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The precision grasping capabilities of robotic hands is a key feature which is

more and more required in the manipulation of objects in several unstructured

fields, as for instance industrial, medical, agriculture and food industry. For this

purpose, the realization of soft robotic fingers is crucial to reproduce the human

finger skills. From this point of view the fingerpad is the part which is mostly

involved in the contact. Particular attention must be paid to the knowledge of

the mechanical contact behavior of soft artificial fingerpads. In this paper,

artificial silicone fingerpads are applied to the last phalanx of robotic fingers

actuated by tendons. The mechanical interaction between the fingerpad and a

flat surface is analyzed in terms of deformations, contact areas and indentations.

A reliable model of fingertip deformation properties provides important

information for understanding robotic hand performance, that can be useful

both in the design phase and for defining control strategies. The approach is

based on theoretical, experimental, and numerical methods. The results will be

exploited for the design of more effective robotic fingers for precision grasping

of soft or fragile objects avoiding damages.
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Introduction

Manipulators are essential elements of robots which are constituted of a mechanical

structure with a terminal element known as end-effector. The end-effector has the

effective responsibility of interacting with the object to be manipulated (Melchiorri

and Kaneko, 2008; Carbone, 2012; Pozzi et al., 2022).

Grasping is the function to pick up and hold an object. Grasping andmanipulation are

fundamental abilities for humans and in several applications robots are employed to

replicate the operation of human hands. Research in this field is very active and aimed at

conceiving new designs for manipulators and grippers to improve the manipulation

capabilities. The main tasks performed by a gripper are grasping and manipulation of

objects; for this reason, they are specialized structures with few sensors and characterized

by simple kinematic structures. The most modern grippers are more and more similar to

human hands (Bennett et al., 2015; Shintake et al., 2018; Ke et al., 2021), and their design

varies from grippers with two parallel fingers, to those that replicate the
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anthropomorphism of the human hand with articulated fingers

and palm (Achilli et al., 2020; Achilli et al., 2021; Achilli et al.,

2022; Shorthose et al., 2022).

Being very significative for many operations in work and

human life, human hands are the subject of a wide range of

engineering and technology research topics: human hand serves

as an inspiration for constructing successful robotic hands and

grippers, as well as the starting point for developing upper limb

prostheses and haptic technologies. Human hands are strong

end-effectors that humans use to grasp andmanipulate items and

tools, as well as perceptive means (Clemente 1981;

Balasubramanian and Santos, 2014; Controzzi et al., 2014).

The grasping taxonomies reported in literature are more than

100 (Feix et al., 2014) and the action of grasping can be defined

according to different characteristics as power grasping and

precision grasping. In precision grasps the object is generally

small, and sometimes fragile and it is grasped between the finger-

pads. Precision grasping is required in the manipulation of

components in the industrial, agricultural, and medical fields

(Payne and Yang, 2014; Low et al., 2016; Gong et al., 2022).

Figure 1 shows an example of both human and robotic

fingers during precision grasp. As it possible to understand,

the analysis of contact is an important issue to manage

precision grasping with robotic fingers.

Since the contact between a hard gripper and a hard object

can lead to shocks and consequent damages of the manipulated

object, the compliance of grasping is a topic of great significance

(Li et al., 2020). From this perspective, the use of advanced

materials and soft components to make grippers is becoming an

interesting practice (Salvietti et al., 2019).

3D printed materials such as PLA, ABS, TPU and silicone

rubbers are becoming the most popular choice for grippers

thanks to their ease of fabrication, low toxicity, and

robustness (Elango and Faudzi, 2015; Malvezzi et al., 2019a;

Malvezzi et al., 2019b; Dragusanu et al., 2022; Dragusanu et al.,

2022b). Compliant materials are used for gripping components

and pads with fingers made in PLA by 3D printing and soft

components mold in silicone (Żur et al., 2019). Furthermore, in

recent papers anthropomorphic grippers with partly soft

components have been described (Catalano et al., 2014;

Deimel and Brock, 2016) reproducing human fingertips

(Pinel, 1990; Dzidek et al., 2017).

The objective of this paper is the study of contact of a silicone

fingertip for robotic fingers with partly soft components. The

considered artificial finger of a robotic gripper studied in

(Dragusanu et al., 2022) is equipped with a silicone fingertip

with the aim of performing precision grasping of objects

exploiting the softness of the pad.

The attention of the paper is focused on the mechanical

interaction between the fingerpad and a flat surface in terms of

contact deformations, contact areas and indentations (Wu et al.,

2003). The analysis is performed by exploiting both 2D and 3D

techniques, considering a tribological point of view and

correlating forces, displacements, and deformations of fingers.

A Finite Element Model is set, and experimental results are

compared with simulated and theoretical ones, obtained by

applying some contact theories. The systematic contact

analysis allowed to determine the relationship between contact

force and deformation in soft robotic fingertips both numerically

and experimentally. In particular, the correlation between

applied force, indentation, and contact patch area is

investigated. The results obtained from experimental measures

are compared with the results from theoretical contact analysis.

This kind of research generates information that can be

useful for designing and predict the contact in precision

grasping of robotic hands having that kind of fingerpad. The

main contribution of the paper is the identification of the contact

properties of silicone fingertips to be applied to robotic

underactuated grippers, in terms of contact patch and contact

pressure distribution. Differently from fully actuated hands, in

which joints can be precisely and independently controlled to

perform complex manipulation tasks, in underactuated and soft

robotic hands finger closure motion and grasp stability and

robustness properties are related to the structural overall

compliance, that depends both on joint stiffness, or finger

structure deformation, and on contact properties (Prattichizzo

et al., 2013). Notwithstanding the amount of studies on

modelling, simulation and control of soft robotic grippers is

increasing (Duriez and Bieze, 2017; George Thuruthel et al., 2018;

Hussain et al., 2021), to the best of the author’s knowledge, fewer

research is dedicated to contact properties. Contact patch

extension, contact stiffness and pressure distribution have an

important role in quantifying grasp robustness, stability, and

stiffness (Malvezzi and Prattichizzo, 2013; Roa and Suárez, 2015).

The 2D analysis is carried out by taking ink fingerprints

correlated with the applied forces, while the 3D analysis is

performed by 3D deformation maps obtained by 3D optical

scanners and a new experimental method inspired by (Valigi and

FIGURE 1
Human (A) and robotic (B) fingerpads during precision
grasping.
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Logozzo, 2019; Logozzo et al., 2022b; Landi et al., 2022) and using

the 3D scanning technologies as in (Logozzo et al., 2018; Valigi

et al., 2018; Affatato et al., 2020). The experiments were carried

out using an instrumented plate and a reverse engineering

method (Valigi et al., 2016; Valigi et al., 2019a; Valigi et al.,

2019b). Theoretical contact models where applied and discussed

(Schwarz, 2003; Adams et al., 2007; Heß and Popov, 2019). The

main differences with the previously mentioned works are related

to the fields of application of the methodology. Indeed, in this

manuscript the methodology is used to analyze precision grasp of

robotic fingers with silicone fingertips (Logozzo et al., 2022b). In

addition, the applied methodology has been improved, as

described in (Logozzo et al., 2022a).

The paper is structured as follows: in Section 2 the sample

preparation is described together with the instruments and

applied methodologies; Section 3 reports results of the

experiments and numerical and theoretical analyses,

discussing the comparison of results; Section 4 is dedicated to

conclusions.

Materials and methods

Sample preparation

Material stiffness and gripper morphology typically define

the deformation and kinematic capabilities in soft robot grippers

made of one single material. The combination of soft materials

with different properties in a single gripper is the solution to

engineer deformation behavior required by the specific task in

which the gripper is employed.

Therefore, soft grippers designers aim at systematically

taking advantage of multi-material 3D printing for creating

dexterous soft robotic devices. The studied finger belongs to a

new type of robotic grippers named WaveJoints grippers and

composed of 3D-printed fingers, actuated by tendons, in which

each finger is a monolithic element composed of stiff parts (the

phalanges) connected by flexible wave-shaped parts (Figure 2).

The fingers of the gripper were reproduced by 3D printing

but a new element in silicone was added to simulate the human

fingertip contact. The fingertip wasmade of EcoFlex 00–30 (Noor

and Mahmud, 2015; Steck et al., 2019; Pozzi et al., 2021) and

crafted using a 3D printed mould realized according to a proper

design. After casting, the silicone fingerpad was mounted on the

last phalanx of the WaveJoint finger (Figure 3).

The experimental contact analysis was carried out by means

of both 2D and 3D techniques.

Experimental instruments and 3D contact
analysis

The 3D study was based on the method used in (Logozzo

et al., 2022b) with some variations, as reported in (Logozzo et al.,

2022a). The applied method implies the use of 3D optical

scanners and reverse engineering and inspection software but,

with respect to (Logozzo et al., 2022b) in this work the

FIGURE 2
The WaveJoints gripper.

FIGURE 3
Design of the sample finger, equipped with the soft, silicone-
based, fingerpad.
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indentation of the fingertip subjected to a certain force was

measured by a digital force-displacement gauge. The materials

and instruments used for the 3D contact analysis were:

• A sensorized plate equipped with a force sensitive resistor

(FSR) and controlled by Arduino

• A dough material to impress the fingerprint of the

deformed fingerpad

• A digital force-displacement gauge

• A desktop 3D optical scanner

• A reverse engineering and inspection software

• A FEA software

Six tests were performed with the silicone fingerpad. For each

test a layer of dough material was put on the FSR on the

sensorized plate and the silicone fingerpad was pressed against

the plate measuring a compressive force while the deformation of

the fingerpad was impressed on the dough layer (Figure 4).

The 3D fingerprints on the dough material were left to

harden to the open air. Given the values of the compressive

forces measured by the FSR, the corresponding vertical

displacement of the fingerpad (δ) was measured by a force-

displacement gauge (ZTA 50-N, Imada, Japan), as represented in

Figure 5. Then the 3D fingerprints were digitized by means of a

desktop structured light 3D scanner (EinScan-SE, Shining 3D,

FIGURE 4
3D Compression tests.

FIGURE 5
Displacement measurements.

FIGURE 6
3D scanning procedure.

FIGURE 7
Reconstruction of the fingertip deformation.
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China) with a scanning procedure comprising 12 turntable

rotations and alignment based on feature recognition

(Figure 6). The 3D scanning procedure was performed after

calibration of the instrument. From this procedure the 3D digital

models of the fingerprints impressed on the dough material were

obtained in the form of triangular meshes. The 3D models of the

fingerprints were imported in the mesh editing and inspection

software (Geomagic, 3D Systems,US) together with the CAD

model of the silicone fingertip. Then the two models were

superimposed considering the indentation measured by the

force-displacement gauge (Figure 7).

From this alignment the 3D indentation maps were

reconstructed, which represented the deviation between the

deformed and undeformed fingertip. Taking as a reference the

undeformed fingertip, the indentation map displays the 3D

distribution of deformations. The 3D alignment can also

help to display the gross contact areas defined by the

intersection curve between deformed and undeformed

finger. This methodology can be applied until the

indentation does not become higher than the equivalent

radius of the indenter.

More insight about the 3D contact analysis proposed in this

work can be found in (Logozzo et al., 2022a), where different

experimental instruments are discussed with particular attention

to 3D scanners and reverse engineering software. For instance,

the accuracy of the 3D measurements depends on the

performance parameters of the used 3D digitizers. In this

paper an instrument with an accuracy grade of 0.1 mm for

single frame was used. Trueness and precision of the contact

area measurements depends both on the accuracy of the 3D

digitizer and also on the alignment between the undeformed

fingerpad model and the fingerprint model. In this work this

alignment was guided by the indentations measured by the digital

force-displacement gauge, but the accuracy and repeatability can

also be improved using a second portable 3D scanner to digitize

the fingerpad while it is imprinting on the dough material, as

reported in (Logozzo et al., 2022a). In this work, this second 3D

scanner was not used but the experimental contact area was also

measured by using an additional method based on 2D ink

fingerprints.

Numerical analysis

The numerical contact analysis was also performed by Finite

Element Method (FEM) software. For the study, a hyperelastic

material was chosen for the silicone part, considering a geometric

nonlinearity (Jindrich et al., 2003; Sergachev et al., 2019). The

used hyperelastic model was the 2-parameter Mooney-Rivlin one

which simulates the behavior of Ecoflex 00–30 silicone (Pozzi

et al., 2021). The material properties are described with the shear

modulus μ and two Mooney-Rivlin constants C1 and C2, as

reported in Table 1. The study applied a prescribed displacement

to the fingerpad equal to the maximum displacement measured

by the force-displacement gauge, as mentioned in section 2.2,

with a fixed constraint on the rigid plate, to evaluate the

deformation map of the component.

Experimental instruments and 2D contact
analysis

The experimental 2D contact analysis was carried out using

the following materials and instruments:

• A sensorized plate equipped with a force sensitive resistor

(FSR) and controlled by Arduino

• Ink to create a fingerprint on a white paper

• A digital caliper

The tests were performed by wetting the silicone fingerpad

with the ink and pressing it on a white paper laying on the FRS.

The same compressive forces considered for the 3D tests were

TABLE 1 Material properties.

Shear modulus (μ) C1 C2

Mooney-Rivlin 2-parameters 4.72 kPa 0.4375μ 0.0625μ

FIGURE 8
2D Compression tests.
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measured while the 2D fingerprint was impressed on the paper

(Figure 8).

The obtained fingerprints had an ellipsoidal shape whose

maximum and minimum semiaxes were measured by a caliper.

These values were used to calculate the area of the fingerprint to

be compared with the gross contact area resulting from the 3D

measurements.

Theoretical contact analysis

Gross contact areas were also calculated according to the

most common theoretical mechanical contact models and in

particular the Hertz theory and the Johnson, Kendall and Roberts

(JKR) model, considering a radius of curvature of the silicone-

based finger equal to 5 mm.

The measured indentations and forces were used as inputs

for the calculations of the theoretical radii of circular contact

areas to be compared with the experimental ones (Schwarz, 2003;

Adams et al., 2007; Dzidek et al., 2017; Heß and Popov, 2019;

Sergachev et al., 2019). The Hertzian contact area was calculated

based on the experimental indentation depth. The indentation

was used to calculate the radius of the contact area which was in

turn calculated as a circle area. Regarding the JKR model the

analysis of the formation of the contact was considered,

according to (Chokshi et al., 1993).

Results and discussion

Results concerning the 3D deformation of the silicone

fingerpad are given in terms of indentation maps, as

represented in Figure 9. In Figure 10, the resulting gross

contact areas are highlighted with an orange ellipse. Figure 11

shows the 2D fingerprints.

All the experimental and theoretical results are summarized

in Table 2.

The 3D indentation map at the maximum displacement

(4.29 mm) was compared to the deformation map obtained by

FEM analysis. Results are displayed in Figure 12. As it can be

observed, there is a slight difference between the experimental

and simulated indentation maps. This difference is caused by the

presence of the dough material in the experimental setup, which

is necessary to take a plastic impression of the elastic deformation

of the finger. Indeed, in the FEM simulation, the thickness, and

the plastic deformation of the doughmaterial, placed between the

silicone fingertip and the rigid surface, are not considered.

From Table 2 one can observe that both 2D and 3D

experimental results are not comparable with the theoretical

results obtained by applying the Hertz theory. This evidence

can be explained considering that the Hertz model does not take

into account adhesion, which is not negligible in the case of soft

materials as silicone (Morales-Hurtado et al., 2017; Ciavarella

et al., 2019).

FIGURE 9
3D Indentation maps.
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On the contrary, the JKR model which considers adhesion

gives results which can be validated by the experimental data

obtained both by 2D and 3D analyses. Results demonstrate that

the JKR theory approximates 3D contact areas better than 2D

ones and this can be due to the fact that the 3D experimental

analysis gives better result to adhesion.

When the value of the indentation δ is close to the radius R of

the indenter, the JKR model does not release reliable results, as

this model is valid until δ << R. In this case, JKR overestimates

the gross contact areas as demonstrated by samples B5, B2, B3.

For samples B7, B6, B1 and B5 the 2D gross contact area is

lesser than the 3D one and this phenomenon can be explained

considering that the 3D results also include the adhesion zone,

due to the presence of the dough material.

For the samples B2 and B3, which are characterized by the

deepest indentation, the presence of the dough material could

have limited the lateral bulging of the silicone fingerpad, giving

3D gross contact areas lesser than the 2D ones.

The 3D contact analysis method has the capability to

compute the distribution of the fingerpad 3D deformations

and results allow to also display the lateral contact between a

fingerpad and a soft object to be grasped.

Silicone has a hyperelastic behavior and also the dough

material has an influence on the contact but considering the

comparison between numerical results and the outcomes of the

3D contact analysis reported in Figure 12 one can conclude that

the information about the 3D deformation distribution obtained

by 3D contact analysis is reliable and gives fundamental insights

to design partly soft grippers which have to grasp soft objects

avoiding damages. Furthermore, the knowledge of the gross

FIGURE 10
3D Gross contact areas.

FIGURE 11
2D Fingerprints.

TABLE 2 Results.

Sample Force (N) δ (mm) 3D gross
contact area
(mm2)

2D gross
contact area
(mm2)

Hertz gross
contact area
(mm2)

JKR gross
contact area
(mm2)

B7 1.09825 1.62 48.07 39.39 25.45 44.08

B6 2.19904 2.42 65.47 50.28 38.01 65.84

B1 3.10773 2.49 70.70 67.39 39.11 67.75

B5 4.97893 3.18 77.88 75.35 49.95 86.52

B2 7.72941 3.75 85.86 90.80 58.90 102.03

B3 11.7107 4.29 87.34 91.89 67.39 116.72

Frontiers in Mechanical Engineering frontiersin.org07

Achilli et al. 10.3389/fmech.2022.966335

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.966335


contact area can allow to better control the precision grasping

operations.

Conclusion

Grasping and manipulating objects is one of the most

prevalent activities in human everyday life, which is the

reason why human hands and fingers have been taken as an

inspiration to design several artificial grippers. This paper was

focused on the contact analysis of soft fingerpads with the aim of

evaluating the 3D distribution of deformations during the

contact, indentations, and gross contact areas. Numerical,

experimental, and theoretical analyses were performed, and

results were compared and discussed.

Gross contact areas were evaluated by 3D and 2D

experimental contact analyses and by theoretical contact

models. 3D deformations of the fingerpad were detected by

means of 3D indentation maps obtained by 3D scanning

techniques and by FEM analysis.

Results demonstrated that the 3D contact analysis gave

reliable information about contact deformations and areas,

also considering the adhesive phenomenon typically affecting

the contact of soft materials. This study put the basis for the study

of contact of partly soft grippers for the design of compliant

precision grasping. This work represents a first step in the

characterization of soft robotic finger contact elements. As

highlighted in the introductory part of the paper, the results

of this study are useful in the design and control of soft robotic

fingers, since contact properties are important elements in

grasping and manipulation tasks. Another important field in

which the results of this study could be exploited is the

development of new tactile sensors (Yamaguchi and Atkeson,

2019; Gomes et al., 2020; Sun et al., 2022).

Future developments of this work will include a deeper

investigation on material models including nonlinearities and

anisotropy, an extension of the experimental test set with

different sizes, shapes, and materials of the fingerpads.
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