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The CALorimetric Electron Telescope (CALET) was launched in August 2015 and installed on
the International Space Station (ISS) Japanese Experiment Module Exposed Facility. Alongside
the primary science targets of GeV—TeV energy cosmic-ray electrons and cosmic-ray hadrons
up to PeV energies, CALET is sensitive to gamma rays from 1 GeV up to 10 TeV, limited by
statistics. Access to energies below 10 GeV is enabled by a dedicated low-energy gamma (LE-W)
trigger which is active only at low geomagnetic latitudes. In this work we review the analysis
of gamma-ray events collected with this trigger including the mitigation of a secondary photon
background from cosmic-ray interactions with ISS structures in the CALET field-of-view, the
observation of persistent galactic and extragalactic sources, and the detection of emission from
the quiescent Sun.
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1. Gamma-ray analysis with the CALET calorimeter

Figure 1: A sample gamma-ray event in the
calorimeter. The reconstructed track based on
the energy deposits in the IMC and the clean
charge zero measurement in the CHD are

shown. The primary energy is reconstructed
based on the IMC and TASC energy deposits
based on simulations of events in the same

geometrical acceptance condition.

The Calorimetric Electron Telescope (CALET)
was launched in August 2015 from Tanegashima
Space Center in Japan to the Japanese Experiment
Module Exposed Facility (JEM-EF) on the Interna-
tional Space Station (ISS). Scientific operations have
continued stably from October 2015 to date and are
approved until at least the end of 2024. CALET
was primarily designed to measure the cosmic-ray
electron spectrum from 10 GeV well into the TeV
energies. Given the similarity between electron- and
photon-induced electromagnetic showers, CALET is
also sensitive to gamma rays in this energy range.

The primary instrument on CALET is the 30 ra-
diation length (-0) deep electromagnetic calorime-
ter (CAL) [1] (see Figure 1). The CAL comprises
three subsystems: a charge detector (CHD) made
of one x- and one y-layer of plastic scintillating
paddles; an imaging calorimeter (IMC) made of
eight pairs of x- and y-layers of plastic scintillating
fibers separated by seven tungsten sheets (total 3-0)
which stimulate shower development; and a total ab-
sorption calorimeter (TASC) made of 12 layers of
lead tungstate logs (total 27-0) which can fully ab-
sorb electromagnetic showers at TeV energies. The
calorimeter is only 1.3 proton interaction lengths deep, and the large difference in electron radia-
tion length depth and proton interaction length depth creates a difference in shower topologies for
electron or photon primaries as compared to those from hadronic primaries.

In additional to the high-energy (HE) trigger observations in the energy range above, CALET
also measures photons down to 1 GeV with a dedicated low-energy gamma (LE-W) trigger [2]. The
LE-W trigger is active specifically at low geomagnetic latitudes, where low-energy charged particles
are deflected by the geomagnetic field and background rates are therefore kept at a manageable
level. A selection algorithm for events seen with this trigger has been implemented and the
instrument response has been characterized and validated [3]. For these low-energy events, the
pathlength in the TASC needed for absorption of the shower energy is shorter, and the geometrical
acceptance conditions for the LE-W analysis allow much wider angles of incidence (field-of-view
(FOV) reaching∼60◦). This increase in geometrical factor is countered, however, by the requirement
that the trajectory pass through the CHD for clear charge 0 selection, leading to a geometrical factor
of ∼1000 cm2sr, comparable with the total standard acceptance. For energy spectra shown in
this work, the absolute energy scale correction of 3.5% as derived by analyzing changes in the
low-energy electron spectrum as a function of geomagnetic rigidity cutoff [4] is applied.

Although here we focus on the low-energy observations (for analysis focused on the HE trigger,
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see [5]), we include data taken with the HE trigger as well to extend results above 10 GeV. Note
that these data are taken with a limited geometrical acceptance (similar to that used for the electron
analysis), and that selections are being studied in detail for the possible improvement of the HE
trigger geometrical factor for photons. Furthermore, we do not discuss here the important topic of
fast transient event follow-up (e.g. GRBs and gravitational wave events); for discussion of those
analyses see [6]. An overview of other CALET results can be seen in the highlight report [1].

2. Data analysis

For this work, the complete CALET Pass 4.1 dataset is used, representing the most up-to-date
calibrations (including those in [7] and others) and covering the time period from 2015/11/01 (when
the LE-W trigger was first activated) to 2020/09/30 for a total of 1796 days. Data are converted from
their Level 1 format to Level 2 (event reconstruction and calibrations are applied) at the Waseda
CALET Operations Center (WCOC) at Waseda University in Tokyo, Japan.

An important source of background events for the gamma-ray analysis in CALET is due to
transient and permanent structures from other ISS and JEM-EF systems impinging on the CAL
FOV, especially at the periphery. An example month (2016/08) with a variety of obstructions is
shown in Figure 2. Cosmic rays interact with these structures and produce a bright secondary
photon signal that must be removed in order to clean the dataset. Permanent structures (e.g.

Figure 2: Effects of the FOV cuts for the month of August 2016. Robotic arm activity impinged on the
upper left region for four days. upper left: all LE photon candidates, upper right: events rejected by the
manually-defined structure cuts, bottom left: events rejected by the ray-tracing model code, and bottom

right: events kept for analysis. Red circles denote 45◦ and 60◦ from zenith.
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payload mounting fixture) and structures that rotate predictably (e.g. solar panels or radiators) are
modeled with ray tracing code provided by JAXA. Transient structures (e.g. the SSRMS or JEM-
RMS robotic arms) are removed through communication with ISS operations notes and manual
inspection of photon event distributions in the FOV in time periods when obstructions are known
to be present. Maps of rejected FOV regions for each time period are defined, synchronized to
the central WCOC calibration database, and used in the processing of high-level analysis files.
While these obstructions have little effect on high-energy cosmic rays and are typically outside of
the geometrical acceptance for cosmic-ray analysis (extending to ∼45◦; the red circles in Figure 2
indicate 45◦ and 60◦ from zenith, for reference), the generation of GeV-energy secondary photons
and the more open acceptance conditions for the LE-W trigger makes their removal essential for

Figure 3: LE-W trigger skymaps. top: counts map smeared by the instrument response functions shown in a
logarithmic scale. Sources with excess events at their known locations are indicated by circles and labels
(blue: galactic, green:extragalactic). bottom: counts map overlaid with exposure contours incremented by

10% relative to the maximum exposure.
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analysis of gamma rays in the CAL.
The high-level analysis files are reduced from Level 2 to include photon-specific selection

information, reconstructed energies, and exposures, accounting for the effects of the previously
discussed ISS structures. The results reported below are derived based on this reduced dataset.

3. Observation overview

Figure 3 summarizes the LE-W observations over five years of observations. The point-spread
function (PSF) is determined for each photon event and an order 9 Healpix map is filled with the
summed smeared signals from each. The total exposure is accumulated in bins of energy for each
pixel of an order 6 Healpix map. The top panel in Figure 3 shows the resulting counts map in
logarithmic scaling. Sources detected in the CALET dataset are marked by green or blue circles
depending on extragalactic or galactic origin, respectively. The significance level of the detection
of each source is still under evaluation. The bottom panel shows the exposure on the sky for the
LE-W trigger relative to the maximum value at 5 GeV (∼1.68 ×109 cm2s).

4. Observations of persistent point sources

Figure 4: Spectra for bright galactic sources (from left: Crab, Geminga, and Vela. Black dotted lines show
fitted results from Fermi LAT ([8], [9], [10]).

Measurement of the fluxes from bright point sources and the stability of these results are an
important validation of gamma-ray analysis in the CAL. The brightest of these sources are the Crab,
Geminga, and Vela, whose energy spectra are shown in Fig. 4. The binning was chosen to balance
the energy resolution in the CAL with the statistics afforded by the exposure and spectral shape of
each source. The results extend those in [3] to beyond 10 GeV. Results from the HE trigger are
included, shown in the figures with the blue data points. Model results from Fermi LAT are shown
for comparison, and are in good agreement with the presented results.

Some sources in the CALET dataset have been seen to exhibit flaring activity, most notable
from the active galactic nucleus (AGN) CTA 102. The counts map and light curve for CTA 102
as seen by CALET are shown in Figure 5. The right panel shows that the majority of the signal
from CTA 102 was concentrated in the six month period 2016/11 - 2017/05. After the end of the
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flaring period, no further high-energy (E > 10 GeV) was seen in from the source, and in fact, the
majority of events detected from the source since 2017/05 are very low energy (E < 2 GeV). The left
panel shows the source well-separated from the background over the full five years of observation,
emphasizing the strength of the flare given the diminished subsequent flux.

Figure 5: Observations of CTA 102. left: count map centered at the CTA 102 position. right: light curve
with 10 day bins of CTA 102 over the full observation period (counts on left y-axis). Individual events are

marked with crosses as a function of time and energy (right y-axis).

Other sources detected in the five-year dataset can be attributed primarily to flares as well.
∼20% of all photons detected by CALET from the AGN 3C 279 were seen within a two week
period in early 2018. On the other hand, emission from 3FHL J1833.6-2104 was infrequent until
late 2018, and then increased by a factor of ∼3 thereafter. The changes in energy spectra for these
flaring sources based on the CALET data are still under evaluation.

5. Detection of GeV-energy emission from the quiescent Sun

Non-thermal emission from the Sun in quiescence was predicted based on cosmic-ray inter-
actions near the photosphere [11]. In addition, an extended halo is also predicted due to inverse
Compton scattering of the photon field by cosmic-ray electrons [12]. These two components were
detected in EGRET data [13] and later by Fermi LAT [14]. Later analyses using Fermi LAT data
over a longer period revealed an unexpected, significant dip in the disk spectrum between 30-50
GeV [15] and the potential presence of a mechanism driving emission up to hundreds of GeV [16]
correlated with the Solar cycle. With this in mind, we aim to study this Solar emission using
CALET observations.

For each candidate event, we rotate its arrival direction based on the position of the Sun at the
time of detection. Using the Sun direction as the new z-axis and the ecliptic North pole as the new
x-axis, the rotation is defined. Exposures are accumulated daily, and the exposure map is rotated
according to the Sun’s position at noon UTC on each day. Note that this rotation does not maintain
a constant direction for the Sun’s rotational axis, but a morphological study is already infeasible at
this stage of analysis due to statistical limitations.

The results of a simple event selection around the Solar disk are shown in Figure 6 (error
bars are statistical only). This preliminary result shows a featureless power law with index 2. No
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Figure 6: Preliminary measurement of the Solar disk emission using a simple event selection and total of
daily exposures. Error bars are statistical only.

evidence is found for the presence of the spectral dip at 30-50 GeV, but given the size of the errors, it
is also not significantly precluded. Note as well that this treatment will contain contamination from
the inverse Compton component, and a joint fitting of three components (diffuse background, disk,
and inverse Compton halo) is in development alongside a dedicated increase of the geometrical
factor for the HE gamma-ray analysis.

6. Summary

CALET is making gamma-ray observations from energies E ∼ 1 GeV, and has accumulated
over five years of data to date with continuous, stable operations. Observational results of point
sources are consistent with expectations based on results from Fermi LAT, building confidence
in the analysis of gamma-ray sources and the treatment of backgrounds, including the significant
contamination of the dataset from cosmic-ray induced secondary photons from ISS structures in
the CALET FOV.

We presented here the status of several ongoing analysis efforts, including the detection and
analysis of persistent sources, the monitoring of transient outbursts from known systems, and the
analysis of GeV-energy gamma-ray emission from the quiescent Sun. These results complement
those based primarily in detection of counterpart GeV emission from GRBs and gravitational wave
sources [6] and in analysis of the HE trigger events for dark matter line searches [5] among others.
These efforts are being continued, along with an investigation aiming to expand the HE trigger
acceptance for gamma-ray events to extend the results on the Solar gamma-ray analysis. CALET
is approved for operations at least through the end of 2024, by which time a dataset exceeding nine
years will be achieved.
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