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Abstract: Biological aging can be affected by several factors such as drug treatments and pathological
conditions. Metabolomics can help in the estimation of biological age by analyzing the differences
between predicted and actual chronological age in different subjects. In this paper, we compared
three different and well-known machine learning approaches—SVM, ElasticNet, and PLS—to build
a model based on the 1H-NMR metabolomic data of serum samples, able to predict chronological
age in control individuals. Then, we tested these models in two pathological cohorts of de novo and
advanced PD patients. The discrepancies observed between predicted and actual age in patients are
interpreted as a sign of a (pathological) biological aging process.

Keywords: machine learning; metabolomics aging; spectrum; metabolites; lipids; Parkinson’s disease;
biological age

1. Introduction: Background and Objective of the Work

Biological age and its subsequent estimation are concepts that have found great inter-
est in the bioinformatics literature over the last 50 years [1]. The dichotomy between “real
chronological age” and the age expressed by the “true global state” [1] of the organisms has
in fact been shown to be one of the most crucial biomarkers for possible pathological states.
It is well known that chronological age represents one of the most important risk factors
when it comes to predicting negative clinical outcomes [2]. At the same time, individuals of
the same chronological age can present extremely different biological aging states, which
can lead to completely different likelihood predictions when it comes to evaluating mortal-
ity and negative outcome risk. To generalize and to give a more comprehensive definition,
biological age can be defined as the age resulting from a prediction produced by a statistical
model incorporating a set of age-dependent variables and biomarkers. In recent years,
several studies have explored the dichotomy between biological age and chronological
age, focusing on different types of omics and imaging biomarkers. To give an example,
Cole et al. [3] estimated biological age using brain MRI scans. In the paper, they introduced
the concept of brain aging which represents a crucial step to investigate specific pathologies
and diseases that might affect brain structure and cognition. A further notable example
in the literature is the seminal Horvath clock, built using methylation information [4].
This sets the ground for the new concept of biological age estimation from molecular data.

Appl. Sci. 2022, 12, 8954. https://doi.org/10.3390/app12188954 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12188954
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2728-4272
https://orcid.org/0000-0002-8608-4641
https://orcid.org/0000-0001-6438-059X
https://orcid.org/0000-0003-2271-8921
https://doi.org/10.3390/app12188954
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12188954?type=check_update&version=3


Appl. Sci. 2022, 12, 8954 2 of 11

Since then, other estimators based on epigenetics and DNA methylation have been devel-
oped such as PhenoAGE [5] and GrimAge [6]. These models are currently representing
a relevant field of research in the area of epigenetics and aging. Analogously, metabolomics
is currently seeing an increasing trend of interest in the development and study of mod-
els that could predict biological age starting from serum or plasma metabolomic data.
The human metabolome has been in fact proven to correlate with (and possibly to predict)
several phenotypical factors, such as gender [7,8], BMI [9], and age-related pathological
conditions, for example, Parkinson’s [10,11] and Alzheimer’s [12,13] diseases. Considering
the interdependence between age and metabolism, some studies have concentrated on this
research topic. For example, linear regression models were used [14] to grasp the relation-
ship between age and the levels of a panel of metabolites, using also BMI as a covariate.
Other similar approaches have been developed [15–19]. Due to the established correlations
between age and metabolomic data, a few later studies have focused on the development
of predictive models to estimate biological age. In ref. [2], the authors presented a study
where urine metabolome data were used as a biological age estimator. The authors started
with a healthy cohort and then tested the regression model in a sample of obese individuals
undergoing bariatric surgery [2]. In [20], instead, the authors focused on the estimation of
age from urine samples analyzed in a cohort of 301 healthy individuals. Here, we present
an attempt to estimate the biological age using metabolomic data acquired on serum sam-
ples. A strength of our approach is the use of a collection of different cohorts of Parkinson’s
disease (PD) patients plus control individuals, recruited through the PROPAG-AGEING
Horizon 2020 Project [21]. Previous results obtained with the PROPAG-AGEING cohorts
have already identified promising biomarkers for the discrimination between controls and
PD patients using miRNA [22], metabolites, and lipoproteins [23]. In this study, the aim was
to develop a biological age prediction model to study the discrepancies observed between
age estimated in control individuals and age predicted in patients, using a nuclear mag-
netic resonance (NMR)-based metabolomic approach. In the present work, we introduced
several novelties. To the best of our knowledge, this is the first time that age estimation
through metabolomics is used to evaluate the age of Parkinson’s patients. The model
was, as previously mentioned, estimated using a cohort of non-PD control subjects and,
subsequently, applied to predict age in two cohorts of, respectively, de novo and advanced
PD patients. To estimate whether (and to what extent) there is a discrepancy between actual
and estimated chronological age in PD patients, we implemented three different types of
machine learning techniques, on the one hand, and the well-known Klemera–Doubal age
estimator [1], on the other hand. We decided to do this in light of possibly then integrating
further omics, such as methylation, in our analysis, with the aim of estimating biological
aging such as the Horvath clock biological age estimator. Moreover, as a further point
of novelty, we used both the profile of identified metabolites and lipoproteins (profiling
approach) as well as the whole NMR spectra (fingerprinting approach) as input features
for the modeling. Indeed, to the best of our knowledge, no age predictors have been built
so far using the entire NMR spectrum directly; thus, the promising performance obtained
opens the way to the possibility of directly using an untargeted “omic” approach based
on the NMR-metabolic fingerprint for age prediction, instead of relying on a selection of
biomarkers [24].

2. Materials and Methods
2.1. Study Participants

In the present study, a total of 675 serum samples were collected from individuals
belonging to 4 different PROPAG-AGEING cohorts, including healthy subjects (Hs), cen-
tenarians (Cent) and their offspring (CentOs), siblings of PD patients (only siblings with
a prodromal probability score of less than 10% were included in the study), de novo drug-
naive PD patients (dn2PD), and advanced PD patients undergoing dopaminergic treatment
(advPD). Detailed PROPAG-AGEING cohorts’ descriptions, patients’ recruitment, and di-
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agnosis are reported in [21]. The distribution of the samples included in our study per
cohorts are reported in Table 1.

Table 1. Design and characteristics of the cohorts included in the study.

Cohort Tot N◦ F/Tot Mean Age F
(Max; Min)

Mean Age M
(Max; Min)

Hs 118 UNIBO (39)
UMG-GOE (79) 54/118 66.7 (82.5; 52) 68.2 (85; 49)

Cent 57 UNIBO (39) 39/57 105.2 (112.3; 100) 102.9 (106.3; 100)
CentOs 46 UNIBO (39) 29/46 70.7 (89; 55) 71.1 (84; 58)

Sib 199 AUSL-ISNB (93)
SAS (106) 115/199 59.8 (90; 23) 59.2 (84; 23)

dn2PD 233 UMG-GOE (228)
SAS (5) 109/233 65.1 (84; 29) 64.8 (87; 39)

advPD 22 UMG-GOE (22) 7/22 66.7 (77; 52) 70.0 (84; 59)

Hs: healthy subjects; Cent: centenarians; CentOs: centenarians’ offspring; Sib: siblings; dn2PD: de novo drug-
naive PD patients; advPD: advanced PD patients under dopaminergic treatment; UNIBO: Alma Mater Studiorum,
Università di Bologna (IT); UMG-GOE: Universitaetsmedizin Goettingen, Georg-August-Universitaet Goettingen,
Stiftung Oeffentlichen Rechts (DE); AUSL-ISNB: Azienda Unita’ Sanitaria Locale Di Bologna (IT); SAS: Servicio
Andaluz De Salud (ES); N◦: number of subjects per cohort; F: females; M: males.

All PD patients involved in PROPAG-AGEING underwent deep phenotyping, in-
cluding international standards of motor classification (Hoehn and Yahr stages) [25] and
Unified Parkinson’s Disease Rating Scale (UPDRS) scores [26], used to describe the disease
severity. Demographics and distribution of disease severity among PD patients are reported
in Table 2.

Table 2. Characteristics of PD patients and severity scores. Total UPDRS score includes various
items contributing to four subscales: (I) mentation, behavior, and mood; (II) activities of daily living;
(III) motor symptoms; and (IV) complications of therapy.

dn2PD advPD
Mean sd Mean sd p-Value

age 65.24 10.09 68.95 7.33 0.11
Hoehn and Yahr Scale 1.51 1.07 3.13 0.60 4.52 × 10−10

UPDRS I 1.63 1.76 5.05 3.10 2.74 × 10−10

UPDRS II 6.83 5.80 19.45 6.66 1.98 × 10−15

UPDRS III 17.42 13.92 34.41 15.77 1.11 × 10−5

UPDRS IV 0.62 1.39 5.15 4.22 2.89 × 10−18

UPDRS sum 25.57 20.28 62.10 22.08 2.75 × 10−11

Duration of the disease (years) RD RD 9.32 2.78 /
BMI 27.18 4.79 25.95 3.72 0.28

RD: Recently diagnosed.

2.2. Ethical Issues

The study was conducted according to the Declaration of Helsinki and with informed
written consent provided by all subjects. The study was approved by the ethics committee
of the Physician’s Board Hesse, Germany (Approval No. FF89/2008 for DeNoPa), the Uni-
versity Medical Center Goettingen, Germany (Approval No. 9/7/04 and 36/7/02 for
the Kassel cohort), the ISNB (Italy) ethics committee (No. of approval 16018 of May 2016),
and the SAS (Spain) ethical committee (No. of approval 2014/PI173 of September 2016).

2.3. Metabolomics Analyses

NMR sample preparation was performed following standard procedures [24,27,28].
NMR spectra were acquired for all samples using a Bruker 600 MHz (5 mm PATXI 1H-13C-
15N and 2H-decoupling probe including a z-axis gradient coil) equipped with an automatic
refrigerated sample changer (SampleJet, Bruker BioSpin, Billerica, MA, USA). Temperature
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was equilibrated using a BTO 2000 thermocouple at 310 K keeping each serum sample for
5 min inside the probe before the measurement.

Each serum sample was analyzed using a NOESY 1D presat (noesygppr1d.comp;
Bruker BioSpin) pulse sequence using 32 scans, 98,304 data points, a spectral width of
18,028 Hz, an acquisition time of 2.7 s, a relaxation delay of 4 s, and a mixing time of 0.01 s
and suppressing the water peak at 4.702 ppm.

2.4. Data Processing

Free induction decays were multiplied by an exponential function that was equal
to a 0.3 Hz line-broadening factor before the Fourier transform was applied. TopSpin
3.6.2 was used to automatically adjust transformed spectra for phase and baseline aber-
rations (Bruker BioSpin). Spectra were then calibrated to the anomeric glucose doubled
(δH 5.24 ppm (parts per million)) and bucketed in the range between 10.0 ppm and 0.2 ppm
into 0.02 ppm chemical shift bins (each one of 87 points) using AssureNMR (v 2.2) soft-
ware (Bruker BioSpin). The residual water signal region in the spectra (from 4.68 ppm to
4.84 ppm) was removed, resulting in a final data matrix of bucketed spectra of 479 columns.

2.5. Serum Metabolite and Lipoprotein Quantification

The AVANCE Bruker IVDr (Clinical Screening and In Vitro Diagnostics research,
Bruker BioSpin) platform was used to measure the fractions and subfractions of 112 lipopro-
teins and twenty-eight metabolites [29,30]. Different lipoproteins (VLDL, LDL, IDL,
and HDL) and lipoprotein subclasses (VLDL-1 to VLDL-5, LDL-1 to LDL-6, and HDL-1
to HDL-4) with a total of 15 subclasses (VLDL-1 to VLDL-5, LDL-1 to LDL-6, and HDL-1
to HDL-4) were taken into consideration for all blood samples. The provided results
include the concentrations of lipids (total cholesterol, free cholesterol, phospholipids,
and triglycerides) found in each fraction for each major class and subclass. While Apo-B
concentrations were computed for VLDL, IDL classes, and all LDL subclasses, ApoA1 and
ApoA2 concentrations were estimated for the HDL class and each related subclass.

2.6. Age Prediction Using Machine Learning Models

The data used for the present analysis consisted of the matrix of the bucketed 1D
NMR spectra (675 × 479) and the matrix of the quantified metabolites and lipoproteins
(675 × 140) in serum samples, as described in the previous sections (Sections 2.4 and 2.5).

The metabolite and lipoprotein matrix as well as the spectra matrix were normalized us-
ing the Z-score transformation (subtracting the mean and scaling by the standard deviation).

To perform data analysis, we used three well-known and validated machine learning
methodologies: support vector machine (SVM) with linear kernel, generalized linear
models (glmnet with ElasticNet regression), and PLS. SVM was implemented with a linear
kernel using the scikit library in python version 3.1. ElasticNet and PLS models were
implemented using R version 3.2.1. with glmnet package version 4.1.1 and PLS package
version 2.7.3. Hyperparameters for SVM and ElasticNet were optimized using cross-
validation. The number of PLS components was set to 6 after a few preliminary trials.
The Klemera and Doubal method was implemented using the R function “TrueTrait”
included in the package WGCNA (R package version 1.69).

To evaluate the algorithms, cross-validation was employed. Root mean squared error
(RMSE) and R2 for all the methods were reported.

To build the machine learning models, we trained the algorithms using the controls
(Ctr, non-PD subjects) of the PROPAG-AGEING cohort, both with the dataset of binned
spectra and with the dataset of metabolite/lipoprotein input features. The control cohort
that the training set was composed of included healthy controls (Hs), siblings with risk
scores of less than 10% (Sib), centenarians (Cent), and centenarians’ offspring (CentOs).
The distribution of individuals per cohort is reported in Table 1. In particular, the training
set is composed of 420 subjects. Each model trained using this dataset was subsequently
tested in the dn2PD and advPD cohorts, which were used as test sets. The performance of
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the models for chronological age prediction was assessed in both controls (training) and pa-
tients (test). The rationale was to use the discrepancy between the actual chronological age
and the predicted chronological age as a proxy to estimate the health status of the diseased
individuals, in the hypothesis that PD patients are (from a metabolic point of view) more
like aged controls than younger individuals (i.e., they may have a higher biological than
chronological age).

The overall representation of the machine learning pipeline is reported in Figure 1.
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3. Results
3.1. Age Prediction Using Fingerprints and Profiles

Tables 3 and 4 report R2 (Supplementary Figures S1–S6) and RMSE for the binned
spectra and for the metabolite/lipoprotein matrices used as input datasets. The tables show
the best-performing models trained and tested in the control population for each of the al-
gorithms considered. Subsequently, we reported the performances of these models when
tested on the patient population (using dn2PD patients and advPD patients) to evaluate
whether the predicted age is consistent or not with the actual age and to enlighten a possible
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mismatch due to the disease (i.e., a biological age not corresponding to the chronologi-
cal one). The best-performing model, trained on the control population, was used and
tested in the patient population. For what concerns the models based on the bucket matrix,
the best-performing methods in the healthy dataset are SVM and PLS, with an R2 of 0.865
and 0.825, respectively. The lowest RMSE (6.273) was obtained for SVM, which can there-
fore be defined as the best-performing model in the control dataset. This score becomes
much larger when dn2PD patients and advPD patients are used as a test set. This means
that a high discrepancy between predicted and actual chronological age emerges in patients
affected by PD.

Table 3. Table reporting performance for SVM, PLS, and ElasticNet. The Klemera–Doubal baseline is
also presented. Binned spectra are used as input features.

Model Based on Spectrum Ctr dn2PD advPD
R2 RMSE R2 RMSE R2 RMSE

SVM Linear 0.865 6.273 0.208 11.209 0.037 13.057
ElasticNet 0.811 7.466 0.255 12.488 0.049 12.789

PLS 0.825 7.126 0.219 12.963 0.129 10.348
Klemera–Doubal y.true1 0.161 38.929 0.035 25.84 0.004 25.591
Klemera–Doubal y.true2 0.301 25.936 0.036 30.155 0.0001 29.861

Table 4. Table reporting performance for SVM, PLS, and ElasticNet together with the baseline model
of Klemera–Doubal, using metabolites/lipoproteins as input features.

Model Based on Metabolites
Ctr dn2PD advPD

R2 RMSE R2 RMSE R2 RMSE

SVM Linear 0.735 8.76 0.314 12.651 0.138 10.961
ElasticNet 0.756 8.422 0.236 11.044 0.014 13.562

PLS 0.739 8.704 0.095 15.157 0.043 10.423
Klemera–Doubal y.true1 0.046 77.305 0.001 110.239 0.007 111.439
Klemera–Doubal y.true2 0.318 24.903 0.039 27.304 0.0002 31.188

We also report the estimates obtained with the Klemera–Doubal model, showing how
all three machine learning approaches (SVM, PLS, and ElasticNet) significantly outperform
this model in terms of R2.

Similar considerations can be applied when using as input features the matrix of
metabolites/lipoproteins, as shown in Table 4.

For what concerns metabolite/lipoprotein predictions, as shown in Table 4, perfor-
mances are slightly worse than the models built on binned spectra, reaching a maximum R2

of 0.765 for the ElasticNet method with the lowest RMSE in the Ctr model. Again, dn2PD
and advPD show a higher discrepancy when the chronological age is predicted.

Therefore, we used the best SVM output model to identify those subjects with a pre-
dicted age that is at least 6 years over/underestimated by the model with respect to
the chronological age, resulting in a total of 264 subjects.

Of them, 7 advPD patients are predicted as older (with a mean difference between
real and predicted age of 15.45 years and a standard deviation (SD) of 10.5) accounting for
31.81% of the total advPD population, while 9 advPD are predicted as younger (11.4 years;
4.87 years) accounting for 40.97% of the advPD population; 95 dn2PD patients are pre-
dicted as older (14.7 years; 6.4 years) accounting for 40.775% of the dn2PD population,
while 39 dn2PD patients are predicted as younger with respect to their chronological age
(10.0 years; 3.2 years) accounting for 16.73% of the total dn2PD population; 58 of the control
population are predicted as older (10.5 years; 4.8 years), and 56 of the Ctr are predicted as
younger (10.4 years; 9.3 years) accounting, respectively, for 13.8% and 13.3% of the total
Ctr population.
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These data suggest that the percentage of subjects misclassified as older is about
18–27% higher in patients than in the control group.

A schematic representation of the above data is reported in Table 5.

Table 5. Difference between the chronological age and the predicted age (years) for each study
group. Overestimated are the individuals that are predicted at least 6 years older than their actual
chronological age; underestimated are individuals that are predicted at least 6 years younger than their
actual chronological age. Percentage reported refers to the total of misclassified individuals per group.

Overestimated Underestimated

%Subj./Group RA(m ± SD) PA(m ± SD) PA-RA %Subj./Group RA(m ± SD) PA(m ± SD) RA-PA

advPD 31.8 64.29 ± 7.54 79.74 ± 15.49 15.45 ± 10.51 40.9 72.33 ± 6.58 60.94 ± 5.09 11.39 ± 4.87
dn2PD 40.8 55.84 ± 10.81 70.54 ± 9.74 14.7 ± 6.40 16.7 74.23 ± 5.59 64.2 ± 6.30 10.01 ± 3.24

Ctr 13.8 55.81 ± 15.78 66.36 ± 16.17 10.55 ± 4.84 13.3 84.86 ± 16.45 74.41 ± 16.2 10.44 ± 3.88

RA: real age in years; m: mean; SD: standard deviation; PA: predicted age in years.

3.2. Correlation between Predicted Ages and Disease Severity

Correlations among severity scores, predicted and actual chronological age, BMI,
and sex were calculated.

In Figure 2, the resulting correlation matrix is reported, considering as input both
the binned spectra and the metabolite/lipoprotein data acquired from the cohorts of advPD
patients. As we can see from the plot, the correlation with severity scores becomes much
higher when the predicted age is considered with respect to the chronological age.
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As we can see from Figure 2, the correlation of severity scores with predicted (biolog-
ical) age is much higher than its correlation with actual chronological age. We therefore
attempted the same correlation plot (Figure 3), considering the dn2PD patients and their
respective severity scores. In this case, correlations are not as strong as in the case of
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the correlations in advPD patients. This can be attributed to the fact that dn2PD patients
are at the beginning of the disease and, as can be seen from Table 2, they are characterized
by very low severity scores compared to advPD patients.
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4. Discussion and Limitations

Biological aging can be defined as a collection of interconnected molecular and cellular
changes associated with aging, and it is thought to induce physiological degeneration,
which is at the root of a variety of age-related health disorders, according to the emerging
area of geroscience. Indeed, while some people get age-related diseases such as Parkinson’s
disease, others, such as centenarians, can live to 100 years old and beyond in good health.
There is a spectrum of intermediate phenotypes between these two extremes, including
those with more or less pronounced subclinical signs of disorders [21]. In this study, we de-
cided to evaluate the biological age of a large population of healthy subjects, centenarians
and their offspring, siblings of PD patients, and two groups of PD patients including de
novo drug-naive PD patients and advanced PD patients under dopaminergic treatment.
To our knowledge, this is the first time that a metabolomic-based age estimation has been
utilized to assess the age of Parkinson’s disease patients. The model was developed using
data from a collection of healthy non-PD cohorts and then tested using data from the de
novo drug-naive and advanced PD patients to assess how large is the difference between
actual and predicted age in PD patients and in healthy subjects. Four algorithms were used
for the prediction of biological aging: ElasticNet, PLS, SVM, and Klemera–Doubal. SVM
resulted to be the best-performing one, especially when coupled with the NMR fingerprint
approach. Interestingly, we found that the predictive model built on healthy subjects shows
a quite good agreement between the actual and the predicted chronological age. Conversely,
when we attempted to predict the age of PD patients, the model showed a larger discrep-
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ancy. Moreover, the error is larger in dn2PD patients than in advPD patients. Reasonably,
this could be due to the presence of the dopaminergic treatment in the advPD group, which
interferes with and/or reduces the gap between chronological and predicted age.

Further, it seems that working with a larger data matrix, such as the full NMR spectra,
works better than working using only some components of the spectra. The full NMR spec-
trum is considered the “fingerprint” of all (assigned or unassigned) detectable metabolites
and lipoproteins present in that biological sample. Indeed, the fingerprinting approach is
essentially utilized in metabolomics to provide sample classification. In contrast, the deter-
mination of the concentrations of all quantifiable metabolites in a biological sample, defined
as “profiling”, is generally used to provide information regarding the metabolic pathways
involved in specific pathological or physiological conditions [24]. However, the molecules
that can be quantified by profiling are far fewer than those that contribute to the fingerprint.
Therefore, it was not completely unexpected that the fingerprinting approach performed
better in sample classification. Interestingly, we found a correlation between the predicted
chronological age and the severity scores (Hoehn and Yahr scale and UPDRS) in advPD
patients. This correlation is stronger than that calculated from the actual chronological
age. This evidence suggests a possible use of metabolomics in the determination of a bi-
ological aging process that is also descriptive of the progress of PD. However, one of
the main limitations of the study is the limited number of advPD patients. Further, linking
the metabolomic-based age estimation to the altered metabolic pathways could improve
our understanding of the aging process in healthy people and patients with cognitive
disorders. A possible future extension of this work could involve the use of larger cohorts
of controls and advanced-disease patients and include other cognitive disorders such as
Alzheimer’s and dementia.
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