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A B S T R A C T

Demand response is expected to play a fundamental role in renewable energy communities to alleviate the
electricity demand–supply mismatch, especially in the presence of stochastic load and generation. In this
paper, we consider an electric vehicle charging station that participates in incentive-based demand response
programs. A real-time charging scheme is devised to optimize the charging station operation by coordinating
the charging process of the electric vehicles, and complying with the incoming demand response requests. In
this context, vehicle demand is assumed uncertain, while demand response requests ask for a change in the
charging profile over certain time intervals, in exchange for a monetary reward. By exploiting the probability
distributions describing the vehicle charging process, a stochastic formulation is employed to devise a novel
charging algorithm aimed at reducing the charging station operational cost. Such a procedure can (i) handle the
uncertainty affecting the charging process in different settings and scenarios, and (ii) exploit the information
collected in real-time to refine forecasts and hence ensure a higher demand flexibility. Numerical results show
that the proposed approach ensures considerable cost reduction compared to the benchmarks, and features
highly scalable runtimes.
1. Introduction

Demand response (DR) programs play a key role in restoring the
balance between electricity demand and supply in renewable energy
communities (RECs). DR incentivizes users to change their electricity
demand profiles with respect to their usual consumption patterns in
response to time-based rates (price-based schemes) or financial incen-
tives (incentive-based schemes) [1], hence providing several benefits
for the grid stability [2,3].

With the increasing penetration of electric vehicles (EVs), the ques-
tion of whether they are suitable targets for DR programs comes
naturally. The answer appears to be positive for two reasons. First, the
EV power demand is expected to significantly contribute to the overall
grid power consumption. In fact, differently from low power appliances
like domestic ones, EVs can be considered high power appliances, being
devices that require a significant amount of power during the charging
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process. Indeed, it is expected that public charger capacity will be
around 600 GW by 2030 [4]. Second, differently from other kinds
of high power appliances (like industrial loads), EVs feature higher
potential flexibility since their charging process may be shifted or
even interrupted over time. Consequently, the charging schedule can
be managed to comply with EV owners charging requirements, while
satisfying the incoming DR signals.

Despite the expected flexibility potential of EVs, the adoption of
DR schemes in the mobility sector introduces some challenges. On one
side, if the charging process of EVs is left uncoordinated, it can lead to
energy shortage issues, and threaten the reliability and stability of the
power system [5]. On the other side, EV charging loads are inherently
stochastic, as they depend on users driving habits and traffic conditions.
It is therefore clear that the development of strategies to handle and
coordinate the stochastic EV demand is essential to achieve suitable
levels of flexibility for participating in DR programs.
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Related works. The importance of the investigated topic is testified
by the growing body of literature proposing control methodologies
for allowing the participation of EV charging stations (EVCSs) in DR
programs (see surveys [6,7] and [8]). Several problem settings and
optimization approaches have been considered. In [9], a DR program
requiring power reduction of an EVCS where vehicles are charged
by exploiting an on-off policy is considered. In [10], an incentive-
based DR scheme focused on the deviation from the nominal profile is
analyzed, and control techniques based on deep reinforcement learning
to minimize the daily EVCS cost in real-time are proposed. Further-
more, [11] focuses on DR for load shaping and evaluates its impact
on the distribution network, while [12] exploits dynamic program-
ming for determining the optimal charging schedule for vehicle-to-grid
regulation services. The use of particle swarm optimization routines
to maximize the daily profit including DR incentives is considered
in [13]: here the uncertainty on renewable generation is taken into
account, while this is not the case as far as demand is concerned.
Contributions concerning the development of receding-horizon algo-
rithms to shave the peak power of an EVCS under EV uncertainty have
been proposed in [14–18]; however, these approaches are not com-
patible with incentive-based DR structures. Similarly, [19] develops a
dynamic programming approach for pricing schemes and relies on a
‘‘deduction’’ method to handle unknown information about the future
behavior of vehicles. On a different direction, two-stage day-ahead
settings are considered in [20], where the authors rely on stochastic
programming to develop an EV pricing strategy for profit maximization,
and in [21], where approximate dynamic programming is adopted
to determine the optimal charging scheduling under total capacity
constraints. In [22], a chance constrained approach is exploited to
formulate a day-ahead planning for gathering EV charging flexibility
where customers response to DR incentive prices is uncertain. A bilevel
approach allowing the participation of energy communities with EVCSs
in DR programs is described in [23]. Such a procedure relies on Monte
Carlo simulations to generate plausible scenarios for renewable sources
and loads. In [24], a stochastic programming approach is proposed for
optimal charging scheduling that can fit different types of DR programs
(price-based and incentive-based) under renewable sources and market
price uncertainties. However, both [23] and [24] are not suitable to
operate in real-time. More recently, in [25] an end-to-end learning and
optimization framework for price-responsive EV charging scheduling
is proposed, while [26] develops an optimization-based approach to
enable the participation of EVCSs into incentive-based DR programs.
However, [26] does not consider the potential flexibility of incoming
vehicles, hence offering less adaptation to DR programs.

Novelty and contribution. In this paper, we consider an EVCS that is
part of a REC and participates in DR programs to help maintain the
local demand–supply balance. According to the concept of ‘‘flexibility
for energy’’ [27], we assume the existence of a contract between the
REC manager and the charging station owner, where the EVCS gets
compensated if it reduces/increases its energy consumption during cer-
tain time windows with respect to a nominal profile. In the considered
setting, DR requests are disclosed to the EVCS with a limited lead time,
hence leaving little time to react. To allow a flexible and resilient EVCS
management, a novel stochastic receding-horizon methodology that
coordinates the EV charging schedule of incoming vehicles is designed.
Specifically, forecasting procedures that estimate the EVCS future load
flexibility are embedded into the proposed algorithm to manage the
charging schedule and comply with the incoming DR requests.

To the best of the authors’ knowledge, there are no available re-
ceding horizon techniques that explicitly consider and model the EV
uncertainty on plug-in and plug-out times under incentive-based DR
programs. This paper aims to fill such a research gap through the
following contributions:

1. A stochastic formulation to optimally schedule the charging
process of EVs in a charging station participating in an incentive-
2

based DR program is proposed. To deal with the randomness
of vehicles aggregated demand, we introduce a formulation that
allows one to consider different settings and scenarios with no
specific assumption on the structure of the underlying probabil-
ity distributions. Contrary to [26], the proposed approach takes
explicitly into account the potential flexibility of future incoming
vehicles, thus improving the EVCS performance and provid-
ing significant cost reduction, as witnessed by the reported
numerical simulations.

2. A receding horizon algorithm that takes advantage of the in-
formation acquired online to derive load forecasts is designed
to solve the above problem. The procedure requires the so-
lution of an optimization program involving binary variables
whose number scales with the number of daily DR requests. For
fixed values of the binary variables the optimization problem
is convex, making it affordable to branch and bound solution
techniques. The scalability of the algorithm is demonstrated via
numerical simulations.

Paper structure. In Section 2, the problem formulation is described.
In Section 3, the receding horizon algorithm aimed at finding the opti-
mal charging schedule to ensure daily cost minimization in the presence
of DR requests is derived. In Section 4, numerical results to evaluate
the effectiveness and the computational feasibility of the proposed
approach are reported. Finally, conclusions and future research lines
are reported in Section 5.

Notation and nomenclature. N denotes the set of natural numbers,
hile R the set of real numbers. We define a probability space  as
unique tuple  = {𝛺, ,}, where 𝛺 is its sample space,  its 𝜎-

lgebra of events, i.e., the collection of all possible subsets of 𝛺, and 
ts probability measure that assigns a probability (𝐴) to every event
∈  . For an event 𝐴 ∈  , the probability that 𝐴 occurs is written

s (𝐴), whereas the probability of its complement is (𝐴) = 1 −(𝐴).
onsider two events 𝐴,𝐴′ ∈  , then the joint probability that 𝐴 and 𝐴′

oth occur is denoted by (𝐴,𝐴′) ∶= (𝐴 ∩ 𝐴′), while the conditional
robability that 𝐴 occurs given 𝐴′ is denoted by (𝐴|𝐴′) ∶= (𝐴∩𝐴′)

(𝐴′) .
We define a random variable 𝑋 as a  -measurable function defined
on the probability space  mapping its sample space 𝛺 to the real
line R, i.e., 𝑋 ∶ 𝛺 → R. For a random variable 𝑋, we denote by
E[𝑋] its expected value, whereas E[𝑋|𝑡] represents the expectation of
𝑋 conditioned to the available information at time 𝑡. Nomenclature is
eported in the following table.

Symbol Description
𝛥 Sampling time
𝑡𝑎𝑣 Arrival time of vehicle 𝑣
𝑡𝑐𝑣 Time when charging ends for vehicle 𝑣
𝑡𝑑𝑣 Departure time of vehicle 𝑣
𝜏𝑓𝑣 Fulfillment duration of vehicle 𝑣 under nominal power

charging schedule
𝜏𝑝𝑣 Parking duration of vehicle 𝑣
𝜏𝑐𝑣 Charging duration of vehicle 𝑣
𝐸𝑓
𝑣 Declared energy requirement of vehicle 𝑣

𝑆𝑣(𝑡) Energy charged into vehicle 𝑣 at time 𝑡
𝑃𝑣(𝑡) Average charging rate of vehicle 𝑣 in the time interval

[𝑡, 𝑡+1]
𝑟𝑣(𝑡) Nominal charging profile of vehicle 𝑣 at time 𝑡
𝑁 Daily number of incoming vehicles
𝑄(𝑡) Incoming vehicles after time 𝑡
𝐻(𝑡) Number of vehicles charging at time 𝑡
𝑊 (𝑘, 𝑡) Number of vehicles charging at time 𝑘 incoming after 𝑡
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(𝑡) Set of vehicles charging at time 𝑡
𝐴(𝑡) Number of arrived vehicles up to time 𝑡
𝐸𝐹 (𝑡) Forecast of day-ahead aggregated energy consumption

at time 𝑡
𝐸𝑆 (𝑡) Actual aggregated energy consumption at time 𝑡
𝐸𝑈 (𝑡) Aggregated energy consumption under uncoordinated

nominal charging policy at time 𝑡
𝑃0 Nominal charging power
𝑃 Maximum charging power
𝜂 Charging efficiency
𝑡𝑏𝑟 Begin time of DR request 𝑟
𝑡𝑒𝑟 End time of DR request 𝑟
𝑡𝑛𝑟 Notice time of DR request 𝑟
𝐵𝑟, 𝐵𝑟 Upper and lower energy bound for DR request 𝑟
𝛿𝑟 Energy violation associated to DR request 𝑟
𝛾𝑟 Monetary reward associated to DR request 𝑟
𝑡𝑖𝑛𝑣,𝑟 Last time instant when vehicle 𝑣 is charging during

request 𝑟
𝜏 𝑖𝑛𝑣,𝑟 Number of time slots when a vehicle is charging inside

request 𝑟
𝜏𝑜𝑢𝑡𝑣,𝑟 Number of time slots when a vehicle is charging before

request 𝑟
𝑃 𝑖𝑛
𝑣,𝑟 Reduced power of vehicle 𝑣 inside request 𝑟

𝑃 𝑜𝑢𝑡
𝑣,𝑟 Incremented power of vehicle 𝑣 before request 𝑟

𝜎𝑖𝑛𝑣,𝑟(𝑡) Power reduction w.r.t. the nominal profile at time 𝑡 of
vehicle 𝑣 inside request 𝑟

𝜎𝑜𝑢𝑡𝑣,𝑟 (𝑡) Power increase w.r.t. the nominal profile at time 𝑡 of
vehicle 𝑣 before request 𝑟

𝜈𝑟(𝑡) Expected value of the power reduction/increase at time
𝑡 for request 𝑟

𝑐𝑔 Grid electricity price
𝑐𝑑 Unitary deviation cost
𝑘 Unitary reward

2. Problem formulation

We adopt a discrete time setting where the sampling time is denoted
by 𝛥, and consider a reference day divided into 𝑇 time slots with run-
ning index 𝑡 = 0,… , 𝑇−1. The charging station is assumed to participate
in a DR program to provide flexibility to the REC in exchange for a
monetary incentive. The contract between the REC manager2 and the
charging station is structured as follows:

• the REC manager provides a discounted constant electricity price
𝑐𝑔 to the charging station;

• at the beginning of each day, the charging station communicates
a forecast of its daily energy consumption, denoted by 𝐸𝐹 (𝑡), 𝑡 =
0,… , 𝑇 − 1, to the REC manager. This forecast can be the result
of a day-ahead planning problem (see, for example, [28]);

• in addition to the energy price, the charging station is subject to
a fee 𝑐𝑑 that is proportional to the deviation between 𝐸𝐹 (𝑡) and
the actual demand profile 𝐸𝑆 (𝑡). Roughly speaking, this penalty
encourages the charging station to provide a load profile that is as
close as possible to 𝐸𝐹 (𝑡), hence helping the balancing operations
of the REC manager;

• when needed by the community, the REC manager sends a DR
request to the EV charging station asking for a load reduction or
increase over a given time window in exchange for a monetary
reward.

An overview of the communication scheme between the charging
station and the REC is reported in Fig. 1.

2 For ease of exposition, the REC manager and the electricity retailer are
supposed to be the same entity.
3

Fig. 1. Graphical overview of the DR contract in place. Black arrows denote the
information exchanged between the EVCS and the REC manager at the beginning of
the day. The red arrow denotes a DR signal sent to the EVCS during the day.

2.1. Charging station model

We consider a parking lot equipped with charging units that serve
the charging needs of plug-in electric vehicles. As a customer satis-
faction criteria, it is assumed that the charging station guarantees an
average (or nominal) charging power rate 𝑃0 to every customer at
any time. When vehicle 𝑣 arrives at the charging station at time 𝑡𝑎𝑣,
it declares its requirement in terms of energy to be charged, denoted
by 𝐸𝑓

𝑣 . Let 𝜂 be the vehicle charging efficiency, and let 𝜏𝑓𝑣 =
⌈

𝐸𝑓
𝑣

𝜂𝛥𝑃0

⌉

be
the number of time slots required to satisfy the request by charging the
EV at nominal power rate, which we refer to as the fulfillment duration.
Moreover, denote by 𝜏𝑝𝑣 the parking duration of the 𝑣th vehicle, then
the related charging duration 𝜏𝑐𝑣 equals to

𝜏𝑐𝑣 = min
{

𝜏𝑝𝑣 , 𝜏
𝑓
𝑣
}

.

Let 𝑆𝑣(𝑡) denote the energy charged up to time 𝑡. To assure customer
satisfaction, the following inequality must be enforced

𝑟𝑣(𝑡) ≤ 𝑆𝑣(𝑡) ≤ 𝐸𝑓
𝑣 𝑡 = 𝑡𝑎𝑣,… , 𝑡𝑐𝑣, (1)

where 𝑟𝑣(𝑡) = min{𝜂𝛥𝑃0(𝑡 − 𝑡𝑎𝑣), 𝐸
𝑓
𝑣 } is the nominal charging profile and

𝑡𝑐𝑣 = 𝑡𝑎𝑣 + 𝜏𝑐𝑣 is the time when charging ends. Constraint (1) requires
the charging station to ensure a minimum average charging power rate
𝑃0 to its customers, avoiding situations in which a vehicle is charged
less than expected at departure. On the other hand, it prevents users to
claim the full energy amount 𝐸𝑓

𝑣 when they leave early (i.e., 𝜏𝑓𝑣 > 𝜏𝑝𝑣 ).
We assume that the charging station is equipped with enough charging
units to satisfy all the incoming vehicles. As a consequence, a vehicle
can be ignored after 𝑡𝑐𝑣. Indeed, an EV may in principle keep a charging
unit busy for longer time than the actual charging duration. However,
after 𝑡𝑐𝑣 such a vehicle will not be considered in the charging schedule
since it either left the charging station, or its charging requirements
have been fulfilled.

Let 𝑃𝑣(𝑡) denote the average charging rate of the vehicle in the time
interval [𝑡, 𝑡 + 1]. Then, the charged energy at time step 𝑡 + 1 evolves
according to

𝑆𝑣(𝑡 + 1) = 𝑆𝑣(𝑡) + 𝜂𝛥𝑃𝑣(𝑡) 𝑡 = 𝑡𝑎𝑣,… , 𝑡𝑐𝑣 − 1. (2)

Finally, it is assumed that the charging power is bounded by

0 ≤ 𝑃𝑣(𝑡) ≤ 𝑃 𝑡 = 𝑡𝑎𝑣,… , 𝑡𝑐𝑣 − 1, (3)

where 𝑃 ≥ 𝑃0 denotes the maximum charging power of a single
charging unit. In the considered framework, we assume no hard upper
bound on the main grid power capacity to supply the charging station
(constraints involving this aspect will be the object of future studies).
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Fig. 2. Example of monetary reward 𝛾𝑟 (red) and of function 𝑓𝑟(𝛿𝑟) (black dashed).

.2. Demand response model

The DR program consists of time windows during which the total
nergy demand of the charging station must lie within predefined
ounds. These energy requirements may arise in situations where the
EC manager needs to adjust the REC demand profile in response to

orecasts concerning either renewable energy production or periods of
igh energy demand. Monetary incentives are provided to the charging
tation for complying with these requests. Let 𝑅 denote the number of
equests in a day, 𝑡𝑏𝑟 and 𝑡𝑒𝑟 respectively the start time and end time of

request 𝑟 = 1,… , 𝑅, and 𝑡𝑛𝑟 ≤ 𝑡𝑏𝑟 the time when the REC manager sends
he DR signal to the charging station, which we refer to as the notice
time.

The 𝑟th DR signal consists of an upper bound 𝐵𝑟 and a lower bound
𝑟 of the total EVCS energy demand in the associated time window.

If we let 𝐸𝑆 (𝑡) be the energy consumed by the charging station in the
ime interval [𝑡, 𝑡 + 1], we define the energy violation 𝛿𝑟 associated to
he 𝑟th DR window as

𝑟 = max

⎧

⎪

⎨

⎪

⎩

𝑡𝑒𝑟−1
∑

𝑡=𝑡𝑏𝑟

𝐸𝑆 (𝑡) − 𝐵𝑟, 𝐵𝑟 −
𝑡𝑒𝑟−1
∑

𝑡=𝑡𝑏𝑟

𝐸𝑆 (𝑡), 0

⎫

⎪

⎬

⎪

⎭

. (4)

The monetary DR reward 𝛾𝑟 is modeled as a function of the violation
𝛿𝑟

𝛾𝑟 = 𝑔𝑟(𝛿𝑟) =

{

𝑓𝑟(𝛿𝑟) if 𝛿𝑟 ≤ 𝛿𝑟,
0 otherwise.

(5)

where 𝑓𝑟(⋅) is assumed to be a positive concave non-increasing func-
ion and 𝛿𝑟 is a given parameter that denotes the maximum allowed

violation. If the charging station wants to comply with the 𝑟th request,
then it seeks to coordinate the vehicle charging in such a way that
the overall energy demand ∑𝑡𝑒𝑟−1

𝑡=𝑡𝑏𝑟
𝐸𝑆 (𝑡) lies within the interval [𝐵𝑟, 𝐵𝑟]

and the maximum reward 𝑓𝑟(0) is provided. If the overall demand is
utside [𝐵𝑟, 𝐵𝑟], then the incentive decreases as a function 𝑓𝑟(𝛿𝑟) of the
iolation incurred during the DR window, according to (5). Finally, if
he violation is above 𝛿𝑟, then no reward is provided to the charging

station. A graphical representation of a reward function is depicted in
Fig. 2.

Remark 1. Note that, in this setup, the participation into the DR
program is provided by the charging station rather than each single
vehicle. In fact, the charging station is committed to both ensure user
satisfaction (guaranteeing a nominal power 𝑃0) and support community
tasks (by following the declared profile and participating to the DR
program). From the EV perspective, this setup ensures the charging
service without asking for the active participation of each customer.
From the community perspective, the EVCS can optimize the charging
schedule to provide a flexible and resilient operation to boost REC
performance.
4
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2.3. EV stochastic charging process description

The number of daily incoming vehicles for different days is assumed
to be independent, identically distributed according to some probability
distribution. Similarly, the charging parameters (𝑡𝑎𝑣, 𝜏

𝑝
𝑣 , 𝜏

𝑓
𝑣 ) are assumed

o be independent and identically distributed for different vehicles
ccording to day-invariant probability distributions. Moreover, assume
hat the related probability distributions (or an estimate of them) are
vailable to the EVCS.

Let 𝐸𝑈 (𝑡) be the load profile generated by considering an uncoordi-
ated charging strategy at constant nominal power 𝑃0. Clearly, such a
rofile cannot be known in advance due to the uncertainty affecting
ehicles. However, since all the EVs are charged by using the same
ower rate 𝑃0, the energy drawn at each time slot depends only on
he number of connected vehicles at that time slot. The distribution of
he number of vehicles, 𝐻(𝑡), charging at time 𝑡 is given by

(𝐻(𝑡) = 𝑛) =
𝑁
∑

𝑚=𝑛
 (𝐻(𝑡) = 𝑛|𝑁 = 𝑚) (𝑁 = 𝑚) ,

where

 (𝐻(𝑡) = 𝑛|𝑁 = 𝑚) =
(

𝑚
𝑛

)

 (𝑡𝑎 ≤ 𝑡, 𝑡𝑐 > 𝑡)𝑛 
(

𝑡𝑎 ≤ 𝑡, 𝑡𝑐 > 𝑡
)𝑚−𝑛

,

(6)

and 𝑁 denotes the upper bound of the daily number of incoming
ehicles, which is assumed to be known. The interested reader may
efer to [15] for a detailed derivation of (6). Finally, let us define

𝐹 (𝑡) = E[𝐸𝑈 (𝑡)] = 𝛥𝑃0

𝑁
∑

𝑛=1
𝑛 (𝐻(𝑡) = 𝑛) .

Notice that the probability distribution of the charging time is
ot explicitly expressed, but depends on the realizations of the park-
ng time and the fulfillment duration. Since the random variables
elated to each vehicle are assumed to be independent and identically
istributed, we can derive the explicit form of the charging time
robability distribution as

(𝜏𝑐 = 𝑘) = 
(

min{𝜏𝑝, 𝜏𝑓 } = 𝑘
)

= 
(

𝑘 − 1 < min{𝜏𝑝, 𝜏𝑓 } ≤ 𝑘
)

= 
(

min{𝜏𝑝, 𝜏𝑓 } > 𝑘 − 1
)

− 
(

min{𝜏𝑝, 𝜏𝑓 } > 𝑘
)

= 
(

𝜏𝑝 ≥ 𝑘, 𝜏𝑓 ≥ 𝑘
)

− 
(

𝜏𝑝 > 𝑘, 𝜏𝑓 > 𝑘
)

,

where


(

𝜏𝑝 ≥ 𝑘, 𝜏𝑓 ≥ 𝑘
)

=
𝜏𝑓
∑

𝜏=𝑘

(

𝜏𝑝 ≥ 𝑘|𝜏𝑓 = 𝜏
)


(

𝜏𝑓 = 𝜏
)

, (7)

and 𝜏𝑓 is a known upper bound on the fulfillment duration.

3. Receding horizon formulation

Let (𝑡) be the set of electric vehicles that are parked and charging
t time 𝑡,

(𝑡) =
{

𝑣 ∈ N ∶ 𝑡𝑎𝑣 ≤ 𝑡 < 𝑡𝑑𝑣 , 𝑆𝑣(𝑡) < 𝐸𝑓
𝑣
}

, (8)

where 𝑡𝑑𝑣 = 𝑡𝑎𝑣+𝜏𝑝𝑣 is the departure time of the 𝑣th vehicle. The set of DR
requests (𝑡) to be considered in the optimization horizon is defined as

(𝑡) =
{

𝑟 ∈ N ∶ 𝑡𝑛𝑟 ≤ 𝑡 ≤ 𝑡𝑒𝑟 − 1
}

, (9)

and comprises requests announced by the REC manager (𝑡 ≥ 𝑡𝑛𝑟 ) and not
et expired (𝑡 ≤ 𝑡𝑒 − 1).
𝑟
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3.1. Objective function

Optimization is performed over a shrinking horizon, starting from
the current time step 𝑡 up to the end of the day. The objective function
(𝑡) represents the operating costs of the charging station from time 𝑡

up to time 𝑇 − 1 comprising

𝐽 (𝑡) =
𝑇−1
∑

𝑘=𝑡

(

E[𝐸𝑆 (𝑘)|𝑡]𝑐𝑔
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Electricity cost

+ |

|

|

E[𝐸𝑆 (𝑘)|𝑡] − 𝐸𝐹 (𝑘)||
|

𝑐𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Deviation cost

)

−
∑

𝑟∈(𝑡)
�̃�𝑟

⏟⏟⏟
DR reward

, (10)

where 𝑐𝑔 is electricity price of the energy purchased from the grid, 𝑐𝑑
is the unitary cost for the deviation around the profile 𝐸𝐹 (𝑘) and �̃�𝑟
is the decision variable concerning the reward of the 𝑟th DR request.
Note that in (10), all the quantities are computed according to the
information available at time 𝑡.

3.2. Charging station energy demand

The expected value of the energy demand at time 𝑘 ≥ 𝑡 is given by

E[𝐸𝑆 (𝑘)|𝑡] =
∑

𝑣∈(𝑡)
𝛥𝑃𝑣(𝑘) ⋅ (𝑡𝑑𝑣 > 𝑘|𝑡𝑑𝑣 > 𝑡) + E[𝐸𝑈 (𝑘)|𝑡], (11)

where E[𝐸𝑈 (𝑘)|𝑡] is the expectation of the energy demand for future
incoming vehicles assuming the uncoordinated charging at constant
power rate 𝑃0 conditioned on the current information up to time 𝑡.
Note that for vehicles in (𝑡), since the related energy to be charged
𝐸𝑓
𝑣 and consequently the fulfillment duration 𝜏𝑓𝑣 are provided at their

arrival, the only source of uncertainty is related to the parking time 𝜏𝑝𝑣
and hence to 𝑡𝑑𝑣 . This means that to compute the expected value of the
energy demand of the connected vehicles, it one can only consider 𝑡𝑑𝑣
in the probability computations.

Concerning future charging events, let 𝐴(𝑡) be the number of vehi-
cles that have arrived up to time 𝑡, and suppose that it equals to 𝑛𝑎.
Moreover, denote by 𝑊 (𝑘, 𝑡) the number of incoming after time 𝑡 and
that are charging at time 𝑘, then

E[𝐸𝑈 (𝑘)|𝑡] = 𝛥𝑃0

𝑁−𝑛𝑎
∑

𝑛=1
𝑛(𝑊 (𝑘, 𝑡) = 𝑛|𝐴(𝑡) = 𝑛𝑎, 𝑡

𝑎 > 𝑡). (12)

Let 𝑄(𝑡) be a random variable denoting the number of incoming vehi-
cles after time 𝑡. Then, its probability distribution conditioned to the
information at time 𝑡 is equivalent to


(

𝑄(𝑡) = 𝑚|𝐴(𝑡) = 𝑛𝑎, 𝑡
𝑎 > 𝑡

)

= 
(

𝑁 = 𝑚 + 𝑛𝑎|𝐴(𝑡) = 𝑛𝑎
)

. (13)

y using (13), the probability in (12) can be computed as

(𝑊 (𝑘, 𝑡) = 𝑛|𝐴(𝑡) = 𝑛𝑎, 𝑡𝑎 > 𝑡) =
𝑁−𝑛𝑎
∑

𝑚=𝑛
(𝑊 (𝑘, 𝑡) = 𝑛|𝑄(𝑡) = 𝑚,𝐴(𝑡) = 𝑛𝑎, 𝑡𝑎 > 𝑡) ⋅ 

(

𝑄(𝑡) = 𝑚|𝐴(𝑡) = 𝑛𝑎, 𝑡𝑎 > 𝑡
)

𝑁−𝑛𝑎
∑

𝑚=𝑛
(𝑊 (𝑘, 𝑡) = 𝑛|𝑄(𝑡) = 𝑚, 𝑡𝑎 > 𝑡) ⋅ 

(

𝑁 = 𝑚 + 𝑛𝑎|𝐴(𝑡) = 𝑛𝑎
)

.

Further details about these computations can be found in [15].

3.3. DR constraints

To each request 𝑟 ∈ (𝑡) we associate a variable 𝑙𝑟 = max{𝑡, 𝑡𝑏𝑟}. The
ecision variable concerning the reward �̃�𝑟 is constrained as follows

𝐷𝑅
𝑟 ∈ {0, 1} (14)

≤ �̃�𝑟 ≤ 𝑀𝑧𝐷𝑅
𝑟 (15)

�̃�𝑟 ≤ 𝑓𝑟(𝛿𝑟) (16)
̃ ≥ 0 (17)
5

𝑟 a
̃𝑟 ≥
⎛

⎜

⎜

⎝

𝑡𝑒𝑟−1
∑

𝑘=𝑙𝑟

E[𝐸𝑆 (𝑘)|𝑡]
⎞

⎟

⎟

⎠

+ 𝐸𝑃
𝑟,𝑡 − 𝐵𝑟 −𝑀(1 − 𝑧𝐷𝑅

𝑟 ) (18)

̃𝑟 ≥ 𝐵𝑟 −
⎛

⎜

⎜

⎝

𝑡𝑒𝑟−1
∑

𝑘=𝑙𝑟

E[𝐸𝑆 (𝑘)|𝑡]
⎞

⎟

⎟

⎠

− 𝐸𝑃
𝑟,𝑡 −𝑀(1 − 𝑧𝐷𝑅

𝑟 ) (19)

̃𝑟 ≤ 𝛿𝑟𝑧
𝐷𝑅
𝑟 +𝑀(1 − 𝑧𝐷𝑅

𝑟 ), (20)

here 𝛿𝑟 is the forecast of the violation in the 𝑟th DR window. Binary
ariables 𝑧𝐷𝑅

𝑟 represent the choice of the charging station to comply
ith the DR request (𝑧𝐷𝑅

𝑟 = 1) or not (𝑧𝐷𝑅
𝑟 = 0). In (15), the

eward is constrained to be positive, while (16) provides the epigraph
epresentation of the DR reward. In (17)–(19) the reformulation of the
orecast of DR violation is derived. Finally, in (20), if the charging
tation wants to comply with the 𝑟th request, the violation is enforced
o be below 𝛿𝑟. We make use of the so-called ‘‘big M’’ formulation for

the binary variables, where 𝑀 denotes a ‘‘big enough’’ constant, while
𝐸𝑃
𝑟,𝑡 represents the past energy consumption of the system in the DR

window up to time 𝑡 which is defined as

𝐸𝑃
𝑟,𝑡 =

{

∑𝑡−1
𝑘=𝑡𝑏𝑟

𝐸𝑆 (𝑘) if 𝑡 > 𝑡𝑏𝑟 ,

0 else.

Finally, note that since 𝑓 (⋅) is assumed to be concave, constraint (16)
s convex.

.4. EV forecast handling

Since 𝑡𝑐𝑣 is unknown for plugged-in vehicles, constraints (1)–(3) need
o be adapted to be embedded into the optimization procedure. To this
im, let us define 𝑡𝑓𝑣 = 𝑡𝑎𝑣 + 𝜏𝑓𝑣 as the fulfillment time, then (1)–(3)
ecome

𝑣(𝑡) ≤ 𝑆𝑣(𝑡) ≤ 𝐸𝑓
𝑣 𝑡 = 𝑡𝑎𝑣,… , 𝑡𝑓𝑣 , (21)

𝑣(𝑡 + 1) = 𝑆𝑣(𝑡) + 𝜂𝛥𝑃𝑣(𝑡) 𝑡 = 𝑡𝑎𝑣,… , 𝑡𝑓𝑣 − 1, (22)

≤ 𝑃𝑣(𝑡) ≤ 𝑃 𝑡 = 𝑡𝑎𝑣,… , 𝑡𝑓𝑣 − 1. (23)

ote that, from the definition of 𝑡𝑐𝑣 one has 𝑡𝑓𝑣 ≥ 𝑡𝑐𝑣. Moreover, contrary
o 𝑡𝑐𝑣 which is a random variable, the fulfillment time is fixed as soon
s the vehicle arrives at the charging station.

Concerning vehicles that have not yet arrived at the charging sta-
ion, it may happen that the simple uncoordinated charging forecast
ay be too restrictive during DR request windows. Therefore, a strategy
roviding more flexibility to these forecasts is presented in the follow-
ng. Consider a vehicle 𝑣 and let 𝑡𝑎𝑣 and 𝑡𝑐𝑣 be given. For a given request
satisfying 𝑡𝑎𝑣 < 𝑡𝑏𝑟 < 𝑡𝑐𝑣, define 𝑡𝑖𝑛𝑣,𝑟 = min{𝑡𝑐𝑣, 𝑡

𝑒
𝑟} as the last time instant

hen the vehicle is inside the DR request. Next, let 𝜏𝑜𝑢𝑡𝑣,𝑟 = 𝑡𝑏𝑟 − 𝑡𝑎𝑣 and
𝑖𝑛
𝑣,𝑟 = 𝑡𝑖𝑛𝑣,𝑟 − 𝑡𝑏𝑟 be the number of time slots where a vehicle is charging
efore and inside the DR request, respectively. Hence, we may define
s

̂𝑣 = 𝛥𝑃0(𝜏𝑜𝑢𝑡𝑣,𝑟 + 𝜏 𝑖𝑛𝑣,𝑟)

he amount of energy to be charged in the 𝑣th vehicle from 𝑡𝑎𝑣 up to 𝑡𝑖𝑛𝑣,𝑟,
y charging at nominal power rate 𝑃0. The maximum charging power
ate that can be applied before the DR request begins is

𝑜𝑢𝑡
𝑣,𝑟 = min

{

𝑃 ,
�̂�𝑣
𝛥𝜏𝑜𝑢𝑡𝑣,𝑟

}

= min

{

𝑃 , 𝑃0
𝜏𝑜𝑢𝑡𝑣,𝑟 + 𝜏 𝑖𝑛𝑣,𝑟

𝜏𝑜𝑢𝑡𝑣,𝑟

}

. (24)

f a power reduction is requested, the reduced power rate inside the DR
equest is

𝑖𝑛
𝑣,𝑟 =

�̂�𝑣 − 𝛥𝑃 𝑜𝑢𝑡
𝑣,𝑟 𝜏

𝑜𝑢𝑡
𝑣,𝑟

𝛥𝜏 𝑖𝑛𝑣,𝑟
=

𝑃0(𝜏𝑜𝑢𝑡𝑣,𝑟 + 𝜏 𝑖𝑛𝑣,𝑟) − 𝑃 𝑜𝑢𝑡
𝑣,𝑟 𝜏

𝑜𝑢𝑡
𝑣,𝑟

𝜏 𝑖𝑛𝑣,𝑟
,

where 𝑃 𝑖𝑛
𝑣,𝑟 ≥ 0 due to (24). By using 𝑃 𝑜𝑢𝑡

𝑣,𝑟 and 𝑃 𝑖𝑛
𝑣,𝑟 one can compute

he resulting average power increase occurring outside the DR request
nd the average power reduction during the request period. Let 𝜎𝑜𝑢𝑡(𝑘)
𝑣,𝑟
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and 𝜎𝑖𝑛𝑣,𝑟(𝑘) be the average power increment and the average power
reduction at time 𝑘, respectively. These quantities can be expressed as

𝜎𝑜𝑢𝑡𝑣,𝑟 (𝑘) =

{

𝑃 𝑜𝑢𝑡
𝑣,𝑟 − 𝑃0 if 𝑡𝑎𝑣 ≤ 𝑘 < 𝑡𝑏𝑟

0 else,

and

𝜎𝑖𝑛𝑣,𝑟(𝑘) =

{

𝑃0 − 𝑃 𝑖𝑛
𝑣,𝑟 if 𝑡𝑏𝑟 ≤ 𝑘 < 𝑡𝑖𝑛𝑣,𝑟

0 else.

Note that
𝑡𝑖𝑛𝑣,𝑟−1
∑

𝑘=𝑡𝑎𝑣

𝛥
(

𝜎𝑖𝑛𝑣,𝑟(𝑘) − 𝜎𝑜𝑢𝑡𝑣,𝑟 (𝑘)
)

= (𝑃0 − 𝑃 𝑖𝑛
𝑣,𝑟)𝜏

𝑖𝑛
𝑣,𝑟𝛥 − (𝑃 𝑜𝑢𝑡

𝑣,𝑟 − 𝑃0)𝜏𝑜𝑢𝑡𝑣,𝑟 𝛥

= 𝑃0(𝜏 𝑖𝑛𝑣,𝑟 + 𝜏𝑜𝑢𝑡𝑣,𝑟 )𝛥 − 𝑃 𝑖𝑛
𝑣,𝑟𝜏

𝑖𝑛
𝑣,𝑟𝛥 − 𝑃 𝑜𝑢𝑡

𝑣,𝑟 𝜏
𝑜𝑢𝑡
𝑣,𝑟 𝛥

= 𝑃 𝑜𝑢𝑡
𝑣,𝑟 𝜏

𝑜𝑢𝑡
𝑣,𝑟 𝛥 − 𝑃 𝑜𝑢𝑡

𝑣,𝑟 𝜏
𝑜𝑢𝑡
𝑣,𝑟 𝛥 = 0,

hence the increment of energy charged before the DR window equals
the reduced amount inside the DR request. Notice that, since these
quantities involve only vehicles that have not yet arrived (i.e., 𝑡𝑎𝑣 and 𝑡𝑐𝑣
are not known), 𝜎𝑖𝑛𝑣,𝑟(𝑘) and 𝜎𝑜𝑢𝑡𝑣,𝑟 (𝑘) are actually random variables. Thus,
these quantities will contribute to the demand forecasts by means of
their expectation.

On aggregate level, the expected value of the energy reduction/
increase at each time step is computed as follows

𝜈𝑟(𝑘) = E
[ 𝑁
∑

𝑣=1
𝛥
(

𝜎𝑖𝑛
𝑣,𝑟(𝑘) − 𝜎𝑜𝑢𝑡

𝑣,𝑟 (𝑘)
)

]

= 𝛥E
[ 𝑁
∑

𝑣=1
𝜎𝑖𝑛
𝑣,𝑟(𝑘)

]

− 𝛥E
[ 𝑁
∑

𝑣=1
𝜎𝑜𝑢𝑡
𝑣,𝑟 (𝑘)

]

.

(25)

Since 𝜎𝑖𝑛𝑣,𝑟(𝑘) are independent of the index 𝑣,

E

[ 𝑁
∑

𝑣=1
𝜎𝑖𝑛𝑣,𝑟(𝑘)

]

= E[𝑁] ⋅ E[𝜎𝑖𝑛𝑣,𝑟(𝑘)],

where

E[𝜎𝑖𝑛𝑣,𝑟(𝑘)] =
𝑡𝑏𝑟−1
∑

𝑙=0

𝑇−1
∑

𝜏=𝑡𝑏𝑟

(𝑡𝑎𝑣 = 𝑙) ⋅ (𝑡𝑐𝑣 = 𝜏|𝑡𝑎𝑣 = 𝑙) ⋅ 𝜎𝑖𝑛𝑣,𝑟(𝑘).

Note that we are considering all the charging time windows satisfying
𝑡𝑎𝑣 < 𝑡𝑏𝑟 < 𝑡𝑐𝑣. E

[

∑𝑁
𝑣=1 𝜎

𝑜𝑢𝑡
𝑣,𝑟 (𝑘)

]

can be obtained in a similar way, i.e.,

E

[ 𝑁
∑

𝑣=1
𝜎𝑜𝑢𝑡𝑣,𝑟 (𝑘)

]

= E[𝑁] ⋅ E[𝜎𝑜𝑢𝑡𝑣,𝑟 (𝑘)],

where

E[𝜎𝑜𝑢𝑡𝑣,𝑟 (𝑘)] =
𝑡𝑏𝑟−1
∑

𝑙=0

𝑇−1
∑

𝜏=𝑡𝑏𝑟

(𝑡𝑎𝑣 = 𝑙) ⋅ (𝑡𝑐𝑣 = 𝜏|𝑡𝑎𝑣 = 𝑙) ⋅ 𝜎𝑜𝑢𝑡𝑣,𝑟 (𝑘).

Remark 2. The computation of the previous expected values can be
adapted for a given time step 𝑡 by substituting to 𝑁 the random variable
𝑄(𝑡), and by conditioning the probability distributions to the current
available information (i.e., 𝐴(𝑡) = 𝑛𝑎 and 𝑡𝑎 > 𝑡).

At this point, a set of auxiliary variables �̃�𝑟(𝑘) can be added satisfy-
ing

𝜈−𝑟 (𝑘) ≤ �̃�𝑟(𝑘) ≤ 𝜈+𝑟 (𝑘) 𝑘 = 𝑡,… , 𝑇 ,∀𝑟 ∈ (𝑡), (26)
𝑇
∑

𝑘=𝑡
�̃�𝑟(𝑘) = 0 ∀𝑟 ∈ (𝑡), (27)

where 𝜈−𝑟 (𝑘) = min{0, 𝜈𝑟(𝑘)} and 𝜈+𝑟 (𝑘) = max{0, 𝜈𝑟(𝑘)}.
On the other hand, in situations where a demand increase is re-

quested, one can similarly compute the modified EV demand in the
request window. In this case, EVs will be charged with the maximum
6

Fig. 3. Graphical representation of the main quantities involved. The green area
denotes the DR period, while the pink area denotes the energy increase (left area)
and the energy reduction (right area). Finally, tan(𝜃1) = 𝛥𝑃0, tan(𝜃2) = 𝛥𝑃 𝑜𝑢𝑡

𝑣,𝑟 and
tan(𝜃3) = 𝛥𝑃 𝑖𝑛

𝑣,𝑟.

power rate inside the DR window and then charged with a reduced
power rate after the DR period. To this end, assume that the expected
value of the demand increment is modeled via inside the variable 𝜔𝑟(𝑘).
Then, one can add another set of auxiliary variables

𝜔−
𝑟 (𝑘) ≤ �̃�𝑟(𝑘) ≤ 𝜔+

𝑟 (𝑘) 𝑘 = 𝑡,… , 𝑇 ,∀𝑟 ∈ (𝑡), (28)
𝑇
∑

𝑘=𝑡
�̃�𝑟(𝑘) = 0 ∀𝑟 ∈ (𝑡), (29)

where 𝜔−
𝑟 (𝑘) = min{0, 𝜔𝑟(𝑘)} and 𝜔−

𝑟 (𝑘) = max{0, 𝜔𝑟(𝑘)}. Finally, by
combining (11) with �̃�𝑟(𝑘) and �̃�𝑟(𝑘), the shaped forecast E[�̃�𝑆 (𝑘)|𝑡] of
the future energy demand becomes

E[�̃�𝑆 (𝑘)|𝑡] = E[𝐸𝑆 (𝑘)|𝑡] −
∑

𝑟∈(𝑡)
(�̃�𝑟(𝑘) + �̃�𝑟(𝑘)) ∀𝑘 = 𝑡,… , 𝑇 , (30)

Thus, E[�̃�𝑆 (𝑘)|𝑡] will be used as the forecast of the energy demand
E[𝐸𝑆 (𝑘)|𝑡] in (10), (18) and (19), providing more flexibility to the
optimization. In fact, thanks to (26)–(29), it is possible to add more
elasticity to the EV demand forecasts by considering different charging
strategies: the optimizer can choose any energy profile between the
modified and the nominal one. Several other valuable strategies to
shape the forecast of the EV charging process can be considered. The
proposed procedure allows the charging station to anticipate the max-
imum amount of energy outside/inside the request windows for each
vehicle, while guaranteeing the nominal charging profile as in (1). As a
consequence, this is a good trade-off that provides a lower/upper bound
on the energy demand inside DR requests. The scheme is summarized
in Fig. 3.

3.5. Receding horizon procedure

The proposed receding horizon strategy relies on the solution of
an optimization problem at each time step 𝑡. The charging power
commands for the EVs in (𝑡) are obtained as the solution of the
following problem

Problem 1.

𝑃 ∗
𝑣 (𝑡) = arg min

𝑃𝑣(𝑡)∶𝑣∈(𝑡)
𝐽 (𝑡)

s.t. (10)–(19), (21)–(23), (26)–(30).
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This optimization problem is a convex program except for the binary
variables whose number is equal to the number of DR requests falling
inside the optimization horizon. Since in real scenarios the number of
DR requests per day is typically low, i.e., less or equal than two [29],
Problem 1 can be effectively solved by standard optimization tools.

Algorithm 1 provides a sketch of the overall receding horizon
procedure, whereas in Fig. 4 the visual representation of the procedure
is shown.

At each time step 𝑡, the procedure is based on two main steps:

1. all the problem quantities are updated on the basis of the infor-
mation available at time 𝑡;

2. Problem 1 is solved and the first command of the optimal
solution is applied.

Algorithm 1: Receding horizon algorithm.
Data: 𝑐𝑔 and 𝑐𝑑 , DR daily program, and distributions on the EV

charging process.
1 Set 𝑡 = 1;
2 while 𝑡 ≤ 𝑇 do
3 𝑛𝑎 = |{𝑣 ∶ 𝑡𝑎𝑣 ≤ 𝑡}|;
4 compute (𝑡) as in (8);
5 compute (𝑡) as in (9);
6 compute E[𝐸𝑈(𝑘)|𝑡], 𝑘 = 𝑡,… , 𝑇 − 1 as in (12);
7 compute 𝜈𝑟(𝑘),∀𝑟 ∈ (𝑡), 𝑘 = 𝑡,… , 𝑇 − 1 as in (25);
8 compute 𝜔𝑟(𝑘),∀𝑟 ∈ (𝑡), 𝑘 = 𝑡,… , 𝑇 − 1;
9 solve Problem 1 and get 𝑃 ∗

𝑣 (𝑡), ∀𝑣 ∈ (𝑡);
10 𝑆𝑣(𝑡 + 1) = 𝑆𝑣(𝑡) + 𝜂𝛥𝑃 ∗

𝑣 (𝑡), ∀𝑣 ∈ (𝑡);
11 𝑡 = 𝑡 + 1;
12 end

4. Numerical results

4.1. Simulation settings

To test the performance of the presented approach, a 100 day simu-
lation with a sampling time of 𝛥 = 10 min was performed. For each day,
the realizations of the random variables concerning the EV charging
process have been drawn from probability distributions estimated from
real data. Distributions concerning arrival time, energy to be charged
and parking time have been estimated by using the historical data
reported in [30], shown in Fig. 5. Specifically, the estimates provided
in Fig. 5 represent the normalized histograms of the acquired data.
The random variable concerning the daily number of incoming vehicles
has been modeled through a Gaussian distribution with mean 175 and
standard deviation 9 to obtain realizations in the interval [150, 200]
vehicles with high confidence. The nominal charging power 𝑃0 has been
set to 11 kW, the maximum charging power rate 𝑃 to 22 kW and the
charging efficiency to 0.9.

For all days, the deviation cost 𝑐𝑑 is set to 0.20 e/kWh and the
grid price 𝑐𝑔 to 0.05 e/kWh. The number of DR requests per day,
𝑅, is randomly chosen between 1 and 2 with equal probability. The
starting time of each request has been generated according to a uniform
distribution ranging from 9:00 AM to 3:00 PM, while the related time
window is distributed in the interval [60, 90] minutes. If two requests
are considered for a given day, the minimum time between the end
of the first request and the beginning of the second is set to 3 h. The
charging station gets the notification about the DR request according to
a uniform distribution defined in a time window of [6, 8] hours before
the request begins. The DR bounds have been randomly generated by
selecting one of the following two scenarios:

1. an upper bound 𝐵𝑟=0.4
𝑡𝑒𝑟−1
∑

𝐸𝐹 (𝑡) and no lower bound, i.e., 𝐵𝑟=0;
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𝑡=𝑡𝑏𝑟
Fig. 4. Graphical overview of the receding horizon algorithm proposed.

Fig. 5. Charging process distributions. Top panel: Arrival time distribution. Middle
panel: Energy to be charged distribution. Bottom panel: Parking time distribution.

2. a lower bound 𝐵𝑟=1.6
𝑡𝑒𝑟−1
∑

𝑡=𝑡𝑏𝑟

𝐸𝐹 (𝑡) and no upper bound, i.e., 𝐵𝑟=∞.

Finally, the maximum reward has been chosen according to the formula

𝑔𝑟(0) = 𝜌 ⋅max

⎧

⎪

⎨

⎪

⎩

𝑡𝑒𝑟−1
∑

𝑡=𝑡𝑏𝑟

𝐸𝐹 (𝑡) − 𝐵𝑟, 𝐵𝑟 −
𝑡𝑒𝑟−1
∑

𝑡=𝑡𝑏𝑟

𝐸𝐹 (𝑡)

⎫

⎪

⎬

⎪

⎭

,

where 𝜌 = 1 e/kWh. The reward decreases according to the piecewise
affine function

𝑔𝑟(𝛿𝑟) = 𝑓 (0) ⋅ min
𝑑=1,2,3

(

𝛼𝑟,𝑑𝛿𝑟 + 𝛽𝑟,𝑑
)

.

whose coefficients 𝛼𝑟,𝑑 and 𝛽𝑟,𝑑 are reported in Table 1 and 𝛿𝑟 =
−𝛽𝑟,3∕𝛼𝑟,3.

Simulations have been run using MATLAB, the formulation has
been built using YALMIP [31] and solved by CPLEX [32] on an i7-
11700K@3.6 GHz with 32 GB RAM.
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Table 1
Values of 𝛼𝑟,𝑑 and 𝛽𝑟,𝑑 .

𝛼𝑟,1 𝛼𝑟,2 𝛼𝑟,3 𝛽𝑟,1 𝛽𝑟,2 𝛽𝑟,3
−4 −6 −6.67 1 1.10 1.17

Table 2
Average daily cost for all the strategies.

RH NCP NFH OR

Cost [e] 199.27 412.24 226.19 115.29
OR distance [%] 72.93 257.75 96.30 0

4.2. Simulation results

To validate the effectiveness of the proposed receding horizon
strategy (RH), we compare its performance with three benchmarks:

• nominal charging policy (NCP): all the vehicles are charged at
nominal charging power rate 𝑃0;

• RH with no forecast handling (NFH): a receding horizon pro-
cedure that considers 𝜈𝑟(𝑘) = 𝜔𝑟(𝑘) = 0 for all 𝑘. This amounts
to solving Problem 1 without constraints (26)–(30). Upon appro-
priate modifications to fit the current setting, such an approach
corresponds to that reported in [26];

• omniscient oracle optimization (OR): a one-shot optimization
problem with access to the realizations of all random variables.
This amounts to an a-posteriori optimization performed at the
end of the day, so the comparison is similar to evaluating the so-
called ‘‘regret’’ of our strategy [33]. OR is clearly an optimistic,
non-causal benchmark that cannot be implemented in practice.

The average daily cost of all the considered strategies is reported
in Table 2, whereas the RH daily cost comparison w.r.t. NCP and NFH
are reported in Fig. 6. The worst strategy is the NCP since it cannot
coordinate the EV charging to meet DR requests, nor track the declared
profile 𝐸𝐹 (𝑡). On the other hand, NFH improves cost performance. The
main difference to RH is that the predictive capabilities of NFH are
limited to the scenario where during DR windows all incoming vehicles
are charged at the nominal charging power rate. By relaxing this
constraint, the RH procedure further reduces the charging station cost
by around 11.9%. Considering the algorithm behavior with respect to
the OR, the RH daily cost is on average 83.98% larger. This comes as no
surprise since the OR is based on the unrealistic assumption of perfect
knowledge of the charging process. In the considered simulations, the
number of fulfilled requests amounts to 101 for the RH procedure, to
2 for the NCP, to 81 for the NFH, and to 124 for the OR over 132 total
requests.

In Fig. 7, the energy profiles declared to the REC manager and
the actual energy consumption over three simulated days are reported.
Fig. 7(a) considers a day with only one DR request, where both RH
and OR can satisfy the request. In order to fulfill the incoming request
and reduce vehicle demand during the DR period, both the RH and OR
procedures are forced to anticipate vehicle charging. Fig. 7(b) considers
a day with two DR requests, one requiring a demand reduction and the
other a demand increase. Similar to the previous case, both RH and
OR comply with the two requests. Differently from Fig. 7(a), RH is
forced to anticipate vehicle charging in order to fulfill the first request
since it does not have information about the exact realization of the
incoming vehicles. Fig. 7(c) considers a day with two DR requests.
Contrary to the previous cases, both requests have not been satisfied
by the RH procedure. The first request has not been fulfilled since the
actual EV demand is higher than the declared profile. In this case, the
OR procedure is not able to fulfill the request either. On the other
hand, the second request is satisfied by OR, but not by RH. RH fails
8

to fulfill the request due to the presence of an EV demand peak during r
Fig. 6. Top panel: Daily cost difference between NCP and RH sorted in ascending
order. Bottom panel: Daily cost difference between NFH and RH sorted in ascending
order.

the DR window (see green profile) that has not been forecasted. The
RH procedure first aims to comply with the request (see the spike
in the energy before the beginning of the request). However, as the
EV demand increases, the RH procedure recognizes that the request
cannot be satisfied. Hence, the RH strategy is left with adapting the
EV charging to match the declared profile.

To show how the vehicle charging schedule changes according to
different strategies, the energy charged in a vehicle during a given day
is shown in Fig. 8. As a reference, the considered day is the same
depicted in Fig. 7(a). During the charging period both the RH and
OR anticipate EV charging in order to comply with the incoming DR
request.

4.3. Sensitivity analysis

In this section, some sensitivity analyses related to different param-
eters used by the proposed technique are reported. First, the perfor-
mance of the considered algorithm has been evaluated with respect to
changes of the deviation cost 𝑐𝑑 and the DR reward 𝜌. Specifically, we
ave considered problem instances where 𝑐𝑑 ∈ {0.1, 0.2, 0.4} e/kWh,
hile 𝜌 = 1 e/kWh. Concerning the DR unitary reward, we consider
∈ {0.5, 1.5} e/kWh, while 𝑐𝑑 = 0.2 e/kWh. To allow for a clear

interpretation of the results, we assume the same realizations of the EV
events and DR requests for all the considered setups. Daily operating
costs of the EVCS according to price variations are reported in Table 3.
For the sake of completeness, deviation cost, electricity cost and DR
reward which compose the operation cost in (10) are reported in
Table 4, 5 and 6, respectively. It is worthwhile to note that the costs
reported in Table 3 are consistent with all the considered scenarios.
Clearly, RH and NFH exhibit lower cost difference in setups where the
DR reward is less convenient than the deviation cost (i.e., when 𝑐𝑑 = 0.4

/kWh, or when 𝜌 = 0.5 e/kWh). However, by focusing on Table 6,
H shows much better capabilities to comply with DR requests in all

he investigated instances. Concerning electricity cost, as reported in
able 5, it is evident that the considered algorithms are less sensitive to
rice variations. On the contrary, the deviation cost reported in Table 4
esults more sensitive, but it is linearly proportional to 𝑐𝑑 . Therefore,
ven though the overall cost changes consistently with price variations,
he presented algorithms show similar behaviors in all the problem
nstances.

Additional analyses have been performed (i) by increasing the du-
ation of DR requests and (ii) by considering an inaccurate distribution
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Fig. 7. Energy profiles of the charging station of three days: energy forecast (yellow-
black dashed), proposed RH strategy (blue), OR (purple) and NCP (green). The DR time
interval is denoted by the gray area.

Fig. 8. Energy charged in a vehicle for a given day: 𝐸𝑓
𝑣 (black dashed), proposed RH

strategy (blue), OR (purple) and NCP (green).

Table 3
Average daily cost of the considered procedures according to different prices.

Price [e/kWh] Overall cost [e]

RH NCP NFH OR

𝐜𝐝 = 𝟎.𝟏, 𝜌 = 𝟏 125.52 331.46 164.26 53.07
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟏 201.83 412.23 227.74 115.23
𝐜𝐝 = 𝟎.𝟒, 𝜌 = 𝟏 343.45 573.77 356.09 237.33
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟎.𝟓 304.96 412.98 312.69 252.04
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟏.𝟓 95.89 411.49 145.01 −22.66

for predicting the daily number of EVs. In the first case, the DR
program has been modified to generate DR requests whose duration
9

Table 4
Average daily deviation cost of the considered procedures according to different prices

Price [e/kWh] Deviation cost [e]

RH NCP NFH OR

𝐜𝐝 = 𝟎.𝟏, 𝜌 = 𝟏 77.38 80.77 66.84 62.16
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟏 149.03 161.54 130.51 124.32
𝐜𝐝 = 𝟎.𝟒, 𝜌 = 𝟏 288.03 323.08 248.41 239.50
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟎.𝟓 142.87 161.54 117.43 119.75
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟏.𝟓 152.19 161.54 130.55 124.32

Table 5
Average daily electricity cost of the considered procedures according to different prices

Price [e/kWh] Electricity cost [e]

RH NCP NFH OR

𝐜𝐝 = 𝟎.𝟏, 𝜌 = 𝟏 263.43 252.18 261.88 266.68
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟏 263.54 252.18 262.25 266.68
𝐜𝐝 = 𝟎.𝟒, 𝜌 = 𝟏 263.27 252.18 262.21 266.74
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟎.𝟓 263.29 252.18 261.67 266.74
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟏.𝟓 263.54 252.18 262.26 266.68

Table 6
Average daily DR reward of the considered procedures according to different prices.

Price [e/kWh] DR reward [e]

RH NCP NFH OR

𝐜𝐝 = 𝟎.𝟏, 𝜌 = 𝟏 215.30 1.49 164.46 275.78
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟏 210.74 1.49 165.02 275.78
𝐜𝐝 = 𝟎.𝟒, 𝜌 = 𝟏 207.85 1.49 154.53 268.90
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟎.𝟓 101.20 0.75 66.41 134.45
𝐜𝐝 = 𝟎.𝟐, 𝜌 = 𝟏.𝟓 319.84 2.24 247.80 413.67

ranges in the interval [1.5, 2.5] hours, while the remaining parameters
are left unchanged. Note that this scenario provides more restrictive
DR program, since the bound requirements are kept the same as in
Section 4.1. In this setting, the behavior of RH compared with OR and
NFH is similar to what obtained in the original setup. In fact, RH cost
is 11.7% lower than NFH cost, and 84.3% higher than OR cost, which
is in line with that reported in Table 2. Concerning DR fulfillment, the
request satisfaction rate for OR is 82.90%, 54.7% for RH, and 36.8%
for NFH, over 117 requests.

Similar conclusions can be drawn when considering an inaccurate
probability distribution on the daily number of EVs. A 100-day sim-
ulation has been run by providing RH and NFH a distribution on the
daily incoming vehicles modeled as a uniform distribution with support
[150, 250] vehicles. Despite the considered distribution is far from the
actual one (both on expected value and shape), the cost performance
turns out to be slightly reduced. Specifically, RH provides a cost that
is 11.3% lower than NFH, and 78.2% higher than OR, while the
request satisfaction rate remains almost unaffected, being 75%, 61.3%,
and 93.9% for RH, NFH and OR, respectively. Simulations with more
inaccurate distributions have been performed, too. As expected, in this
case, both RH and NFH algorithms which rely on the knowledge of EV
distributions fail, returning a total cost much higher than that provided
by OR.

4.4. Scalability analysis

In this subsection, the feasibility of proposed approach for real-
world applications is assessed through simulations involving large-scale
setups. To showcase the scalability of our method, we consider the
following two cases.

First, a more demanding scenario involving 5 DR requests per day
has been taken into account. The beginning time of the first request
has been randomly chosen between 8:00 AM and 9:30 AM according
to a uniform distribution, whereas the time duration between the end
of one request and the beginning of the following one is uniformly
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Fig. 9. Average computation time to perform a loop iteration of Algorithm 1 according
to different EV penetrations.

drawn from [30, 120] minutes. The duration of each request is generated
using a uniform distribution whose support is [30, 60] minutes. In this
setting, the average computation time to run an iteration of Algorithm 1
amounts to 0.58 s, which amounts to a small fraction of the considered
sampling time.

Second, the computational burden has been analyzed by considering
increasing EV penetration. Specifically, a 100 days simulation has been
run by setting different mean values of daily number of incoming
vehicles. These values have been selected in a vehicle range starting
from 175 up to 1750. Results concerning the average time to perform
an iteration of Algorithm 1 are reported in Fig. 9. As it may be noticed,
the algorithm computation time grows almost linearly with respect to
the number of vehicles, showing feasible times even for 1750 vehicles
per day. It is worthwhile to report that also the worst-case computation
time is feasible for real applications. In fact, it amounts to 1.39 and
3.45 s when the mean value of incoming vehicles is 175 and 1750,
respectively.

Notice that, for a fixed number of daily DR requests and vehicles,
the additional computational effort due to reducing the discretization
step is marginal, as it amounts to solving a larger linear program [34].

5. Conclusions

A stochastic receding horizon approach to manage an EV charging
station participating in DR programs for RECs has been proposed. The
developed procedure implements a stochastic approach that is (i) able
to exploit online information to schedule the EV charging such that the
aggregated power consumption lies within prescribed energy bounds
during DR windows, and is (ii) computationally feasible to be deployed
in real-world applications. Simulation results show that the proposed
approach provides a substantial cost reduction with respect to the
uncoordinated charging, as well as an increase of the performance of
about 12% with respect to the optimization-based benchmark that does
not exploit future forecast flexibility. Moreover, the computation time
remains feasible even for scenarios involving a high EV penetration.
Ultimately, results suggest that EVCSs, acting as aggregators of EVs,
can be effective targets for DR programs: when smart charging poli-
cies are implemented, EVCSs can successfully contribute to the local
demand–supply balance by suitably shifting their loads.

Future works may include the description of the customer sat-
isfaction by probabilistic constraints, to allow for a greater degree
of freedom, and robustification against distributional ambiguity in
the case of estimated distributions from finite historical data. Addi-
tional developments may regard the adaptation of the procedure to
dynamic traffic conditions, the integration of renewable resources, and
the experimental validation of the approach in real-world RECs.
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