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Abstract: The present research illustrates the application of a methodological approach to studying
the stress–strain distribution in a marble quarry of the Apuan Alps mining area (Italy). This study
has been carried out in the framework of a project involving the University of Siena and the UOC
Ingegneria Mineraria—USL Toscana Nord-Ovest, Tuscany Region. This stress–strain analysis aims
foremost to monitor the slope stability conditions to guarantee a safe workplace for the personnel
involved in mining activities, and to enable more sustainable long-term planning for excavation and
production. The involved survey activities are as follows: (i) terrestrial laser scanning; (ii) engineering–
geological data mapping; and (iii) in situ marble stress measuring through four CSIRO-type cell
tests executed in different locations and at various depths within the underground excavation walls.
The gathered data converged into numerical models of the quarry, both in 2D (DEM) and 3D (FEM),
calibrated by in situ stress results through a rigorous back analysis assessment using least squares
procedures. The created models represent a valuable tool for the identification and securing of risk
areas and for future excavation planning in respect of the site efficiency and safety.

Keywords: CSIRO HI cell test; underground quarrying; stress–strain measuring; laser scanning;
DEM and FEM numerical modeling; slope stability analysis; Apuan Alps

1. Introduction

Marble exploitation in the Apuan Alps (north-western Tuscany, Italy), performed
since the Roman age, has highlighted, in the last decades, a delicate balance between
the high demand of the international market, high production costs, workers’ safety,
and environmental sustainability. The increase in the excavation rate due to the most
modern techniques (line drilling and sawing) to produce large rectangular blocks needs
safety requirements to be satisfied without reducing the yield. Monitoring of the slope
stability conditions is useful to guarantee a safe workplace for the personnel involved
in mining activities and to enable a more sustainable long-term planning for excavation
and production.

A quantitative description of rock discontinuities is crucial to understand the stability
conditions of a rock mass. The mechanical behavior of marble rock mass depends on the
combined effect of several factors related to geo-structural conditions (discontinuity and
excavation geometry) and in situ stress. An engineering–geological survey provides pa-
rameters to characterize the nature of the discontinuities (orientation, spacing, persistence,
surface roughness, etc.).
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Slope 3D models, based on high-resolution point cloud data, can be produced using
several techniques, such as total station (TS) [1], terrestrial laser scanning (TLS) [2–4],
airborne light detection and ranging (LiDAR) [5,6], unmanned aerial vehicle (UAV) pho-
togrammetry [5,7,8], and UAV LiDAR [9–11].

The most adopted procedures in slope stability analysis are the kinematic and limit
equilibrium methods. The kinematic method is based on the evaluation of possible instabil-
ities and failures generated by the presence of discontinuities in the rock mass. This method
could be used as a rapid evaluation of key blocks generating potential failures [12,13].
The limit equilibrium method is based on defining the potential mechanism of failure
and is based also on the acting forces and the related factor of safety (FS) in a particular
geomechanical condition both in 2D and 3D [14]. Both methods are suitable for simple
geometry issues, but not for more complex ones.

To analyze complex potential instability scenarios, the use of numerical modeling, such
as the distinct element method (DEM) [15] or the finite element method (FEM) [16], should
be considered. The main difference between them is how the medium is considered, as the
DEM method is used for discontinuous mediums, while the FEM is for continuous ones.
Software based on DEM, such as UDEC (universal distinct element code by ITASCA©) and
3DEC (three-dimensional version of UDEC, ITASCA©), are meant for various complex slope
conditions in different environments [17–19]. Similarly, among the available software to be
used in the FEM analysis, RS2 by Rocscience© [20], and the related 3D RS3 version [21,22],
can also be cited.

The FS is a useful index to determine how close a slope is to failure, and how much
its accuracy is consistent with that of geotechnical input data. The geotechnical and
geomechanical properties of the materials used in numerical modeling can be defined
through laboratory tests and, partially, by engineering–geological surveys. For instance,
in the case of rocky materials the use of tests, such as point load, uniaxial and triaxial
compression, as well as the direct and indirect determination of the tensile and shear
strengths, is useful for establishing the material properties to be inserted in the model.
Similarly, there are in situ tests to be used for determining the physical and mechanical
properties of rock and the structural fabric of the rock mass, defined by systems of structural
discontinuities (e.g., bedding surfaces, joints). Engineering properties of fractured rock
masses, such as strength and permeability, are strictly dependent on the nature of their
structural fabric.

Another important input for studying slope stability is the in situ stress state. The in
situ stress, in rocky material, can be measured through “overcoring tests” (a type of stress
relaxation test) with the 2D doorstopper method [23] and the 3D CSIRO (Commonwealth
Scientific and Industrial Research Organization) cells method [24]. These tests are suitable
for monitoring short-term stress changes following the cell installation and allow the
acquisition of response curves (strain, temperature, and overcoring depth in relation to
time) before, during, and after overcoring. Moreover, the CSIRO cell method allows the
definition of the 3D local stress and the computation of the rock elastic constants [25,26].
Several authors used the CSIRO cell method to determine the elastic parameters of rocks.
Ouanas et al. [27], for example, applied this method in the southern border of the French
Massif Central to define the elastic parameters of Tournemire argillite. Krietsch et al. [28]
measured the in situ stress of crystalline rocks at the Grimsel Test Site (Switzerland) and
compared the results from overcoring, hydraulic fracturing and induced seismicity. In
other cases, the CSIRO cell method was used for studying the in situ stress and the related
slope stability in quarries and mines [29–32] and for monitoring the stress changes in the
excavation of tunnels [33,34] and radioactive wastes [35].

This paper aims to deal with rock mass stability analysis to support the design and
safety controls of an underground marble quarry. The stability analysis is supported by
the identification and quantitative assessment of intact rock and discontinuity properties.
In situ surveys were carried out to collect the engineering–geological properties, stress
conditions, and geometric setting of the rock mass bounding an underground quarry of the
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Apuan Alps. Finally, two numerical modeling approaches (DEM, FEM) were performed to
estimate the stress distribution through the rock mass facing the marble excavation areas.

2. Geological Setting

The quarry under study, known as “Sottovettolina”, is located in the Municipality
of Massa (Italy). It belongs to the Apuan Alps, a metamorphic complex composed of
two major units, the Massa unit and the Apuan unit (Figure 1). The Apuan Alps are the
largest tectonic window in the inner Northern Apennines where deep levels of the belt are
exposed [36,37].
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Figure 1. Geological map of the Sottovettolina quarry and surrounding area (right). Map legend is
as follows: MDL—dolomitic marble; AUN—marble; CLF—cherty meta-limestone; MDT—radiolarian
chert. The red symbol shows the quarry location. Red lines indicate tectonic boundaries of secondary
importance. Black lines indicate the six traces of the geological sections used for the 3D modeling of the
quarry area. Sketch maps in the left side show the location of the study area in Italy (light blue pin).

The stratigraphy of the area consists of a Paleozoic basement overlain unconformably
by Upper Triassic–Oligocene meta-sediments. Thin Triassic continental to shallow water
Verrucano-like deposits represent the Mesozoic cover, and they are followed by Upper
Triassic–Liassic carbonate platform meta-sediments including dolomites, dolomitic marbles,
and marbles. These are overlain by Upper Liassic–Lower Cretaceous cherty meta-limestone,
cherts, and calcschists, and by Lower Cretaceous–Lower Oligocene sericitic phyllites, and
calcschists, with marble interlayers, which are related to deep-water sedimentation during
drowning of the former carbonate platform. The sedimentary history of the domain is
completed by the Oligocene sedimentation of turbiditic sandstones, known as “Pseudo-
macigno” [38].

The Apuan Alps result from two main tectono-metamorphic events (D1 and D2
phases [36]) which summarize the progressive deformation of the Adriatic continental
margin during the continental subduction and the subsequent exhumation [39]. The tertiary
continental collision between the Sardinia–Corsica block and the Adria plate caused the
ductile compressional event D1, while the following D2 extensional event led to an isostatic
rebalance [36]. During the D1 event, the stacking of the tectonics unit belonging to the
Tuscan and Ligurian domains occurred, and a progressive deformation developed in two
stages. The main of these phases is represented by isoclinal micro- to kilo-metric scale
folds whose axial plane is characterized by a greenschist foliation. This foliation, which
distinguishes most of the metamorphic rocks of the Apuan Alps, is associated with a
stretching lineation SW-NE trending, interpreted as the main transport direction of the
inner Northern Apennines [37,40]. The structures were reworked during the D2 event
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when different generations of folds and locally high strain zones, associated with the
exhumation and vertical shearing, developed [41]. The result of the second deformative
phase is a complex mega-antiform with a NW–SE Apenninic trending axis. It is with this
this trend that non-cylindrical parasitic folds with sub-horizontal axial planar crenulations
are associated. The direction of transportation is toward the east, on the eastern limb
of the antiform, and toward the west on the western side. Brittle structures (low-angle,
high-angle faults, and joint systems) characterize the late stages of D2. These structures are
correlated to the final exhumation and uplift of the metamorphic units in a frame of late- to
post-orogenic regional extension of the inner part of the Northern Apennines [42].

Molli et al. [43], Fellin et al. [44] and references therein say that the peak of metamor-
phism occurred in the early Miocene (at approximately 27 My [45]), during the early D1
phase, at temperatures around 350–450 ◦C and pressure approximately 0.6 GPa. During the
early stage of the D2 phase, the metamorphism took place at a temperature above 250 ◦C.
According to zircon fission-track ages, the structures associated with this last phase were
dated between 11 and 8 My [44].

In this context, the Sottovettolina quarry develops underground on the left bank of
the Cerignano canal at an altitude of 660 m a.s.l. The marbles in this area belong to the
core of a minor isoclinal anticline belonging to the inverted limb of the “Orto di Donna—
Mt Altissimo” D1 syncline. In this area, the structures associated with the D1 event are
characterized, at all scales, by a main axial plane foliation having an approximately NS
direction, immersion towards the west, and an average dip of about 50◦. In the proximity
of the quarry, evidence of ductile structures associated with the D2 event have not been
identified, except at the scale of the outcrop. In the western area of the geological map
(Figure 1) the main foliation shows a dip direction rotation and a decrease in the dip
value; this variation can be associated with the M. Rasori fold related to the D2 extensional
event. Nevertheless, the latter structure does not affect the geometry of the marble in the
Sottovettolina quarry, which can be associated with a simple monocline structure dipping
towards the west.

The marketable marble varieties extractable from the quarry are the “Calacatta Lucci-
coso” and the “Grigio Forno”, belonging to the groups of veined marble and grey marble,
respectively [46]. Veined marble is a meta-limestone that is variable in color from pearl-
white to very light gray, often containing some dense dark gray veins due to the presence
of pyrite. Locally, there are dolomitic levels with gray-yellowish cherts. Figure 2 shows the
geological cross section referred to as trace Nr. 3 of Figure 1.
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3. Materials and Methods
3.1. In Situ Survey

The geometry of the Sottovettolina quarry through TLS, the geological setting, and the
engineering–geological characteristics of the rock mass were collected by in situ surveys
to address modeling for slope stability analysis. The estimation of in situ stresses was
computed by CSIRO hollow inclusion (HI) cell tests.

Output from these surveys provided the input data to be utilized in modeling the
quarry conditions through DEM and FEM approaches with the goal of assessing the rock
mass stability.

3.1.1. Engineering–Geological Survey

A detailed engineering–geological survey was carried out inside the quarry and
surrounding areas by Pandolfi Engineering s.r.l. [47]. The available data has allowed us
to improve our knowledge of the geological setting of the area in relation to the main
characteristics of bedding, foliation, stretching lineations, joints, and the fold axis. Every
discontinuity was described in terms of dip, dip direction, spacing, length, persistence,
termination, aperture, infill, weathering, humidity, JRC (joint roughness coefficient [48])
and JCS (joint wall compressive strength [49]), as estimated using the Barton comb and the
Schmidt hammer rebound, respectively.

Some properties of the joints were used in modeling (only within the marble) and
assigned to the surfaces representing the lithological boundaries between marble and cherty
meta-limestones, and between the latter and radiolarian cherts. The choice of using only
discontinuities within the marble, and not the ones in other lithologies, is based on the
hypothesis that the latter have a negligible impact on the stability of excavation areas due
to their distance from the quarry fronts. Data from the engineering–geological survey is
shown later in the text, in the Results chapter.

3.1.2. Terrestrial Laser Scanning
Point Cloud Acquisition

The use of TLS, based on the time of flight elapsed by a laser pulse along precise
directions, allowed us to collect 3D dense point clouds of the area morphology. The surface
was detected by measuring the distance from the instrument using the speed of the light
and the time that an impulse takes to reach a surface and to be reflected along its path [50].
The TLS survey was carried out by employing a Trimble© TX8 device (Figure 3) that allows
us to set the spot spacing and duration of every single scan. A scan time of 10 min and a
spacing of 5.7 mm at 30 m were chosen for a 360◦ wide scanning view. The high reflectivity
of the quarry walls due to their bright color and low roughness provides a high-intensity
return signal, related to a few tens of meters away from the origin of the laser scanner,
leading to high spatial density [51].

The quarry is characterized by a single chamber with a total length of about 110 m and
a height of just over 50 m. The TLS survey required six scans to cover the whole surface of
the quarry and to guarantee a sufficient overlap among them. The number of scans was
chosen as a balance between minimizing possible occlusions and shadows in the output,
and the amount of data to be processed. The data output of every scan is a 3D high-density
point cloud, in which every point is defined by cartesian coordinates (X, Y, Z) relative to
the scanner location and orientation.
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Coregistration of all the point clouds was performed using the iterative closest point
(ICP) algorithm to obtain a unique 3D model of the quarry (Figure 4). The cartesian
coordinates of the TLS survey were framed by a topographic survey in an absolute reference
system using optical targets placed in specific positions within the excavation area and its
surroundings (see next Paragraph).
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Topographic Survey and Point Cloud Georeferencing

The topographic survey, the aim of which was geolocating the 3D model of the quarry
area, was carried out using a total station (TS) model Leica© MS50 (Figure 5A). The cartesian
coordinates of a series of fixed and removable optical targets (Figure 5B and 5C), placed
in specific positions inside and outside the underground quarry, were determined by
measuring their angular and distance with respect to the origin of the local reference
system. The coordinates of each target were framed within the geodetic reference system
UTM ETRF2000 Zone 32N thanks to the presence of fixed optical targets at the entrance
and inside the quarry, located in positions with known coordinates derived from GNSS
surveys (global navigation satellite system) carried out by the personnel of the Center of
Geotechnologies in previous years. The measurement of the fixed optical targets was used
for the orientation and georeferencing of the entire project. The positions of the movable
targets have been chosen to have a minimum of three targets visible in every single scan
acquired by TLS.
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The advantage of integrating topographic surveys and TLS is that it reduces the effect
of error propagation from the first scan position; in fact, the accuracy of the registration
process, and subsequently of the georeferencing, depends on the topographic survey [52,53].
The TS instruments, which provide millimetric accuracy [54–58], are increasingly used in
different civil engineering sectors, such as mining [59].

The surveyor defined the local reference system by choosing the origin of a cartesian
axis (set as 0,0,0 coordinates) and defining its orientation, referred to as 0-azimuth direction,
using one fixed optical target measured by TS. The survey was initialized by measuring
all targets visible in the first scan. Additional targets, necessary to register all the scans,
were collected using the inverse intersection method by moving the TS to different posi-
tions within the quarry during the ongoing survey. By this method, the subsequent TS
positions were estimated using a minimum of three points with known coordinates. Using
this technique, the coordinates of 21 targets in the local reference system were collected.
The topographic data were processed by the Leica© Infinity software, to transform the
local coordinates of all targets to the UTM ETRF2000 Zone 32N reference system. This
operation was carried out by using the known absolute coordinates of the fixed targets
and roto-translating the whole targets set. Finally, the six point clouds were coregistered
and georeferenced.
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3.1.3. In Situ Stress Tests

The CSIRO HI cell is currently one of the most widely used methods for measuring
the in situ rock stress and the estimation of the elastic parameters thanks to the overcoring
method [24]. Here, a CSIRO triaxial HI cell is equipped with 12 strain gauges plus a
thermistor for measuring the hole inner temperature. The test requires the drilling of a first
hole, 164 mm in diameter, up to a planned depth (Figure 6A); then, a second pilot hole
with a smaller diameter (i.e., 38 mm) is made up at the bottom of the hole, coaxial with
the previous one. After carefully cleaning and drying the hole walls, the cell is cemented
inside it by gluing it with a specific resin that allows the strain gauges to become part of
the rock in about 18 h (glue setting times). Subsequently, after recording the strain gauge
deformations in real-time, the overcoring of the rock volume containing the cell is carried
out; this is set up on the largest diameter hole [60]. Then, deformations are triggered by the
detensioning that is developed when the specimen is separated from the rock. Thus, all
the electrical signals, detected by measuring the HI cell during the various stages of the
test, can be continuously collected. At the end of the overcoring, a biaxial compression test,
using the Hoek–Franklin pressure cell (Figure 6D), is performed on the rock specimen and
a stress–strain graph is created. The method allows also for the determination of the rock
elastic parameters (Young’s modulus, E; Poisson’s ratio, ν). It is noted that this test should
have been carried out as soon as possible after the overcoring, while the rock retains its in
situ moisture content [27].
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(A) Drilling of the first borehole up to the planned depth; (B) mounting of CSIRO HI cell inside the pi-
lot borehole; (C) cell overcoring; (D) execution of biaxial compression test through the Hoek–Franklin
cell and stress–strain data estimation.

In this study, the stress measurements were based on four overcored CSIRO HI cells
placed in two sub-horizontal boreholes, referred to as C1 and C2 in Figure 7. The boreholes
have been carried out on the western wall of the quarry’s chamber, orthogonally oriented
with respect to the quarry front. The CSIRO HI cells, named C 1-1, C 1-2, C 2-1, and C
2-2 in Figure 7, are equipped with two axial (A0, C0), five tangential (A90, B90, C90, E90,
F90) and five +45◦ (A45, B45, B135, C45, D135) inclined strain gauges, plus a thermistor.
They were installed at different depths to provide a punctual measurement of the rock’s
three-dimensional tension state.
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1-1, C 1-2, C 2-1, and C 2-2), and exemplificative schematic section aimed at showing the borehole
dip. The table on the right resumes the geometry of the tests.

The output data provides, for each CSIRO HI cell, a real-time graph showing the trend
of deformations [micro-strain, µε] versus the depth [cm]. Deformation data was corrected for
temperature variation according to the C method [61] proposed by TRT (Top Rock Technologies).

The relationship between the strain gauge deformations and the radial pressure comes
from the linear solution proposed by [62,63], where the basic assumptions of the interpre-
tative model are as follows: (i) homogeneous and linearly elastic rock; (ii) infinite outer
diameter; (iii) infinite drill length and infinite rock extension; (iv) uniform tensional state
around the test. As the radial pressure generates an effect equivalent to that of an isotropic
natural stress state, by measuring the variation of the radial pressure P and using {∆ε} the
vector of the corresponding strain variations as previously measured by the strain gauges,
it is possible to use the following equation:

{∆ε} = P {H} (1)

where {H} is a column matrix function of (i) angular position, dip, and length of the
strain gauges of the CSIRO HI cell; (ii) internal diameter of the inclusion (cell and glue
layer); (iii) elastic characteristics of the inclusion; (iv) diameter of the pilot hole and the core
instrumented with the cell; (v) angles representing the orientation of the borehole in the
global reference system XYZ (X = east, Y = north, Z = vertical); (vi) Young’s modulus (E) and
Poisson’s ratio (ν) of the rock. As {H} is a non-linear function of the rock’s unknown elastic
constants, the Equation (1) defines a certain system of non-linear indirect observations with
only two unknown variables, E and ν, solved by a multiple non-linear regression analysis.

Once the elastic parameters have been estimated, the natural in situ stress state is
derived from the following equation proposed by [62,63]:

{∆ε} = −[W] {σxyz} (2)

where
{
σxyz

}
is the column matrix containing the six components of the stress tensor

in the XYZ global system (σxx, σyy, σzz, τyz, τxz, and τxy) and [W] is the column matrix
conceptually analogous to the previous {H}matrix of Equation (1). Equation (2) represents
a determined system of homogeneous linear equations in six unknowns. The solution of
the system which can be solved by using a multiple linear regression analysis provided the
average natural stress state existing in the rock volume object of the measurement.

The in situ stress tensor
{
σxyz

}
was calculated for each CSIRO HI cell according to

the global reference XYZ system. The values are provided by SIAL.TEC Engineering s.r.l.
(responsible for the CSIRO HI cell tests) with a confidence limit of 68% referred to the stan-
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dard deviation. In the radial compression tests, it was assumed that the measured strains
are independent gaussian random variables, with a mean value equal to the observed one
and standard deviation corresponding to that of the regression residuals, as follows:

- ∆i = ∆εi.computed – ∆εi.observed residual corresponding to the i-th observation;
- σε = Σ∆i2/(N − 2) standard deviation of the residuals.

Ten thousand random extractions from the N distributions of the test data were
simulated, generating a sample of 10,000 pairs of “E, ν” parameters whose analysis provides
the confidence limits of Young’s modulus and the Poisson’s ratio. Values obtained were
used to perform the calibration of the stress state in numerical modeling, as described in
the next paragraphs.

3.2. Rock Slope Stability Analysis

3.2.1. Finite Element Method in RS3©

Model Creation

The RS3 (Rocscience©) finite element analysis software is designed for the 3D analysis
of geotechnical structures for civil and mining applications, and it allows us to automate
slope stability assessment through the reduction in the mechanical strength [20]. Modeling
with the finite element method (FEM) develops systems of algebraic equations that approxi-
mate solutions for partial differential equations. This computation is performed by breaking
down a problem domain into smaller and simpler components, i.e., the elements. The FEM
begins with the definition of the domain and geometry of the model, defining the materials
and their properties. Then, the stress state is set, and the boundary conditions are defined in
terms of forces and displacements (along the X, Y, and Z axes). In the next phase, the model
is discretized by creating meshes (in computer graphics, a collection of vertices, edges, and
faces that defines the shape of a polyhedral object) possibly customizing the density in the
regions considered critical. Finally, the model is computed, and the obtained results are
analyzed. This method involves the progressive reduction in the strength parameters until
the analysis no longer reaches convergence; this is the limit equilibrium condition and the
relationship between the starting value of the material strength parameters and the limit
equilibrium value provides the overall FS of the analysis [64].

From the above description, inputs for the FEM analysis of underground excavations
include the following parameters:

• Geometry, arrangement, and sequence of excavation;
• In situ stress state (main stress and orientation values);
• Strength and deformation characteristics of rock mass units and other large-scale

geological structures.

The first step of the work carried out concerned the import of the geometries of the
external morphology and the excavation area. The latter comes from the TLS survey, while
for the surrounding external area the regional data from aerial LiDAR was used. Through
the Agisoft Metashape© and Rhinoceros© software, the respective meshes were obtained
and processed. Once inserted into the RS3© software, the meshes underwent, in addition
to further topological corrections, a decimation, respectively, to about 3000 faces for the
interior and 18,500 faces for the external area. This operation was necessary in order to use
simplified geometries, reducing calculation times, while, at the same time, maintaining the
fundamental geometries of the study area.

The geometry of the model (Figure 8), with overall dimensions of 700 × 500 × 300 m,
takes the general shape of a box inside which the cavity has been excavated.
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Figure 8. 3D geological model of the Sottovettolina quarry used in slope stability analysis (left);
lithologies are indicated by colors, as follows: red = cherty meta-limestone; yellow = radiolarian
chert; light blue = marble. Detail of discontinuity planes affecting the cultivation chamber (right).
Perspective views; the scale bars are indicative only.

All the joint systems affecting the marble quarry were initially considered for the
creation of the RS3© model; however, the reduced spacing of certain discontinuity sets
means that the material is too fragmented. As a consequence, it was decided to consider
only the discontinuities affecting the cavity with a higher spacing and which are visible on
the quarry walls.

According to [65], the mechanical behavior of white marble of the Apuan Alps can
be assumed as being linear elastic and isotropic. Hence, the Mohr–Coulomb model [66],
which is the conventional model for elasto-plasticity in rock mechanics, was used for the
intact rock, while joints were simulated with a Coulomb slip model [67].

The following steps are concerned with the definition of the model materials and
properties, as well as the boundary conditions with constraints that limit the displacements
in the chosen directions. Geotechnical properties of lithologies derived from the results of
the CSIRO HI cell tests and from previous analyses presented in [47].

In this case study, the auto-restrain (surface) option was used to apply a 3D constraint
to the model at the bottom and the inner boundary [20]. The upper surface and the natural
slope, on the other hand, were left free from constraints. Then, the meshing procedure was
performed in 3D using 10-noded tetrahedral elements.

Model Calibration

A calibrated model has been created thanks to a reiterate procedure, written using
the MATLAB© language, which provides a multiple linear regression analysis (MLRA)
of a system of overdetermined equations. The MLRA, based on Equation (3), is derived
from the “superposition principle”, according to which whenever a certain effect depends
linearly on several independent causes, it results as the sum of the effects individually
produced by each cause. Equation (3) is as follows:

{σ} = [A] {∑} + {λ} (3)

where σ are the on-site measurements from the CSIRO HI cells, A is the stress state in the
borehole calculated by applying a unitary initial stress to the model, λ is the stress state
calculated in the borehole by applying only the rock unit weight, and ∑ is the unknown
uniform initial stress state of the model. By applying the stress values obtained from the
linear regression results as the main stresses, 3D models were calibrated in RS3©.
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3.2.2. Distinct Element Method in UDEC©

Model Creation

The Universal Distinct Element Code (UDEC, ITASCA©), based on the distinct element
method (DEM), is a software used worldwide to analyze the stability conditions of natural
and anthropic structures (slopes, dams, tunnels, excavations, etc.). The DEM, first intro-
duced by [68], assumes rocky mass as an aggregation of discrete blocks and discontinuities
as contact surfaces [15,69].

The presence of discontinuities within the rock mass leads to the assumption that
the material can be considered a discontinuous medium [70]. This characteristic is the
principal element that distinguishes it from a continuous medium, such as soil and
isotropic materials.

The contact forces and displacements (rotation and complete detachments), gener-
ated at the interfaces between blocks, are calculated with tracing movements and new
consecutive contacts [69]. The numerical representation of this dynamic behavior, made
of a continuous generation of contacts, is represented by a time-stepping algorithm that
assumes velocities and accelerations as constant during a timestep [70]. In other words,
during a small-time step, perturbations cannot propagate to the neighboring elements. To
calculate contact forces and trace block motion, respectively, force-displacement law is
applied to all contacts, and Newton’s second law is applied to all blocks. The following
Figure 9 explains schematically how the calculation cycle in UDEC© works for rigid and
deformable blocks.

Geosciences 2022, 12, x FOR PEER REVIEW 13 of 32 
 

 

 
Figure 9. Schematic flow representing the numerical calculation steps in UDEC© (from [71]), 
adapted with permission from Ref. [71]. Itasca Consulting Group, Inc. (2014). 

From the RS3© model, two sections in correspondence with the CSIRO HI cells bore-
holes were created. These planar vertical cross-sections were oriented respecting the di-
rections of the boreholes and were named, respectively, S1 for borehole C1 and S2 for 
borehole C2 (Figure 10). 

Figure 10. S1-C1 (A) and S2-C2 (B) cross-sections of the Sottovettolina underground 
marble quarry. Lithologies and discontinuities are indicated by colors, as follows: red = 
cherty meta-limestone; yellow = radiolarian chert; light blue = marble; black = lithologi-
cal boundary; blue = marble discontinuity. 

The model blocks were considered deformable, and the assigned constitutive models 
were, respectively, the Mohr–Coulomb plasticity model [66] for lithologies, and the Cou-
lomb slip model for discontinuities [67], in analogy to what had been established in the 
RS3© modeling. The same approach, described in Paragraph 3.2.1, was used for the dis-
continuities affecting the rock mass. Only the main discontinuities on the quarry walls 
were modeled in such a way to avoid that real spacing, derived from the engineering–
geological surveys, would excessively fragment the model. The real spacing of joints 
would cause the material to behave as a continuous medium and, therefore, was not op-
timal for DEM analysis. Model boundaries were fixed by resetting the X and Y velocities 
along the bottom and the left model limit. Gravity was fixed at 9.81 m/s2. 

To trace the stress evolutions during the calculation, the function “history” was set 
in correspondence of the CSIRO HI cell measurements aiming to monitor the xx, xy, and 
yy stress tensor values (Figure 10). 

Before assessing the stability of the quarry fronts, the models were firstly solved to 
check their initial equilibrium with gravity as the only applied force.  
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with permission from Ref. [71]. Itasca Consulting Group, Inc. (2014).

From the RS3© model, two sections in correspondence with the CSIRO HI cells bore-
holes were created. These planar vertical cross-sections were oriented respecting the
directions of the boreholes and were named, respectively, S1 for borehole C1 and S2 for
borehole C2 (Figure 10).
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Figure 10. S1-C1 (A) and S2-C2 (B) cross-sections of the Sottovettolina underground marble quarry.
Lithologies and discontinuities are indicated by colors, as follows: red = cherty meta-limestone; yellow
= radiolarian chert; light blue = marble; black = lithological boundary; blue = marble discontinuity.
The progressive numbers from 1 to 8 indicate the "histories" set in correspondence of the CSIRO HI
cell tests aiming to monitor the xx, yy, xy, and zz stress tensor values.

The model blocks were considered deformable, and the assigned constitutive mod-
els were, respectively, the Mohr–Coulomb plasticity model [66] for lithologies, and the
Coulomb slip model for discontinuities [67], in analogy to what had been established in the
RS3© modeling. The same approach, described in Paragraph 3.2.1, was used for the discon-
tinuities affecting the rock mass. Only the main discontinuities on the quarry walls were
modeled in such a way to avoid that real spacing, derived from the engineering–geological
surveys, would excessively fragment the model. The real spacing of joints would cause
the material to behave as a continuous medium and, therefore, was not optimal for DEM
analysis. Model boundaries were fixed by resetting the X and Y velocities along the bottom
and the left model limit. Gravity was fixed at 9.81 m/s2.

To trace the stress evolutions during the calculation, the function “history” was set in
correspondence of the CSIRO HI cell measurements aiming to monitor the xx, yy, xy, and
zz stress tensor values (Figure 10).

Before assessing the stability of the quarry fronts, the models were firstly solved to
check their initial equilibrium with gravity as the only applied force.

Theoretically, the equilibrium ratio between the maximum unbalanced forces and the
representative internal forces is considered to estimate the equilibrium of the rock mass [71]
before, when the model is undisturbed, and after when the excavation progresses. When
the equilibrium ratio reaches a value between 0.1% and 1%, the initial equilibrium can
be considered satisfactory. Figure 11 shows both the models for the S1 and S2 sections
reaching the equilibrium and satisfying the limit of 1 × 10−5 with a maximum number of
cycles set to 100,000.

Figure 11. Model S1 (left) and model S2 (right) reaching the equilibrium condition.
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Model Calibration

Similar to what was described for the three-dimensional RS3© model, in the two-
dimensional case within UDEC©, the calibration procedure, still under the assumption of
linear elastic material, follows Equation (3). In 2D, the main differences in computation are
as follows: the lithostatic stress state {λ} calculated by the model at the test point has only
4 components; the matrix of coefficients [A] calculated by the model at the test points has
dimension 4× 4, and the model’s unknown uniform initial stress state {∑} is a 4-component
column matrix. For each test, the stress tensor {σ} was calculated from the measurement
results by using the three-dimensional to two-dimensional transformation law according
to the following equation:

{σ2D} = [H] {σ3D} (4)

where [H] is the 4 × 6 rotation matrix which depends on the orientation of the analyzed
section in respect to the geographic north. The procedure was applied to sections S1 and S2,
and the residual values of the stress components at the test sites in the pre- and post-
calibration model were computed.

4. Results
4.1. Engineering–Geological Data

Basing on data measured by Pandolfi Engineering s.r.l. [47] during the engineering–
geological survey carried out inside the quarry and the surrounding areas, Table 1 reports
in bold the six main joint sets affecting the marble lithology, described in terms of dip, dip
direction, and spacing.

Table 1. Geometrical characteristics of joint systems [47].

Lithology Joint System Dip (◦) Dip Direction (◦) Spacing (m)

Marble K1 56 273 2–6

Marble K2 (1.1) 83 331 6–10

Marble K2 (1.2) 79 156 6–10

Marble K2 (2) 86 12 6–10

Marble K3 64 180 >10

Marble K4 22 124 >10

Radiolarian chert J1 58 269 0.2–0.6

Radiolarian chert J2 80 19 2–6

Radiolarian chert J3 66 168 6–10

Radiolarian chert J4 80 311 >10

Cherty meta-limestone J1 60 269 0.6–2

Cherty meta-limestone J2 68 146 6–10

Cherty meta-limestone J3 77 22 6–10

Table 2 shows the mechanical properties of intact rock material, such as the unit weight,
the rock elastic parameters (Young’s modulus and Poisson’s ratio), the peak cohesion, the
peak friction angle, the peak tensile strength, the bulk modulus, and the shear modulus as
derived from the stress tests of this work and data reported in [47].

Table 2. Engineering–geological characteristics of rock materials.

Lithology Unit Weight
(MN/m3)

Poisson’s
Ratio

Young’s
Modulus

(MPa)

Peak
Cohesion

(MPa)

Peak
Friction Angle

(◦)

Peak Tensile
Strength

(MPa)

Bulk Modulus
(MPa)

Shear
Modulus

(MPa)

Marble 0.0270 0.3 85,000 7.015 54.62 –3.432 94,444 31,500

Cherty meta-
limestone 0.0256 0.3 18,500 1.626 53.81 –0.627 13,333 7115

Radiolarian
chert 0.0264 0.3 16,000 1.745 56.17 –0.609 15,416 6153
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Table 3 shows the properties of joints considered in modeling (only within the marble)
and those assigned to the surfaces representing the lithological boundaries between marble
and cherty meta-limestones and between the latter and radiolarian cherts.

Table 3. Engineering–geological properties of discontinuities.

Joint Shear Stiffness
(MPa/m)

Joint Normal Stiffness
(MPa/m)

Peak
Friction Angle (◦)

Peak
Cohesion (MPa) Dilation Angle (◦)

Joint in marble 10,000 40,000 35 0.05 5

Lithological boundary 2000 10,000 25 0.05 5

4.2. Point Cloud Coregistration and Georeferencing

The TS survey, aimed at estimating the coordinates of 21 targets in the local reference
system and executed by the inverse intersection method, resulted in an error lower than
1 mm. The overall cloud-to-cloud error, resulting from the coregistration of the six point
clouds, was equal to 3.6 mm, while the georeferencing error was 1.6 cm.

4.3. Data from In Situ Stress Tests

Data recorded by the CSIRO HI cells allowed us to compute the trend of deformations
along the borehole depth for each test site. Figure 12 shows the real-time graphs of
deformations [micro-strain, µε] versus the depth [cm] as computed after the correction for
temperature variation.
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Figure 12. Graphs of the CSIRO HI cells correlating the deformations (µε) registered by the
12 oriented strain gauges versus the borehole depth (cm).

Figure 13 shows the relationship between the strain gauge deformations and the radial
pressure, as obtained by the biaxial tests carried out through the Hoek–Franklin pressure
cell. Furthermore, in this case, deformation data was corrected for temperature variation
according to the C method [61]. The trends of the stress–strain graphs shown in Figure 13
confirm the linear behavior as proposed by [62,63].
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Table 4 shows the elastic parameters as computed from biaxial compression tests, while
in Table 5, the in situ stress tensors

{
σxyz

}
, calculated for each CSIRO HI cell according to

the global reference XYZ system, are shown.

Table 4. Elastic parameters derived from biaxial compression tests. Here, E = Young’s modulus,
ν = Poisson’s ratio, C n-n = CSIRO HI cell at different depth.

C 1-1 C 1-2 C 2-1 C 2-2

E [MPa] 87,673 ± 1872 89,127 ± 1330 88,488 ± 1846 88,276 ± 931

ν 0.37 ± 0.03 0.35 ± 0.02 0.36 ± 0.03 0.36 ± 0.02

Table 5. Calculated in situ stress tensors
{
σxyz

}
for each CSIRO HI cell.

CSIRO HI Cell σxx [MPa] σyy [MPa] σzz [MPa] τxy [MPa] τxz [MPa] τyz [MPa]

C 1-1 0.44 ± 0.41 0.19 ± 0.16 5.15 ± 0.17 –0.24 ± 0.15 0.46 ± 0.10 0.20 ± 0.17

C 1-2 1.47 ± 0.24 1.86 ± 0.10 0.29 ± 0.10 0.97 ± 0.09 0.59 ± 0.06 0.88 ± 0.10

C 2-1 1.26 ± 0.28 –0.04 ± 0.12 3.72 ± 0.12 –0.49 ± 0.10 –0.88 ± 0.06 0.21 ± 0.12

C 2-2 0.86 ± 0.91 –0.80 ± 0.30 1.76 ± 0.39 –1.75 ± 0.25 –0.77 ± 0.23 –0.30 ± 0.46

4.4. RS3© Modeling

The deformation and stress states measured using the CSIRO HI cells method have
shown that the material has a homogeneous, isotropic, and linear behavior. Then, the
reiterate procedure, properly written using the MATLAB© language, was used to calibrate
the RS3© model. In the graph of Figure 14, which compares the stress values measured
by the CSIRO HI cells with those calculated by the model in the same positions after
calibration, a good data correlation can be observed; the fitting coefficient of adjusted
correlation (Ra) is equal to 0.721.
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Figure 14. Correlation between the stress values observed in the CSIRO tests and those after model
calibration in RS3©.

As further evidence of the accuracy of calibration, Figure 15 shows two graphs repre-
senting the trend of the three principal stresses (σ1, σ2, and σ3), as measured using the in
situ CSIRO HI cells and results after model calibration.

The calibration allowed us to obtain extensive information about the stress field acting
on-site at the current condition of the quarry along the S1 and S2 sections (Figure 16),
the relative displacements, the velocity, etc. As an example, Figures 17 and 18 show the
deviatoric stress σ1–σ3, which can give an estimation of the rock mass strength.

Moreover, on the basis of the calibrated 3D model, it was possible to simulate the
next excavation step of the zone currently under marble exploitation (colored in gray
in Figure 19). In this way, the consequences of the stress field variations were assessed
step-by-step as the excavation was progressing.
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Figure 16. Planimetric view of the 3D geological model. The traces of sections S1 and S2 coinciding
and oriented along the CSIRO test sites C1 and C2, respectively, are shown in red. The arrows indicate
the look direction of Figure 17, Figure 18, Figure 20, and Figure 21.
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Figures 20 and 21 show the deviatoric stress σ1–σ3 as computed, simulating the next
excavation phase. The principal stresses around the quarry chamber present the following
values: σ1 ranges from a minimum of −3.5 MPa to a maximum of 32 MPa, σ3 ranges from
−21 MPa to 4 MPa, and the deviatoric stress shows a maximum value of 29 MPa.
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4.5. UDEC© Modeling

The calibration procedure of the two-dimensional case within UDEC© was applied to
sections S1 and S2, and the comparison among the residual values of the stress components
at the test sites in the pre- and post-calibration model shows an evident improvement, as
testified in Figure 22.
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Results from calibrated DEM modeling allowed us to localize tensile and compressive
stresses along the two sections. The trend of the stress field around the quarry walls is
shown in Figures 23 and 24, with information about the deviatoric stress and the main
stresses σ1 and σ3 at the current condition of excavation. It must be pointed out that
UDEC©, in a different way to RS3©, considers the negative sign as compression and the
positive one as traction.
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Using the calibrated 2D model, it was possible to simulate the next excavation step of
the zone currently under marble exploitation. Figures 25 and 26, showing the deviatoric
stresses as computed along S1 and S2, highlight the presence of high values in the acute
edges of the quarry internal geometry up to 18 MPa. In the same zones, the maximum
main stress σ1 shows high compressive stresses, with values ranging from a minimum of
−2 MPa to a maximum of 17 MPa, while σ3 varies from a minimum value of −3 MPa to a
maximum of 5 MPa.
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5. Discussion

The CSIRO HI cell were used, in this paper, to calibrate the FEM and DEM numerical
models with the aim of monitoring the in situ stress and the slope stability. This test is
nowadays practiced quite often in several extraction sites of the Apuan Alps. One of the
first studies published in this area by Gullì et al. [72] describes an experimental stress
analysis that was applied in different Carrara marble underground quarries.

Referring to the same area, other papers illustrate slope stability numerical modeling
without the use of in situ stress measurements, and they validate the results by back-analyses
based on either past or recent evidence. Some of them use the DEM approach [12,73–76], and
other ones use the FEM [64]. Pierotti et al. [77] adopted both FEM and DEM and validated
their results in respect to those reported in [25]. The latter based its numerical modeling, DEM,
and BEM (boundary element method, [78]), on data from in situ CSIRO HI cell tests. Similarly,
several publications document the use of the overcoring method to validate the numerical
models in the marble district of the Apuan Alps [25,26,65,79–81]. Mainly, they assess the
reliability of models through a sensitivity analysis of the involved geomechanical parameters
and through a comparison between the measured stresses and those numerically calculated.
For example, Berlinghieri and Pandolfi [80] vary the lateral tension field K0 with the goal of
estimating the most realistic stress values backward given the measuring performed on-site.

In the present paper, an approach similar to that described in [82] was adopted. In
Guido et al. [82], the FEM modeling was calibrated by means of a reiterate procedure of
stress state data derived from 2D doorstopper tests. In our work, FEM and DEM numerical
models were calibrated thanks to a similar procedure, written using the MATLAB© lan-
guage, which provides a MLRA of a system of overdetermined equations. The obtained
calibration has shown excellent results, with high values of Ra and very low deviations
between the measured stresses and those numerically calculated.

The obtained results at the Sottovettolina quarry underline a high variability of ten-
sional states, as identified both in the three-dimensional and two-dimensional modeling.
It is noted that the highest values concerning the deviatoric stress, the maximum main
stresses σ1, and the minimum σ3 are concentrated in restricted areas in all the presented
models, located in the sharp and obtuse angle edges of the internal section of the quarry.
According to [83] either external or internal angles with an assumed radius of curvature
equal to zero (the so-called “angle point singularity”) may show stress values which are
theoretically infinite. Considering that this effect is limited to small areas, the Saint-Venant
principle states that the effect of a load on a point is purely local and the stress due to this
load decreases rapidly with the distance [84–86]. In this sense, the model can be improved
by excluding the highly restricted areas by editing the shape of the edges, making them
smoother. Table 6 shows the maximum and minimum values of σ1, σ3, and deviatoric
stresses, both in the current state and in the forecasting one, after this exclusion phase.

Table 6. Values of σ1, σ3, and deviatoric stress (σ1–σ3) from FEM in agreement with the Saint-Venant
principle and excluding the highly restricted areas affected by angle point singularity.

Current Status Future Excavation Scenario

σ1 −σ3 (MPa) 17 18

σ1 (MPa)
Max 20 14

Min −2 −2

σ3 (MPa)
Max 2 3

Min −9 −9

Analogous results come from the DEM modeling along S1 and S2 sections with high
variability of tensional states near to the quarry angles. In particular, areas with acute edges
show compressive stresses, while the obtuse edges of the quarry are affected by traction
(Figure 27).
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Figure 27. Comparison of stress values from FEM (RS3©) and DEM (UDEC©) models along the S2
section. The arrows show compressive stress (red) and tensile stress (blue), respectively. Note that
DEM considers the negative sign as compression and the positive one as tensile stress, unlike the
FEM model. The color scalebars, indicating the values of the in situ stresses in MPa, are created to
compare zones of compressive and tensile stresses of the two models as best as possible.

In the proximity of the quarry, traction values show a general trend between −2 and
−3 MPa, which are lower than both the tensile strength limit of −3.43 MPa, which is
derived from geotechnical characterization of the quarry [47], and that proposed by [65]
for the Carrara marbles which is set to −8 ± 3 MPa. Compressive stresses show maximum
values of about 20 MPa which is lower than the compressive strength of the rock proposed
by [47] and [65] and calculated to be 120 MPa and 100 ± 20 MPa, respectively.

The Hoek and Brown criterion [87] was used to critically evaluate the deviatoric stress
resulting from the modeling. The criterion states the following:

σ1 = σ3 +
√

(m · σc · σ3 + s · σc2) (5)

where σc is the uniaxial compressive strength of the rock material, while m and s are,
respectively, two empirical constants which depend on the internal friction angle of the
rock mass and on the cohesion.

According to [88] a slightly fractured rock mass undergoes new failures when the
deviatoric stress σ1–σ3 exceeds the Hoek and Brown criterion. Setting the strength parame-



Geosciences 2022, 12, 441 26 of 30

ters for the brittle failure criterion m = 0 and s = 0.11, the Hoek and Brown failure criterion
becomes the following:

σ1 − σ3 = 0.33 σc (6)

Therefore, in the Sottovettolina quarry, considering an average σc equal to 100 MPa,
the rock mass seems to undergo forcing where the following condition occurs:

σ1 − σ3 ≥ 0.33 · 100 MPa = 33 MPa (7)

The deviatoric stress derived from the modeling is always below this threshold, and it
shows a maximum value of 29 MPa in RS3© and 18 MPa in UDEC©.

If removing the highly restricted areas affected by angle point singularity and con-
sidering the Saint-Venant principle, the deviatoric stress of FEM reaches values close to
18 MPa (Table 6). According to [65], the strength parameters of the brittle failure criterion
for the Carrara marble are set to m = 0 and s = 0.04, respectively. Therefore, the criterion
relating the deviatoric stress to the compressive strength of the rock is computed as follows:

σ1 − σ3 ≥ 0.2 · 100 MPa = 20 MPa (8)

Hence, the calculated deviatoric stress of FEM including future excavation activities is
lower than the safety limit proposed by [65].

6. Conclusions

The present study describes the 2D and 3D numerical modeling at the Sottovettolina
quarry, in the Apuan Alps marble district. The investigation method has been based on the
following steps: (i) modeling of the internal and external geometry of the quarry through the
use of TLS and aerial LiDAR surveys; (ii) estimation of the rock mass properties through
engineering–geological surveys; (iii) in situ measurement of the stresses field through
CSIRO HI cell tests using the overcoring method; (iv) 2D and 3D numerical modeling with
calibration of the stress states; v) simulation of future excavation phases and evaluation of
the slope stability and the related stress states.

Particular mention must be made of the advantages offered in this study by the CSIRO
HI cell measurements that permitted us to minimize the errors and calibrate the models
thanks to their accuracy and redundancy. A reiterate procedure was properly written using
the MATLAB© language, and it allowed us to obtain very low deviations between the
measured stresses and those which were numerically calculated.

We finally want to highlight the advantages of using LiDAR technology, when com-
pared to the classical methodologies of surveying, as it permitted us a good geometric
characterization (3D modeling) of the quarry’s walls and its external areas.

It is possible to conclude that the integrated approach, based on geomatics, engineering–
geological surveys, in situ measurement, and numerical modeling, allowed us to estimate
the stress state in the quarry area in such a way as to provide a valid approach for detecting
and monitoring the stress–strain behavior of the rocky walls, aimed at improving the site
efficiency and safety. Future developments will involve the refinement of the present
multi-methodological approach in the other quarries of the Apuan Alps.
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