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Abstract. We showcase applications of nonlinear algebra in the sciences and

engineering. Our review is organized into eight themes: polynomial optimiza-
tion, partial differential equations, algebraic statistics, integrable systems, con-

figuration spaces of frameworks, biochemical reaction networks, algebraic vi-

sion, and tensor decompositions. Conversely, developments on these topics
inspire new questions and algorithms for algebraic geometry.

Introduction. This is a review about nonlinear algebra and applications. We are
eight researchers working on different aspects of nonlinear algebra. In this article,
we aim to give a glimpse of the diversity of the field. The word “applications” refers
to the fact that each of us connects their research to other parts of mathematics or
concrete problems arising in the sciences.

So what is nonlinear algebra? In simple terms, nonlinear algebra adds the prefix
“non” to linear algebra. But it is not just an extension that moves the focus
from linear to nonlinear equations. Nonlinear algebra encompasses many different
methods from fields like combinatorics, group theory, topology, convex and discrete
geometry, tensors, number theory, representation theory, and algebraic geometry.
All of this is combined with computational methods using symbolic and numerical
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computations to tackle concrete problems. We quote the following paragraph from
the preface of the book Invitation to Nonlinear Algebra [170] by Micha lek and
Sturmfels:

“Linear algebra is the foundation of much of mathematics, particularly
in applied mathematics. Numerical linear algebra is the basis of scien-
tific computing, and its importance for the sciences and engineering can
hardly be overestimated. The ubiquity of linear algebra masks the fair-
ly recent growth of nonlinear models across the mathematical sciences.
There has been a proliferation of methods based on systems of multi-
variate polynomial equations and inequalities. This is fueled by recent
theoretical advances, efficient software, and an increased awareness of
these tools. Application areas include optimization, statistics, complexity
theory, among many others.”

The lecture [169] based on [170] is meant to provide an introduction to the basic
theory underlying the many different fields within nonlinear algebra. Our article can
be seen as supplementary material showing examples of how this theory is applied.
With our article we invite researchers from the applied mathematical sciences to
familiarize themselves with the ideas and concepts of our field and convince them
that nonlinear algebra provides powerful tools and methods that can help solve their
problems. While linear algebra is well-established in applications and broadly used
because of its accessibility, non-linear algebra might, to people that are unfamiliar
with algebraic geometry, appear intimidating and possibly too abstract for being
applicable. We would like to borrow the following words by Dolotin and Moro-
zov [70]: “Non-linear algebra is as good and as powerful as the linear one.” In the
sequel of this article, we hope to dissipate fear of contact and convince you that
nonlinear algebra complements and enlarges the toolbox of linear algebra.

Outline. After a short section recalling basic definitions from algebraic geometry,
the article is subdivided into eight different sections—one for each author. Each of
us explains their view on nonlinear algebra and how it relates to other fields and
applications. Yet, we emphasize that our overview is not comprehensive. It is not
our intention to map out all of nonlinear algebra. We seek to give a short glimpse
of the diversity of nonlinear algebra and convince you of its elegance and utility in
concrete applications.

0. Some basics about algebraic varieties. In nonlinear algebra, models are
defined by polynomials. For instance, in many applications our model V may be a
real algebraic variety, defined by polynomial equations, i.e.,

V = {x ∈ Rn | f1(x) = · · · = fs(x) = 0}, (1)

where f1, . . . , fs are polynomials in n variables x1, . . . , xn. In many branches of
nonlinear algebra, one moves from the real numbers to the complex numbers. A
fundamental motivation for this is that the field of complex numbers is algebraically
closed. One then considers complex algebraic varieties

V C = {x ∈ Cn | f1(x) = · · · = fs(x) = 0}. (2)

In fact, one can go even one step further and consider complex projective varieties.
Those are algebraic varieties in the complex projective space, which is defined as
the set of complex lines Pn = {C · y | y ∈ Cn+1 \ {0}} through the origin in Cn+1.
Those varieties are cut out by a family of homogeneous polynomials in the variables
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x0, . . . , xn. Complex algebraic varieties of the form (1) embed into complex projec-
tive n-space via the embedding ι : Cn → Pn, x 7→ C · (1,x), i.e., x ∈ Cn is mapped
to the line through the point in Cn+1 which is obtained by appending a 1 to the
vector x. Associated to a projective variety X ⊆ Pn we have its underlying vari-

ety in Cn+1, which we denote by X̂. The latter is a cone, since X is cut out by
homogeneous polynomials. The motivation for studying the projective space and
its subvarieties is that Pn is compact. While algebraic subvarieties of Pn are called
projective, varieties in Cn are called affine or quasi-projective.

The set of complex algebraic varieties in Cn is closed under taking intersections
and under taking finite unions. Thus, they form a system of closed sets in a topology
on Cn. This topology is called the Zariski topology. We can also define the Zariski
topology on Rn or Pn using real or projective varieties instead.

Associated to a complex variety V C is its ideal I(V C), which is defined as the
ideal in the polynomial ring C[x] = C[x1, . . . , xn] containing all polynomials that
vanish on V C. Recall that an ideal I of C[x] is a nonempty subset of polynomials
that is closed under addition and under multiplication by elements in C[x], which is
denoted by I/C[x]. Studying geometric properties of a variety translates to studying
ideals from the perspective of commutative algebra. This approach constitutes the
field of algebraic geometry [111, 158, 237]. For an introduction to commutative
algebra, we refer our readers to the textbook [84]. By Hilbert’s Nullstellensatz [170,
Chapter 6], for any ideal I of C[x] there exists a finite set of polynomials that
generates I. This gives a representation of I that is not unique. Some of such
representations of an ideal are better suited for computations than others. One
representation that is particularly useful in applications is in terms of a Gröbner
basis [225, 60, 105, 223, 224]. Many important invariants, such as the dimension
or the degree of the variety, can be directly read from a Gröbner basis. Another
important representation is the primary decomposition, which contains information
about the irreducible components of the variety, i.e., how the variety decomposes
set-theoretically.

In order to define the notion of genericity—which is crucial for certain results
in nonlinear algebra—let X be an irreducible complex or projective variety. We
call a property generic for X, if it holds for all points of X outside of an algebraic
subvariety ∆ ( X. The subvariety ∆ is called the discriminant for the property. We
say that p ∈ X is generic if p 6∈ ∆. This terminology refers to the fact that, in case of
a generic property, almost all points of the variety are generic. An applied scientist
would rephrase “almost all” as “with probability 1”. Let us illustrate the definition
in a concrete example: a quadratic polynomial of the form f = ax2 + bx+ c ∈ C[x]
has exactly two distinct zeros in C if and only if b2 − 4ac 6= 0. The discriminant
∆ = {b2−4ac = 0} is an algebraic variety in the space of all quadratic polynomials.
In this example, the definition of ∆ is clear. In other contexts, the definition of ∆
usually is less obvious and equations might not be known. Nevertheless, in the
following sections we will use the term generic, even if we don’t know ∆ explicitly,
but know it exists. Moreover, when we call a point generic in the following, we
implicitly mean generic with respect to a property given by the context. In several
applications, one is interested in the question of whether or not a set of real points
R ⊆ X contains generic points. For this it often suffices to show that the Zariski
closure of R is X.
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Computations are an important cornerstone of nonlinear algebra. Researchers
in this field use a collection of different methods ranging from numerical algorithm-
s such as polynomial homotopy continuation [217] to symbolic methods based on
Gröbner bases [224] or combine symbolic and numerical algorithms [113]. For car-
rying out symbolic computations, various computer algebra systems are available,
such as Macaulay2 [104], SageMath [235], or Singular [64], to mention a small
selection. Numerical methods are implemented in several sophisticated software
packages like [23, 46, 34, 155, 238].

1. Polynomial optimization. by Lorenzo Venturello

In this section, we consider the problem of optimizing a polynomial function
f : Rn → R on a subset of Rn defined by a finite collection of polynomial equations
and inequalities. A set of this form is called a basic semialgebraic set. We hence
consider the following polynomial optimization problem:

Minimize f(x1, . . . , xn) subject to fi(x1, . . . , xn) = 0 for all 1 ≤ i ≤ k,
gj(x1, . . . , xn) ≥ 0 for all 1 ≤ j ≤ m,

(3)

with fi, gj ∈ R[x1, . . . , xn]. This very general setting specializes to a number of
relevant convex optimization problems in mathematics, such as linear programming,
semidefinite programming, and conic optimization. For the purpose of this survey,
we will assume that m = 0, i.e., no inequalities are considered. The more general
case can be essentially derived with a case study depending on which inequality
constraints are active.

Our goal is to employ methods from nonlinear algebra to quantify the complex-
ity of computing an exact solution of (3). This leads to the discovery of intriguing
connections with classical topics in algebraic geometry. We then observe that if
a smooth point x∗ = (x∗1, . . . , x

∗
n) of the variety defined by the polynomial con-

straints f1(x) = · · · = fk(x) = 0 is an optimal solution to (3), then it must satisfy
the Karush–Kuhn–Tucker (KKT) conditions, which are given by

∇f(x∗)−
k∑
i=1

λi∇fi(x∗) = 0 and fj(x
∗) = 0 for all 1 ≤ j ≤ k, (4)

for some λi ∈ R. This implies that smooth optimal solutions to (3) are to be found
among the solutions of the system of polynomial equations (4). From now on we
move to the field of complex numbers and hence consider also complex solutions to
(4). As it has been discussed in Section 0, this is a key technical condition to employ
algebraic methods, as it allows us to study the generic instance of our problem. We
now consider a fundamental invariant of a polynomial optimization problem.

Definition 1.1. A point x∗ ∈ Cn such that (x∗, λ∗) is a solution of (4) for some
λ∗ ∈ Ck is a critical point of (3). We define the algebraic degree of an optimization
problem to be the number of critical points counted with multiplicity, when it is
finite.

In general the critical points of (3) can form a positive-dimensional variety. For
example, if the polynomials f and fi are homogeneous, it is not hard to see that
if x∗ is a critical point, then µx∗ is also a critical point for every µ ∈ C. However,
these are rather special instances and from now on we shall assume the existence of
a finite number of critical points.
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The algebraic degree can be described also in another way. The coordinates of
smooth optimal solutions are algebraic functions in the input, i.e., each coordinate is
the zero of a univariate polynomial in the coefficients of f and of the fi’s. The degree
of this polynomial is the algebraic degree of the corresponding optimization problem.
The next result provides a closed formula for the algebraic degree when f1, . . . , fk
are generic polynomials with k ≤ n. Here the word “generic” indicates that there is
an open Zariski dense set of polynomials satisfying this property. Furthermore, the
techniques to obtain these results often rest on projective geometry.

Theorem 1.2 ([181]). Let k ≤ n and let d = deg(f) and di = deg(fi) for every
i = 1, . . . , k. If f1, . . . , fk are generic, then the algebraic degree of (3) is equal to

d1 · · · dk
∑

i0+···+ik=n−k

(d− 1)i0(d1 − 1)i1 · · · (dk − 1)ik .

If f1, . . . , fk are not generic, then the formula gives an upper bound for the algebraic
degree of (3).

For instance, if we minimize a linear function over the vanishing locus of a generic
polynomial f1 ∈ R[x1, . . . , xn] of degree d1, the formula in Theorem 1.2 states that
we should expect d1(d1 − 1)n−1 critical points. Another interesting case is when
k = n. In this case (and when the polynomials are generic) the feasibility region
of (3) is zero-dimensional and, by Bézout’s theorem, it consists of d1 · · · dk many
points. This is precisely the value predicted by the formula above.

Similar techniques have been applied to study the algebraic degree of semidefi-
nite programming [182, 102, 170], the problem of optimizing the Euclidean distance
over an algebraic variety [74, 188], and maximum likelihood estimation in algebra-
ic statistics [231], which will be further discussed in Section 3. In those settings,
the nature of the problem imposes a certain structure on the polynomials fi, far
from the generic behavior. This asks for a refinement of Theorem 1.2. Once a-
gain we can make use of tools known to algebraic geometers. For example, every
smooth projective variety X ⊆ Pn comes with a sequence of nonnegative numbers
(δ0(X), . . . , δn−1(X)) called polar degrees of X. The number δr(X) counts the num-
ber of intersection between the conormal variety of X in Pn × Pn [98, Chapter 1,
Section 3] and a pair of generic projective linear spaces (L,M), with dimL = n− r
and dimM = r + 1.

Theorem 1.3 ([74, Section 5], [43, Theorem 13]). Let f, f1, . . . , fk ∈ R[x1, . . . , xn].
Let r ≥ 0 be such that 1 ≤ n−r ≤ k and assume that f1, . . . , fn−r are generic linear
polynomials. Let X be the projective closure of the variety defined by the constraints
fn−r+1(x) = · · · = fk(x) = 0. Then the algebraic degree of problem (3) is bounded
above by δr(X), the r-th polar degree of X.

In other words, the polar degrees of (the projective closure of) a variety are
precisely the algebraic degree of optimizing a generic linear functional over the
intersection of the variety with a generic linear space. The appropriate polar degree
is determined by the dimension of this linear space. Closed formulas for the polar
degrees are known for a number of interesting varieties. In general, they can be
obtained from explicit computations in the appropriate Chow ring or with the help
of a computer algebra system such as Macaulay2 [104], described in [74, Section 5].

For a simple example of how this result is finer than Theorem 1.2, we consider
a generic linear polynomial f1 ∈ R[x12, x13, x21, x22, x23] and let f2 = x22 − x12x21,
f3 = x23 − x13x21 and f4 = x12x23 − x13x22. The three polynomials of degree 2 are
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the 2 × 2-minors of a generic 2 × 3-matrix with x11 = 1 and they cut the variety
of such 2 × 3-matrices of rank at most 1. We want to optimize a generic linear
function over the smooth variety of R5 cut out by f1, . . . , f4. In the case of generic
polynomials with d = 1, d1 = 1 and d2 = d3 = d4 = 2, the formula in Theorem 1.2
predicts an algebraic degree equal to 24. On the other hand, Theorem 1.3 states that
this algebraic degree is bounded above by the first polar degree of the projective
variety of 2× 3-matrices of rank 1, which is equal to 3. This difference is precisely
due to the fact that f2, f3, f4 are definitely not generic, and they come from a very
structured problem. Moreover, Theorem 1.3 gives only an upper bound: using
Macaulay2 [104], we can verify that for this example the system (4) has only two
solutions. This second discrepancy is due to the fact that solutions might lie on the
so-called hyperplane at infinity, a feature which occurs in the transition between
affine and projective spaces [60, Chapter 8]. An even more peculiar behavior can be
observed if we remove f1 from this example and optimize a generic linear function
on the variety defined by f2, f3, and f4. In this case, the system (4) has no solution—
not even over the complex numbers. This has a beautiful explanation via the theory
of dual varieties and it corresponds to the fact that the dual of the variety of 2× 3-
matrices of rank 1 is not a hypersurface [98].

An intriguing application is to describe the algebraic degree of computing the
distance from a point to an algebraic variety using a polyhedral norm. In this case,
we have a finite number of optimization problems of the form of Theorem 1.3; one
for every (r − 1)-dimensional face of the unit ball. As an example, consider the
so-called Wasserstein distance induced by a metric on a finite space, which is a
main concept in optimal transport and machine learning. The algebraic treatment
of this optimization problem has been described recently in [43, 44].

2. Partial differential equations. by Anna-Laura Sattelberger

Algebraic analysis investigates linear partial differential equations (PDEs) with
tools from algebraic geometry, category theory, complex analysis, and noncommu-
tative Gröbner bases by encoding linear PDEs as D-modules [122, 30, 59]. The
latter arise in Hodge theory, microlocal calculus, mirror symmetry, optimization,
representation theory, statistics, and many more fields of mathematics. In its sim-
plest form—which is at the same time the most prominent one in applications—D
denotes the Weyl algebra. It is a noncommutative algebra over the complex num-
bers, gathering linear partial differential operators with polynomial coefficients. In
formal terms, the Weyl algebra

D := C[x1, . . . , xn]〈∂1, . . . , ∂n〉

is the free algebra over the complex numbers generated by the variables x1, . . . , xn
and partial derivatives ∂1, . . . , ∂n. All generators are assumed to commute except
xi and ∂i. Their commutator [∂i, xi] = ∂ixi − xi∂i is 1, not 0. This identity en-
codes Leibniz’ rule in a formal way. Since the Weyl algebra is noncommutative,
one needs to distinguish between left and right multiplication. One usually studies
left D-ideals and D-modules, i.e., multiplication by elements of D is from the left.
Systems of homogeneous partial differential equations are then encoded as D-ideals,
or, more generally, as D-modules. In analogy to encoding an algebraic number as
the root of a polynomial, a function which is the solution of a sufficiently large
system of linear PDEs can be encoded by a D-ideal together with finitely many
initial conditions. Those functions are called holonomic and were first studied by
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Zeilberger [244]. They fulfill certain closure properties and can be studied in terms
of Gröbner basis computations in the Weyl algebra [205]. Many functions in the
sciences are indeed holonomic, such as rational functions, some trigonometric func-
tions, hypergeometric functions, Airy’s functions and some more special functions,
and many more. In [208], the authors give an introduction to D-modules and holo-
nomic functions. As demonstrated therein, D-modules have a strong computational
flavor and are useful in many applications in the sciences and algebraic geometry—
as well as the other way round. Tools from algebraic geometry can help to explicitly
construct solutions to a system of differential equations encoded by a D-ideal; for
Frobenius ideals, solutions can be constructed in terms of primary decompositions
of the underlying ideal (cf. [205, Section 2.3]).

Computations around D-ideals and holonomic functions are often cumbersome
to carry out by hand. Several software packages are available for carrying out
those computations, for instance in Macaulay2 [104], Magma [33] (e.g. the package
periods [145]), Maple [162] (e.g. the package gfun [206]), Mathematica (e.g. the
HolonomicFunctions [138] package), SageMath [235] (e.g. the ore algebra [132]
package), or Singular:Plural [64].

The principal symbols of the differential operators contained in a D-ideal, i.e., the
part containing the derivatives of highest orders, cut out the characteristic variety
of the D-ideal. This is an algebraic variety in C2n from which one can read the so-
called singular locus of the D-ideal; there, complex analytic solutions to the system
of differential equations encoded by the D-ideal might have singularities.

In a more general setup, one studies the category of sheaves of D-modules on
a complex manifold or a smooth algebraic variety. This abstract language allows
for deep structural insights to linear PDEs. For instance, the regular Riemann–
Hilbert correspondence, proven in the 1980s by Kashiwara [131] and Mebkhout [168]
independently, gives a refined answer to Hilbert’s 21st problem in a generalized
setup. It enables to replace systems of linear PDEs with “mild” singularities by
their topological counterpart derived from their holomorphic solutions and vice
versa.

As already mentioned, the theory of D-modules comes with a vast range of ap-
plications. Among them are the high-precision computation of periods [145] or the
volume of compact semi-algebraic sets [146], and the holonomic gradient method
(HGM). This method is a numerical scheme for the evaluation of holonomic func-
tions [178]. Exploiting the knowledge of an annihilating D-ideal, the evaluation of
the gradient in each iteration step is reduced to a matrix multiplication. The holo-
nomic gradient descent is a minimization scheme building on the HGM. For some
functions, those methods are encoded in the software package hgm [234] in R [198].
The said methods were applied for instance to the inference of rotation data sampled
according to the Fisher distribution [212, 139, 4] and to data arising from medical
imaging.

There are many more functions arising from statistics that suit this holonomic
setup well. Muirhead [173, 174] observed that the cumulative distribution function
of a Wishart matrix is related to the hypergeometric function 1F1 of a matrix
argument for which he constructed an annihilating D-ideal. This ideal was further
studied in [112, 184, 100]. While hypergeometric functions of one complex variable
are well-studied in terms of GKZ systems [200], there is no intrinsic description of
hypergeometric functions of a matrix argument in terms of D-modules yet. For
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Figure 1. Staged tree [78] modeling the discrete statistical exper-
iment of flipping a biased coin twice.

broadening the range of applications of D-modules in the sciences, one is in need of
seeking out further functions that can be described by means of holonomic functions.

Via Bernstein–Sato ideals, D-modules are useful for the maximum likelihood
estimation (MLE) problem in statistics. The Bernstein–Sato polynomial of a poly-
nomial f ∈ C[x1, . . . , xn] is the monic polynomial bf in C[s] of smallest degree, s.t.
there exists P ∈ D[s] for which P • fs+1 = bf · fs. Here, fs denotes the symbolic
power of f to the new variable s. The roots of bf are negative rational numbers [130].
For a family of k polynomials in n variables, one studies the Bernstein–Sato ide-
al [204] in the polynomial ring in k variables. The original motivation of studying
Bernstein–Sato polynomials was to construct a meromorphic continuation of the
distribution-valued function fs. Nowadays, Bernstein–Sato ideals are a prominent
object of study in singularity theory [40, 38, 39]. For a concrete example, consider
the following statistical experiment: Flip a biased coin. If it shows head, flip again.
Figure 1 depicts the staged tree modelling this discrete experiment.

Let (u0, u1, u2) encode how many times each of the three states occurs when
repeating the experiment several times. The MLE problem is to find the parameters
that best explain this observed outcome; further details about maximum likelihood
estimation are discussed in Section 3. By encoding statistical models as smooth
subvarieties of projective space, likelihood geometry [124] provides algebraic tools
for the computation around the MLE problem.
For the outcome (u0, u1, u2), the MLE of the said experiment is

Ψ(u0, u1, u2) =

(
(2u0 + u1)

2

(2u0 + 2u1 + u2)
2 ,

(2u0 + u1) (u1 + u2)

(2u0 + 2u1 + u2)
2 ,

u1 + u2
2u0 + 2u1 + 2

)
. (5)

The triple (x2, x(1 − x), 1 − x) is a parametrization of our statistical model. Its
Bernstein–Sato ideal can be computed with the Singular library dmod lib [154].
As observed in [208], the linear factors in the generator of the Bernstein–Sato ideal
recover the occurring linear factors in the numerators of the MLE in (5). This
observation is explained in a rigorous algebro-geometric way in [209] using tools
from tropical geometry [160, 159] and Bernstein–Sato theory [161]. The methods
developed therein provide new tools for algebraic statistics and possibly particle
physics; a link between MLE and scattering amplitudes was recently established by
Sturmfels and Telen [227].

Solutions to linear PDEs with constant coefficients can be constructed by the
Ehrenpreis–Palamodov fundamental principle [82, 190]. In [48], Cid-Ruiz and S-
turmfels introduce differential primary decompositions for ideals in commutative
rings, generalizing Noetherian operators in the setup of Ehrenpreis–Palamodov.
On the repository website [166] of the Max Planck Institute for Mathematics in the
Sciences (MPI MiS), they provide Macaulay2 code supplementing their work.



NONLINEAR ALGEBRA AND APPLICATIONS 89

The study of PDEs by algebraic methods is not limited to the linear case. Poly-
nomial differential equations are treated by differential algebra [201, 137]. Among
others, this setup can be used to study jet schemes of affine schemes [36]. In [16],
the authors transfer combinatorial aspects of commutative algebra [171] to differ-
ential algebra and link certain regular triangulations [63] to a higher-dimensional
analog of jets of the fat point xp, building on the theory of differential Gröbner
bases [245, 186]. This case study suggests to further develop combinatorial differ-
ential algebra.

3. Algebraic statistics. by Aida Maraj

Algebraic statistics uses tools from algebraic geometry, commutative algebra,
combinatorics, and computational methods to solve problems in probability theory
and statistics. This relatively new area, marking its start with papers [194] in 1996
and [68] in 1998, provides new techniques for statistical problems, and has led to
many interesting developments in mathematics. Sullivant’s book [231] contains a
good sampling of algebraic statistics topics and their development.

Given some independent, identically distributed observed data, the interest is in
discovering features of the unknown probability distribution from which the data
is drawn. Statistical models are collections of probability distributions possible for
the data, typically parametrized or satisfying some property. Let u ∈ Zn≥0 be the
vector of counts for the given data with sample size N = u0+ · · ·+un−1. The vector
u is often used to imply data with that vector of counts. Given u and a statistical
model M, there are two questions to be asked:

Question 3.1. How well does the modelM fit the data u, i.e., what is the p-value
for the hypothesis that the unknown probability distribution for the given data is
in M?

Question 3.2. How to fit the modelM to the data u, i.e., what is the probability
distribution in M that best describes the data?

This section will discuss how Questions 3.1 and 3.2 are naturally translated to
problems in algebraic geometry by identifying probability distributions with points
in Rn and statistical models with (semi)algebraic sets. The focus will be on discrete
statistical models and multivariate Gaussian models, for which algebraic methods
have shown to be most useful.

Discrete statistical models arise when random variables have a state space Ω
of finite size, say n. This means that the experiments have n possible outcomes.
Assuming that each experiment has nonzero probability, discrete statistical models
are subsets of the open probability simplex

∆n−1 :=
{

p ∈ Rn>0 |
n−1∑
i=0

pi = 1
}
.

For instance, the staged tree model in Figure 1 is a discrete statistical model as it has
a state space of size three. In this example, denote p0 = P (X = heads, Y = heads),
p1 = P (X = heads, Y = tails) and p2 = P (X = tails), the probabilities for elements
in the state space. The algebraic object for the staged tree model are all points
(p0, p1, p2) ∈ R3

>0 with p0+p1+p2 = 1 that fulfill the equation (p0+p1)p1−p0p2 = 0.
Hence our model is a curve in the triangle ∆2. The ideal generated by the quadratic
polynomial above is the vanishing ideal of the model and it encodes the staged tree
model; see [77].
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Algebra is particularly useful if the vanishing ideal of a discrete statistical model
is toric; see Theorem 3.3. The ideal I(M) for the discrete model M is toric if it is
of form I(M) = 〈pu−pv | u,v ∈ Zn≥0,u− v ∈ ker(A)〉, for some matrix A ∈ Zd×n

(cf. [223, Chapter 4]), where pu denotes pu0
0 · · · p

un−1

n−1 . Models with a toric vanishing
ideal are called toric or log-linear and the design matrix A is a sufficient statistic
for the toric model. In this case, the model itself can be restated as

M = {p ∈ ∆n−1 | (log(p0), . . . , log(pn−1)) ∈ rowspan(A)}.

Markov bases [193] of toric models are critical in hypothesis testing; the Metropolis–
Hasting algorithm uses them to produce Markov chains [231, Section 9]. Markov
chains are fundamental for computing the p-value for the null hypothesis that data
u is drawn from a probability distribution in the given toric model [21], and hence
answering 3.1.

Theorem 3.3 ([68, Theorem 3.1]). A collection of moves b1, . . . ,bm in Zn≥0 is a

Markov basis for the toric modelM if and only if the set pb+
i −pb−

i , for 1 ≤ i ≤ m,
generates the toric ideal I(M).

A sufficient statistic of toric models is often achieved effortlessly from the mono-
mial parametrization of the model in statistics; see for instance hierarchical models
[68, 121, 163], graphical models [97], and balanced staged tree models [77]. In other
cases, a linear change of coordinates is needed to reveal the toric structure; see for in-
stance conditional independence models and models arising from Bayesian networks
[95], and some group based phylogenetics models [226, 58]. The vanishing ideal for
the staged tree model Figure 1 is toric in the new variables q0 = p0, q1 = p0 + p1
and q2 = p0 + p1 + p2; see [99]. The existence of matrix A leads to involvement of
polyhedral geometry [27, 56].

Likelihood estimation is the most common method for 3.2. The probability of
observing data u given the probability distribution p (see [231, Section 1.1]) is

L(p|u) :=
N !

n−1∏
i=0

(ui!)

n−1∏
i=0

pui
i . (6)

The maximum likelihood estimate (MLE) for data u in the statistical model M is
the probability distribution p̂ in M so that under the assumed statistical model
M the observed data is most probable. It is found by maximizing the likelihood
function 6 on points inM. A modelM has rational maximum likelihood estimator
if for generic choices of u, the MLE for u inM can be written as a rational function
in the entries of u; see Example (5) in Section 2. The multinomial coefficient and
applying natural logarithm do not affect which probability is the maximizer. Hence,
we optimize the log-likelihood function

`(p|u) :=

n−1∑
i=0

uilog(pi)

instead. This is a linear function in terms of log(pi); compare this with optimizing a
linear function in a variety in Section 1. The MLE is found among critical points of
`u(p). The maximum likelihood degree (ML degree) ofM is the number of complex
critical points of `u(p), counted with multiplicity, for generic data u. Hence, the
maximum likelihood degree measures the complexity of finding the MLE.
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For toric models, the ML degree is equal to the number of intersection points of
M with the special linear equations A(Np− u) = 0 [65, Corollary 7.3.9], where N
is the number of observations. Hence it is bounded above by the algebraic degree of
the model. Explicit computations can be done in Macaulay2 [104] via the package
AlgebraicOptimization.m2 [107].

A toric model has rational MLE if and only if its ML degree is one [123]. Apart
from special classes [57, 78], a classification of statistical models with rational MLE
with practical uses is to be found. Ultimately, revealing the toric structure of a
discrete statistical model, when it exists, is beneficial for answering Questions 3.1
and 3.2.

A multivariate Gaussian distribution Nn(µ,Σ) is a continuous distribution de-
termined by the mean vector µ ∈ Rn and the covariance matrix Σ, which is a
symmetric positive definite matrix. Denote by Sn>0 the space of symmetric n × n
positive definite matrices. The parameters µ and Σ are independent of each other.
In computations, µ is most commonly zero or the mean vector of the sample data,
and Σ is the challenging parameter to be found. Hence, in algebraic statistics, mul-
tivariate Gaussian models are identified with sets of matrices in Sn>0. Such models
include graphical models and colored graphical models [228], Brownian motion tree
models [229], and conditional independence models [230]. The inverse matrix of Σ
is the concentration matrix for the distribution. Given that both Σ and the concen-
tration matrix Σ−1 contain critical information about the statistics of the model,
a main problem is to describe the model in both the space of covariance matrices,
and its inverse space. The question has found partial answers when one of the sets
is a linear system of symmetric matrices [228, 229].

The sample covariance matrix for data u1, . . . ,ud ∈ Zn≥0 is

S =
1

d

d∑
i=1

uiu
T
i .

The log-likelihood function of a Gaussian model with empirical covariance matrix S
is the linear function `S : Sn>0 → R defined by `S(M) := log det(M)− trace(SM).
Maximizing `S on the space of concentration matrices produces the maximum like-
lihood estimator and the maximum likelihood degree of the model. Maximizing `S
on the set of covariance matrices gives the reciprocal maximum likelihood estimator
and the reciprocal maximum likelihood degree of the model.

In the case of a linear concentration model L, the ML degree of L is the number
of covariance matrices Σ in L−1 satisfying linear equations arising from Σ−S ∈ L⊥
[231, Corollary 7.3.10]. This makes the algebraic degree of L−1 its upper bound.
The references [153, 224, 228] highlight some of the progress in this direction. The
packages SemidefiniteProgramming.m2 [49] and GraphicalModelsMLE.2 [18] in
Macaulay2 [104] are helpful for computations. Apart from special cases [81, 91], a
relation between the MLE and the reciprocal MLE is to be found.

When one of the defining spaces of a Gaussian model is toric [229, 172], one hopes
to connect the model to the associated toric discrete model. For instance, Brownian
motion tree models are toric in the space of concentration matrices [229]. This same
space defines a discrete toric model from phylogenetics. The reciprocal ML degree
of the first model is the ML degree of second model [32]. It is unexplored how tight
the connections between the toric Gaussian model and the associated toric discrete
model are and how to make use of these connections.
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Invariant theory has shown useful in computing maximum likelihood estimates
and degrees [19, 67, 75]. Another approach for tackling 3.2 is to compute the
point in a model that minimizes some distance of the sample point from the model
[43, 74]. Model selection [231, Chapter 17] and identifiability [17, 120] are other
topics of current importance in algebraic statistics. See also Section 8 for a related
discussion about identifiability.

Lastly, the need of algebraic statistics to advance statistical questions has led
to invention and development of tools in algebra; Huh’s work [123] on rational
maximum likelihood estimates produced an interesting classification of varieties,
and work of Hillar and Sullivant [117] on finitely generated models up to a symmetric
group action spawned the non-Noetherian theory in commutative algebra; see, e.g.,
[73, 141, 164, 176, 177].

4. Integrable systems. by Türkü Özlüm Çelik

Integrability of a system of partial differential equations (PDEs) reveals itself
through the following features of the PDE: the essence of algebraic geometry, the
presence of conserved quantities, and the existence of explicit solutions [119]. It
turns out that many known integrable systems can be obtained as reductions of the
Kadomtsev–Petviashvili (KP) hierarchy, which is an infinite set of nonlinear partial
differential equations in infinitely many variables. This universal hierarchy consists
of the KP equation and its infinitely many symmetries, for which the KP equation
happens to be the initial member [134, 185]. Among the approaches to study the
integrable systems is via bilinearizing the partial differential equation [118]. After
this bilinearization, the integrable system is transformed to the so-called Hirota
bilinear equation (9), which will be the principal object underlying the discussion
about the KP equation in the sequel.

The KP equation is a nonlinear partial differential equation that describes water
waves. Its equation is written as follows with the unknown function u(x, y, t):

∂

∂x
(4ut − 6uux − uxxx) = 3uyy. (7)

Here x, y and t are the spatial and temporal coordinates respectively. The subscripts
x, y, t denote the partial derivatives. The function u(x, y, t) displays the progression
of long waves of small amplitude with slow dependence on the transverse coordinate
y in time t. In the algebro-geometric approach to the KP equation (7), solutions
arise in the following form:

u(x, y, t) = 2
∂2

∂x2
log τ(x, y, t) + c, (8)

where c is a complex constant. The function τ(x, y, t) is known as the tau function
(or τ -function) in the literature of integrable systems. A necessary and sufficient
condition for a function τ to be a tau function is to satisfy the quadratic PDE,
namely the Hirota bilinear equation:

(τxxxxτ−4τxxxτx+3τ2xx)+4(τxτt−ττxt)+6c(τxxτ−τ2x)+3(ττyy−τ2y )+8dτ2 = 0. (9)

There are the quasi-periodic solutions with tau functions (9) that come from com-
plex algebraic curves [140, 79, 24]. In what follows, we will introduce the underlying
data for such solutions in more details. Let C be a complex algebraic curve of genus
g, which is a one-dimensional complex algebraic variety as introduced in (2). Let R
be a Riemann matrix [79] for C. This is a g × g complex symmetric matrix whose
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real part is negative definite. The Riemann theta function associated with R is the
following analytic function from Cg to C:

θ(z |R) :=
∑
n∈Zg

exp
(
ntRn + ntz

)
. (10)

A fundamental result of Krichever [140] asserts that there are g-vectors U, V,W ∈ Cg
with U 6= 0 such that

θ(Ux+ V y +Wt+D |R ) (11)

happens to be a τ -function (9) where D ∈ Cg is a parameter. In other words,
the function (11) satisfies (9), this implies that the corresponding u(x, y, t) (8) is a
solution of the KP equation (7). One can construct this special class of tau functions
from any smooth point of C. Set

U = (u1, . . . , ug), V = (v1, . . . , vg), W = (w1, . . . , wg).

The Dubrovin threefold DC [11] of the algebraic curve C is formed by these triples
(U, V,W ) in the weighted projective space WP3g−1, where deg(ui) = 1, deg(vi) = 2
and deg(wi) = 3, for which there exist c, d ∈ C such that for all D ∈ Cg (11)
satisfies (9). This means that (8) satisfies (7). Hence DC is a 3-dimensional com-
plex algebraic variety that parametrizes the solutions of the KP equation, which is
guaranteed by a result of Krichever [79, Theorem 3.1.3].

The Dubrovin threefold has a parametrization that is fully algebraic [11, Section
3]. In particular, if the curve C is defined over the rational numbers, so is the
Dubrovin threefold. This enables us to apply symbolic computational methods
from nonlinear algebra using Gröbner bases [170, Chapter 1]. In particular, we may
intend to obtain the vanishing ideal of the threefold. Following [11, Example 3.5],
we consider the smooth plane quartic, namely the Trott curve with its affine plane
model given by the polynomial:

144(x4 + y4)− 225(x2 + y2) + 350x2y2 + 81. (12)

The point (0, 1) lies on the Trott curve. We compute a corresponding point to (0, 1)
on the Dubrovin threefold:(

0,− 1

126
,− 1

126
,− 1

126
, 0, 0, 0,− 1550

55566
,− 1325

37044

)
∈WP8. (13)

In addition, via the SageMath [235] package RiemannSurfaces [35], we compute
a Riemann matrix of the curve, we can then compute the corresponding KP so-
lution (8) by computing the corresponding Riemann theta function via the Julia

[28] package Theta.jl [12]. As the Trott curve is an M -curve, i.e., it has the max-
imum number of ovals (see Figure 2), we can proceed our computations over the
real numbers [215]. Indeed, one can compute the Riemann matrix with real entries
in this case. Figure 2 illustrates the solution at t = 0 associated with (13). It turns
out that the Dubrovin threefold of the Trott curve is minimally generated by the
following polynomials—up to saturation by the ideal 〈u1, u2, u3〉 [170, Chapter 3]:

450u21u3 + 450u22u3 − 324u33 + u2v1 − u1v2,
700u21u2 + 576u32 − 450u2u

2
3 + u3v1 − u1v3,

576u31 + 700u1u
2
2 − 450u1u

2
3 − u3v2 + u2v3,

450u1u3v1 + 450u2u3v2 + 225u21v3 + 225u22v3 − 486u23v3 + u2w1 − u1w2,
700u1u2v1 + 350u21v2 + 864u22v2 − 225u23v2 − 450u2u3v3 + u3w1 − u1w3,
864u21v1 + 350u22v1 − 225u23v1 + 700u1u2v2 − 450u1u3v3 − u3w2 + u2w3,
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Figure 2. Left: Trott curve. Right: The wave derived from the
Trott curve whose parameters are (13) at t = 0 [11].

for which we used Macaulay2 [104] to compute. More generally, [11, Theorem 3.8]
gives an explicit description of the vanishing ideal of the Dubrovin threefold when
C is a smooth plane quartic (of genus 3), for higher genus see [11, Theorem 5.3]. It
would be desirable to understand the geometry of the Dubrovin threefold further
from the algebraic point of view.

We now change the course of our discussion and review the numerical alge-
braic geometric side of the Dubrovin threefold: one can find polynomials over C
that vanish on DC from the Hirota bilinear equation (9). Namely, plugging the
τ -function (11) into (9), one obtains polynomials in U, V,W and c, d whose coeffi-
cients are expressions in theta constants [11, Section 4], which were derived in [79,
Section 4.3]. The theta constants are values in the complex numbers which are
evaluations of theta functions with characteristic and their partial derivatives at
0 ∈ Cg. The theta functions are translations of the Riemann theta function (10) by
an exponential factor [175, Chapter 2]. Hence, we can compute polynomials defining
the Dubrovin threefold DC via numerical evaluation of theta constants associated
with C. Some notable mathematical software packages for computing the theta con-
stants are Theta.jl [12] in Julia, algcurves [65] in Maple, abelfunctions [232]
in SageMath, and a package [94] in MATLAB, which all can be considered as tools
in numerical algebraic geometry; for algebraic computations of them, see [42]. In
fact, the theta functions and their computational aspects appear in several branches
of mathematics apart from integrable systems, such as algebraic geometry [211, 9],
number theory [83], cryptography [96], discrete mathematics [199], and statistics [8].

Finally, we land in combinatorial algebraic geometry with a view towards com-
putations. A natural question arises: what happens to the Dubrovin threefold when
the underlying curve degenerates? One may expect that a potential Dubrovin va-
riety parametrizes deformed solutions that conceivably come from singular curves.
A certain class of such exact solutions comprises the so-called KP solitons [134]
(see Figure 3), which are regular in the xy-plane and localized along certain rays
in the plane. The soliton solutions are classified by finite-dimensional Grassman-
nians [135]. There have been approaches to relate these types of solutions to sin-
gular curves [210, 1, 180, 136], among which the universal Grassmannian manifold
(also known as the Sato Grassmannian) plays a fundamental role. This infinite-
dimensional Grassmannian can be viewed as a parameter space of formal power
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Figure 3. Left: A soliton wave that is taken in Nuevo Vallarta,
Mexico by Ablowitz [3, 2]. Right: A Y-soliton.

series solutions of the KP equation [207]. On the other hand, thinking of the quasi
periodic solutions arise via the Riemann theta function, one may also study degen-
erations of the Riemann theta function for establishing such a relation. In fact, if
one considers tropical degenerations of algebraic curves, the Riemann theta func-
tion happens to be a finite sum of exponentials [10, Theorem 4], [13, Theorem 3].
The Hirota variety parametrizes all the tau functions arising from such a sum [13].
It would be worthwhile to discover more about possible connections of the Hirota
variety with the soliton solutions [13, Example 11], also its potential link to the
Dubrovin variety. In dimension 3, the Riemann theta function degenerations recov-
er the so-called theta surfaces [10], classically the double translation surfaces [157].
For highly singular curves, these surfaces happen to be algebraic. It turns out that
the algebraic ones are given by Schur–Weierstrass polynomials [37], which gives
rise to rational solutions of the KP hierarchy [5, 37, 179]. In addition, they appear
in the Schur expansions of the tau functions (9) for solitons arising from algebraic
curves [136, Theorem 5.1]. Probable relations among each of these perspectives dis-
cussed in this paragraph have not been spelled out completely yet in the literature.

5. Flexibility, rigidity, and configuration spaces. by Alexander Heaton

Configuration spaces provide interesting examples of algebraic varieties accessi-
ble and intriguing to students, practitioners, and researchers in engineering [222],
computer science [216], combinatorics [103], and algebraic geometry [60]. In this
section, we focus on configuration spaces arising from graphs embedded in Euclidean
space.

Before precise definitions, consider the configuration space C of a rhombus in
the plane. A rhombus has four sides of equal length, but the angles may change.
After pinning vertices 1, 2 at (0, 0), (1, 0) ∈ R2 and leaving the coordinates of 3, 4
as free variables, C is an algebraic variety of degree 6 and dimension 1, with three
singular points. In Figure 4, right, we plot its orthogonal projection onto a random
three-dimensional subspace of its ambient R4. Each point p ∈ C ⊆ R4 corresponds
bijectively to a distinct placement p : V → R2, which is a map placing the vertices of
its underlying graph (V,E) with V = {1, 2, 3, 4} and E = {(1, 2), (1, 4), (2, 3), (3, 4)}
in the plane R2, while preserving the lengths of its edges. We state the general setup
below.

Let G = (V,E) be an undirected graph on vertices V = {1, 2, . . . , n} and edges
E ⊆ {{i, j} | 1 ≤ i < j ≤ n}. We will abbreviate {i, j} ∈ E as ij ∈ E. Given
an edge-length function ` : E → R≥0, we are interested in placements (also called
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Figure 4. Configuration space of a rhombus in the plane. Left:
Placements of the graph in the plane with the bottom two vertices
fixed in place and the top two vertices free to move. Right: Pro-
jection of the configuration space onto a random three-dimensional
subspace. The marked points on the right correspond to blue col-
ored placements on the left, giving two ways to visualize the same
data. There are only three singular points since four of the appar-
ent intersections are artifacts of our 2d drawing of a 3d image.

embeddings or realizations) of the graph G, which are maps p : V → Rd for some
dimension d ∈ N such that the Euclidean distance between p(i) and p(j) as points
in Rd is equal to the value `(ij). We have the polynomial map

f : Rd|V | → R|E|, x 7→ (fij(x))ij∈E , where fij =

d∑
k=1

(xik − xjk)2, (14)

and x = (x11, x12, . . . , x|V |d) ∈ Rd|V |. Therefore, the set of all placements of G given

` in dimension d is the preimage of the point (`(ij)2)ij∈E ∈ R|E| under the map
f, and hence has the structure of an affine algebraic variety. We call this variety
the configuration space. It is in bijection with the set of all placements satisfying
the edge-length equations. For example, the rhombus in Figure 4 has four vertices
placed in the plane R2, so C ⊆ R8, at first. However, by fixing the bottom two
vertices we remove rigid motions and reduce the ambient dimension so that C ⊆ R4.
Next, we describe this in more detail.

Since the group of rigid motions, i.e., translations, rotations, and reflections, acts
on the set of placements for (G, `, d), we often remove this action by strategically
pinning vertices. For d = 2 this means we take p(1) = (0, 0) ∈ R2 and we take
p(2) = (x21, 0) ∈ R2. For d = 3 we take p(1) = (0, 0, 0), p(2) = (x21, 0, 0), and
p(3) = (x31, x32, 0). In fact, if we rename the vertices so that 12 ∈ E, we can also
replace the variable x21 by ±`(12). More generally, we can restrict the map (14)
to any subset X ⊆ Rd|V |, and define the configuration space C|X as the preimage
of the point (`(ij)2)ij∈E ∈ R|E| under the map f |X : X → R|E|. Thus we can pin
vertices to specified locations, or restrict them to move along a line or a sphere,
among many possibilities.

A nice example in [52] gives a framework whose configuration space has a cusp
singularity. In this example, n = 11. Fixing the vertices 1, 6, 11 and leaving the
vertices 2, 3, 4, 5, 7, 8, 9, 10 free, we have C ⊆ R16. Figure 5 displays a projection of
one neighborhood of the configuration space from R16 to a random two-dimensional
subspace, as well as the corresponding placements p : V → R2 of the associated
graph on eleven vertices V. The colors in Figure 5 match and are really two ways
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Figure 5. The left and right images are color-coded to match.
Left: We project 401 points p(i) ∈ C onto a random two-
dimensional subspace of R16. 200 orange → red points approach
the singular point p(i) → p? along one branch of the cusp, and
another 200 light-blue→ blue points p(j) → p? approach along the
other branch. Right: We view each point p(i) as a placement map
p(i) : V → R2 sending eleven vertices to the plane, rather than as
points p(i) ∈ R16. Vertices 1, 6, and 11 are pinned and immobile.
Right Top: Singular placement p?. Right Middle: 200 light-blue→
blue placements p(i) → p? moving toward the singular placement
p? along one branch of the cusp. Right Bottom: 200 orange →
red placements moving toward the singular placement p? along the
other branch.

of visualizing the same information. By computing with homotopy continuation
software [34], we discovered that C is an algebraic variety of dimension 1 and de-
gree 592.

Among the many problems one might consider, we note the following:

1. Given (V,E) and an edge-length function ` : E → R≥0, understand the set
of all placements C` := {p : V → Rd : ‖p(i) − p(j)‖ = `(ij) for all ij ∈ E}
corresponding to `.

2. Given (V,E) and a generic placement p : V → Rd, understand the set of all
placements Cp := {q : V → Rd : ‖q(i) − q(j)‖ = ‖p(i) − p(j)‖ for all ij ∈ E}
corresponding to p.

3. Given (V,E) and a specific (non-generic) placement p : V → Rd, understand
the set Cp.

In our two examples above, the algebraic variety was one-dimensional. However,
particular attention has been given to the zero-dimensional case. A placement p :
V → Rd is called rigid if the local dimension of its associated configuration space is
zero, and flexible otherwise, assuming we have removed rigid motions. Equivalently,
a placement p is rigid if all nearby placements with equal edge lengths are obtained
by rigid motions, and flexible if any neighborhood of p contains placements which
are not obtained by rigid motions, yet have the same edge lengths. Given a graph
(V,E), one might wonder if it has rigid placements, and if so, how many? It turns
out that for generic placements, rigidity depends only on the combinatorics of the
graph. Originally discovered in 1927, the results in [195] and [147] characterize
generic rigidity in the plane, giving combinatorial criteria on the graph (V,E) that
determine whether generic placements p : V → R2 will be rigid or flexible. An
analogous result for graphs placed in R3 (or higher) remains an important and
apparently difficult open problem.
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Figure 6. Three rigid bars in black, two elastic cables in green. Left: The

elastic framework in a stable configuration. Right: Configuration of the frame-
work after crossing the catastrophe discriminant, depicted in red. The three

square vertices are pinned, the cross vertex is controlled, and the two circular

vertices are free: their position is found by minimizing energy over the config-
uration space, which is visualized by the grey, dashed coupler curve. Bottom:

the energy function along the coupler curve with the current position depicted
in green.

Addressing a theme from the introduction, why should we use the complex num-
bers to study these problems, when the problem statements mention only the reals?
We give two answers. First, genericity arguments using algebraic geometry are use-
ful. For example, a placement p : V → Rd is globally rigid if every other placement
with the same edge lengths is related by a rigid motion. Equivalently, global rigidity
means the configuration space is zero-dimensional, consisting of a single real-valued
point, after removing rigid motions. A celebrated result whose two directions are
proved in [101] and [51] shows that a generic framework is globally rigid if and only
if it admits a weighted graph Laplacian with d+1-dimensional kernel. The proof in
[101] uses genericity arguments relying on the complex algebraic variety, including
Gauss fibers and contact loci, for example.

For a second reason to use complex numbers, we connect with Section 1 on poly-
nomial optimization. Consider a framework built of rigid bars and elastic cables.
Modelling the potential energy of the cables by Hooke’s law, one expects the frame-
work to assume a position of minimum energy. The rigid bars and joints give the
edges and vertices of a graph placed in space p : V → Rd, which has its associated
variety C. The elastic cables give an energy function, and the stable positions of
the framework are the placements p ∈ C which are local minima for this energy
function, restricted to C. This is exactly the setup described in Equations (3) and
(4) of Section 1. If the location of some vertices or the lengths of some bars are
controlled by robotic actuators or humans, the corresponding stable local minima
will also change. If the control parameters change smoothly, the stable minima will
usually change smoothly as well. However, sometimes a smooth change in control
parameters will cause a local minimum to disappear, perhaps merging with a local
maximum or saddle. In these cases, a catastrophe occurs, since the system must
move rapidly to the nearest local minimum, whose location changed discontinu-
ously. In [115], numerical nonlinear algebra is used to track all local equilibria,
including those with complex-valued coordinates. This allows us to predict when
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local minima disappear, and hence predict catastrophe. Without using the complex
numbers, one can easily miss important appearances and disappearances of these
equilibrium positions. Figure 6 demonstrates a catastrophic jump in positions of a
framework augmented with two green elastic cables.

6. Biochemical reaction networks. by Oğuzhan Yürük

Chemical reaction networks theory (CRNT) studies the behavior of chemical
systems by modeling the concentrations of the species, i.e., the chemical substances
that take part in the reaction network, over time. In this section, we present
a refined introduction to CRNT and address a specific problem using tools from
nonlinear algebra. We refer the reader to [88, Part 1, Chapter 3] for a comprehensive
introduction to CRNT.

Definition 6.1. A chemical reaction network N = (χ,R) consists of a set of species
χ := {X1, . . . , Xn} and a set of reactions R := {R1, . . . , Rl} of the following form:

Rj :

n∑
i=1

aijXi
κj−→

n∑
i=1

bijXi, (15)

where aij , bij ∈ Z+ are called stoichiometric coefficients and each κj ∈ R≥0 is a
positive real parameter called the reaction rate constant of Rj for j = 1, . . . , l.

A chemical reaction is said to be at a steady state if the amounts of the species
in the reaction remain constant. Multistationarity, that is, the existence of multiple
steady states, is an important notion for biochemistry due to its link to the cellular
decision making and on/off-responses to graded input [152, 189, 242].

In the context of CRNT, there are numerous methods to detect multistationarity
for some fixed choice of parameter values [87, 89, 240, 192, 61, 54, 72, 85, 69, 29];
also see [128] for a comprehensive survey. However, determining the exact region
of multistationarity in the parameter space is a difficult problem with complicated
answers. Recently, in [53], the authors point out a class of networks whose multi-
stationarity can be decided by studying the nonnegativity of a relevant polynomial
with parametrized coefficients. Polynomial nonnegativity is not only studied clas-
sically (cf. [116, 126]), but also is a significant notion that underlies polynomial
optimization as in Section 1. Therefore, it makes sense to apply expertise around
the polynomial nonnegativity to study multistationarity in CRNT. In this section,
we first explain the relationship between multistationarity and nonnegativity and
then give a short overview of the two methods that were used in [90] to study the
multistationarity in dual phosphorylation/dephosphorylation cycle.

Given a reaction network N = (χ,R), we denote the vector of concentrations
with x = (x1, . . . , xn) ∈ R≥0, where each xi corresponds to the concentration of
the species Xi. This vector is time-dependent, hence we sometimes write x(t) with
t ≥ 0 to stress this dependence, and denote its first time-derivative with ẋ. Under
the assumption of mass action kinetics, the network N satisfies the following system
of ordinary differential equations:

ẋ = N · v(x), (16)

where N is an n × l-matrix with entries Nij := bij − aij and v(x) is the column
vector of length l whose entries are given as vj(x) = κjx

a1j
1 · · ·xanj

n for some choice
of parameter κj ∈ R+. If rank(N) = r, then the stoichiometric subspace S of the
network N is an r-dimensional linear subspace of Rn generated by the columns of
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N. For a given initial vector x(0) ∈ Rn≥0 of concentrations, x(t) is confined in the

affine space (x(0) + S) ∩Rn≥0 for t ≥ 0 by [88, Lemma 3.4.5]. Let W be a full-rank

row reduced (n−r)×n-matrix such that WN = 0, and define c := W ·x(0) ∈ Rn−r.
Then, one can identify the affine space x(0) + S with the vector c ∈ Rn−r, because
Wx = c for any x ∈ (x(0) + S) .

If a point x∗ ∈ Rn satisfies that N · v(x∗) = 0, then it is called a steady state
of the network N . If we fix the parameter vector κ := (κ1, . . . , κl) ∈ Rl+, then
V := {x ∈ Rn | ẋ = N · v(x) = 0} is an algebraic variety in Rn given as the zero
set of n polynomials in R[x1, . . . , xn]. In particular, it is an intriguing question
to find the number of equilibrium points confined in the the affine space Pc :={
x ∈ Rn≥0 |Wx = c

}
, i.e., the cardinality of

V ∩ Pc =
{
x ∈ Rn≥0 | Nv(x) = 0

}
∩
{
x ∈ Rn≥0 |Wx = c

}
.

Given a stoichiometric compatibility class Pc, it is an intriguing question to find
the positive steady states within this class. We define P+

c := {x ∈ Rn>0 |Wx = c},
and name P+

c as the postive stoichiometric compatibility class associated to Pc.
If there exists a compatibility class Pc that contains more than one steady state

for some κ ∈ Rl+, then the parameter κ is said to enable multistationarity in the
network N . Deciding the existence of parameters that enable multistationarity for a
given reaction network is a central question in CRNT. Using the particular approach
that was introduced in [53], this question reduces down to checking the sign of the
determinant of a relevant Jacobian matrix. This method in particular works in the
case when P+

c admits a positive parameterization and the network is conservative,
i.e., if each Pc is a compact set (see [53, Supplementary Info Section 3.2]). A positive
parameterization of the set V ∩ P+

c is a surjective function φ : Rm → V ∩ P+
c for

some m < n. To construct this Jacobian matrix, first let us denote the index of the
first nonzero entry for each row of W with i1, . . . , in−r. Then, we consider the map
ϕc : Rn≥0 → Rn whose i-th entry ϕc(x)i is equal to (Wx−c)i if i = i1, . . . , in−r, and

it is equal to Nv(x)i otherwise. We note that the steady states in the stoichiometric

compatibility class Pc is V ∩ Pc =
{
x ∈ Rn≥0 | ϕc(x) = 0

}
.

Theorem 6.2 ([53, Theorem 1]). Let N = (χ,R) be a conservative chemical reac-
tion network with stoichiometric matrix N ∈ Rn×l of rank r. Furthermore, let Pc

be a nonempty stoichiometric compatibility class without any boundary equilibrium
point where c ∈ Rn−r and let φ : Rm → V ∩ P+

c be a positive parameterization
of V ∩ P+

c for some m < n. If we denote the Jacobian matrix of ϕc(x) after the
positive reparameterization with M(x), then the following statements hold:

(a) If sign(det(M(x))) = (−1)r for all x ∈ V ∩ P+
c , then there is exactly one

positive equilibrium in Pc.
(b) If sign(det(M(x))) = (−1)r+1 for some x ∈ V ∩ P+

c , then there are at least
two positive equilibria in Pc.

We will now see an example of this theorem in action. Consider the hybrid
histidine kinase system, which models the dual phosphorylation of histidine kinase
enzyme.

HK00
κ1−→ HKp0

κ2−→ HK0p
κ3−→ HKpp, HK0p +RR

κ4−→ HK00 +RRp,

HKpp +RR
κ5−→ HKp0 +RRp, RRp

κ6−→ HKpp.
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In the network given above, HKp0 (and HK0p) denotes the histidine kinase with
its first (and the second) site phosphorylated, HK00 and HKpp denote the histi-
dine kinase with zero and two phosphorylated sites, and RR denotes the response
regulator protein which may be phosporylated by histidine kinase to form RRp.
We note that the stoichiometric matrix N is of rank 4 in this case. If we let
X1 = HK00, X2 = HKp0, X3 = HK0p, X4 = HKpp, X5 = RR, X6 = RRp, then

ϕc(x) =
(
x1 + x2 + x3 + x4 − c1, κ1x1 − κ2x2 + κ5x4x5, κ2x2 − κ3x3 − κ4x3x5,
x5 + x6 − c2, κ4x3x5 + κ5x4x5 − κ6x6

)
,

and the determinant of the Jacobian matrix of ϕc(x) is

M(x) = κ2κ4κ5(κ1 − κ3)x3x5 + κ1κ2κ4κ5x4x5 + κ4κ5κ6(κ1 + κ2)x25

+ κ1κ2κ3κ4x3 + κ1κ2κ3κ5x4 + κ1κ5κ6(κ3 + κ2)x5 + κ1κ2κ3κ6.

If κ1 ≥ κ3, then Theorem 6.2 implies that the system has a unique equilibrium
point in each stoichiometric compatibility class. For κ1 < κ3, if we consider the
positive parameterization

Φ(x4, x5) =
(κ4κ4x4x25

κ1κ3
,
κ5(κ4x5 + κ3)x4x5

κ2κ3
,
κ5x4x5
κ3

, x4, x5,
κ5(κ4x5 + κ3)x4x5

κ3κ6

)
of V ∩ R6

>0, then the coefficient of the term x4x5 in the polynomial M(Φ(x4, x5))
is negative. Since this term corresponds to a vertex of the Newton polytope of
M(Φ(x4, x5)), the polynomial M(x) can take negative values (see e.g., [90, Proposi-
tion 2.3]). Therefore, Theorem 6.2 implies that the system enables multistationarity
if κ1 < κ3.

Note that the determinant M(x) is a polynomial in R[x1, . . . , xn] whose coeffi-
cients are
parametrized by the entries of κ. Unlike in the previous example, it is not always
easy to identify the parameter region that guarantees the nonnegativity of M(x).
There are various tools in real algebraic geometry to address this problem, and here
we mention two of these approaches. In particular, we point out how these methods
have been utilized for the case of 2-site phosphorylation cycle in [90].

The first approach is based on quantifier elimination and the Cylindrical Alge-
braic Decomposition (CAD) algorithm introduced by Collins [50]. For an overview
of quantifier elimination and CAD, we refer to [41]. Via CAD, one can decompose
Rn into connected semialgebraic sets (see Section 1 for a definition) on which M(x)
has constant sign, and determine the sign of M(x) at each of these components.
The CAD algorithm is not viable for large examples, but one can still make use of
CAD by reducing the number of variables or parameters via some algebraic tricks
such as restricting the polynomial of question to a smaller one with [90, Proposition
2.3]. For instance in [90, Section 3.1], the authors point out a sufficient condition
for nonnegativity following such a strategy and using the package RegularChains

in Maple [45].
The second approach considers symbolic nonnegativity certificates for real poly-

nomials. There are several methods to check nonnegativity of a polynomial with
explicit coefficients [31, 150, 165]. In fact, this is a feasibility problem for polynomial
optimization. Here, we mention a particular method based on circuit polynomials,
which are a special class of polynomials in R[x1, . . . , xn] whose set of exponents
forms a minimal affine dependent set in Rn. The circuit polynomials have been
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introduced in [127] and their nonnegativity is fully characterized by a symbolic con-
dition given in terms of their coefficients and the combinatorics of its support, see
[127, Theorem 1.1]. If we decompose M(x) into circuit polynomials, then assuming
the nonnegativity of each circuit polynomial in this decomposition is sufficient to
make M(x) nonnegative as well. The nonnegativity of each circuit polynomial in
the decomposition yields a symbolic condition in terms of the parameters κ1, . . . , κl,
and hence describes a region in the parameter space. For instance, this is used in
the work [90, Theorem 3.5], where the authors formulate a sufficient condition for
nonnegativity by writing M(x) as sum of four circuit polynomials.

To conclude, using techniques from real algebraic geometry to study the signs
of a parametric multivariate polynomial on the positive orthant as a function of
the parameters, it is possible to find open sets in the space of parameters Rl+
that enable multistationarity. The techniques we mention here do not solve the
problem of multistationarity. However, they vastly extend our understanding of the
region of multistationarity, and are not exclusive to the dual phosphorylation cycle.
Moreover, one can further apply these techniques to other problems in chemical
reaction networks theory with similar flavor. For example, the study of signs plays
a key role when analyzing the stability of steady states or the presence of Hopf
bifurcations via the Routh–Hurwitz criterion (see, e.g., [236, 55]).

7. Algebraic vision. by Timothy Duff

Projective space, algebraic varieties, rational maps, and many other notions from
algebraic geometry appear naturally in the study of image formation with respect
to various different camera models. These basic notions play a distinguished role
in computer vision, where one of the primary goals is to build systems capable of
reconstructing 3D geometry (scene and cameras) from data in several images. For
a broad overview of computer vision, we refer to the text by Szeliski [233].

To understand the importance of geometry in computer vision, the pinhole cam-
era model is an excellent starting point. This model is depicted in Figure 7.
Here, a real-life camera is modeled as a projection from a point in space on-
to a plane. The center of projection is an idealized lens, through which rays of
light pass to form an image. The coordinates of our camera frame are chosen so
that the center of projection is the origin and so that the image plane is given
by H = {(x, y, z) ∈ R3 | z = 1}. We remark that our choice of coordinates implies
that two world points (x, y, z), (−x,−y,−z) ∈ R3 which differ only by sign will
produce the same image in H. As a matter of convenience, it is more standard to
draw the image plane in front of the camera center, unlike in our picture.

The equations of a world-to-image map for this camera, which can be derived
algebraically or using similar triangles, are given by

R3 99K H, (x, y, z) 7→ (x/z, y/z, 1); (17)

see, e.g., [109, Section 6.1]. This map is nonlinear, and undefined when z = 0.
However, it can be better understood through the lens of projective geometry. In
this approach, thoroughly laid out in the text by Hartley and Zisserman [109], each
point in the image is naturally identified with the light-ray that passes through
it—a line through the origin in R3, like the dashed line in Figure 7. There are also
exceptional light-rays where the map (17) is undefined. These exceptional lines in
space correspond to “vanishing points” where two parallel lines in our image meet.
The real projective space P2

R is the space of all lines through the origin in R3 (similar
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H

(x, y, z)

(x/z, y/z, 1)

(0, 0, 1)
0

Figure 7. A pinhole camera with principal point equal to
(0, 0, 1) ∈ H and focal length 1. The point (x, y, z) is projected
onto the plane H. The resulting image is the point (x/z, y/z, 1).
The dashed line corresponds to the point in P2

R which is represent-
ed in homogeneous coordinates by [x : y : z].

as the definition of projective space in Section 0). Using homogeneous coordinates
on P2

R, we may rewrite our image coordinates as [x/z : y/z : 1] = [x : y : z]. In doing
so, we obtain a projective-linear map

P3
R 99K P2

R, [x : y : z : w] 7→ [x : y : z], (18)

which is defined for all world points except the camera center [0 : 0 : 0 : 1].
In various applications, the information provided by multiple cameras must be

combined. These applications may involve very intensive computation (e.g., build-
ing 3D models of cities from large collections of photos [6]) or have strict real-time
requirements (e.g., multi-camera systems for 360◦ field-of-view on an autonomous
vehicle [106]). A common thread throughout these applications is that the da-
ta in images are noisy and may even suffer from a large presence of gross errors,
also known as outliers. For example, a common task is to estimate the relative
orientation between two cameras when given many pairs of corresponding points
(x1,y1), . . . , (xm,ym) ∈ P2

R × P2
R between two images. For two cameras whose in-

ternal parameters like focal length are known, this relative orientation is encoded
by the essential matrix E; see [109, Section 9.6]. This is a 3 × 3-matrix with real
entries that satisfies the following polynomial constraints. Thinking of each xi and
yi as a 3× 1-matrix, we must have

2EE>E − tr(EE>)E = 03×3, detE = 0, y>i Exi = 0 for i = 1, . . . ,m. (19)

For this problem, outliers are mismatched pairs (xi,yi) which do not correspond
to a common point seen by the two cameras. The prevalence of outliers calls for
robust estimation techniques, among which heuristics based on RANSAC (RANdom
SAmpling and Consensus [92]) have been ubiquitous in computer vision. The key to
RANSAC is using the minimal number of measurements—for the equations in (19),
this means m = 5—to generate several “hypotheses” for E, which are then checked
against the remaining data. An ingenious scheme for solving the m = 5 case of (19)
was proposed and implemented by Nistér [183]. As in previous sections, this solution
exploits genericity.
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Proposition 1 ([66, Théorème 6.4]). In the case m = 5, if we have generic data
points (x1,y1), . . . , (x5,y5), there are exactly 10 complex matrices E up to scale
(i.e. in P8) which satisfy (19).

Nistér’s five-point algorithm has since seen been incorporated into state-of-the-
art 3D reconstruction pipelines, in which typically the initial estimates obtained
through RANSAC are further refined with nonlinear least-squares. A sizeable liter-
ature has also emerged on solving other minimal problems in real-time with special-
ized solvers based on Gröbner bases and resultants (see, e.g., [143, 149]). Recently,
homotopy continuation methods have played a complementary role, enabling the
study of a much wider class of minimal problems than before [133, 86, 80].

So far, we have barely scratched the surface of how nonlinear algebra can be
applied in computer vision. Many challenges remain. For instance, the classifica-
tion of critical configurations, as carried out by [108] in the setting of points viewed
by projective cameras, gives precise conditions for when the 3D geometry cannot
be uniquely recovered. This has implications for the stability of reconstruction al-
gorithms which are largely unexplored. It is also desirable to better understand
semialgebraic constraints implicit in image formation, such as those which enforce
that world points lie in front of the camera [110]. Two recent preprints that go in
this direction are [7, 196, 167]. For other geometric problems in vision requiring
robust estimation, methods based on convex relaxations are popular alternatives to
RANSAC, since solutions can often be certified by computing duality gaps. The
algebraic structures underlying these optimization problems are diverse, often draw-
ing from the sums of squares hierarchy as in [129] or synchronization formulations
as in [203, 22]. We have not touched on many of the deeper tools from algebraic
geometry appearing in algebraic vision, such as in [15, 14, 93, 156, 167]. Nor have
we addressed the role of nonlinear algebra in applications like photometric stere-
o [241, 114], methods for dynamic scenes [239], or the wide variety of alternate
camera models encountered in practice (e.g. cameras with radial distortion [144]).
These offer many potential directions for future research.

8. Tensors and their decompositions. by Paul Breiding

A tensor A is a p-dimensional array A = (ai1,...,ip)1≤i1≤n1,...,1≤ip≤np
filled with

(real or complex) numbers ai1,...,ip . The number p is also called the order of A. For
p = 2 this gives the definition of a matrix. For p ≥ 3 tensors are higher-dimensional
analogues of matrices. In this section, we mainly consider real tensors. The space of
real n1×· · ·×np-tensors is denoted by Rn1×···×np . Order-3 tensors can be visualized
as cubes:

A = ∈ Rn1×n2×n3

While matrices are the central object in linear algebra, tensors define the field of
multilinear algebra.

Of particular interest in applications are decompositions of a tensor A, which
reveal information about the data stored in A [191]. We seek to decompose A as
A1 + · · · + Ar, where the Ai are some sort of simple tensors. This means that
the tensors Ai are elements in a low-dimensional model V, which usually is a real
algebraic variety. In this section, we present two examples of this: the Canonical
Polyadic Decomposition (CPD) and the Block Term Decomposition (BTD).
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The CPD is the decomposition with simple tensors a(1)⊗· · ·⊗a(p) := (a
(1)
i1
· · · a(p)ip ),

where the a(j) = (a
(j)
i ) ∈ Rnj are vectors. Tensors of the form a(1) ⊗ · · · ⊗ a(p) are

called rank-one tensors. The set of all rank-one tensors is a smooth projective
algebraic variety, called Segre variety.

Definition 8.1 (CPD of tensors). Let A ∈ Rn1×···×nd . We call a decomposition of
the form

A =

r∑
i=1

a
(1)
i ⊗ · · · ⊗ a

(p)
i , (20)

where a
(j)
i ∈ Rnj , a canonical polyadic decomposition (CPD) of A. If r is the minimal

number such that we can write A like in (20), we say that A has rank r.

For p = 3 the CPD can be visualized as follows:

= + · · · +

We can illustrate the meaning of this decomposition using an example from statis-
tics: the relationship between random variables X1, . . . , Xp, where Xi can take ni
states, can be recorded in a tensor A = (ai1,...,ip) ∈ Rn1×···×np with ai1,...,ip being
the probability that X1 = i1, . . . , Xp = ip. The variables are independent if and
only if the rank of A is 1. The joint distribution is a mixture distribution of r inde-
pendent models if and only if the rank of A is r. Computing CPDs is also central in
signal processing [214], computational complexity [187], and other fields. The geom-
etry of the CPD is well-studied in nonlinear algebra. One result worth mentioning
is [76], where the authors show cases in which the best rank-r approximation of a
generic tensor lies in the space spanned by its critical rank-1 approximations. For
applications this implies that we can precondition the problem of computing best
rank-r approximations by first computing critical rank-1 approximations.

BTD is the decomposition, where the simple tensors are so-called low-multilinear
rank tensors. The definition of this is as follows: let k = (k1, . . . , kp) be a vector
of integers with 1 ≤ ki ≤ ni. We say that A has multilinear-rank (at most) k,
if there exists another tensor S ∈ Rk1×···×kp , called the core tensor, and matrices
Ui ∈ Rni×ki , called factor matrices, such that we can write A = (U (1)⊗· · ·⊗U (p))S.
Here, U (1)⊗· · ·⊗U (p) is the linear map Rk1×···×kp → Rn1×···×np defined by the action
on rank-one tensors (U (1)⊗· · ·⊗U (p))(x(1)⊗· · ·⊗x(p)) := (U (1)x(1))⊗· · ·⊗(U (p)x(p)).
Intuitively speaking, (U (1)⊗· · ·⊗U (p)) multiplies the i-th side of a tensor with U (i)

as depicted in (22). A BTD decomposes A as the sum of multilinear rank-k tensors.

Definition 8.2 (BTD of tensors). Let A ∈ Rn1×···×nd and k = (k1, . . . , kp). A
decomposition

A =

r∑
i=1

(U
(1)
i ⊗ · · · ⊗ U (p)

i )Si, (21)

where U
(j)
i ∈ Rnj×kj and Si ∈ Rk1×···×kp , is called a block term decomposition

(BTD) of A. If r is the minimal number such that we can write A like in (21), we
say that A has BTD-rank r.



106 BREIDING, ETC.

Note that CPD is the special case k = (1, . . . , 1). For order-3 tensors a BTD can
be visualized as follows:

= + · · · + (22)

In the example from statistics, the CPD defined a tensor as a mixture of indepen-
dence models. By contrast, BTD defines a tensor as a mixture of distributions
which allow correlations between the variables. A prime example, where this is
relevant, is detecting epileptic seizures [125]. The interaction between the variables
in this case is extremely complex, so that a mixture of independence models is not
the appropriate model.

For both CPD and BTD, and in general for any tensor decomposition, questions
about uniqueness are important. These questions ask for formats and ranks, where
a generic tensor A of low rank has a unique decomposition. In this case, we also
say that A is identifiable. Note that for this we must have p ≥ 3. Matrices never
have a unique CPD or BTD. These questions a priori fix the rank. The problem
of computing or estimating ranks of tensors, also called model selection [202], is
usually much more difficult.

Many tensor decompositions can be formulated within the following framework:
let V ⊆ RN be a real algebraic variety and r ≥ 2. Furthermore, consider the map
φr : V ×r → RN , (x1, . . . ,xr) 7→ x1 + · · · + xr. The image Jr(V ) := φr(V

×r) is
called the r-th join of V . Similarly, we can define φr : (V C)×r → CN and Jr(V C)
for a complex algebraic variety V C. For y ∈ CN we call the points in φ−1r (y) rank-r
decompositions of y. We say that y has a unique rank-r decomposition, if φ−1r (y)
consists of only a single point x = (x1, . . . ,xr) modulo permutations of the xi. We
define the generic rank rg(V

C) to be the smallest r, such that the Zariski closure of
Jr(V C) is CN . The following lemma connects real and complex identifiability. Its
assumptions are mild and hold for most tensor decompositions.

Lemma 8.3 ([197, Lemma 28]). Let V = {x ∈ RN | f1(x) = · · · = fk(x) = 0} be a
real algebraic variety that is also a cone; i.e., it is closed under scalar multiplication.
We assume that V is not contained in a hyperplane. Let the corresponding complex
variety be V C = {x ∈ CN | f1(x) = · · · = fk(x) = 0} and X ⊆ PN−1 be the

projective variety whose cone is V C; that is, V C = X̂ when using the notation from
Section 0. Let r < rg(V

C). We assume that (a) X is irreducible, and (b) that V C has
a real smooth point. Then, if a generic point in Jr(V C) has a unique complex rank-r
decomposition, a generic point in Jr(V ) has a unique real rank-r decomposition.

The lemma shows that for studying identifiability of real tensors we can use
methods from complex algebraic geometry. For the CPD this was worked out in
[197, Section 5] and [25, Section 4].

Identifiability is relevant for applications, because it implies that the problem
of computing tensor decompositions is well-posed: if we can compute one solution,
we know that this solution is the right one. In the signal processing literature
there exist several results on the uniqueness of the CPD, most of which rely on
Kruskal’s criterion [142]. This is a criterion for order-3 tensors, which relies on
results from linear algebra. Nonlinear algebra goes beyond this. An overview about
identifiability from the perspective of algebraic geometry is given by Angelini in [20].
We also refer to the book of Landsberg [148].



NONLINEAR ALGEBRA AND APPLICATIONS 107

Uniqueness of BTDs is less well-studied than for CPDs. Results exist for the
decomposition of tensors into tensors of multilinear rank (1, k1, k2) [243], (1, k, k)
[62, 71], (k1, k2, 1) [218], and (k1, k2, k3) [151]. Studying BTDs from the perspec-
tive of nonlinear algebra is a promising research direction, which would complement
these results. Another interesting research direction is studying the algebraic geom-
etry of structured tensor decompositions. A prominent example of this is the sym-
metric CPD, i.e., CPDs of the form A =

∑r
i=1 ai⊗ai⊗· · ·⊗ai, where for each term

all factors are equal. The identifiability of this decomposition is discussed in [47]
(surprisingly, it was recently shown by Shitov [213] that the symmetric rank defined
by this decomposition can differ from the rank in Definition 8.1). Other examples
of structured decompositions in the literature are coupled CPDs [219, 220, 221] or
Tensor Networks [26].
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[116] D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math.

Ann., 32 (1888), 342–350.
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