show is that VpMωq is a primitive variety and Gorbunov did exactly that. On the other hand 
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M3,3 M`
3,3

Fig. 4. M3,3 and M`
3,3.

Fig. 5. The Fano lattice.

no variety V of lattices containing M`
3,3 can be primitive; in fact M3,3 is a simple homomorphic image of 

M`
3,3 that cannot be embedded in M`

3,3. By Lemma 2.4, QpM`
3,3q Ĺ VpM`

3,3q, so V contains a strict (i.e. not 
a variety) subquasivariety and cannot be primitive. Thus Gorbunov’s result can be formulated as: a variety 
of modular lattices is primitive if and only if it does not contain M`

3,3. Note that it cannot be improved to 
quasivarieties: since M`

3,3 satisfies (W), QpM`
3,3q is primitive by Lemma 5.1. However we observe:

Lemma 5.2. If Q is a quasivariety of modular lattices and M3,3 P Q, then Q is not primitive.

Proof. Clearly the two element lattice 2 P Q and it is easy to check that M`
3,3 ďsd 2 ˆM3,3 so M`

3,3 P Q
and M3,3 P HpM`

3,3q. Since M3,3 cannot be embedded in M`
3,3, in Q there is a simple finite (so finitely 

presented, since lattices have finite type) algebra that is not weakly projective. By Theorem 4.11, Q is not 
primitive. l

Therefore to find a variety of modular lattices that is structurally complete but not primitive it is enough 
to find a finite lattice F such that M`

3,3 P VpFq but K “ tFu satisfies the hypotheses of Lemma 4.4. Bergman 
in [13, Example 2.14.4] observed that the Fano lattice F has exactly those characteristics; the Fano lattice 
is the (modular) lattice of subspaces of pZ2q

3 seen as a vector space on Z2 and it is displayed in Fig. 5.
Now: F is projective in VpFq ([52, Theorem 6.2]), and the subdirectly irreducible members of VpFq are 

exactly 2, M3, M3,3, F, which are all subalgebras of F. It follows that F does not satisfy (W) (since M3,3 does 
not), VpFq is structurally complete by Lemma 4.4 and not primitive by Lemma 5.2 (since M3,3 P VpFq). 
Also QpFq is structurally complete (again by Lemma 4.4) but, since M3,3 P QpFq, it cannot be primitive as 
well.

Primitive varieties of lattices have been studied in depth in [54]; there the authors proved the following 
theorem that explains the behavior we have seen above.

Theorem 5.3 ([54]). If A is a lattice satisfying (W), then VpAq is primitive if and only if every subdirectly 
irreducible lattice in HSpAq satisfies (W).

We believe that many of the techniques in [54] could be adapted to gain more understanding of primitive 
quasivarieties of lattices, but proceeding along this path would make this part too close to being a paper in 
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H H`

Fig. 6. H and H`.

lattice theory, and we have chosen a different focus. We only borrow an example from [54] that shows that 
Lemma 5.1 cannot be inverted for quasivarieties. Let H`, H be the lattices in Fig. 6.

It is easily seen that the pair H`, H behaves almost like the pair M`
3,3, M3,3: H` satisfies (W) (so QpH`q

is primitive), H does not satisfy (W) and H` ďsd 2 ˆ H. As above we can conclude that VpH`q is not 
primitive. However VpHq is primitive [54] so QpHq is a primitive quasivariety generated by a finite lattice 
not satisfying (W).

5.1.2. Bounded lattices
We now focus on applications of our results in varieties of bounded lattices. A bounded lattice is a lattice 

with two constants, 1 and 0, that represent the top and the bottom of the lattice respectively. Bounded 
lattices form a variety Lb that shares many features with variety of lattices. In particular, let 2b be the two 
element bounded lattice, then the variety of bounded distributive lattices is Db “ ISPp2bq. Therefore

QpFDb
pωqq Ď Db

“ ISPp2b
q Ď QpFDb

pωqq

and by Theorem 4.1, the variety of bounded distributive lattices Db is structurally complete, as shown in 
[35]. In [14] it is shown that locally finite, congruence modular, minimal varieties are q-minimal; since these 
hypotheses apply to Db, the latter is also primitive. However, it is not non-negatively universally complete; 
it is a nice exercise in general algebra to show that for any variety V of bounded lattices, 1 is join irreducible 
in FVpωq. It follows that

tx_ y « 1u ñ tx « 1, y « 1u

is an active clause that is admissible in V. But it is clearly not derivable, since any nontrivial variety of 
bounded lattices contains 2b ˆ 2b which does not satisfy the clause.

Proposition 5.4. No nontrivial variety of bounded lattices is actively universally complete.

Actually something more is true; if V is a variety of bounded lattices that is structurally complete, then by 
Theorem 4.6, each finite subdirectly irreducible algebra A P V must satisfy the above clause, i.e. 1 must be 
join irreducible in A. But the bounded lattices Nb

5 and Mb
3 do not satisfy that, so any structurally complete 

variety of bounded lattice must omit them both. As in the unbounded case, this means that the variety 
must be the variety of bounded distributive lattices. Thus:

Proposition 5.5 ([35]). The variety of bounded distributive lattices is the only (active) structurally complete 
variety of bounded lattices.

We have seen that active structural completeness does not have much meaning in bounded lattices. 
Passive structural completeness has more content, as we are now going to show. Notice that any variety of 
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bounded lattices is Kollár and FV “ 2b for any variety V of bounded lattices. Since 2b is simple and has 
no proper subalgebras, any simple bounded lattice not isomorphic with 2b is not unifiable; in particular if 
a variety V contains a finite simple lattice L different from 2b, then VpLq cannot be passively structurally 
complete by Corollary 4.30, and hence neither can V.

We will use this fact to show that the only variety of bounded modular lattices that is passively struc-
turally complete is the one we already know to possess that property, i.e. the variety Db of bounded 
distributive lattices. We will use the notion of splitting algebra in a variety. An algebra A splitting in a 
variety V if A P V and there is a subvariety WA Ď V such that A R WA and for any variety U Ď V either 
A P U or U Ď WA. This simply means that the lattice of subvarieties of V is the disjoint union of the filter 
generated by VpAq and the ideal generated by WA. A key step is to show that Mb

3 is splitting in the variety 
of bounded modular lattices; in the unbounded case, this follows from the fact that M3 is projective and 
subdirectly irreducible. However, Mb

3 is not projective in the variety of bounded modular lattices. Indeed, 
the lattice in the figure below is a bounded modular lattice having Mb

3 as homomorphic image, but it has 
no subalgebra isomorphic with Mb

3, which hence cannot be a retract.

0

1

However we can use A. Day idea in [34]; a finite algebra A is finitely projected in a variety V if for any 
B P V if f : B ÝÑ A is surjective, then there is a finite subalgebra C of B with fpCq – A. Clearly any finite 
projective lattice is finitely projected. The key result is:

Theorem 5.6. ([34], Theorem 3.7) If V is a congruence distributive variety, then any finitely projected sub-
directly irreducible algebra in V is splitting in V.

Lemma 5.7. Let Vb be a variety of bounded lattices and let V be the variety of lattice subreducts of Vb. If L
is finitely projected in V, then Lb is finitely projected in Vb.

Proof. The fact that V is indeed a variety is easy to check. Let now Ab
P Vb and suppose that there is an 

onto homomorphism f : Ab
ÝÑ Lb; then f is onto from A to L and since L is finitely projected in V there 

is a subalgebra B of A with fpBq – L. But B Y t0, 1u is the universe of a finite subalgebra C of Ab, and of 
course fp0q “ 0, fp1q “ 1; then fpCq – Lb and so Lb is finitely projected in Vb. l

Theorem 5.8. A variety of modular bounded lattices is passively structurally complete if and only if it is the 
variety of bounded distributive lattices.

Proof. Db is structurally complete, hence passively structurally complete. Conversely observe that M3 is 
projective in the variety of modular lattices, so Mb

3 is finitely projected in the variety of bounded modular 
lattices. Hence, by Theorem 5.6, Mb

3 is splitting in the variety, which means that for any variety V of bounded 
modular lattices, either Mb

3 P V or V is Db. But if Mb
3 P V then V cannot be passively universally complete, 

since Mb
3 is simple. The conclusion follows. l

In order to find other relevant varieties of bounded lattices that are passively structurally complete, we 
are going to take a closer look at flat lattices. Finding flat bounded lattices is not hard since the lattice 
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L13 L14 L15

L1 L2

Fig. 7. L1, L2, L13, L14, L15.

of subvarieties of lattices has been studied thoroughly and a lot is known about it (an excellent survey 
is [55]). Clearly N5 is flat and hence so is Nb

5; however we know exactly all the covers of the minimal 
non-distributive varieties of lattices (which is of course VpN5q). There are 15 finite subdirectly irreducible 
non-simple lattices, commonly called L1, . . . , L15 (some of them are in Fig. 7) that generate all the join 
irreducible (in the lattice of subvarieties) covers of VpN5q. It is easy to see their bounded versions all are 
join irreducible covers of VpNb

5q in the lattice of subvarieties of bounded lattices. We suspect that they are 
also the only join irreducible covers; one needs only to check that the (rather long) proof for lattices [58]
goes through for bounded lattices but we leave this simple but tedious task to the reader. In any case for 
i “ 1, . . . , 15 the subdirectly irreducible algebras in VpLb

i q are exactly 2b, Nb
5 and Lb

i (via a straightforward 
application of Jónsson Lemma); so each Lb

i is flat and each VpLb
i q is passively structurally complete (by 

Theorem 4.32).
Let’s make more progress: consider the rules

x^ y « x^ z ñ x^ y « x^ py _ zq (SD^)

x_ y « x_ z ñ x_ y « x_ py ^ zq. (SD_)

A lattice is meet semidistributive if it satisfies SD^, join semidistributive if it satisfies SD_ and semidis-
tributive if it satisfies both. Clearly (meet/join) semidistributive lattices form quasivarieties called SD^, 
SD_ and SD respectively, and so do their bounded versions. It is a standard exercise to show that homo-
morphic images of a finite (meet/join) semidistributive lattices are (meet/join) semidistributive. It is also 
possible to show none of the three quasivariety (and their bounded versions) is a variety (see [55] p. 82 for 
an easy argument); they are also not locally finite since for instance F “ FSDpx, y, zq is infinite; hence Fb is a 
bounded infinite three-generated lattice and thus SDb is not locally finite as well. A variety V of (bounded) 
lattices is (meet/join) semidistributive if V Ď SD (V Ď SD^ / V Ď SD_).

We need a little bit of lattice theory. A filter of L is an upset F of L that is closed under meet; a filter is 
prime if a _ b P F implies a P F or b P F . An ideal I of L is the dual concept, i.e. a downset that is closed 
under join; an ideal is prime if a ̂ b P I implies a P I or b P I. The following lemma is straightforward.

Lemma 5.9. If F is a prime filter of L (I is a prime ideal of L), then LzF is a prime ideal of L (LzI is a 
prime filter of L).

Lemma 5.10. Any bounded (meet/join) semidistributive lattice is unifiable in the variety of bounded lattices.
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Proof. Let L be bounded and meet semidistributive. Since L is lower bounded by 0 a standard application 
of Zorn Lemma yields a maximal proper filter F of L; we claim that F is also prime. Let a, b R F ; then the 
filter generated by F Ytau must be the entire lattice. Hence there must be a c P F with c ̂ a “ 0; similarly 
there must be a d P F with d ^ b “ 0. Let e “ c ^ d; then e P F and e ^ a “ e ^ b “ 0 and by meet 
semidistributivity e ̂ pa _ bq “ 0. But if a _ b P F , then 0 P F , a clear contradiction. Hence a _ b R F and 
F is prime.

Let now ϕ : L ùñ 2b defined by

ϕpxq “

#

1, if x P F ;
0, if x R F .

Using the fact that F is prime and LzF is prime it is straightforward to check that ϕ is a homomorphism. 
Therefore L is unifiable.

A dual proof shows that the conclusion holds for join semidistributivity and a fortiori for semidistribu-
tivity. l

Proposition 5.11. Any bounded finite (meet/join) semidistributive lattice is flat.

Proof. If L is finite and (meet/join) semidistributive, every lattice in HSpLq is finite and (meet/join) semidis-
tributive. So it is unifiable and, if simple, it must be equal to 2b; therefore L is flat. l

Corollary 5.12. Every locally finite (meet/join) semidistributive variety of bounded lattices is passively struc-
turally complete.

In [62] several (complex) sets of equations implying semidistributivity are studied; one of them is useful 
to us, since it describes a class of locally finite varieties. The description is interesting in that involves some 
of the L1is we have introduced before.

Theorem 5.13. [62] There exists a finite set Γ of lattices equations such that, if V is any variety of lattices 
such that V ( Γ, then the following hold:

1. V is semidistributive;
2. V is locally finite;
3. only L13, L14, L15 P V.

A variety satisfying Γ is called almost distributive and it is straightforward to check that a similar result 
holds for varieties of bounded lattices. Therefore:

Proposition 5.14. Every almost distributive variety of bounded lattices is passively structurally complete.

We close this subsection with a couple of observations; first VpLb
1, L

b
2q is a variety of bounded lattices 

that is passively structurally complete (by Theorem 4.32) but neither meet nor join semidistributive. Next, 
what about infinite flat (bounded) lattices? We stress that in [65] there are several examples of this kind 
and we believe that a careful analysis of the proofs therein could give some insight on how to construct a 
non locally finite variety of bounded lattices that it is passively structurally complete. But again, this is not 
a paper in lattice theory; therefore we defer this investigation.
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5.2. Substructural logics and residuated lattices

Originally, substructural logics were introduced as logics which, when formulated as Gentzen-style sys-
tems, lack some (including “none” as a special case) of the three basic structural rules (i.e. exchange, 
weakening and contraction) of classical logic. Nowadays, substructural logics are often intended as those 
logics whose equivalent algebraic semantics are residuated structures, and they encompass most of the in-
teresting non-classical logics: intuitionistic logic, basic logic, fuzzy logics, relevance logics and many other 
systems. Precisely, by substructural logics we mean here the extensions of the Full Lambek Calculus FL, 
whose equivalent algebraic semantics are given by quasivarieties of FL-algebras, particular residuated lat-
tices that we shall now define (see [43] for details and a survey on substructural logics). We observe that 
FL and its axiomatic extensions are actually strongly algebraizable, i.e. their equivalent algebraic semantics 
are all varieties of FL-algebras.

A residuated lattice is an algebra A “ xA, _, ̂ , ̈ , {, z, 1y where

1. xA, _, ̂ y is a lattice;
2. xA, ̈ , 1y is a monoid;
3. { and z are the right and left divisions w.r.t. ¨, i.e., x ̈ y ď z iff y ď xzz iff x ď z{y, where ď is given by 

the lattice ordering.

Residuated lattices form a variety RL and an equational axiomatization, together with many equations 
holding in these very rich structures, can be found in [19].

A residuated lattice A is integral if it satisfies the equation x ď 1; it is commutative if ¨ is commutative, 
and in this case the divisions coincide: xzy “ y{x, and they are usually denoted with x Ñ y. The classes 
of residuated lattices that satisfy any combination of integrality and commutativity are subvarieties of RL. 
We shall call the variety of integral residuated lattices IRL, commutative residuated lattices CRL, and their 
intersection CIRL.

Residuated lattices with an extra constant 0 in the language are called FL-algebras, since they are the 
equivalent algebraic semantics of the Full Lambek calculus FL. Residuated lattices are then the equivalent 
algebraic semantics of 0-free fragment of FL, FL`. An FL-algebra is 0-bounded if it satisfies the inequality 
0 ď x and the variety of zero-bounded FL-algebras is denoted by FLo; integral and 0-bounded FL-algebras 
are called FLw algebras (since they are the equivalent algebraic semantics of the Full Lambek Calculus 
with weakening), and we call its commutative subvariety FLew.

Restricting ourselves to the commutative case there is another interesting equation, prelinearity:

pxÑ yq _ py Ñ xq « 1.

It can be shown (see [19] and [56]) that a subvariety of FLew or CIRL satisfies the above equation if and 
only if any algebra therein is a subdirect product of totally ordered algebras, and this implies that all the 
subdirectly irreducible algebras are totally ordered. Such varieties are called semilinear (or representable) 
and the subvariety axiomatized by that equation is the largest subvariety of FLew or CIRL that is semilinear. 
The semilinear subvariety of FLew is usually denoted by MTL, since it is the equivalent algebraic semantics 
of Esteva-Godo’s Monoidal t-norm based logic [38].

5.2.1. Active universal completeness
We have already seen examples of subvarieties of FLew-algebras that are actively universally complete, 

but those were all locally finite subvarieties of BL-algebras, that is, MTL-algebras satisfying the divisibility 
equation: x ̂ y “ xpx Ñ yq. In this section we will display a different class of examples. If A is any algebra 
a congruence θ P ConpAq is a factor congruence if there is a θ1 P ConpAq such that θ _ θ1 “ 1A, θ ^ θ1 “ 0A
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and θ, θ1 permute. The pair pθ, θ1q is called a pair of factor congruences. It is an easy exercise in general 
algebra to show that in this case A – A{θˆA{θ1; note that 1A and 0A are a pair of factor congruences that 
give a trivial decomposition. A less known fact (that appears in [31]) is:

Lemma 5.15. Let A be any algebra and pθ, θ1q a pair of factor congruences on A; then A{θ is a retract of A
if and only if there is a homomorphism h : A{θ ÝÑ A{θ1.

Proof. Suppose first that there is a homomorphism h : A{θ ÝÑ A{θ1. Since A – A{θ ˆ A{θ1 for u P A, 
u “ pa{θ, b{θ1q, we set fpuq “ a{θ; then f : A ÝÑ A{θ is clearly an onto homomorphism, since pa{θ, a{θ1q P A
for all a P A. Let

gpa{θq “ pa{θ, hpa{θqq.

One can check that g is a homomorphism with standard calculations and clearly fg “ idA{θ. Hence A{θ is 
a retract of A.

Conversely suppose that f, g witness a retraction from A{θ in A; then if gpa{θq “ pu{θ, v{θ1q, set hpa{θq “
v{θ1. It is then easy to see that h is a homomorphism and the thesis holds. l

Observe that in any FL-algebra every compact (i.e., finitely generated) congruence is principal; as a 
matter of fact if A is in FL, X “ tpa1, b1q, . . . , pan, bnqu is a finite set of pairs from A and p “

Źn
i“1rpaizbiq ̂

pbizaiq ̂ 1s then ϑApXq “ ϑApp, 1q.

Theorem 5.16. Let Q be a quasivariety of FLw-algebras in which every principal congruence is a factor 
congruence; then Q has projective unifiers.

Proof. Let FQpXq{θ be a finitely presented unifiable algebra in Q; then there is an onto homomorphism 
from FQpXq{θpΣq to FQ “ 2. Now θ “ θpΣq is a principal congruence, hence it is a factor congruence with 
witness θ1, i.e. FQpXq – FQpXq{θ ˆ FQpXq{θ

1. If θ1 “ 1A, then FQpXq “ FQpXq{θ and so it is projective. 
Otherwise FQ “ 2 is embeddable in FQpXq{θ

1; hence there is a homomorphism from FQpXq{θ to FQpXq{θ
1. 

By Lemma 5.15 FQpXq{θ is a retract of FQpXq, i.e. it is projective. l

So any quasivariety of FLw-algebras with the property that every principal congruence is a factor con-
gruence is actively universally complete (Theorem 3.23); really it is active primitive universally complete by 
Theorem 3.27, since FQ is the two-element Boolean algebra for any nontrivial quasivariety Q of FLw-algebras. 
We observe in passing that for any FLw algebra every factor congruence is principal; this is because every 
variety of FLw-algebras is Kollár and congruence distributive. Now, discriminator varieties of FLew-algebras 
have been completely described in [61]; as a consequence we have:

Theorem 5.17. For a variety V of FLew-algebras the following are equivalent:

1. V is a discriminator variety;
2. V is semisimple, i.e. all the subdirectly irreducible members of V are simple;
3. there is an n P N such that V ( x _�pxnq « 1;
4. for any A P V every compact (i.e. principal) congruence is a factor congruence.

Proof. The equivalence of (1), (2) and (3) has been proved in [61]. Assume then (1); it is well-known that in 
every discriminator variety every principal congruence is a factor congruence. In fact if V is a discriminator 
variety with discriminator term tpx, y, zq let for any A P V and a, b P A
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θApa, bq “ tpu, vq : tpa, b, uq “ tpa, b, vqu

γApa, bq “ tpu, vq : tpa, tpa, b, uq, uq “ tpa, tpa, b, vq, vqu.

Using the properties of the discriminator term it is easy to verify that they are congruences and the com-
plement of each other; since discriminator varieties are congruence permutable they are factor congruences 
and (4) holds.

Conversely assume (4) and let A be a subdirectly irreducible member of V. Let μA be the minimal 
nontrivial congruence of A; then μA is principal, so it must be a factor congruence. This is possible if and 
only if μA “ 1A; therefore A is simple, and V is semisimple. l

Corollary 5.18. Every discriminator (or, equivalently, semisimple) variety V of FLew-algebras is active prim-
itive universal.

We observe that Theorem 5.16 does not add anything as far as BL-algebras are concerned; in fact any 
discriminator variety of FLew-algebras must satisfy xn « xn`1 for some n ([61]) and the varieties of BL-
algebras with that property are exactly the locally finite varieties, which we already pointed out are actively 
universally complete in Example 3.25.

5.2.2. Passive structural completeness
A particularly interesting application of our characterization of passively structurally complete varieties is 

in the subvariety of integral and 0-bounded FL-algebras. Let us rephrase Theorem 4.23 in this setting. First, 
using residuation it is easy to see that every finite set of identities in FL is equivalent to a single identity. 
Moreover, in every nontrivial subquasivariety Q of FLw, the smallest free algebra FQ is the two-element 
Boolean algebra 2, and the quasivariety it generates is the variety of Boolean algebras.

Corollary 5.19. Let Q be a quasivariety of FLw-algebras, then the following are equivalent:

1. Q is passively structurally complete;
2. every trivializing identity in the variety of Boolean algebras is trivializing in Q;
3. every nontrivial finitely presented algebra is unifiable;
4. every nontrivial algebra is unifiable.

The previous corollary has a possibly more transparent shape from the point of view of the logics. Let 
us call a formula ϕ in the language of FL-algebras explosive in a logic L, with consequence relation $L, if 
ϕ $L δ for all formulas δ in the language of L. Moreover, we call ϕ a contradiction in L if ϕ $L 0. Since 
FLw-algebras are 0-bounded, it is clear that contradictions coincide with explosive formulas in all extensions 
of FLw.

Corollary 5.20. Let L be an extension of FLw, then the following are equivalent:

1. L is passively structurally complete.
2. Every contradiction of classical logic is explosive in L.
3. Every passive rule of L has explosive premises.

Let us first explore the consequences of the equivalence between (1) and (2) in Corollary 5.20. It is 
well known that intuitionistic logic is passively structurally complete (reported by Wroński at the 51st 
Conference on the History of Logic, Krakow, 2005). This can indeed be shown using the Glivenko Theorem 
for intuitionistic logic, and in our setting this is easily seen as a consequence of Corollary 5.20; indeed, 
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observe that any contradiction of classical logic ϕ is such that its negation �ϕ is a theorem of classical logic. 
Using the Glivenko translation and the deduction theorem, we obtain that ϕ is explosive in intuitionistic 
logic as well, which is then passively structurally complete. We will now show how this argument can be 
extended to a wide class of logics.

Let us write the negations corresponding to the two divisions as �x “ xz0 and „ x “ 0{x. Following 
[44,45], we say that two logics L1 and L2 are Glivenko equivalent if for all formulas ϕ:

$L1 �ϕ iff $L2 �ϕ

(equivalently, $L1„ ϕ iff $L2„ ϕ). Given a logic L, we call Glivenko logic of L the smallest axiomatic 
extension of FL that is Glivenko equivalent to L. Moreover, we call Glivenko logic of L with respect to L1, 
and denote it with GL1pLq the smallest axiomatic extension of L1 that is Glivenko equivalent to L (all these 
notions make sense by the results in [44,45]). GL1pLq is axiomatized relatively to L1 by the set of axioms 
t� „ ϕ :$L ϕu, or equivalently by the set t„ �ϕ :$L ϕu.

Here we are interested in the Glivenko equivalent of classical logic with respect to FLw. From the algebraic 
perspective, this corresponds to the largest subvariety of FLw that is Glivenko equivalent to Boolean algebras, 
GFLw

pBq. The latter is axiomatized in [43, Corollary 8.33] as the subvariety of FLw satisfying:

1. „ px ̂ yq “„ pxyq
2. „ pxzyq “„ p�x _ yq

3. �pxzyq “ �p„ x _ yq

4. „ pxzyq “„ p� „ xz� „ yq

5. „ px{yq “„ p� „ x{� „ yq.

Theorem 5.21. Every axiomatic extension L of the Glivenko logic of classical logic with respect to FLw is 
passively structurally complete.

Proof. Consider a contradiction of classical logic ϕ, by the deduction theorem $CL �ϕ (where $CL is the 
consequence relation of classical logic). Since L is Glivenko equivalent to classical logic, $L �ϕ. It can 
be easily checked that this implies that ϕ $L 0 (it is a consequence of the parametrized local deduction 
theorem which holds in every extension of FL [43], but it is also straightforward to see in models). Thus ϕ
is a contradiction of L, or equivalently it is explosive in L, which is then passively structurally complete by 
Corollary 5.20. l

Thus, every subvariety of GFLw
pBq is passively structurally complete. In particular, the commutative 

subvariety GFLew
pBq is the variety of pseudocomplemented FLew-algebras ([39, Corollary 2.12]), i.e. the 

subvariety of FLew axiomatized by

x^�x « 0.

Examples of passively structurally complete varieties then include Heyting algebras, Stonean MTL-algebras 
and as a consequence, e.g., product algebras and Gödel algebras.

We observe that these are not all of the passively structurally complete varieties of FLw (nor of FLew). 
Let us indeed obtain a different kind of examples.

Definition 5.22. We say that a variety V Ď FLew has a Boolean retraction term if there exists a term t in 
the language of V such that, for every A P V, t defines an idempotent endomorphism on A whose image is 
the Boolean skeleton of A, that is, the set of complemented elements of A.
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Varieties with a Boolean retraction term have been studied at length by Cignoli and Torrens in a series of 
papers, see in particular [28]. These are all varieties in which all nontrivial algebras retract onto a nontrivial 
Boolean algebra, thus they satisfy the hypotheses of Corollary 5.19 and they are passively structurally 
complete. Some of these varieties have been shown in [7] to have projective unifiers, thus they satisfy 
Theorem 3.17 and they are non-negatively universally complete. Among those we cite some varieties of 
interest in the realm of many-valued logics: the variety of product algebras, the variety generated by perfect 
MV-algebras, the variety NM´ of nilpotent minimum algebras without negation fixpoint and some varieties 
that have been called nilpotent product in [6] or [5].

We will see that in the semilinear variety of FLew, MTL, we can fully characterize passively structurally 
complete varieties as those with a Boolean retraction term. By [28], the largest subvariety of MTL with a 
Boolean retraction term is axiomatized relatively to MTL by the Di Nola-Lettieri equation:

px` xq2 “ x2
` x2 (DL)

where x ` y “ �p�x ¨ �yq. The latter identity has been introduced by Di Nola and Lettieri to axiomatize 
within MV-algebras the variety generated by the Chang algebra, or equivalently by perfect MV-algebras. 
This variety is called sDL in [76] (BP0 in [70,10]), and it includes, for instance: pseudocomplemented MTL-
algebras (also called SMTL-algebras), and thus Gödel algebras and product algebras; involutive BP0-algebras 
and thus the variety generated by perfect MV-algebras and nilpotent minimum algebras without negation 
fixpoint.

Let us say that an element of an FLew-algebra A has finite order n if xn “ 0, and infinite order if there 
is no such n. We call perfect an algebra A P FLew such that, for all a P A, a has finite order if and only if 
�a has infinite order. Now, sDL turns out to be the variety generated by the perfect chains (see [76,10]).

Lemma 5.23. A chain A P FLew is perfect if and only if there is no element with finite order a P A such that 
a ě �a.

Proof. By order preservation, if there is an element a P A, a ě �a, an “ 0, then both a and its negation 
have finite order, thus the chain is not perfect. Suppose now a chain A is not perfect. Observing that for 
every element x P A it cannot be that both x and �x have infinite order, we get that there is an element 
a P A such that both a and its negation �a have finite order. If a ğ �a, since A is a chain, a ă �a. Then 
��a ď �a, and they both have finite order. l

Theorem 5.24. For a subvariety V of MTL the following are equivalent:

1. V is passively structurally complete;
2. V is a subvariety of sDL.

Proof. Since subvarieties of sDL have a Boolean retraction term (2) implies (1) by Corollary 5.19. Suppose 
now that V Ę sDL. Then there is a chain A in V that is not perfect. By Lemma 5.23, there exists a P A, a ě
�a, an “ 0 for some n P N. Thus, �pa _ �aqn “ 1. But the identity �px _ �xqn “ 0 holds in Boolean 
algebras. Thus �px _�xqn « 1 is trivializing in Boolean algebras but not in V. By Corollary 5.19, V is not 
passively structurally complete and thus (1) implies (2). l

Remark 5.25. Notice that the previous theorem also implies that a variety of MTL-algebras that is not a 
subvariety of sDL cannot be structurally complete.

We mention that structural completeness in subvarieties of MTL (or their logical counterparts) has 
been studied by several authors: e.g., [79] and [49] for Łukasiewicz logics, [36] Gödel logic, and [29] for 
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Fig. 8. The classes of universal and structural completeness.

fuzzy logics in the MTL framework; in the latter the authors show for instance that all subvarieties of 
pseudocomplemented MTL-algebras (SMTL) are passively structurally complete. This result is here obtained 
as a consequence of Theorem 5.24, since SMTL is a subvariety of sDL. From the results mentioned above and 
the characterization theorem, it also follows that the only varieties of MV-algebras (the equivalent algebraic 
semantics of infinite-valued Łukasiewicz logic) that are structurally complete are Boolean algebras and the 
variety generated by perfect MV-algebras (this result has been obtained following a different path in [49]).

We also remark that a nontrivial variety of FLew-algebras can be at most non-negatively universally 
complete since trivial algebras are finitely presented and not unifiable (unifiability is a necessary condition 
for universal completeness by Theorem 3.5); by Proposition 4.20 this happens if and only if the variety is 
actively universally complete and passively structurally complete. Thus, for instance, a semisimple variety 
of FLew-algebras satisfying the conditions in Corollary 5.19 would be non-negatively universally complete. 
We stress that this observation is not of particular interest in MTL-algebras, since the only discriminator 
variety in sDL is the variety of Boolean algebras. Indeed, consider a chain A in a discriminator variety V
in sDL. Then there is some n P N such that V ( x _ �xn « 1. Let now a P A; either a has infinite order, 
and then from a _ �an we obtain that a “ 1, or a has finite order, and then �a has infinite order. So by 
the analogous reasoning �a “ 1. Therefore A is the two-element chain, and V is the variety of Boolean 
algebras.

6. Conclusions

In Fig. 8 we display several classes of varieties that we have considered in this paper (and the labels 
should be self explanatory); we are dropping the hereditary subclasses to avoid clutter. Observe that this 
is really a meet semilattice under inclusion.

Almost all the classes are provably distinct.

1. The variety of bounded distributive lattice is structurally complete (Proposition 5.5) but it is neither 
passively universally complete, since it is Kollár and the least free algebra is not trivial, nor non-negatively 
universally complete (Proposition 5.4). Hence S ‰ NNU, S ` PU .

2. The variety of Boolean algebras is non-negatively universally complete but not universally complete 
(Example 3.19) so NNU ‰ U .

3. Any locally finite variety of BL-algebras is actively universally complete and some of them are not non-
negatively universally complete (Example 3.25), so AU ‰ NNU .

4. The variety in Example 4.19 is actively structurally complete but not actively universally complete, hence 
AS ‰ AU .

5. Any locally finite variety of bounded semidistributive lattices different from the distributive variety is 
passively structurally complete (Corollary 5.12) but not structurally complete, since the only structurally 
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complete variety of bounded distributive lattices is the distributive variety (Proposition 5.5); as above it 
is also not passively universally complete. Hence PS ‰ S, PU .

6. The variety VpM`
3,3q (Section 5.1) is passively universally complete, as any variety of lattices, but it is 

not structurally complete since QpM`
3,3q Ę VpM`

3,3q; hence PU ‰ S ` PU .
7. Example 4.19 shows that AS ‰ S.
8. The intersection of AU and S is NNU as a consequence of Proposition 4.20.

Moreover for the primitive counterparts:

1. the variety VpFq generated by the Fano lattice is structurally complete and passively universally complete 
but not primitive (Section 5.1).

2. the variety of De Morgan lattices (Example 3.30) is actively universally complete but not active primitive 
universal.

3. the variety of pointed monounary algebras is actively structurally complete but not active primitive 
structural (Example 7.2 in [35]).

There are three examples that we were not able to find, which would guarantee total separation of all 
the classes we have considered:

1. A (quasi)variety that is structurally complete and passively universally complete, but not universally 
complete.

2. A non-negatively universally complete (quasi)variety such that not all subquasivarieties are non-
negatively universally complete.

3. A universally complete variety which is not primitive universal.

The natural example for (3) would be a locally finite variety with exact unifiers having a subvariety with-
out exact unifiers. However we are stuck because of lack of examples: we have only one unifiable locally 
finite variety with exact (non projective) unifiers, i.e. the variety of distributive lattices, which is trivially 
primitive universal. A similar situation happens for (2); all the examples of non-negatively universally com-
plete varieties we have are either equationally complete and congruence distributive (so they do not have 
nontrivial subquasivarieties), or else are actively universally complete just by consequence of their char-
acterization (such as the subvarieties of FLew in Section 5.2). Then we have Stone algebras that are not 
equationally complete but the only nontrivial subvariety is the variety of Boolean algebras, that is non-
negatively universally complete. Now from Corollary 2.32 it is immediate that every subquasivariety of ST
is non-negatively universally complete. In conclusion a deeper investigation of universally complete and 
non-negatively universally complete varieties is needed.

For (1) the situation is (slightly) easier to tackle: any primitive variety of lattices that is not universally 
complete gives a counterexample. While it seems impossible that all the primitive varieties in Section 5.1.1
are universally complete, actually proving that one it is not does not seem easy. This is due basically to the 
lack of information on free algebras in specific varieties of lattices, such as for instance VpM3q; note that 
this variety is locally finite and hence all the finitely generated free algebras are finite. But we are not aware 
of any characterization.
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