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Abstract

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to

learn tasks across a wide range of graph domains in a data-driven fashion; based on

a message passing mechanism, GNNs have gained increasing popularity due to their

intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph

isomorphism, to which they have proven equivalent. In this thesis, we provide a broad

overview of two essential properties of GNNs by a theoretical point of view, namely,

their approximation power and their generalization capabilities. We show that modern

GNNs are universal approximators, given that they are made by a su�cient number

of layers, which is tightly linked to the stable node coloring of the 1-WL test. GNNs

are shown to be universal approximators also on more complex graph domains, like

edge-attributed graphs and dynamic graphs. Generalization capabilities of GNNs are

investigated by di↵erent perspectives. Bounds on the VC dimension of GNNs are

provided with respect to the usual hyperparameters and with respect to the number of

colors derived from the 1-WL test. GNNs ability to generalize to unseen data is also

explored by a neurocognitive point of view, determining whether these models are able

to learn the so-called identity e↵ects.

i



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

Contents

Acknowledgements xiii

1 Introduction 1

1.1 Graph Neural Networks: A theoretical analysis . . . . . . . . . . . . . . . 1

1.2 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Main contributions of the thesis . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Background topics and literature review 7

2 Background Topics 9

2.1 Graph theory: Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The color refinement algorithm and the Weisfeiler–Lehman test . . . . . . 10

2.3 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Theory of Graph Neural Networks: A literature review 15

3.1 Neural networks as universal approximators . . . . . . . . . . . . . . . . . 15

3.1.1 The approximation power of GNNs . . . . . . . . . . . . . . . . . . 15

3.2 Generalization capabilities of neural networks . . . . . . . . . . . . . . . . 17

3.2.1 GNN generalization properties . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Neural networks and cognitive tasks: the identity e↵ect learning case 17

II Approximation capabilities of Graph Neural Networks 19

4 Universality of GNNs for node-attributed graphs 21

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Unfolding trees and unfolding equivalence . . . . . . . . . . . . . . 21

4.1.2 The Weisfeiler–Lehman equivalence . . . . . . . . . . . . . . . . . . 22

4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Unfolding and Weisfeiler–Lehman equivalence . . . . . . . . . . . . 23

iii



i
i

i
i

i
i

i
i

Contents

4.2.2 Approximation capability . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Universality of GNNs for SAUHGs and Dynamic GNNs 45

5.1 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Weisfeiler-Lehman and Unfolding Trees . . . . . . . . . . . . . . . . . . . 48

5.2.1 Equivalence for SAUHGs . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Equivalence for Dynamic Graphs . . . . . . . . . . . . . . . . . . . 51

5.3 Approximation Capability of GNNs for SAUHGs and DGNNs . . . . . . . 53

5.3.1 GNNs for SAUHGS . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.2 GNNs for Dynamic Graphs . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

III Generalization capabilities of Graph Neural Networks 69

6 VC dimension of message passing GNNs with Pfa�an activation func-
tions 71

6.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 Results from the literature . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Main bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.2 Computation of the main bounds for a specific GNN model . . . . 78

6.2.3 Bounds with 1–WL colors . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Learning Identity E↵ects with GNNs 87

7.1 Rating impossibility for invariant learners . . . . . . . . . . . . . . . . . . 87

7.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 What GNNs cannot learn: rating impossibility theorem . . . . . . 89

7.2.2 What GNNs can learn: identity e↵ects on dicyclic graphs . . . . . 94

7.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.2 Case study #1: two-letter words . . . . . . . . . . . . . . . . . . . 99

7.3.3 Case study #2: dicyclic graphs . . . . . . . . . . . . . . . . . . . . 101

8 Other works 109

8.1 A topological description of loss surfaces based on Betti Numbers . . . . . 109

8.2 Extension of Recurrent Kernels to di↵erent Reservoir Computing topologies 110

8.3 Splines Parameterization of Planar Domains by Physics-Informed Neural
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.4 Visual Sequential Search Test Analysis: An Algorithmic Approach . . . . 113

iv



i
i

i
i

i
i

i
i

Contents

9 Conclusions 115

Bibliography 119

v



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

List of Figures

3.1 An example of a graph with some unfolding trees. The symbols outside the nodes

represent features. The two nodes on the left part of the graph are equivalent

and have equivalent unfolding trees. . . . . . . . . . . . . . . . . . . . . . . 16

4.1 A graphical representation of the relationship between the color refinement and

the unfolding equivalence, applied on nodes 1 and 4 of the given graph. . . . . 26

4.2 (a) A regular graph where all nodes have the same features. All unfolding trees

are equal. (b) The equivalence classes when only one node has di↵erent features.

(c) The equivalence classes when all nodes have di↵erent features. . . . . . . . 27

4.3 In (a) and (b), two graphs G, H are depicted that satisfy the lower bound of

point (2) of of Theorem 4.9. Graphs in (a) and (b) are constructed by aggregating

in a sequence two copies of the same subgraph (c); then, module (d) is added at

the top of graph (a), while module (e) is added at the top of graph (b). . . . . 30

4.4 Structure of the proof of Theorem 4.13. . . . . . . . . . . . . . . . . . . . . . 31

4.5 The ATTACH operator on trees. . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Training accuracy on subsampled QM9 dataset, increasing number of WL colors

(a), and increasing hidden layer size (b). The solid line represents the average

over 15 runs, the shaded area represents the confidence interval. . . . . . . . . 42

5.1 Illustration of the statification of a dynamic graph. On the left, the temporal

evolution of a graph, including non-existent nodes and edges (gray), is given, and

on the right, the corresponding statified graph with the total amount of nodes

and edges together with the concatenated attributes is shown. . . . . . . . . . 47

5.2 Unfolding tree recursive construction . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Structure of the proof of Theorem 5.21. . . . . . . . . . . . . . . . . . . . . . 56

5.4 Structure of the proof of Theorem 5.29. . . . . . . . . . . . . . . . . . . . . . 62

5.5 The four static graphs used as components to generate the synthetic dataset.

Graphs a) and b) are equivalent under the static 1–WL test; same holds for c)

and d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Train accuracy over the epochs for a DGNN trained on the dataset containing

dynamic graphs up to time length T = 4 (a) and T = 5 (b). . . . . . . . . . . 68

vii



i
i

i
i

i
i

i
i

List of Figures

6.1 Summary of the parameters for each split of the ordered NCI1 dataset for the

task E2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Results on the task E1 for GNNs with activation function arctan. Pictures (a)

and (c) show the evolution of di↵ through the epochs, for di↵erent values of d,

keeping fixed L = 3, and for di↵erent values of L, keeping fixed d = 32; Picture

(b) shows how di↵ evolves as the hidden size increases, while Picture (d) shows

how di↵ evolves as the number of layers increases. . . . . . . . . . . . . . . . 84

6.3 Results on the task E1 for GNNs with activation function tanh. Pictures (a) and

(c) show the evolution of di↵ through the epochs, for di↵erent values of d, keeping

fixed L = 3, and for di↵erent values of L, keeping fixed d = 32; Picture (b) shows

how di↵ evolves as the hidden size increases, while Picture (d) shows how di↵

evolves as the number of layers increases. . . . . . . . . . . . . . . . . . . . . 85

6.4 Results on the task E2 for GNNs with activation function tanh. Picture (a) shows

the evolution of di↵ through the epochs, for di↵erent values of V (G)
Ck(G)

, keeping

fixed L = 4 and d = 16; Picture (b) shows how di↵ evolves as the ratio V (G)
Ck(G)

increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Graph modeling of a two–nodes graph: a vertex feature ↵(v) 2 Rq is attached to

each node v of a two–node undirected graph, according to a given encoding E . In
this figure, E is the one–hot encoding. . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Graphical illustration of Lemma 7.5: a 6-cycle reaches a stable coloring in b 6
2c = 3

steps with b 6
2c+ 1 = 4 colors. Numbers are used to identify nodes. . . . . . . . 96

7.3 Stable 1-WL coloring for di↵erent types of dicyclic graphs: as stated in Theorem

7.6, 3-degree nodes have the same color in symmetric dicyclic graphs, and di↵erent

color in the asymmetric ones. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Numerical results for the rating task on the two-letter words dataset using Gconv-

glob with L = 1, 2, 3 layers. Rating should be equal to 1 if words are composed

by identical letters, 0 otherwise. The distributed and Gaussian encodings, which

deviate from the framework outlined in Theorem 7.2, exhibit superior performance

compared to the other encodings. The other encodings makes the transformation

matrix orthogonal and symmetric, being themselves orthogonal encodings. . . . 100

7.5 Numerical results for the rating task on the two-letter words dataset using Gconv-

di↵ with L = 1, 2, 3 layers. The same observations to those in Figure 7.4 can be

made here as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.6 Perfect classification of symmetric dicyclic graphs by nmax iterations of the 1-WL

test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.7 Graphical illustration of the extraction task. In this example, nmax = 6 and k = 5. 103

7.8 Extraction task performed by di↵erent GNN models, namely Gconv-glob (left)

and Gconv-di↵ (right). We set nmax = 8, l = 8 and, from top to bottom, k = 7, 6, 5 .105

7.9 Graphical illustration of the extrapolation task. In this example, nmax = 5 and

g = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.10 Extrapolation task performed by di↵erent GNN models, namely Gconv-glob (left)

and Gconv-di↵ (right). We set nmax = 8 and, from top to bottom, (L, g) =

(9, 1), (10, 2), (11, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



i
i

i
i

i
i

i
i

List of Figures

8.1 Recurrent Kernels associated with various Reservoir Computing topologies. RC

and sparse RC converge to the same RK limit when the reservoir size N ! 1.

Leaky RC and Deep RC converge to their corresponding limits. . . . . . . . . . 111
8.2 (Left) Error metric normalized between 0 and 1 as a function of sparsity for

di↵erent reservoir sizes. (Right) Sparsity threshold above which the error metric

is within 10% of the non-sparse limit. This gives an admissible sparsity level

which decreases with the reservoir size. . . . . . . . . . . . . . . . . . . . . . 111
8.3 Hourglass-shaped domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4 Flowchart of our method to compute the score of the performance in the Visual

Sequential Search Task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

List of Tables

2.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6.1 Upper bounds on VCdim of common architectures: p is the number of network

parameters, N the number of nodes in the input graph or sequence, while C is

the maximum number of colors per graph. . . . . . . . . . . . . . . . . . . . 77



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

Acknowledgements

At the end of a journey last 3 years, several are the people that I need to thank.

First of all, a huge thanks to my advisors Maria Lucia Sampoli, Franco Scarselli and
Monica Bianchini. You taught me a lot, from how to do research to how to catch the
once-in-a-lifetime opportunities, from how to give all my best to how to live the life a little
lighter. You made me the researcher and in some way the man that I am now.

Thanks to the professors that hosted me in my visiting periods abroad, prof. Michael
Unser in Lausanne, prof. Simone Brugiapaglia and prof. Mirco Ravanelli in Montrèal.
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sharing your knowledge of coding and not giving up on answering every doubt I had on
Python programming. All the people in lab, even if we were noisy and the room was
overcrowded, I enjoyed all of that, and I will surely miss it.

Thanks to my colleagues in Lausanne, especially thanks to Jonathan, who has revealed
to be a brother in Christ, a violin mate and a good friend.

Thanks to my colleagues (met) in Montréal, Simone, Massimo and Salah. The time
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Chapter 1

Introduction

Deep Learning is quickly becoming important in almost every application field. As a
consequence, in recent years, the investigation of its properties by a rigorous theoretical
analysis has become increasingly urgent. This thesis aims to shed light on the theoretical
characteristics of Graph Neural Networks (GNNs) [1], a modern class of machine learning
models designed for graph processing; specifically, this thesis focuses on two import-
ant theoretical aspects of GNNs, namely, universal approximation and generalization
capabilities

1.1 Graph Neural Networks: A theoretical analysis

Since their first introduction [2, 3], GNNs were proposed as a new learning paradigm to
deal with structured data. Indeed, while standard neural networks require pre–processing
of complex data, GNNs are able to process the information being aware of the graph
structure; for this reason, GNNs have quickly become dominant in data–driven learning
over several application scenarios such as network analysis [4], molecule prediction [5] and
generation [6], text classification [7], and tra�c forecasting [8].

GNNs are based on the so–called message–passing mechanism [9]. According to this
paradigm, the neural architecture is implemented by an information flow through the
graph. In particular, a vector of features is associated to every node in the graph. The
algorithm computes a message for each edge, which is a function of the features of the edge
end nodes. Each node aggregates the messages of its edges, using a permutation–invariant
function. Then, each node updates its feature vector as a function of its attribute and
aggregated message. Such a mechanism is present in almost all milestone GNN models,
such as Graph Convolutional Networks (GCNs) [10], Graph Attention Networks (GATs)
[11], GraphSAGE [12] and Graph Isomorphism Networks (GINs) [13].

Graph Neural Networks (GNNs) have been successfully implemented to solve a wide
range of classification and regression tasks. Depending on the goal, a task can be defined
as either graph-focused, node-focused, or edge-focused (also known as link prediction).
In graph-focused tasks, the GNN returns an output for each input graph, in node and
edge-focused tasks, an output is returned for each node or edge, respectively. Examples
of GNN applications in graph-focused tasks are molecule property prediction [14, 9] and
graph matching [15]. E↵ective node prediction has been performed by GNN models in
weather forecasting [16] and power-grid analysis [17]. GNNs have also been applied in
edge-focused tasks on citation networks [18] and recommendation systems [19].

As soon as GNN architectures began to achieve the state–of–the–art in many applica-
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tions, the deep learning community began to focus on their theoretical properties. Initially
much of the attention was paid to the expressive power of GNNs, that is, the power to
distinguish classes of graphs compared to traditional graph–based algorithms. On this
regard, the seminal works in [13] and [20] tightly linked the expressive power of GNNs
with the so–called 1st order Weisfeiler–Lehman test (1–WL test), an algorithm for testing
if two graphs are not isomorphic. The WL test can distinguish large classes of graphs, but
sometimes fails on very simple example graphs.

More recently, while the WL test, along with its higher–order extensions [20] has been
widely exploited as a baseline for comparisons in designing new GNN architectures [21] [22]
[23] [24], a lot of attention has been dedicated to two fundamental aspects, traditionally
crucial in the field of deep learning: 1) the approximation power [25] [26], namely, the
ability to approximate functions on graphs; 2) the generalization capability [27] [28] [29],
namely, the ability of a neural architecture to performs well outside the training data. For
instance, the Vapnik Chervonenkis dimension (VC dimension) can tell how much a model
is prone to overfitting. On the other hand, the universal approximation property specifies
that a model can approximate ony function and, in theory, can be used to implement any
application.

1.2 Thesis summary

This thesis is focused on the theoretical analysis of modern message–passing GNNs. The
first main contribution is constituted by the analysis of the approximation capability of
modern message–passing GNNs. Such GNNs are shown to be universal approximators
on static graph domains modulo the unfolding equivalence relation, a concept tightly
connected to the 1–WL test. Moreover, it is proved that two graphs are equivalent by
comparing the collection of the unfolding trees originating from their nodes if and only if
they are equivalent also based on the collection of the colors of the same nodes obtained by
running the 1–WL test. This equivalence connects the literature results on the expressive
power of GNNs with the results shown in this thesis on the approximation universality.
Proving universal approximation ability of GNNs involve the design of an appropriate
coding function that is able to collect the information of the graph through the local
message–passing mechanism.

In a second contribution, such results are straightforwardly extended to GNNs designed
for Static Attributed Undirected Homogeneous Graphs (SAUGHs), with node and edge
attributes, and to GNNs designed to process dynamic graphs ; the latter architectures are
denoted as Dynamic Graph Neural Networks (DGNNs). This extension is carried out
by expanding the paradigms of 1–WL test and unfolding trees to these graph domains,
proving their correspondent equivalence, and proving the correspondent approximation
universality results.

The third part of the thesis is devoted to the investigation of the generalization
capabilities of modern message–passing GNNs. First, bounds on the VC dimension are
provided for GNNs with Pfa�an activation functions. The class of Pfa�an functions,
introduced in algebraic geometry, includes the elementary functions, and it is used in
the deep learning context to analyze the topological properties of neural networks or
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loss surfaces [30] [28]. Moreover, the generalization capabilities of GNNs are also studied
through the lens of identity e↵ect learning, namely, the capability of a learning architecture
to determine whether a sample is made by two identical substructures or not. Identity
e↵ect learning is studied in GNNs under two di↵erent point of views: on one hand, GNNs
are shown to be unable to learn identity e↵ect when training exploits Stochastic Gradient
Descent (SGD), over a set of graphs representing two–letter words; on the other hand, the
potential of GNNs in learning identity e↵ects is shown through the link with the 1–WL
test, over graphs with more complex topologies. This analysis is particularly interesting
as it bridges the theory of GNNs with their ability in cognitive tasks, essential in real–life
applications.

The rest of this section, summarizes the main contributions of the thesis (Section 1.2.1)
and delineates its structure (Section 1.2.2).

1.2.1 Main contributions of the thesis

The main contributions of the thesis are summarized in the following.

1. New results on the approximation capabilities of GNNs,described in publication P01:

• We prove that, on connected graphs, modern GNNs, realizing node–focused
functions, are capable of approximating, in probability and up to any precision,
any measurable function that respects the 1–WL equivalence. Intuitively, this
means that GNNs are a kind of universal approximators for functions on the
nodes of the graph, modulo the limits enforced by the 1–WL test. Such a result
describes the GNN capability for node classification/regression tasks.

• The presented proof on the approximation capability of GNNs is the most
general that we are aware of, since it holds for node–attributed graphs with
real feature vectors and for a broad class of GNNs, which includes most of the
current models. Moreover, it is assumed that the target function is measurable,
which permits the approximation of discontinuous and more complex functions
w.r.t. existing results, e.g. [31]. Finally, the proof is based on a technique that
allows us to deduce information on the architecture of the GNN that can reach
the desired approximation. Such an information cannot be derived with the
Stone–Weierstrass theorem, previoslu used in other works, and includes, for
instance, hints on the number of iterations, the number of layers, the dimension
of hidden features, and the type of the network to be used to implement the
aggregation function.

• It is shown that, in order to reach any desired approximation accuracy, a single
real hidden feature is su�cient, the aggregation network must contain at least
one hidden layer, and the GNN must adopt at least 2N � 1 iterations, namely
the GNN must include 2N � 1 layers, where N is the maximum number of
nodes of any graph in the domain. The latter bound on GNN iterations/layers
can be surprising because we may expect that N iterations are su�cient to
di↵use the information on the whole graph. We will clarify that such a bound is
due to the nature of node classification/regression tasks. Actually, N iterations
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are su�cient for graph classification/regression tasks, but they are not enough
for node–focused tasks, which are more expensive from a computational point
of view.

• A set of experiments has been carried out in order to show that GNNs, if their
architectures are su�ciently general, can approximate any function, modulo
the unfolding equivalence/1–WL test, up to a desired degree of precision, so as
suggested by the proposed theoretical results.

2. New results on the approximation capabilities of GNNs over SAUGHs and dynamic
graphs, described in publication P02:

• We present new versions of the 1–WL test and of the unfolding equivalence
relation appropriate for dynamic graphs and SAUHGs with node and edge
attributes, and we show that they induce the same equivalences on nodes.
Such a result makes it possible to use them interchangeably to study the
expressiveness of GNNs.

• We show that generic GNN models for dynamic graphs and SAUHGs with node
and edge attributes are capable of approximating, in probability and up to any
precision, any measurable function on graphs that respects the 1–WL/unfolding
equivalence.

• The result on approximation capability holds for graphs with unconstrained
real feature vectors and target functions. Thus, most of the domains used in
practical applications are included. Moreover, our theory is based on space
partitioning, which allows us to deduce information about the GNN architecture
that can achieve the desired approximation.

• Numerical experiments are presented over the domain of dynamic graphs to
validate our theoretical findings.

3. New bounds on the VC dimension of modern message–passing GNNs with Pfa�an
activation functions, described in publication P03:

• We provide upper bounds for message–passing GNNs with Pfa�an activation
functions with respect to the main hyperparameters, such as the feature dimen-
sion, the hidden feature size, the number of message–passing layers implemented
and the total number of nodes in the training domain. To demonstrate these
results, we exploit the theory of Pfa�an functions and the characterization of
the VC dimension of the model via topological analysis.

• We also study the trend of the VC dimension w.r.t. the colors in the dataset
obtained by running the WL test. The theoretical result suggests that the
number of colors have an important e↵ect on GNN generalization capability. On
one hand, a large total number of colors in training set improves generalization,
since it increases the examples available for learning; on the other hand, a
large number of colors in each graph raises the VC dimension and therefore it
increases the empirical risk value.
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• Our theoretical findings are assessed by a preliminary experimental study;
Specifically, we evaluate the gap between predictive performance on training
data and that on unseen data.

4. Investigation of the generalization limits and capabilities of GNNs when learning
identity e↵ects, described in publication P04:

• GNNs are shown to be incapable of learning identity e↵ects via SGD training
under su�cient conditions determined by the existence of a suitable transform-
ation ⌧ of the input space; an application to the problem of classifying identical
two–letter words is provided and supported by numerical experiments.

• Conversely, GNNs are shown to be capable of learning identity e↵ects in terms
of binary classification of dicyclic graphs, i.e., graphs composed by two cycles
of di↵erent or equal length; a numerical investigation of the gap between our
theoretical results and practical performance of GNNs is provided.

1.2.2 Structure of the thesis

The thesis is organized to guide the reader through the analysis of the theoretical properties
of GNNs, first with an overview on their universal approximation ability, then exploring
their generalization capacity. In particular, background topics common to each main
contribution are presented in Chapter 2, where basic concepts of graph theory, the GNN
model in its more general form under the message–passing paradigm, along with an
explanation of the 1–WL test, are collected. Chapter 3 provides a detailed review of the
relevant literature in the field. Specifically, existing works on approximation universality
for GNNs are discussed, and an overview on the literature concerning the analysis of the
generalization capability of GNNs, under several point of views, is provided. In Chapter
4, a strict bijection is established between unfolded trees and the 1–WL test; GNNs are
shown to be universal approximators on classes of equivalence determined by the 1–WL
over the domain of static, node–attributed graphs. Additionally, a characterization of
the number of layers required for node–focused tasks is provided. Chapter 5 extends the
results presented in Chapter 4 to GNNs working over two larger graph domains, namely
SAUHGs and dynamic graphs. An appropriate extension of the theoretical concepts
of unfolding trees and 1–WL tests is provided on these two graph domains. Chapter 6
introduces some bounds for the VC dimension of GNNs whenever the activation function is
Pfa�an, a characterization that includes common activation functions such as arctangent,
hyperbolic tangent, and sigmoid. These bounds are stated not only in terms of the common
hyperparameters of a GNN, but also with respect to the number of colors deriving from
applying the 1–WL test over the dataset. In Chapter 7, the generalization capability
of GNNs is investigated under the lens of identity e↵ect learning. Two case studies are
investigated and experimental results are provided to validate the theoretical findings.
Chapter 8 contains a collection of other works carried on during the PhD, not strictly
related to the main contribution of this thesis. Contributions of this chapter include:
a topological analysis of the loss surface of common neural networks based on Betti
Numbers; an empirical analysis of the convergence of di↵erent Reservoir Computing (RC)
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topologies, neural networks characterized by fixed random weights, to correspondent
Recurrent Kernel architectures; a parameterization technique for planar domains that
exploits Physics Informed Neural Networks, learning models based on the minimization
of a Partial Di↵erential Equation in the loss function; a development of an algorithm to
analyse gaze movements in the so-called Visual Sequential Search Task to detect chronic
or extrapyramidal diseases in patients. Finally, in Chapter 9, conclusions are drawn and
perspectives for future works are discussed.
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Chapter 2

Background Topics

This section is devoted to introduce the notation used throughout the chapters and the
main basic concepts necessary to understand the content of this thesis. If some basic
concepts are specific to a single chapter, they will be introduced in the chapter itself. Basic
notation is reported in Table 2.1 to help the reader throughout the thesis.

G graph
V set of nodes
E set of edges
v node
↵v attribute for node v
q dimension of input feature space
d dimension of hidden feature space
o dimension of output feature space
k layer index
L total number of layers
t timestamp index

c(k)v 1-WL test coloring of node v at iteration k

Table 2.1: Basic notation

2.1 Graph theory: Basic concepts

An unattributed graph G can be defined as a pair (V, E), where V is a set of nodes and
E ✓ V ⇥ V is a set of edges between nodes. The number of nodes of a graph G is denoted
by N := |V |. Such a graph can be defined by its adjacency matrix A 2 {0, 1}N⇥N , where
Aij = 1 if eij = (i, j) 2 E, otherwise Aij = 0. The neighborhood of a node v is defined as
ne[v] = {u 2 V |(u, v) 2 E}. A graph G is said to be undirected if its adjacency matrix is
symmetric, directed otherwise. A graph can be said to be node–attributed or labeled if
there exists a map ↵ : V ! Rq, which assigns to every v 2 V a node feature (or vertex
feature or label) vector ↵(v) 2 Rq. Sometimes a label will be denoted as ↵v for ease of
reading. Therefore, a labeled graph G can be defined by a triplet G = (V, E,↵). All node
features of a labeled graph can be stacked in a feature matrix LG 2 RN⇥q. We report
here the definition of Graph Isomorphism, a concept that will be crucial for our analysis
in the next chapters.
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Definition 2.1 (Graph Isomorphism). Let G1 and G2 be two static graphs, then G1 =
(V1, E1) and G2 = (V2, E2) are isomorphic to each other G1 ⇡ G2, if and only if there
exists a bijective function � : V1 ! V2, with

1. v1 2 V1 , �(v1) 2 V2 8 v1 2 V1,
2. {v1, v2} 2 E1 , {�(v1),�(v2)} 2 E2 8 {v1, v2} 2 E1

Graph isomorphism (GI) gained prominence in the graph theory community when
it emerged as one of the few natural problems in the complexity class NP that could
neither be classified as being hard (NP-complete) nor shown to be solvable with an
e�cient algorithm (that is, a polynomial-time algorithm) [32]. Indeed it lies in the class
NP-Intermediate.

In Chapter 5, di↵erent domains of graphs, namely Static Attributed Undirected
Homogeneous Graphs (SAUGHs) and dynamic graphs, will be introduced. Unless otherwise
specified, we will always deal with finite labeled undirected graphs.

2.2 The color refinement algorithm and the Weisfeiler–

Lehman test

The first order Weisfeiler–Lehman test (1–WL test in short) [33] is a method to test
whether two graphs are isomorphic, based on a graph coloring algorithm, called color
refinement. The coloring algorithm is applied in parallel on the two graphs. Each node
keeps a state (or color) that gets refined in each iteration by aggregating information
from its neighbors’ state. The refinement stabilizes after a few iterations and it outputs
a representation of the graph. Two graphs with di↵erent representations, i.e. with a
di↵erent number of nodes for each color, are not isomorphic. Conversely, if the number of
nodes sharing the same color matches for the two graphs, then the graphs are possibly
isomorphic. Note that the test is not conclusive in the case of a positive answer, as the
graphs may still be non–isomorphic. Actually, the algorithm just provides an approximate
solution to the problem of graph isomorphism.

There exist di↵erent versions of the coloring algorithm: in this thesis, we adopt a
coloring scheme in which also the node labels are considered. Since GNNs take into
account both the structure and labels of graphs, it is useful to consider both these sources
of information, in order to analyse the GNN expressive power. Such an approach has
been used, for example, in [34]. More precisely, the coloring is carried out by an iterative
algorithm which, at each iteration, computes a node coloring c(k)l 2 ⌃, being ⌃ a subset of
the values representing the colors. The node colors are initialized on the basis of the node
features and then updated using the coloring from the previous iteration. The algorithm
is sketched in the following.

1. At iteration 0, we set
c(0)v = HASH0(↵v)

where HASH0 : Rq ! ⌃ is a function that bijectively encodes real features using
colors. In case of unattributed graphs, we assume q = 1 and ↵v = 1 , 8 v 2 V and
8G = (V, E) 2 G, being G the entire set of graphs to be considered.



i
i

i
i

i
i

i
i
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2. For k � 0, we set

c(k+1)
v = HASH(c(k)v , {{c(k)u |u 2 ne[v]}})

where HASH : ⌃⇥ ⌃⇤ ! ⌃ is a function that bijectively maps the input pairs to a
unique value in ⌃. The notation {{·}} represent a multiset. Moreover, we assume
that the same HASH function is used for all the iterations1.

In order to compare two graphs G0 = (V 0, E0), G00 = (V 00, E00), the coloring refinement
is applied in parallel on G0 and G00, and, at each step, the color profiles generated on
each graph are compared, namely, {{c(k)n |n 2 V 0}} = {{c(k)m |m 2 V 00}} is evaluated. If, at
any iteration, the colors of the graphs are di↵erent, then the 1–WL test fails and we can
conclude that the graphs are not isomorphic; otherwise, the test succeeds. Indeed, if the
color profiles agree, G0 and G00 may or may not be isomorphic.

In this thesis we use the color refinement also to compare nodes. Thus, given two
nodes u, v, which in the most general case can belong to di↵erent graphs, we compare their
colors at each iteration, i.e., cku = ckv . If, at any iteration, the node colors are di↵erent,
then the 1–WL node test fails, otherwise it succeeds. Notice that the color of a node n at
iteration k depends on the sub–graph Gk

n, defined by the k–hop neighbourhood of n. Thus,
intuitively, the 1–WL node test allows to check the isomorphism of the neighbourhoods of
two nodes, Gk

u v Gk
v .

2.3 Graph Neural Networks

Graph Neural Networks adopt a local computational mechanism to process graphs. The
information related to a node v is stored into a feature vector hv 2 Rd, which is updated
recursively by combining the feature vectors of neighboring nodes. After k iterations, the
feature vector hk

v is supposed to contain a representation of both the structural information
and the node information within a k–hop neighborhood. Once processing is complete, the
node feature vectors can be used to classify the nodes or the entire graph.

More rigorously, in the following Chapters we consider GNNs that use the following
general updating scheme:

h(k+1)
v = COMBINE(k+1)�hk

v ,AGGREGATE
(k){{hk

u, u 2 ne[v]}}
�

(2.1)

where the node feature vectors are initialized with the node labels, i.e., h0
v = ↵v 2 Rq for

each v. Here, di↵erently from other approaches, we assume that labels can contain real
numbers. Moreover, AGGREGATE(k+1) is a function which aggregates the neighboring
node features obtained in the (k)–th iteration, and COMBINE(k+1) is a function that
combines the aggregation of the neighborhood of a node with its feature at the (k)–th
iteration. In graph classification/regression tasks, the GNN is provided with a final

1
In [35], it is assumed that the HASH functions are di↵erent at each step, so that the algorithm can

reuse the same finite set of colors, e.g., denoted by the integer numbers 1 to N , where N is the number

of nodes in the graph. This can be achieved by bijectively re–mapping the colors after each refinement

step. The two algorithms are equivalent w.r.t. the goal of isomorphism testing. Here, we prefer to adopt a

unique HASH function to simplify our discussion on the properties of the algorithm.
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READOUT layer that produces the output o 2 Ro, combining all the feature vectors at
the last iteration L:

o = READOUT({{hL
v , v 2 V }}) (2.2)

whereas, in node classification/regression tasks, the READOUT layer produces an output
for each node, based on its features:

ov = READOUT(hL
v ) (2.3)

In this thesis, we will focus on both graph and node classification/regression tasks.
The framework described by Eqs. (2.1)–(2.3) is commonly used to study theoretical

properties of modern GNNs (see, e.g., [13]). The class of models included in such framework
is rather wide and includes, for example, GraphSAGE [12], GCN [36], GAT [11], GIN [13],
ID–GNN [24], and GSN [23].

It is worth mentioning that the the original GNN (OGNN) model [2] is not formally
covered, both because in OGNNs the input of AGGREGATE(k) and COMBINE(k) contains
the node labels ↵v and possibly also the edge features, and because the node features
are not initialized to ↵v. Other models, such as MPNN [9], NN4G [3] and GN [37] are
not included as well for similar reasons. Of course, Eq. (2.2) could easily be extended to
include also OGNNs and the models mentioned above, but here we prefer not to complicate
the proposed framework to keep the notation and proofs simple.

The updating scheme we choose as a reference for the analysis carried on in Chapter 6
and 7 follows [20].

The hidden feature vector h(k+1)
v 2 Rd of a node v at the message–passing iteration

k + 1, for k = 1, . . . , L� 1, is defined as

h(k+1)
v = �

�
W(k+1)

comb h(k)
v + W(k+1)

agg h(k)
ne[v] + b(k+1)

�
, (2.4)

where h(k)
ne[v] = POOL{{h(k)

u |u 2 ne[v]}}, � : Rd ! Rd is an element–wise activation function
and POOL is the aggregating operator on the neighbor node’s features. The aggregating
operator can be defined as a non–learnable function, such as the sum, the mean or the
minimum, across the hidden features of the neighbors. With respect to Eq. (2.1), we have
that AGGREGATE(k)(·) = POOL(·), 8 k = 1, . . . , L, while COMBINE(k+1)(hv,hne[v]) =

�
�
W(k+1)

comb hv + W(k+1)
agg hne[v] + b(k+1)

�
.

In this case, the READOUT for graph classification tasks has been defined as

READOUT
⇣
{{h(L)

v | v 2 V }}
⌘

:= f
⇣X

v2V

h(L)
v w + b

⌘
(2.5)

For each node v, the hidden state is initialized as h(0)
v = ↵v 2 Rq

The learnable parameters of the GNN can be summarized as

⇥ := (W(0)
comb,W

(0)
agg,b

(0),W(1)
comb,W

(1)
agg,b

(1), . . . ,W(L)
comb,W

(L)
agg,b

(L).w, b),

with W(0)
comb,W

(0)
agg 2 Rq⇥d, W(k)

comb,W
(k)
agg 2 Rd⇥d, for k = 1, . . . , L, and b(k) 2 Rd, for

k = 0, . . . , L; moreover, w 2 Rd⇥o and b 2 Ro.
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This model has been proven to match the expressive power of the Weisfeiler–Lehman
test [20] and can, therefore, be considered a good representative model of the message–
passing GNN class. Specifically, the characterization reported below states the equivalence,
on a node coloring level, referring to the particular model defined in (2.4).

Theorem 2.2 (See [20, Thm 2]). Let G = (V, E,↵) be a graph with initial coloring
c(0)(v) 2 R for each node v 2 V (so that c(0) 2 R|V (G)|). Then, for all k � 0, there exists
a GNN of the form (2.4) such that the hidden feature vector H(k) 2 R|V (G)| produced by
the GNN at layer k coincides with the color vector C(k) 2 R|V (G)| produced by the 1–WL
test at iteration t, i.e., C(k) ⌘ H(k).
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Chapter 3

Theory of Graph Neural Networks: A
literature review

In this chapter we provide an overview of the literature on the mathematical foundations
of neural networks, more specifically GNNs. We will focus on works that have studied its
approximation power and generalization capabilities.

3.1 Neural networks as universal approximators

Since the very first introduction of neural networks, researchers have been focused on the
evaluation of their approximation power. The seminal work of [38] and [39] showed that
MLPs with one or more hidden layers are universal approximators on any measurable
function and up to any degree of precision, provided that a su�cient number of neurons is
chosen; in [40] some bounds are provided on the approximation error that depend on the
number of neurons in the hidden layer. An overview on the results and techniques present
in the literature can be found in [41], [42].

3.1.1 The approximation power of GNNs

In [1], the approximation capability of the original GNN model (OGNN), namely the
first GNN model to be proposed, has been studied using the concept of unfolding trees
and unfolding equivalence. The unfolding tree Tv, with root node v, is constructed by
unrolling the graph starting from v (see Fig. 3.1). Intuitively, Tv exactly describes the
information used by the GNN at node v and can be employed to study the expressive
power of GNNs in node classification/regression tasks. The unfolding equivalence is, in
turn, an equivalence relationship defined between nodes having the same unfolding tree.
In [1], it was proved that OGNNs can approximate in probability, up to any degree of
precision, any measurable function ⌧ : (G ⇥ V)! Ro — where V is the set of all nodes
of all graphs in G —, that respects the unfolding equivalence, namely, that produces the
same outputs on equivalent nodes. Currently, unfolding trees — also termed computation
graphs [43] — are widely used to study the GNN expressiveness. Universal approximation
results have been proved for Linear Graph Neural Networks [26, 44], Folklore Graph Neural
Networks [45] and, more generally, for a large class of GNNs [13, 26] that includes most of
the recent architectures, also considered in this chapter.

Despite many advances in research on approximation theory for GNNs, there are still
open problems to be investigated. First of all, the most general results available on modern
GNNs are based on the Stone–Weierstrass theorem and state that the functions which can
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Unfolding trees

Non-equivalent

Equivalent

Figure 3.1: An example of a graph with some unfolding trees. The symbols outside the nodes

represent features. The two nodes on the left part of the graph are equivalent and have equivalent

unfolding trees.

be approximated by GNNs are dense in the invariant continuous function space, modulo
the 1–WL test [26]. However, the Stone–Weierstrass theorem is existential in nature, so
that, given a target function to be approximated, it does not allow to construct a GNN
architecture that can reach the desired approximation — defining, for example, the number
of its layers, and the feature dimension required to build the approximator. Moreover, the
current results apply only to continuous functions on node/edge labels, which are defined
on a compact subset of Rq, a fact that may not hold in practical application domains, since,
for instance, the function to be approximated may show step–wise behavior with respect
to some inputs. Finally, all the results on the expressive capacity of modern GNN models
are dedicated to graph classification/regression tasks, but node classification/regression
problems are also widely present in practical applications and it is important to generalize
the theoretical results on expressivity to them as well. In addition, it is useful to study the
relationships between unfolding trees and the 1–WL test in this context. Indeed, it can be
observed that the Weisfeiler–Lehman test assigns a color to all the nodes of a graph to
make them distinguishable, and it can be naturally expected that the equivalence classes
defined by the colors are related to those defined by the unfolding trees. In fact, it has
been proved that the two mechanisms, colors or unfolding trees, produce the same profiles
for graphs [46], namely the same number of nodes per equivalence class, but whether they
produces exactly the same profiles with respect to single nodes, i.e., nodes get assigned
the same equivalence class, is still an open problem. A formal and precise answer to this
question will allow us to use the two frameworks in a targeted or exchangeable way in the
context of node classification/regression tasks.
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3.2 Generalization capabilities of neural networks

The study of the generalization capabilities of neural networks has always been crucial for
the development of e�cient learning algorithms. In recent decades, several complexity
measures have been proposed to establish reliable generalization bounds, such as Vapnik–
Chervonenkis (VC) dimension [47], Rademacher complexity [48, 49], and Betti numbers
[30].

3.2.1 GNN generalization properties

Several approaches have been exploited in order to give some insights on the generalization
abilities of GNNs. In [43], this issue has been investigated by providing new bounds on the
Rademacher complexity in binary classification tasks; the study is carried out by focusing
on the computation trees of the nodes, which are tightly linked to the 1–WL test [46]
[50]. Similarly, in [51], the authors derive generalization bounds based on Trasductive
Rademacher Complexity, which di↵ers from the standard Rademacher Complexity by
taking into account also unobserved instances. In [52], it is proven that the stability and,
consequently, the generalization capabilities of Graph Convolutional Networks (GCNs)
depend on the largest eigenvalue of the convolutional filter; therefore, to ensure a better
generalization ability, the eigenvalue should be independent of the graph size. Under the
lens of the PAC–learnability framework, the generalization bounds presented in [43] have
been improved in [53], showing a tighter dependency on the maximum node degree and
the spectral norm for the weights. This result aligns with the findings in [52]. In [54], the
authors provide sharper bounds on the GNNs robustness to noise by investigating the
correlation between attention and generalization in GNNs: specifically, GCNs and Graph
Isomorphism Networks (GINs) are considered. The results show a link between the trace
of the Hessians of the weight matrices and the stability of GNNs. A correlation between
attention and generalization in GCNs and GINs is empirically investigated in [27]. In [28],
bounds on the VC dimension of the earliest GNN model with Pfa�an activation function
are provided as well. Our work extends those results to generic GNNs of the form (2.1).
The authors of [51] provide bounds on the VC dimension of GCNs for linear and ReLU
activation functions.

Our results are particularly related to the work in [55] where bounds for the VC
dimension of modern GNNs are studied, when the activation function is a piecewise linear
polynomial function. Bounds are derived also in terms of the number of colors computed
by the 1-order WL test on the graph domain.

Nevertheless, aside from [28], all the aforementioned works focus solely on speficic
GNN models with piecewise polynomials activation functions, leaving out all GNN models
with other common activation functions as arctangent, hyperbolic tangent or sigmoid.

3.2.2 Neural networks and cognitive tasks: the identity e↵ect
learning case

An alternative approach for assessing the generalization capabilities of neural networks
is based on investigating their ability to learn specific cognitive tasks [56, 57, 58], which
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have long been of primary interest as neural networks were originally designed to emulate
functional brain activities. Among the various cognitive tasks, the linguistic community
has shown particular interest in the study of the so–called identity e↵ects, i.e. the task
of determining whether objects are made up of two identical components or not [59, 60].
To provide a simple but illustrative example, we can consider an experiment in which
the words AA,BB,CC are assigned to the label “good”, while AB,BC,AC are labelled as
“bad”. Now, imagine a scenario where a subject is presented with new test words, such as
XX or XY. Thanks to the human ability of abstraction, the subject will be immediately
able to classify the new words correctly, even though the letters X and Y were not part
of the the training set. The identity e↵ect learning finds other examples in, for instance,
reduplication (which happens when words are inflected by repeating all or a portion of
the word) [61] or contrastive reduplication [62]. Besides their relevance in linguistics,
the analysis of identity e↵ects can serve as an intuitive and e↵ective tool to evaluate
the generalization capabilities of neural networks in a variety of specific tasks. These
tasks encompass the identification of equal patterns in natural language processing [63] as
well as molecule classification or regression [5]. In the context of molecule analysis, the
exploitation of molecular symmetries as in the class of bicyclic compounds [64] plays a
crucial role as it can be exploited to retrieve molecular orientations [65] or to determine
properties of molecular positioning [66]. Furthermore, the existence of di↵erent symmetries
in interacting molecules can lead to di↵erent reactions. Recently, it has been shown in
[67] that Multilayer Perceptrons (MLPs) and Recurrent Neural Networks (RNNs) cannot
learn identity e↵ects via Stochastic Gradient Descent nor Adam, under certain conditions
on the encoding utilized to represent the components of the objects.
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Approximation capabilities of
Graph Neural Networks
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Chapter 4

Universality of GNNs for node-attributed
graphs

Approximation capabilities of GNNs are among the most essential theoretical properties
to be analyzed in order to describe which kind of functions, and up to which degree of
precision, these models are able to approximate, given a specific graph domain. In this
chapter, we present an alternative approach to study the approximation capability of
recent GNNs by the point of view of node-focused tasks. The chapter is organized as
follows. Notation and basic concepts are introduced in Section 4.1, while Section 4.2
presents the main contribution of this Chapter. In Section 4.3, we present the experiments
conducted to validate our theoretical results.

4.1 Preliminaries

In this section, we introduce the notation and the basic definitions required for the
understanding of this chapter.

4.1.1 Unfolding trees and unfolding equivalence

Unfolding trees 1 and unfolding equivalence are two concepts that have been introduced
in [1] with the aim of capturing the expressive power of the OGNN model. Intuitively, an
unfolding tree T k

v is the tree obtained by unfolding the graph up to the depth k, using the
node v as its root. Fig. 3.1 shows some examples of unfolding trees. In the following, a
formal recursive definition is provided.

Definition 4.1. The unfolding tree T k
v of a node v up to depth k is

T d
v =

(
Tree(↵v) if k = 0
Tree(↵v, T

k�1
ne[v]) if k > 0

where Tree(↵v) is a tree constituted of a single node with label ↵v and Tree(↵v, T
k�1
ne[v])

is the tree with the root node labeled with ↵v and having sub–trees T k�1
ne[v]. The set

T k�1
ne[v] = {T k�1

u1
, T k�1

u2
, . . . } collects all unfolding trees having depth k�1, with ui 2 ne[v], 8i.

Moreover, the unfolding tree of v, Tv = lim
k!1

T k
v , is obtained by merging all unfolding trees

T k
v for any k.

1
Unfolding trees are also referred to as computational graphs [43] or search trees [34, 13].
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Note that, since a GNN adopts a local computation framework, its knowledge about
the graph is updated step by step, every time Eq. (2.1) is applied. Actually, at the first
step, k = 0, the feature vectors h0

v depends only on the local label, while, at step k, the
GNN updates the feature vector hk

v incorporating the information related to the k–distant
neighbourhood of v. Thus, intuitively, the unfolding tree T k

v describes the information
that is theoretically available to the GNN at node v and step k. Such an observation has
been used in [1] to study the expressive power of the OGNN model and will be used also
in this chapter for the same purpose.

In this context, two questions have been answered.

(1) Can GNNs compute and store into the node features a coding of the unfolding trees,
namely can GNNs store all the theoretically available information?

(2) Since unfolding trees are di↵erent from the input graphs, how does this a↵ect the
GNN expressive power?

Regarding the first question, it has been shown that, indeed, both OGNNs and modern
GNNs can compute and store in the node features a coding of the unfolding trees, provided
that the appropriate network architectures are used in COMBINE(k) and AGGREGATE(k) [34,
1, 13]. Regarding question (2), we can easily argue that if two nodes have the same unfold-
ing tree, then GNNs produce the same encoding on those nodes. This fact highlights an
evident limitation of the expressive power of GNNs. The unfolding equivalence is a formal
tool designed to capture such a limit: it is an equivalence relation that brings together
nodes with the same unfolding tree, namely it groups nodes that cannot be distinguished
by GNNs.

Definition 4.2. Two nodes v, u are said to be unfolding equivalent, v vue u, if Tv = Tu.
Analogously, two graphs G1, G2 are said to be unfolding equivalent, G1 vue G2, if there
exists a bijection between the nodes of the graphs that respects the partition induced by
the unfolding equivalence on the nodes 2.

Since GNNs have to fulfill the unfolding equivalence, also the functions on graphs that
they can realize share this limit. In our results on the approximation capability of GNNs,
the focus is on functions that preserve the unfolding equivalence. Those functions are
general enough except that they produce the same output on equivalent nodes.

4.1.2 The Weisfeiler–Lehman equivalence

In this chapter, we use the color refinement introduced in Chapter 2 also to compare nodes.
Thus, given two nodes u, v, which, in the most general case, can belong to di↵erent graphs,
we compare their colors at each iteration, i.e., we check if ckv = cku. If, at any iteration,
the node colors are di↵erent, then the 1–WL node test fails, otherwise it succeeds. Notice
that the color of a node v at iteration k depends on the sub–graph Gk

v , defined by the
k–hop neighbourhood of v. Thus, intuitively, the 1–WL node test allows to check the
isomorphism of the neighbourhoods of two nodes, Gk

v v Gk
u.

2
For the sake of simplicity, and with notation overloading, we adopt the same symbol vue both for the

equivalence between graphs and between nodes.
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With the mentioned algorithms, we can easily produce a definition of WL–equivalence
for graphs and nodes.

Definition 4.3 (WL–equivalence). Two graphs, G0 = (V 0, E0) and G00 = (V 00, E00), are
said to be WL–equivalent if they have the same multisets of colors at each iteration of the
color refinement algorithm, i.e., {{c(k)n |n 2 V 0}} = {{c(k)m |m 2 V 00}} for any t. Analogously,
two nodes, v and u, are said to be WL–equivalent, v vWL u, if they have the same
colors at each step of the color refinement algorithm, i.e., c(k)v = c(k)u for any k.

It is interesting to observe that the color refinement procedure must be iterated until a
di↵erence in colors is detected between the compared items, either graphs or nodes, or until
a maximum number of iterations is reached. It is well known that the color refinement of
the common Weisfeiler–Lehman test, defined for graph comparison, can be halted when
the node partition defined by colors become stable: if the two graphs share the colors
when the stability is reached, then the equality will last forever. More precisely, let ⇡k(G)
be the partition of the nodes of G constructed by collecting in the same class the nodes
that have the same color at iteration k. It is not di�cult to prove that the partitions
become finer at each iteration, ⇡k�1(G) ⌫ ⇡k(G), and that there exists an iteration L
at which they become stable, ⇡L�1(G) ⌘ ⇡L(G), Moreover, it can be proved that N � 1,
where N is the number of nodes in G, is both an upper and lower bound on the number
L of iterations needed to achieve stability [68].

Note that the stability of the node partition does not imply that the colors do not
change. Actually, if the colors are not reused, as in our definition, and at least an edge
exists, new colors appear at each iteration. Intuitively, this happens because the use, at a
node v, of a new color, which has not been considered in the past, causes the algorithm to
create new colors for the neighbors of v as well: thus, new colors will be generated forever.
This observation can be used to explain why the upper bound on the iterations of the
color refining procedure is di↵erent in the case of node or graph equivalence. We will see
that we must wait for 2N � 1 iterations before halting the procedure in the former case,
whereas, as mentioned above, N � 1 iterations are su�cient in the latter.

4.2 Main Results

In this section, the main results of the chapter are presented and discussed.

4.2.1 Unfolding and Weisfeiler–Lehman equivalence

The first proposed result regards the relationship between the unfolding and the Weisfeiler–
Lehman equivalence. The following two theorems clarify that the two equivalence relations
produce the same partitions of nodes and graphs. Moreover, the correspondence exists also
between the intermediate equivalences defined by, respectively, the colors at each iteration
of the WL algorithm and the unfolding trees having a corresponding depth. Formally, let
us denote by vuek the unfolding equivalences between nodes and graphs that are defined
as in 4.2, but considering unfolding trees of depth k in place of infinite trees. Similarly, let
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us denote by vWLk the WL–equivalences that are defined as in 4.3, where only the colors
of the refinement procedure up to the k–th iteration are considered.

Since both unfolding equivalence and color equivalence have been described using a
node–localized recursive definition, it is natural to investigate possible connections between
these two relations. Indeed, in the following, we show that they are equivalent on a domain
of graphs with node features, i.e. that they define the same relationship between nodes.

Theorem 4.4.
Let G = (V, E,↵) be a graph and let v, u 2 V , with features ↵v, ↵u. Then, 8k 2 N

T k
v = T k

u i↵ c(k)v = c(k)u (4.1)

where c(k)v and c(k)u represent the node coloring of v and u at time k, respectively.

Proof. The proof is carried out by induction on t, which represents both the depth of the
unfolding trees and the iteration step in the WL colouring.
For k = 0, T 0

u = Tree(↵u) = Tree(↵v) = T 0
v if and only if ↵u = ↵v and c(0)u =

HASH0(↵u) = HASH0(↵v) = c(0)v . Let us suppose that Eq. (4.1) holds for k � 1, and
prove that it holds also for k.

(!) Assuming that T k
u = T k

v , we have

T k�1
u = T k�1

v (4.2)

and

Tree(↵u, Tne[u]) = Tree(↵v, Tne[v]) (4.3)

By induction, Eq. (4.2) is true if and only if

c(k�1)
u = c(k�1)

v (4.4)

Eq. (4.3) implies that ↵u = ↵v and Tne[u] = Tne[v], which means that an ordering
on ne[u] and ne[v] exists s.t.

Tnei(u) = Tnei(v) 8 i = 1, . . . , |ne[u]| (4.5)

Hence, Eq. (4.5) holds if and only if an ordering on ne[u] and ne[v] exists s.t.

cne(u)i = cne(v)i 8 i = 1, . . . , |ne[u]|

that is

{{c(k�1)
m |m 2 ne[u]}} = {{c(k�1)

n |n 2 ne[v]}} (4.6)

Putting together Eqs. (4.4) and (4.6), we obtain:

HASH(c(k�1)
u , {{c(k�1)

m |m 2 ne[u]}}) = HASH(c(k�1)
v , {{c(k�1)

n |n 2 ne[v]}})

which implies that c(k)u = c(k)v .
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( ) The proof of the converse implication follows a similar reasoning, but some di↵er-
ent steps are required in order to reconstruct the unfolding equivalence from the
equivalence based on the 1–WL test.

Let us assume that c(k)u = c(k)v ; by definition,

HASH(c(k�1)
u , {{c(k�1)

m |m 2 ne[u]}}) = HASH(c(k�1)
v , {{c(k�1)

n |n 2 ne[v]}}) (4.7)

Being the HASH function bijective, Eq. (4.7) implies that:

c(k�1)
u = c(k�1)

v (4.8)

and

{{c(k�1)
m |m 2 ne[u]}} = {{c(k�1)

n |n 2 ne[v]}} (4.9)

Eq. (4.8) is true if and only if, by induction,

Tu = Tv (4.10)

which implies

↵u = ↵v (4.11)

Moreover, Eq. (4.9) means that an ordering on ne[u] and ne[v] exists such that

cne(u)i = cne(v)i 8 i = 1, . . . , |ne[u]| (4.12)

Instead, by induction, Eq. (4.12) holds if and only if an ordering on ne[u] and ne[v]
exists so as Tnei(u) = Tnei(v), 8 i = 1, . . . , |ne[u]|, i.e.,

Tne[u] = Tne[v] (4.13)

Finally, putting together Eqs. (4.11) and (4.13), we obtain

Tree(↵u, Tne[u]) = Tree(↵v, Tne[v])

that means Tu = Tv.

As a consequence, we can derive the following Corollary which is just a rephrasement
of Theorem 4.4 in terms of the equivalence notation.

Corollary 4.5.
Let G = (V, E,↵) be a labeled graph. Then, for each v, u 2 V , v vue u holds if and only
if v vWL u holds. Moreover, for each integer k � 0, v vuek u if and only if v vWLk u.
(The initialization of the colors is based on the initial labeling of the nodes.)

Moreover, again from Theorem 4.4 we can extend the results to the domain of graphs.
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Corollary 4.6.
Let G1, G2 be two labeled graphs. Then, G1 vue G2 if and only if G1 vWL G2. Moreover,
for each integer k � 0, G1 vuek G2 if and only if G1 vWLk G2.

Both the unfolding equivalence and the WL equivalence have been described using a
recursive definition local to nodes. Figure 4.1 shows an example in which the unfolding
trees and the colors of two nodes are iteratively computed: in the example, the colors of
the nodes become di↵erent when also the unfolding trees di↵er.

Figure 4.1: A graphical representation of the relationship between the color refinement and the

unfolding equivalence, applied on nodes 1 and 4 of the given graph.

Indeed, the existence of a relationship between the two types of equivalence appears
to be a natural consequence of their definition. In fact, it is sometimes assumed in the
literature (f.i., in [44]) that the two tools can be used interchangeably but, as far as we
know, there was no formal demonstration of their e↵ective equivalence. More precisely,
in [46, 69, 70], it has been proved that the 1–WL test and unfolding trees produce the
same profile on graphs without attributes. Therefore, Corollary 4.6 is just an extension of
those results to the case of graphs with attributes. Instead, Corollary 4.5, which focuses
on nodes, is completely novel.

Corollaries 4.5 and 4.6 are interesting since they formally confirm that the two equival-
ences are exactly interchangeable and can be used together to study GNNs. While the
Weisfeiler–Lehman test has been often adopted to analyse the expressive power of GNNs
in terms of their capability of recognizing di↵erent graphs, the unfolding equivalence and,
more precisely, unfolding trees, can provide a tool to understand the information that a
GNN can use at each node to implement its function.

For example, it is well known that GNNs cannot distinguish regular graphs where
nodes have the same features (see e.g. [34]). Of course, in this case, a GNN is not able to
distinguish any node, since all the unfolding trees are equal (see Figure 4.2a). Actually,
on the one hand, when a target node has di↵erent attributes with respect to the others,
also the unfolding trees incorporate such a di↵erence and the nodes at di↵erent distances



i
i

i
i

i
i

i
i

4.2. Main Results 27

from this target node belong to di↵erent equivalence classes (see Figure 4.2b). On the
other hand, if all the attributes are di↵erent, then each node belongs to a di↵erent class,
since all unfolding trees are di↵erent (see Figure 4.2c).

a

a a

a a

a

(a)

b

a a

a a

a

(b)

a

b c

d e

f

(c)

Figure 4.2: (a) A regular graph where all nodes have the same features. All unfolding trees are

equal. (b) The equivalence classes when only one node has di↵erent features. (c) The equivalence

classes when all nodes have di↵erent features.

We observe that, in principle, by adding random features to the node labels, we could
make all the nodes distinguishable and improve the GNN expressive power. This fact
was already mentioned for OGNNs [1] and has been recently observed also for modern
GNN models [71]. Obviously, this is true only in theory, as the introduction of random
features usually produces overfitting. However, some particular tasks exist where random
attributes help, for example, see [1] and [34].

A further important issue of our analysis regards how much deep the unfolding trees
have to be, i.e., how many iterations of color refinement are needed, in order to make
the equivalence stable. Actually, Corollaries 4.5 and 4.6 suggest that the unfolding
and Weisfeiler–Lehman equivalences remain paired up to any depth/iteration k. Those
equivalences naturally become finer and finer as the iterations proceed, i.e, vuek�1�vuek

and vWLk�1�vWLk , until L, when they become stable and equal to the corresponding
infinite equivalences, namely vuek�1⌘vuek⌘vue and vWLk�1⌘vWLk⌘vWL. As already
mentioned in Section 4.1, according to the literature [68], it is known that, for the WL
equivalence on graphs, N � 1 is both an upper and lower bound on L, where N is the
maximum number of nodes in the graphs.
Taking inspiration from the results in [68] about covering trees, we are now going to show
that, for equivalences on nodes, the bounds are di↵erent and we must wait up to 2N � 1
iterations, i.e., trees of depth 2N � 1, until the equivalences become stable.

In order to prove this, we need first to present the concept of universal covering, first
introduced in [46], which allows us to derive useful properties on the unfolding trees (see
[46] for more details).

Let G = (V, E). Given a graph H = (V 0, E0,↵), with ↵ being the labeling function
↵ : G ! Rq and a homomorphism  from H to G, if:

•  is a bijection from ne(v) onto ne( (v))

• ↵(v) = ↵( (v))

• ↵(u) = ↵( (u)) 8u 2 ne(v)
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for all v 2 V 0, then  is called an attributed covering map and H is called a covering graph.
Given a connected graph G and a vertex x 2 V , let us define a graph Ux(G) as follows.
The vertex set of Ux(G) consists of all non–backtracking walks in G starting at x, that is,
of sequences (x0, x1, . . . , xm) such that x0 = x, xi and xi+1 are adjacent, and xi+1 6= xi�1.
Two such walks are adjacent in Ux(G) if one of them extends the other by one component,
that is, one is (x0, . . . , xm, xm+1) and the other is (x0, . . . , xm). Ux(G) is a tree and �G
defined as �G(x0, . . . , xm, xm+1) = xm is a covering map from Ux(G) to G. We call U an
attributed universal cover of G if U covers any covering graph of G. Therefore, Ux(G) is
an attributed universal cover of G.

Given that we are dealing with attributed graphs, we will drop the ”attributed”
adjective from now on, to make the notation lighter.

First of all, we recall a result which is proved in [46], showing the bijective correspond-
ence between universal coverings and colors up to a certain depth/iteration.

Lemma 4.7. [46] Let U and W be universal covers of graphs G and H, respectively.
Furthermore, let  be a covering map from U to G and ⇠ be a covering map from W to H.
Let x 2 V (U) and y 2 V (W ), and let u =  (x) and v = ⇠(y). Then, for any k, Uk

x
⇠= W k

y

if and only if c(k)u = c(k)v .

We observe that we can always identify the node x from a covering Wx of a graph
H with its mapping u via  ; i.e., x = u. This allows us to restate the previous bijective
relationship as: Uk

u
⇠= W k

v if and only if c(k)u = c(k)v .

We will now bridge the concepts of universal coverings and unfolding trees, passing
through the colour refinement algorithm.

Lemma 4.8. Let G and H be connected graphs and x, y be nodes of G and H, respectively.
Then T k

x
⇠= T k

y if and only if Uk
x
⇠= W k

y for all k.

Proof. Putting together Lemma 4.4 and 4.7, the thesis is obtained straightforwardly.

We are now able to state the following result.

Theorem 4.9. The following statements hold for graphs with at most N nodes.

1. Let G and H be connected graphs and x, y be nodes of G and H, respectively. The
infinite unfolding trees Tx, Ty are equal if and only if they are equal up to depth
2N � 1, i.e., Tx = Ty i↵ T 2N�1

x = T 2N�1
y .

2. For any N , there exist two graphs G and H with nodes x, y, respectively, such
that the infinite unfolding trees Tx, Ty are di↵erent, but they are equal up to depth
2N � 16

p
N , i.e., Tx 6= Ty and T i

x = T i
y for i  2N � 16

p
N .

Proof of Theorem 4.9. . The proof is based on the observation that in [46] points (1) and
(2) are proved for universal covers, whereas our points refer to unfolding trees. Taking
into account Lemma 4.8, we have that universal covers and unfolding trees produce the
same isomorphism on nodes. Thus,the thesis follows immediately.
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In order to get an intuitive explanation of why the bounds to achieve stability are
di↵erent for graph and node equivalences, let us consider the case of two graphs G and H
that are not equivalent, i.e., G 6⌘WL H holds. Moreover, let us assume that the parallel
application of the refinement algorithm detects the di↵erence in colors at iteration L̄,
namely G 6⌘WLL̄

H, for example because a new color is generated for graph G that is
not present in H. At this iteration, the WL algorithm is halted, since we detected at
least a node v in G that is di↵erent from all the nodes in H. However, if we continue
the color refinement, the new color of u will generate other new colors, which are not
present in H , also for the neighbors of v. After at most N iterations, the di↵erence spreads
throughout the graph, so that, finally, all nodes in G are di↵erent from those in H. This
is intuitively correct, since all the nodes in G are connected to a node that does not exist
in H. Therefore, we can observe that, while the first di↵erence between the nodes of the
two graphs arises after N � 1 iterations, the di↵usion of such information to all the nodes
takes additional N steps. Obviously, a similar conclusion can be derived also considering
the unfolding equivalence and the depths of the unfolding trees.

An example that illustrates this situation is depicted in Figure 4.3. The two graphs
in (a) and (b) have been proposed in [46] and satisfy the lower bound of point (2) of
Theorem 4.9. In the example, we assume that all the nodes have the same attributes,
even if, for the sake of clarity, they are displayed with di↵erent symbols in terms of their
”role” in the coloring scheme. The graphs in (a) and (b) are constructed using copies of
the subgraph modules in (c), (d) and (e), which are merged in a sequence; (a) and (b) are
equal except at the top: in (a), at the end of the sequence, there is a copy of (d), while in
(b) there is a copy of (e). It is worth noting that (a) and (b) do not satisfy the relation
2N � 16

p
N > N ; nevertheless, adding multiple times module (c) to the tail of both (a)

and (b), we can find two graphs satisfying the requested relation. Indeed the interesting
case happens when the sequence is long enough so that 2N � 16

p
N > N holds. In this

case, we have the following situation: graphs (a) and (b) are distinguishable by the 1–WL
test in less than N steps; nevertheless, a number of steps k > 2N � 16

p
N > N is needed

to distinguish the nodes v and u. Therefore, intuitively, the color refinement approach
can recognize that (a) and (b) are not isomorphic, but the detection of their di↵erence
occurs only when the information about the asymmetry — which is on one side of the
sequence — arrives to the other side of the sequence, where the di↵erent modules have
been placed. After that, the di↵erence of the two modules is detected and this information
is propagated to the rest of the graphs in a number of iterations proportional to the length
of the sequences to arrive back to nodes v and u.

In order to formally link the concept of unfolding trees to the computational capability
of GNNs, let us now recall the definition of unfolding equivalence.

Definition 4.10. Let D = (G ⇥ V), where G is a set of graphs and V is a subset of their
nodes. A function f : D ! Ro is said to preserve the unfolding equivalence on D if v ⇠ u
implies f(G, v) = f(G, u).

The class of functions that preserve the unfolding equivalence on D will be denoted
with F(D). A characterization of F(D) can be given taking into account [1] (Theorem 1)
and Theorem 4.9.
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(a) (b) (c) (d) (e)

Figure 4.3: In (a) and (b), two graphs G, H are depicted that satisfy the lower bound of point

(2) of of Theorem 4.9. Graphs in (a) and (b) are constructed by aggregating in a sequence two

copies of the same subgraph (c); then, module (d) is added at the top of graph (a), while module

(e) is added at the top of graph (b).

Theorem 4.11 (Functions of unfolding trees). A function f belongs to F(D) if and only
if there exists a function , defined on trees, such that f(G, v) = (T 2N�1

v ), for any node
v 2 V.

The above theorem represents an improvement of the results reported in [41]; indeed,
considering the unfolding tree down to the depth 2N � 1, we can provide the complete
information on a graph to a function f belonging to F(D).

Note that Theorem 4.11 suggests not only that the functions that compute the output
on a node using unfolding trees preserve the unfolding equivalence, but also that the
converse holds, namely all the functions that preserve the unfolding equivalence can be
computed as functions of the unfolding trees. Since GNNs can implement only functions of
the unfolding trees, we may expect that there is a tight relationship between what GNNs
can learn and the class F(D). Actually, in [1], it has been shown that the OGNN model
can approximate in probability, up to any degree of precision, any function in F(D) and a
similar result will be derived for modern GNNs in this chapter.
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Figure 4.4: Structure of the proof of Theorem 4.13.

4.2.2 Approximation capability

So far, we have considered what GNNs cannot do, since we have proved that they are
unable to distinguish nodes that originate equal unfolding trees. Another obvious limit is
that, at each node v, a GNN considers only the part of the graph that is reachable from
v and cannot implement any function depending on the information inaccessible from
that node. For this reason, for simplicity, in the following we assume that the graphs are
connected.

In this section, we focus our attention on two questions that are related to each other,
namely which functions can be approximated by GNNs and if there are any limitations
other than that related to the unfolding equivalence. In order to address these questions, we
consider the class of functions that preserve the unfolding equivalence (see Definition 4.10).
Our aim is to prove that GNNs can approximate in probability, up to any precision, any
function of this class, which means that GNNs are a sort of universal approximators on
graphs, modulo the limitations due to the unfolding equivalence. This result is stated in
Theorem 4.13.

The structure of the proof of Theorem 4.13, summarized in Figure 4.4, is the following:

• We first prove Theorem 4.12, which states that GNNs are deterministically universal
approximators on a finite set of graph-node patterns;

• We prove then Theorem 4.14, with the help of the Lemma 4.15, to prove that Theorem
4.12 and Theorem 4.13 are equivalent. Therefore, Theorem 4.13 is straightforwardly
obtained.

Le us start by proving Theorem 4.12.

Theorem 4.12. For any finite set of patterns {(Gi, vi)| Gi 2 G, vi 2 Vi, 1  i  n}, with
N = max

i
|(Gi)| and with graphs having integer features, for any function ⌧ : D ! Ro,

which preserves the unfolding equivalence, and for any real " > 0, there exist continuously
di↵erentiable functions AGGREGATE(k), COMBINE(k), 8k  2N � 1, s.t.

hk
v = COMBINE(k)�hk�1

v ,AGGREGATE(k){hk�1
u , u 2 ne[v]}

�
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and a function READOUT, with feature dimension d = 1, i.e, hk
v 2 R, so that the function

' (realized by the GNN), computed after 2N � 1 steps, satisfies the condition

|⌧ (Gi, vi)�'(Gi, vi)|  " (4.14)

for any i, 1  i  n.

Proof. For the sake of simplicity, the theorem will be proved assuming o = 1, i.e. ⌧ (G, v) 2
R. However, the result can be easily extended to the general case when ⌧ (G, v) 2 Ro.
Indeed, in this case, the GNN that satisfies the theorem can be defined by stacking o
GNNs, each one approximating a component of ⌧ (G, v).

According to Theorem 4.11, there exists a function  s.t. ⌧ (G, v) = (Tv). Therefore,
an unfolding tree of depth 2N � 1, where N is the maximum number of nodes in the
graph domain, is enough to store the graph information, so that  can be designed to
satisfy ⌧ (G, v) = (Tv) = (T 2N�1

v ); moreover, according to Theorem 4.9, the depth of
the truncated unfolding tree is enough to respect the unfolding equivalence over all the
nodes of every graph in the domain. Consequently, the main idea of the proof consists
in designing a GNN that is able to encode the unfolding tree into the node features, i.e.,
for each node v, we want to have hv = O(T 2N�1

v ), where O is an encoding function that
maps trees into real numbers. More precisely, the encodings are constructed recursively by
AGGREGATE(k) and COMBINE(k) functions using the neighbourhood information. After
k steps, the node features contain the encoding of the unfolding tree O(Tv) of depth k.
Then, after a number of steps L larger than 2N � 1, the GNN, by the READOUT function,
can produce the desired output (TL

v ).
Accordingly, the theorem can be proved provided that we can implement the above men-

tioned procedure, which means that there exist appropriate functions O, AGGREGATE(k),
COMBINE(k) and READOUT. The existence of the READOUT function is obvious, since,
given that unfolding trees can be encoded in node features, READOUT has just to decode
the representation and compute the target output. Then, let use focus on the other
functions. They will be defined in two steps. Initially, AGGREGATE(k), COMBINE(k), and
READOUT will be defined without taking into account that they have to be continuously
di↵erentiable. Later, this farther constraint will be considered.

The coding function O

Let O be a composition of any two injective functions µO and ⌫O, µO � ⌫O, with the
properties described in the following.

• µO is an injective function from the domain of the unfolding trees T N , calculated
on the nodes of the graph Gi, to the Cartesian product N ⇥ NP ⇥ Zlen(↵V) =
NP+1 ⇥ Zlen(↵V), where N is the number of nodes of the graph and P is the
maximum number of nodes a tree could have.

Intuitively, in the Cartesian product, N represents the tree structure, NP denotes
the node numbering, while, for each node, an integer vector 2 Zlen(↵V) is used to
encode the node features. Note that ↵ exists and is injective, since the maximum
information contained in an unfolding tree is given by the union of all its node
features and all its structural information, which is exactly equal to the codomain
size of ↵.
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• ⌫O is an injective function from NP+1⇥Zlen(↵V) to R, whose existence is guaranteed
by the cardinality theory, since the two sets have the same cardinality.

Since µO and ⌫O are injective, also the existence and the injectiveness of O are ensured.

Functions AGGREGATE(k) and COMBINE(k)

Functions AGGREGATE(k) and COMBINE(k) must satisfy

O(Tv) = hv = COMBINE(k)�hv,AGGREGATE
(k){{hu, u 2 ne[v]}}

�

= COMBINE(k)�
O(Tv),AGGREGATE

(k){{O(Tu), u 2 ne[v]}}
�

8k  2N � 1, where 2N � 1 is the number of nodes. In a simple solution, AGGREGATE(k)

decodes the trees of the neighbour Tu of v and stores them into a data structure to be
accessed by COMBINE(k). For example, the trees can be collected into the coding of a new
tree, i.e., AGGREGATE(k)({{O(Tu}}), u 2 ne[v]) = O(

S
u2ne[v] O

�1(O(Tu))), where
S

u2ne[v]

denotes an operator that constructs a tree, with a root having void features, from a set of
sub–trees (see Figure 4.5). Then, COMBINE(k) assigns the correct features to the root by
extracting them from Tv, i.e.,

COMBINE(k)(O(Tv), b) = O(ATTACH(O�1(O(Tv)),O
�1(b)))

where ATTACH is an operator that construct a tree following the procedure depicted in
Figure 4.5 and b is the result of the AGGREGATE(k) function.

Attach

a c d

b e

c d a c d

b e

c d

d

Figure 4.5: The ATTACH operator on trees.

Unfortunately, with this definition, AGGREGATE(k), COMBINE(k), and READOUT may
not be di↵erentiable. Nevertheless, Eq. (4.14) has to be satisfied only for a finite number

of graphs, namely Gi. Thus, we can specify other functions AGGREGATE
(k)

, COMBINE
(k)

,
and READOUT, which produce exactly the same computations when they are applied on
the graphs Gi, but that can be extended to the rest of their domain, so that they are
continuously di↵erentiable. Obviously, such an extension exists since those functions are
only constrained to interpolate a finite number of points 3.

3
It is worth noting that a similar extension can also be applied to the coding function O and to the

decoding function O
�1

. In this case, the coding function is not injective on the whole domain, but only

on the graphs mentioned in the theorem.
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We can now state the main result of this chapter.

Theorem 4.13 (Approximation by GNNs). Let GC be a domain containing connected
graphs with at most N nodes. For any measurable function ⌧ 2 F(D), D = (GC ,V),
preserving the unfolding equivalence, any norm k · k on R, and any probability measure P
on D, there exists a GNN defined by the continuously di↵erentiable functions COMBINE(k),
AGGREGATE(k), 8k  2N � 1, and by the function READOUT, with feature dimension
d = 1 (i.e, hk

v 2 R), such that function ' (realized by the GNN) computed after 2N � 1
steps satisfies the condition

P (k⌧ (G, v)�'(G, v)k  ") � 1� �

for any reals ✏,�, where ✏ > 0, 0 < � < 1.

The proof is mainly given by proving that Theorem 4.13 and Theorem 4.12 are
equivalent. Indeed, by adopting an argument similar to that proposed in [1], it can be
shown that Theorem 4.12, where the domain contains a finite number of graphs and the
features are integers, is equivalent to Theorem 4.13, which holds in probability for more
generic domains of connected graphs.

Theorem 4.14. Theorem 4.13 holds if and only if Theorem 4.12 holds.

Proof. Although the proof is quite identical to that contained in [1], for the sake of
completeness we report it here with our notation. We need first to recall the following
results, whose proof is given in [1](Lemma 1).

Lemma 4.15. For any probability measure P on D, and any reals �, �, where 0 < �  1,
� � 0, there exist a real b̄ > 0, which is independent of �, a set D̄ ✓ D, and a finite number
of partitions D̄1, . . . , D̄l of D̄, where D̄ = Gi ⇥ {vi}, with Gi ✓ G and vi 2 Vi, such that:

1. P (D̄) � 1� � holds;

2. for each i, all the graphs in Gi have the same structure, i.e., they di↵er only for the
values of their labels;

3. for each set D̄i, there exists a hypercube Hi 2 Ra such that ↵G 2 Hi holds for
any graph G 2 Gi, where ↵G denotes the vector obtained by stacking all the feature
vectors of G;

4. for any two di↵erent sets Gi, Gj , i 6= j, their graphs have di↵erent structures or their
hypercubes Hi, Hj have a null intersection, i.e. Hi

T
Hj = ;;

5. for each i and each pair of graphs G1, G2 2 Gi, the inequality k↵G1 �↵G2k1  �
holds;

6. for each graph G 2 D̄, the inequality k↵Gk1  b̄ holds.

Intuitively, this lemma suggests that a graph domain with continuous features can be
partitioned into small subsets so that the features of the graphs are almost constant in
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each partition. Moreover, a finite number of partitions is su�cient, in probability, to cover
a large part of the domain.

Theorem 4.13 is more general than Theorem 4.12, which makes this implication
straightforward. Instead, suppose that Theorem 4.12 holds and show that this implies
Theorem 4.13. Let us apply Lemma 4.15 with values for P and � equal to the corresponding
values of Theorem 4.13, being � any positive real number. Then, there is a real b̄ and
D̄ ⇢ D s.t. P (D̄) > 1 � �. Let M be the subset of D that contains only the graphs
G satisfying k↵Gk1  b̄. Note that, since b̄ is independent of �, then D̄ ⇢M for any
�. Since ⌧ is integrable, there exists a continuous function which approximates ⌧ , in
probability, up to any degree of precision. Thus, without loss of generality, we can assume
that ⌧ is equi–continuous on M. By definition of equi–continuity, a real �̄ > 0 exists such
that

|⌧ (G1, v)� ⌧ (G2, v)|  "

2
(4.15)

holds for any node v and for any pair of graphs G1, G2 having the same structure and
satisfying k↵G1 �↵G2k1  �̄.

Let us apply Lemma 4.15 again, where, now, the � of the hypothesis is set to �̄, i.e.
� = �̄. From then on, D̄ = Gi ⇥ {vi}, 1  i  n, represents the set obtained by the new
application of Lemma 4.15 and I b̄,⌘̄i , 1  i  2d, denote the corresponding intervals
defined in the proof of the same lemma. Let ✓ : R! Z be a function that encodes reals
into integers as follows: for any i and any z 2 I b̄,⌘̄i , ✓(z) = i. Thus, ✓ assigns to all the

values of an interval I b̄,⌘̄i the index i of the interval itself. Since the intervals do not overlap
and are not contiguous, ✓ can be continuously extended to the entire R. Moreover, ✓ can
be extended also to vectors, being ✓(Z) the vector of integers obtained by encoding all the
components of Z. Finally, let ⇥ : G ! G represent the function that transforms each graph
by replacing all the feature labels with their coding, i.e. L⇥(G) = ✓(LG). Let Ḡ1, . . . , Ḡm

be graphs, each one extracted from a di↵erent set Gi. Note that, according to points 3., 4.,
5. of Lemma 4.15, ⇥ produces an encoding of the sets Gi. More precisely, for any two
graphs G1 and G2 of D̄, we have ⇥(G1) = ⇥(G2) if the graphs belong to the same set, i.e.,
G1, G2 2 Gi, while ⇥(G1) 6= ⇥(G2) otherwise. Thus, we can define a decoding function �
s.t. �(⇥(Ḡi), vi) = (Ḡi, vi), 1  i  n.

Consider, now, the problem of approximating ⌧�� on the set (⇥(Ḡ1), v1), . . . , (⇥(Ḡn), vn).
Theorem 4.12 can be applied to such a set, because it contains a finite number of graphs
with integer labels. Therefore, there exists a GNN that implements a function '̄ s.t., for
each i,

|⌧ (�(⇥(Ḡi), vi))� '̄(⇥(Ḡi), vi)| 
"

2
(4.16)

However, this means that there is also another GNN that produces the same result
operating on the original graphs Gi, namely a GNN for which

'(Gi, vi) = '̄(⇥(Ḡi), vi) (4.17)

holds. Actually, the graphs Gi and Ḡi are equal except that the former has the coding
of the feature labels attached to the nodes, while the latter contains the whole feature
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labels. Thus, the GNN that operates on Ḡi is that suggested by Theorem 4.12, except

that AGGREGATE
(0)

preliminarily creates a coding of ✓(↵v).
Putting together equality (4.17) with Eqs. (4.15) and (4.16), it immediately follows

that, for any (G, v) 2 D̄i,

|⌧ (G, v)�'(G, v)| = |⌧ (G, v)� ⌧ (Ḡi, v) + ⌧ (Ḡi, v)�'(G, v)|

 |⌧ (Ḡi, v)�'(G, v)| + "

2

= |⌧ (�(⇥(Ḡi), v))� '̄(⇥(Ḡi), v)| + "

2
 "

Thus, the GNN described by Eq. (4.17) satisfies |⌧ (G, v)�'(G, v)|  " in the restricted
domain D̄. Since P (D̄) � 1� �, we have:

P (k⌧ (G, v)�'(G, v)k  ") � 1� �

which proves the theorem.

Theorem 4.13 intuitively states that, given a function ⌧ , there exists a GNN that can
approximate it. COMBINE(k) and AGGREGATE(k) can be any continuously di↵erentiable
function, while no assumptions are made on READOUT. This situation does not correspond
to practical cases, where the GNN adopts particular architectures and those functions are
realized by neural networks or, more generally, parametric models — for example made
of layers of sums, max, average, etc. Therefore, it is of fundamental interest to clarify
whether the theorem still holds when the components COMBINE(k), AGGREGATE(k) and
READOUT are parametric models.

Let us now study the case when the employed components are su�ciently general to
be able to approximate any function. We call Q this class of networks, which corresponds
to GNN models with universal components. In order to simplify our discussion, we
introduce the transition function f (k) to indicate the stacking of the AGGREGATE(k) and
COMBINE(k), i.e.,

f (k)(hk
v , {{hk�1

u , u 2 ne[v]}}) = COMBINE(k)�hk�1
v ,AGGREGATE(k){{hk�1

u , u 2 ne[v]}}
�
.

Then, we can formally define the class Q.

Definition 4.16. A class Q of GNN models is said to have universal components if, for any

✏ > 0 and any continuous target functions COMBINE
(k)

, AGGREGATE
(k)

, READOUT, there
exists a GNN belonging to Q, with functions COMBINE(k)

w , AGGREGATE(k)
w , READOUTw

and parameters w such that
���f̄ (k)(h, {{h1, . . . ,hs}})� f (k)w (h, {{h1, . . . ,hs}})

���
1
 ✏

��READOUT(q)� READOUTw(q)
��
1  ✏

holds, for any input values h, h1, . . . ,hs, q. Here, the transition functions f̄ (k) and f (k)w are

defined using the target functions COMBINE
(k)

, AGGREGATE
(k)

, and the GNN functions
COMBINE(k)

w , AGGREGATE(k)
w , respectively, and k · k1 is the infinity norm.
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The following result shows that Theorem 4.13 still holds even for GNNs with universal
components.

Theorem 4.17 (Approximation by neural networks). Let us assume that the hypotheses of
Theorem 4.13 are fulfilled and Q is a class of GNNs with universal components. Then, there
exists a parameter set w and some functions COMBINE(k)

w , AGGREGATE(k)
w , READOUTw,

implemented by neural networks in Q, such that the thesis of Theorem 4.13 holds.

Proof. As in the proof of Theorem 4.13, without loss of generality, we will assume that
the feature dimension is d = 1. First of all, note that Theorem 4.13 ensures that we can

find COMBINE
(k)

, AGGREGATE
(k)

, 8k  L, and READOUT so that, for the corresponding
function '̄ implemented by the GNN,

P (k⌧ (G, v)� '̄(G, v)k  "/2) � 1� � (4.18)

holds. Let us consider the corresponding transition function f̄ , defined by

f̄k(hk�1
v , {{hk�1

u , u 2 ne[v]}}) = COMBINE
(k)�

hk�1
v ,AGGREGATE

(k){{hk�1
u , u 2 ne[v]}}

�

Since COMBINE
(k)

and AGGREGATE
(k)

are continuously di↵erentiable, f̄k is continuously
di↵erentiable. Considering that the theorem has to hold only in probability, we can also
assume that the domain is bounded, so that f̄k is bounded and has a bounded Jacobian. Let
B be a bound on the Jacobian/derivative of f̄k for any k and any input. The same argument
can also be applied to the function READOUT, which is continuously di↵erentiable w.r.t.
its input and can be assumed to have a bounded Jacobian/derivative. Let us assume that B
is also a bound for the Jacobian/derivative of READOUT. Moreover, let COMBINE(k)

w and
AGGREGATE(k)

w be functions implemented by universal neural network that approximate

COMBINE
(k)

, AGGREGATE
(k)

, 8k  L, respectively, and such that

fkw(hk�1
v , {{hk�1

u , u 2 ne[v]}}) = COMBINE(k)
w

�
hk�1
v ,AGGREGATE(k)

w {{hk�1
u , u 2 ne[v]}}

�

and let us assume that
kf̄k � fkwk1  ⌘ (4.19)

holds for every k and a ⌘ > 0. Let READOUTw be the function implemented by a universal
neural network that approximates READOUT, so that

kREADOUT� READOUTk1  ⌘

In the following, it will be shown that, when ⌘ is su�ciently small, the GNN implemented
by the approximating neural networks is su�ciently close to the GNN of Theorem 4.13 so
that the thesis is proved.

Let F̄k, Fk
w be the global transition functions of the GNNs that are obtained by

stacking all the f̄k and fkw for all the nodes of the input graph. The node features are
computed at each step by H̄k = F̄ k(H̄k�1), Hk = Fk

w(Hk�1), where H̄k,Hk denote the
stacking of all the node features of the graph obtained by the two transition functions,
respectively. Then,

kH̄1 �H1k1 = kF̄1(H0)� F1
w(H0)k1  ⌘(2N � 1) (4.20)
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where N = |G| is number of nodes in the input graph. Moreover,

kH̄2 �H2k1 = kF̄2(H̄1)� F2
w(H1)k1

= kF̄2(H̄1)� F̄2(H1) + F̄2(H1)� F2
w(H1)k1

 kF̄2(H̄1)� F̄2(H1)k1 + kF̄2(H1)� F2
w(H1)k1

 ⌘NB + ⌘N = ⌘N(B + 1) .

Here, kF̄2(H̄1) � F̄2(H1)k1  ⌘NB holds because of Eq. (4.20), which bounds the
di↵erence between H̄1 and H1, and due to the fact that the Jacobian/derivative of F̄2 is
bounded by B. Moreover, kF̄2(H1)� F2

w(H1)k1  ⌘N holds by Eq. (4.19).
The above reasoning can then be applied recursively to prove that

kH̄k �Hk
wk1  ⌘N

k�1X

i=0

Bi

Since the output of the GNN is computed using the encoding at step L, we have

k'(G, v)�'w(G, v)k1 = kREADOUT(H̄L)�READOUTw(HL)k1  ⌘N +B(⌘N
LX

i=0

Bi).

Finally, since we can consider the maximum number of nodes N as bounded 4, then we
can find a GNN based on neural networks so that ⌘ is small enough to achieve

k'(G, v)�'w(G, v)k1  ✏/2

which, together with Eq. (4.18), produces the bound of Theorem 4.13.

Some topics related to the proof are discussed below, to better understand some
properties of GNNs.

• In the proof of Theorem 4.13, we first define an encoding function O (see the
Appendix) that maps trees to real numbers. The functions COMBINE(k) and
AGGREGATE(k) are designed so that, at each step, the node feature vector ap-
proximates a coding of the unfolding function hk

v = O(T k
v ). The function READOUT

decodes the unfolding and produces the desired outputs.

• In the proof of Theorem 4.17, it is shown that Theorem 4.13 still holds even when
the transition and READOUT functions are approximated. Thus, we can use any
parametric model to implement those functions. We can expect that, also for the
GNNs of Theorem 4.17, the transition function stores into the feature vector an
approximate coding of the unfolding tree, while READOUT decodes such a coding
and gives the desired outputs. Obviously, in a practical case, a GNN can store only
useful information, required to produce the output, and not just all the informative
content of the unfolding trees.

4
For the sake of simplicity, we skip over a very formal proof of this claim. Intuitively, note that the

theorem has to be proved and Lemma 4.15 clarifies that any graph domain can be covered with high

probability by a finite number of structures, which obviously have a bounded number of nodes.
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The following remarks may further help to understand our results.

• GNNs with universal components. Intuitively, the universality condition means
that the architectures used to implement f (k)w and READOUTw must be su�ciently
general to be able to approximate any possible target function. From the theory of
standard neural networks, those architectures must have at least two layers (one
hidden and one output layer) [41]. Such a conclusion is similar to the one reported
in [13], where a related result is described and where it is suggested that, in order
to be able to implement the 1–WL test, the GNN must use a two layer transition
function. Indeed, in this way, the GNN can implement an injective encoding of
the input graph into the node features. Nonetheless, the proposed result is slightly
di↵erent with respect to the one reported in [13] as, in theory, the encoding may
fail to be injective, provided that the approximation remains su�ciently good in
probability. However, the conclusion about the architecture still holds.

GNNs with transition functions f (k)w exploiting two layer architectures include Graph
Isomorphism Networks (GINs) [13], which were claimed to realize an injective
encoding. Similarly, also the OGNN model, for which a result similar to Theorem 4.13
was proved, adopts a two layer architecture for the transition function: in this case,
AGGREGATE(k)

w consists of a MultiLayer Perceptron (MLP) with a hidden layer and
COMBINE(k)

w was implemented by a sum. Similar results have been devised also in
[26], where a di↵erent version of the COMBINE(k)

w function has been modeled as a
sum of MLPs.

• READOUT universality. The condition on the universality of the READOUT function
can be relaxed, provided that a higher dimension for the feature vector is used,
namely o > 1. READOUTw can indeed cooperate with the transition function in
order to produce the output. In the limit case, the output can be completely prepared
by the transition function and stored in some components of hL

v so that READOUTw

is just a projection function.

• GNN architectures that are not universal approximators. Most of GNN models,
e.g. Graph Convolutional Neural Networks, GraphSAGE and so on, use a single
layer architecture to implement the transition function. Thus, even if they do
employ universal components, such as those specified by Definition 4.16, they have
a limited computational power with respect to two layer architectures and this is
supported by theoretical results. In [13], Lemma 7, it is shown that, if the transition
function is made up by a single layer with ReLU activation functions, the encoding
function cannot be injective. A similar result was obtained for linear recursive
neural networks 5 in [73]. However, in general, it is not correct to assert that
GNNs with single layer transition functions cannot be universal approximators for
functions on graphs, as this property depends on the used GNN model and on
other architectural/training details. For example, a GNN model with a single layer
transition component can use several iterations of Eq. (2.1) to emulate a GNN with

5
Recursive neural networks [72] are the ancestors of GNNs and assume that the input graph is directed,

positional and acyclic.
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a deeper transition component. In the former model, the node features emulate the
transition network hidden layers and COMBINE must contain a self–loop, namely
must have access to the previous features of each node.

• Feature dimension. Surprisingly, Theorems 4.13 and 4.17 suggest that a feature vector
of dimension d = 1 is enough to establish the universal approximation capability
of GNNs. It is obvious, however, that the dimension of the feature vector plays
an important role in determining the complexity of the coding function for a given
domain. We expect that the larger the dimension, the smaller the complexity of the
coding. This complexity, in turn, a↵ects the complexity of the transition function,
the di�culty in learning such a function, the number of patterns required for training
the GNN and so on.

• Number of steps. Theorems 4.13 and 4.17 suggest that 2N � 1 steps are enough to
approximate any function. Such a result is a consequence of Theorems 4.9 and 4.11.
Intuitively, this bound can be explained reusing the discussion on Theorem 4.9. A
GNN can employ up to N � 1 iterations/layers to di↵use all the information from
one node to any other node with the message passing mechanism. After N � 1
iterations, the information stored in a node provides a sort of signature for that
node, which may allow to distinguish some nodes from others. Yet, such a signature
is not complete, since the first time a node “communicate” with another has no
information about itself. Adding N iterations/layers allows nodes to communicate
again and exchange their current signatures to produce more accurate signatures.
It is worth noting that this reasoning provides also an intuitive explanation about
why graph regression/classification tasks di↵er from node tasks. In graph tasks, the
GNN uses a READOUT function that aggregates the features of all the nodes in the
graph, and possibly can do the work required by the second di↵usion phase. In node
tasks, READOUT operates only on a single node, so that the second di↵usion phase
is mandatory.

• The same COMBINE and AGGREGATE can be used for all the layers. Even if, for
clarity, in our theoretical analysis, we focus on the GNN model that is the most
used and exploits di↵erent functions in each layer k, our proofs do not exploit such
a characteristic. Therefore, all the results hold also for those GNNs — sometimes
called recursive — using the same COMBINE and AGGREGATE functions on each
layer.

Note that, throughout the chapter, we have used the idea that the unfolding tree
represents the information available to a GNN to compute its output, and we have
mentioned that a similar approach has been applied by other authors as well. From
a formal point of view, Theorem 4.13 defines a method by which a GNN can actually
encode an unfolding tree into the node features, so that it has been proved that all the
information collected into the unfolding trees can be used by GNNs. However, also the
reverse implication holds true, that is a GNN cannot encode more information into features
than that contained into the unfolding trees. Indeed, this is a consequence of the fact that
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GNNs have no greater discriminatory capability than the 1–WL test (see [20], Theorem
1). Therefore, the unfolding trees totally collect the information used by a GNN.

Consequently, we can provide an alternative way to describe the approximation ability
of GNNs as a function of their unfolding trees.

Corollary 4.18. The class of functions implemented by a GNN with universal components
is dense in probability in the F(D) class of functions that preserve the unfolding equivalence
in the domain D of connected graphs.

4.3 Experimental Validation

In this section, we support our theoretical findings with a set of experiments. For this
purpose, we show that a GNN can approximate a function FWL : G ! N that models the
1–WL test. Indeed, the function FWL assigns to each graph a target label that represents
the class of equivalence of the 1–WL. For simplicity, we only focus on the ability of the
GNN to approximate this function, so that only the training performance is considered,
i.e., we do not investigate its generalization capability over a test set. Since the 1–WL
test provides the finest partition of graphs reachable by a GNN, the mentioned task
experimentally establishes the expressive power of GNNs.

Dataset The graph dataset used for the experiments is derived from the QM9 molecules’
dataset [74, 75]. Specifically, the subset of molecules that compose our dataset are selected
as follows:

• Homogeneous features are assigned to all nodes of all graphs in QM9, as we are
interested in evaluating the approximation ability of GNNs based only on the graph
topology;

• The 1–WL test is run all over the entire QM9 dataset for k = 4 iterations, and for
each graph, the target is the corresponding 1–WL output, represented as a natural
number;

• We select the color classes containing more than thr graphs, where thr is a fixed
threshold.

For training purposes, the targets are normalized between 0 and 1 and spaced uniformly
in the range [0, 1]. Therefore, the distance between each class label is d = 1

numclasses�1 . A
graph G with target yG will be said to be correctly classified if, given out = GNN(G), we
have |out� yG| < d/2.

Experimental setup The GNN used in the experiments is the Graph Isomorphism
Network (GIN) [13]. A GIN computes

h(k)
v = MLP

�
(1 + ✏)h(k�1)

v +
X

u2ne[v]

h(k�1)
u

�
, (4.21)
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where the attention parameter ✏ is either a trainable parameter or a fixed scalar. In our
setting, we fix ✏ = 0. It has been proven that GINs can implement the 1–WL test and
produce a di↵erent representation for each graph that can be distinguished in this way [13].
Thus, GINs, with an appropriate READOUT, can approximate any function on graphs
preserving the unfolding equivalence. The MLP in a GIN layer has one hidden layer with
hgin neurons; the dimension of the GIN features is hgin as well. The MLP in a GIN layer
implements the hyperbolic tangent as activation function, and batch normalization. The
GIN includes Lmax = k layers, so as k is the number of iterations performed by 1–WL to
generate the targets. After the last GIN layer, the READOUT function is implemented
performing a global aggregation, after which a linear layer Wgin out of size hgin⇥ 1 is added;
eventually, a sigmoid activation function is applied. The model is trained over 500 epochs
using the Adam optimizer with an initial learning rate � = 10�3. We carried out the
experiments as follows.

• In the first experimental setting, we evaluate the GNN performance for di↵erent
values of the threshold thr, which a↵ects the cardinality of the training set and its
1–WL color classes. The values of the threshold thr are taken in the integer interval
[30, 45], the hidden layer of the MLP has dimension hgin = 64.

• In the second experimental setting, we evaluate the GNN expressive power varying
both the number of neurons in the GIN MLP and the size of the hidden features,
which, as specified above, are kept equal. In these experiments, the threshold is
fixed as thr = 35, the hidden layer sizes hgin are taken from the list [4, 8, 16, 32, 64].

Each experiment is statistically evaluated over 15 runs. The overall training is performed
on an Intel(R) Core(TM) i7-9800X processor running at 3.80GHz, using 31GB of RAM
and a GeForce GTX 1080 Ti GPU unit 6.

(a) (b)

Figure 4.6: Training accuracy on subsampled QM9 dataset, increasing number of WL colors

(a), and increasing hidden layer size (b). The solid line represents the average over 15 runs, the

shaded area represents the confidence interval.

6
Code available at https://github.com/AleDinve/static-gnn.

https://github.com/AleDinve/static-gnn
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Results Our experimental results are summarized in Figure 4.6. Figure 4.6 (a) shows
the evolution of the training accuracy for di↵erent numbers of WL colors; Figure 4.6 (b)
displays the evolution of the training accuracy for increasing numbers of hidden neurons
in the GIN MLP. In both experiments the average training accuracy is never less than
96%. Moreover, in at least one of the 15 runs per value, 100% training accuracy is reached.
These results confirm the approximation power of GNNs equipped with su�ciently general
components.

In the next chapter we will see how to extend the results presented in the current
chapter on the approximation power of GNNs, suited for node–attributed graphs, to graph
learning models that process di↵erent domains of graphs.
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Chapter 5

Universality of GNNs for SAUHGs and
Dynamic GNNs

In this chapter, we propose a study on the expressive power of GNNs for two domains of
particular interest, namely dynamic graphs and static attributed undirected homogeneous
graphs (SAUHGs) with node and edge attributes. Dynamic graphs are interesting from a
practical and a theoretical point of view and are used in several applications [76]. Moreover,
dynamic GNN models are structurally di↵erent from GNNs for static graphs, and the
results and methodology required to analyze their expressive power cannot directly be
deduced from existing literature. On the other hand, SAUHGs with node and edge
attributes are interesting because, as mentioned above, they act as a standard form for
several other types of graphs that can all be transformed to SAUGHs [77].

The chapter is organized as follows. In section 5.1, the specific notation used throughout
the chapter is described, and the main definitions are introduced. In section 5.2, we
introduce novel 1–WL and unfolding equivalences suitable for dynamic graphs and SAUHGs
with node and edge attributes and we prove that those equivalences are equal. In section 5.3,
the approximation theorems for GNNs on both graph types are presented. Finally, we
support our theoretical findings by setting up synthetic experiments in 5.4.

5.1 Notation and Preliminaries

Before extending the work about the expressive power of GNNs to dynamic and edge-
attributed graph domains, we introduce some mathematical notation and preliminary
definitions. We remark that we limit our analysis to finite graphs.

Let us introduces static, node/edge attributed, undirected and homogeneous graphs, which
will be denoted by SAUHGs. The reason for defining and using them comes from [77].
Here, it is shown that a large number of graph types can be bijectively transformed into
SAUHGs. Therefore, SAUHGs can be used as a standard form for di↵erent types of
graphs, including directed or undirected graphs, hypergraphs, multigraphs, heterogeneous
or attributed graphs, and any composition of those. More details on the importance and
the relevance in applications of SAUGHs are given in [77].

Definition 5.1 (Static Attributed Undirected Homogeneous Graphs). G0 is called static,
node/edge attributed, undirected, homogeneous graph (SAUHG) if G0 =
(V 0, E0,↵0,!0), with V is a finite set of nodes, E0 ⇢ {{u, v} | 8u, v 2 V 0} is a finite set of
edges and node and edge attributes are determined by the mappings ↵0 : V 0 ! A, !0 : E0 ! B
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that map into the arbitrary node attribute set A, and edge attribute set B. The domain
of SAUGHs will be denoted as G0.

Remark 5.2. (Attribute sets) In the above definition of the SAUHG, the node and
edge attribute sets A and B can be arbitrary. However, without loss of generality, we
can assume that the attribute sets are equal because they can be arbitrarily extended
to A0 = A [ B. Additionally, any arbitrary attribute set A0 can be embedded into the
k-dimensional vector space Rk. Since the attribute sets in general do not matter for the
theories in this Chapter and to support a better readability, in what follows we consider
↵0 : V 0 ! Rq, ! : E0 ! Rqe for every SAUHG.

All the aforementioned graph types are static, but temporal changes play an essential role
in learning on graphs representing real-world applications; thus, we give a definition of
dynamic graphs consisting of a discrete-time representation.

Definition 5.3 (Dynamic Graph). Let I = [0, . . . , l] ( N0 be a set of timesteps. Then
a (discrete) dynamic graph can be defined as a vector of static graph snapshots, i.e.,
G = (Gt)t2I , where Gt = (Vt, Et) 8t 2 I.
Furthermore,

↵v(t) := ↵(v, t), v 2 Vt and

!{u,v}(t) := !({u, v}, t), {u, v} 2 Et

where ↵ : V ⇥ I ! A and ! : E ⇥ I ! B define the vector of dynamic node/edge
attributes. Moreover, V :=

S
t2I Vt and E :=

S
t2I Et are the total node and edge set

of the dynamic graph. In particular, when a node v does not exist, its attributes and
neighborhood are empty, respectively. Finally, let us define

⌦ne[v](t) =
⇣
!{v,x1}(t), . . . ,!{v,x|ne[v](t)|}(t)

⌘

t2I

to be the sequence of dynamic edge attributes of the neighborhood corresponding
node at each timestep. Note that, as in Remark 5.2, in the sequel, we assume the attribute
sets to be equal and corresponding to Rq.

To prove the approximation theorems for SAUHGs and dynamic graphs, we need
to specify the GNN architectures capable of handling those graph types. Given that a
SAUHG acts as a standard form for all graph types, the ordinary GNN architecture will
be extended to take also edge attributes into account. This can be done by analogously
including the edge attributes in the first iteration to the processing of the node information
in the general GNN framework as follows.

Definition 5.4 (SGNN). For a SAUHG G0 = (V 0, E0,↵0,!0) let u, v 2 V 0 and e = {u, v}.
The SGNN propagation scheme for iteration k � 0 is defined as

h(k+1)
v = COMBINE(k+1)

⇣
h(k)
v ,AGGREGATE(k+1)

⇣
{{h(k)

u }}u2ne[v], {{!{u,v}}}u2ne[v]

⌘⌘
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Figure 5.1: Illustration of the statification of a dynamic graph. On the left, the temporal

evolution of a graph, including non-existent nodes and edges (gray), is given, and on the right,

the corresponding statified graph with the total amount of nodes and edges together with the

concatenated attributes is shown.

The output for a node-specific learning problem after the last iteration L respectively is
given by

zv = READOUT
�
hL
v

�
,

using a selected aggregation scheme and a suitable READOUTfunction, and the output
for a graph-specific learning problem is determined by

z = READOUT
�
{{hL

v | v 2 V 0}}
�
.

For the dynamic case, we have chosen a widely used GNN model that is consistent with
the theory we built. Based on [78], the discrete dynamic graph neural network (DGNN)
uses a GNN to encode each graph snapshot. Here, the model is modified by using the
previously defined SGNN in place of the standard one.

Definition 5.5 (Discrete DGNN). Given a discrete dynamic graph G = (Gt)t2I , a
discrete DGNN using a continuously di↵erentiable recursive function f for temporal
modelling can be expressed as:

h1(t), . . . ,hn(t) := SGNN(Gt) 8 t � 0

q1(0), . . . ,qn(0) = h1(0), . . . ,hn(0) := SGNN(G0)

qv(t) := f(qv(t� 1),hv(t)) 8 v 2 V

(5.1)

where hv(t) 2 Rd is the hidden representation of node v at time t of dimension d and
qv(t) 2 Rd is an d-dimensional hidden representation of node v produced by f , and
f : Rs ⇥ Rd ! Rs is a neural architecture for temporal modeling (in the methods surveyed
in [78], f is almost always an RNN or an LSTM).

The stacked version of the discrete DGNN is then:

H(t) = SGNN(Gt)

Q(0) = H(0) = SGNN(G0)

Q(t) = F(Q(t� 1),H(t))

(5.2)

where H(t) 2 RN⇥d, Q(t) 2 RN⇥s, F : RN⇥s ⇥ RN⇥d ! RN⇥s, being N the number of
nodes, d and s the dimensions of the hidden representation of a node produced respectively
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by the SGNN and by the f . Applying F corresponds to component-wise applying f for
each node [78].

To conclude, a function READOUTdyn will take as input Q(t) and gives a suitable
output for the considered task, so that altogether the DGNN will be described as

'(t, G, v) = READOUTdyn(Q(t)).

We remark that the DGNN is a Message-Passing model because the SGNN is one, by
definition.

The GNNs expressivity of attributed and dynamic graphs is studied in terms of their
capability to distinguish two non-isomorphic graphs.

Definition 5.6 (Graph Isomorphism for attributed and dynamic graphs). In case the
two graphs are attributed, i.e., G1 = (V1, E1,↵1,!1) and G2 = (V2, E2,↵2,!2), then
G1 ⇡ G2 if and only if additionally there exist bijective functions '↵ : A1 ! A2 and
'! : B1 ! B2 with images Ai := im(↵i) and Bi := im(!i), i = 1, 2.

1. '↵(↵1(v1)) = ↵2(�(v1)) 8 v1 2 V1,
2. '!(!1({u1, v1})) = !2({�(u1),�(v1)}) 8 {u1, v1} 2 E1.

If the two graphs are dynamic, they are called to be isomorphic if and only if the static
graph snapshots of each timestep are isomorphic.

As seen in Chapter 4, the expressive power of GNNs can also be approached from
the point of view of their approximation capability. This property generally analyzes the
capacity of di↵erent GNN models to approximate arbitrary functions [79].
Di↵erent universal approximation theorems can be defined depending on the model, the
considered input data, and the sets of functions.

Since the results in Chapter 4 hold for undirected and node-attributed graphs only,
we aim to extend the universal approximation theorem to GNNs working on SAUHGs
(cf. Def. 5.1) and dynamic graphs (cf. Def. 5.3). For this purpose, in the next sections, we
introduce a static attributed and a dynamic version of both the WL test and the unfolding
trees to show that the graph equivalences regarding the attributed/dynamic WL test and
attributed/dynamic unfolding trees are equivalent. With these notions, we define the set
of functions that are attributed/dynamic unfolding tree preserving and reformulate the
universal approximation theorem to the attributed and dynamic cases (cf. Theorem. 5.21
and Theorem. 5.29).

5.2 Weisfeiler-Lehman and Unfolding Trees

This section first proposes the extended versions of the unfolding trees (UT) and the
Weisfeiler-Lehman (WL) test to SAUHGs and dynamic graphs. Having these two notions,
it is possible to show the equivalence between the extended versions of UT-equivalence
and the WL-equivalence for SAUHGs and dynamic graphs.
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5.2.1 Equivalence for SAUHGs

The extended result on SAUHGs is formalized and proven in Thm. 5.12. The original WL
test and unfolding tree notions defined in Chapters 2 and 4 cover all graph properties
except edge attributes. Thus, the notions of unfolding trees and the WL test have to be
extended to an attributed version.

Definition 5.7 (Attributed Unfolding Tree). The attributed unfolding tree T k
v in

graph G0 = (V 0, E0,↵0,!0) of node v 2 V 0 up to depth k 2 N0 is defined as

T k
v =

(
Tree(↵0

v), if k = 0

Tree
�
↵0

v, ⌦
0
ne[v], T

k�1
ne[v]

�
if k > 0 ,

where Tree(↵0
v) is a tree constituted of node v with attribute ↵0

v. Tree
�
↵0

v, ⌦
0
ne[v], T

k�1
ne[v]

�

is the tree consisting of the root node v and subtrees T k�1
ne[v] = {{T k�1

u1
, . . . , T k�1

u|ne[v]|
}}

of depth k � 1, that are connected by the corresponding edge attributes ⌦0
ne[v] =

{{!0
{v,u1}, . . . ,!

0
{v,u|ne[v]|}}} of the neighbors of v.

Figure 5.2: Unfolding tree recursive construction

Moreover, the attributed unfolding tree of v determined by Tv = limk!1 T k
v is

obtained by merging all unfolding trees T k
v of any depth k.

Definition 5.8 (Attributed Unfolding Equivalence). Let G1 = (V1, E1,↵1,!1) and
G2 = (V2, E2,↵2,!2) be two SAUHGs. Then G1 and G2 are attributed unfolding
tree equivalent, noted by G1 ⇠AUT G2, if and only if {{Tu | u 2 V1}} = {{Tv | v 2 V2}}.
Analogously, two nodes u 2 V1, v 2 V2 are unfolding tree equivalent, noted by u ⇠AUT v if
and only if Tu = Tv.

Using the definition of the attributed unfolding equivalence on graphs, the 1-WL test
defined in Chapter 2 is extended to attributed graphs.

Definition 5.9 (Attributed 1-WL test). Let HASH be a bijective function that codes
every possible node attribute with a color from a color set C and G0 = (V 0, E0,↵0,!0).
The attributed 1-WL (1-AWL) test is defined recursively through the following.

• At iteration i = 0, the color is set to the hashed node attribute:

c(0)v = HASH(↵0
v)
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• At iteration i > 0, the HASH function is extended to the edge weights:

c(k)v = HASH
⇣�

c(k�1)
v , ⌦0

ne[v], c
(k�1)
ne[v]

�⌘

We can now define the attributed 1-WL equivalence on graphs, which is an extension
of the 1-WL equivalence of graphs and nodes by using the attributed version of the 1-WL
test (cf. Def. 5.9).

Definition 5.10 (Attributed 1-WL equivalence). Two nodes u, v are attributed WL-
equivalent, noted by u ⇠AWL v, if and only if cu = cv.
Analogously, let G1 = (V1, E1,↵1,!1) and G2 = (V2, E2,↵2,!2) be two SAUHGs. Then,
G1 ⇠AWL G2, if and only if for all nodes v1 2 V1 there exists a corresponding node v2 2 V2

such that v1 ⇠AWL v2.

The above definitions along with Lemma. 5.11, help us to prove Theorem. 5.12 that
poses the relation between the attributed unfolding equivalence and the attributed 1-WL
test. In more detail, the Lemma states the equivalence between the attributed unfolding
tree equivalence of nodes and the equality of their attributed unfolding trees up to a
specific depth. In [1], it has been shown that the unfolding trees of infinite depth are
not necessary to consider for this equivalence. Instead, the larger number of nodes of
both graphs under consideration is su�cient for the depth of the unfolding trees, which is
finite since the graphs are bounded. Hence the following result determines the equivalence
between the attributed unfolding trees of two nodes and their colors resulting from the
attributed 1-WL test.

Lemma 5.11. Consider G0 = (V 0, E0,↵0,!0) as the SAUHG resulting from a transforma-
tion of an arbitrary static graph G = (V, E,↵,!) with nodes u, v 2 V and corresponding
attributes ↵u,↵v. Then it holds

8 k 2 N0 : T k
u = T k

v () c(k)u = c(k)v .

Proof. The proof is carried out by induction on d, which represents both the depth of the
unfolding trees and the iteration step in the WL coloring.
k = 0: It holds

T 0
u = Tree(↵0

u) = Tree(↵0
v) = T 0

v

() ↵0
u = ↵0

v and c(0)u = HASH(↵0
u) = HASH(↵0

v) = c(0)v .

k > 0: Suppose that Eq. (5.11) holds for k � 1, and prove that it holds also for k.
- By definition, T k

u = T k
v is equivalent to

(
T k�1
u = T k�1

v and

Tree
�
↵0

u, ⌦0
ne[u], T

k�1
ne[u]

�
= Tree

�
↵0

v, ⌦
0
ne[v], T

k�1
ne[v]

�
.

(5.3)

- Applying the induction hypothesis, it holds that

T k�1
u = T k�1

v () c(k�1)
u = c(k�1)

v . (5.4)
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- Eq. (5.3) is equivalent to the following:

↵0
u = ↵0

v, ⌦0
ne[u] = ⌦0

ne[v] and T k�1
ne[u] = T k�1

ne[v].

Given the definition of the unfolding trees and their construction, this is
equivalent to

(
!0

{u,ui} = !0
{v,vi} 8 ui 2 neu, vi 2 nev and

T k�1
ui

= T k�1
vi 8 ui 2 neu, vi 2 nev.

(5.5)

- By the induction hypothesis, Eq. (5.5) is equivalent to

c(k�1)
neu = c(k�1)

nev , i.e.,

{{c(k�1)
ui

| ui 2 ne[u]}} = {{c(k�1)
vi

| vi 2 ne[v]}}.

- Putting together Eq. (5.4), (5.5), and the fact that the HASH function is
bijective, we obtain:

HASH
⇣�

c(k�1)
u , ⌦0

ne[u], {{c(k�1)
ui

| ui 2 ne[u]}}
�⌘

= HASH
⇣�

c(k�1)
v , ⌦0

ne[v], {{c(k�1)
vi | vi 2 ne[v]}}

�⌘

which, by definition, is equivalent to c(k)u = c(k)v .

Directly from Lem. 5.11, the equivalence of the attributed unfolding tree equivalence
and the attributed 1-WL equivalence of two nodes belonging to the same graph can be
formalized.

Theorem 5.12. Consider G0 as in Lem. 5.11. Then, it holds

8 u, v 2 V 0 : u ⇠AUT v () u ⇠AWL v.

Proof. The proof follows from the proof of Lem. 5.11.

5.2.2 Equivalence for Dynamic Graphs

Now the previously introduced concepts of unfolding tree and WL equivalences are extended
to the dynamic case. Note that Lem. 5.11 and, therefore, Thm. 5.12 also hold in case
G0 is the SAUHG resulting from a transformation of a dynamic graph G = (Gt)t2I to
its static attributed version. However, the GNNs working on dynamic graphs usually
use a significantly di↵erent architecture than those that work on static attributed graphs.
Therefore, the derivation of the various equivalences on dynamic graphs separately is now
presented.

First, dynamic unfolding trees are introduced as a sequence of unfolding trees for each
graph snapshot respectively.
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Definition 5.13 (Dynamic Unfolding Tree). Let G = (Gt)t2I with Gt = (Vt, Et,↵t,!t)
be a dynamic graph. The dynamic unfolding tree T k

v (t) at time t 2 I of node v 2 V
up to depth k 2 N0 is defined as

T k
v (t) =

(
Tree(↵v(t)), if k = 0

Tree
�
↵v(t), ⌦nev(t), T

k�1
nev(t)

(t)
�

if k > 0,

where Tree(↵v(t)) is a tree constituted of node v with attribute ↵v(t). Furthermore,
Tree

�
↵v(t),⌦nev(t), T

k�1
nev(t)

(t)
�

is the tree with root node v with attribute ↵v(t). Addi-

tionally, T k�1
nev(t)

(t) = {{T k�1
u1

(t), . . . , T k�1
u|nev(t)|

(t)}} are corresponding subtrees with edge
attributes ⌦nev(t) . If the node v does not exist at time t, the corresponding tree is empty,
there is no tree of depth k > 0 for this timestep and v does not occur in any neighborhood
of other nodes.

We are now ready to introduce the equivalence of two dynamic graphs in function of
their dynamic unfolding trees.

Definition 5.14. Two nodes u, v 2 V are said to be dynamic unfolding equivalent
u ⇠DUT v if Tu(t) = Tv(t) for every timestep t. Analogously, two dynamic graphs G1, G2

are said to be dynamic unfolding equivalent G1 ⇠DUT G2, if there exists a bijection
between the nodes of the graphs that respects the partition induced by the unfolding
equivalence on the nodes.

Consistently, we introduce the 1-WL test for dynamic graphs, called Dynamic 1-WL
test.

Definition 5.15 (Dynamic 1-WL test). Let G = (Gt)t2I with Gt = (V, E,↵t,!t) be a
dynamic graph. Let HASH0

t be a bijective function encoding every node attribute of Gt

with a color from a color set C.
The dynamic 1-WL test (1-DWL) generates a vector of color sets one for each

timestep t 2 I by:

• At iteration k = 0 the color is set to the hashed node attribute or a fixed color for
non-existent nodes:

c(0)v (t) =

(
HASH0

t (↵v(t)) if v 2 Vt,

c? otherwise.

• Then, the aggregation mechanism is defined by the bijective function HASHt for
k > 0:

c(k)v (t) = HASHt

⇣�
c(k�1)
v (t), ⌦ne[v](t), c

(k�1)
ne[v](t)(t)

�⌘

Note that for k > 0, c(k�1)
v (t) = c? holds for a non-existent node at time t. Further,

the neighborset is empty so the other inputs of HASHt are empty, and together with
c? it will always give the same color for non-existent nodes.
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Definition 5.16 (Dynamic 1-WL equivalence). Two nodes u, v 2 V in a dynamic graph
G are said to be dynamic WL equivalent, noted by u ⇠DWL u, if their colors resulting
from the WL test are pairwise equal per timestep. Analogously, let G1 and G2 be
dynamic graphs. Then G1 ⇠DWL G2, if and only if for all nodes v1 2 V (1)

t there exists a
corresponding node v2 2 V (2)

t with cv1(t) = cv2(t) for all t 2 I.

As in Subsection 5.2.1 we now state the bijective correspondence between the Dynamic
UT equivalence and the Dynamic WL equivalence.

Theorem 5.17 (Equivalence of Dynamic WL Equivalence and Dynamic UT Equivalence
for nodes). Let G = (Gt)t2I be a dynamic graph and u, v 2 V . Then, it holds

u ⇠DUT v () u ⇠DWL v.

Proof. Two nodes are dynamic unfolding tree equivalent i↵ they are attributed unfolding
tree equivalent at each timestep u ⇠AUT v 8t 2 I 5.14. Further, as consequence
of Thm. 5.12, it holds that for all t 2 I the two nodes are attributed WL equivalent
u ⇠AWL v and thus, the two nodes are dynamic WL equivalent by Def. 5.16. In case of
the non-existence of u at a certain timestep t, the Theorem still holds.

5.3 Approximation Capability of GNNs for SAUHGs

and DGNNs

The results from Sec. 5.2.1 and Sec. 5.2.2 can be brought together in the formulation of
a universal approximation theorem for GNNs working on SAUHGs and dynamic graphs
and the set of functions that preserve the attributed or dynamic unfolding equivalence,
respectively.

5.3.1 GNNs for SAUHGS

Since the goal is to show the attributed extension of the universal approximation theorem,
it is necessary to define the corresponding family of attributed unfolding equivalence-
preserving functions. A function preserves the attributed unfolding equivalence if the
output of the function is equal when two nodes are attributed unfolding equivalent.

Definition 5.18. Let G0 be the domain of bounded SAUHGs, G0 = (V 0, E0,↵0,!0) 2 G0

a SAUHG and u, v 2 V 0 two nodes. Then a function f : G0 ! Ro is said to preserve the
attributed unfolding equivalence on G0 if

v ⇠AUT u) f(G0, v) = f(G0, u).

All functions that preserve the attributed unfolding equivalence are collected in the set
F(G0).

Analogously to what stated in [1], there exists a relation between the unfolding
equivalence preserving functions and the unfolding trees for attributed graphs.
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Proposition 5.19 (Functions of attributed unfolding trees). A function f belongs to
F(G0) if and only if there exists a function  defined on trees such that for any graph
G0 2 G0 it holds f(G0, v) = (Tv), for any node v 2 G0.

Proof. The proof works analogously to the proof of the unattributed version presented in
[1]. We show both equivalence directions:
( If there exists a function  on attributed unfolding trees such that f(G0, v) = (Tv) for

all v 2 G0, then u ⇠AUT v for u, v 2 G implies f(G0, u) = (Tu) = (Tv) = f(G0, v).
) If f preserves the attributed unfolding equivalence, then a function  on the attributed

unfolding tree of an arbitrary node v can be defined as (Tv) := f(G0, v). Then, if
Tu and Tv are two attributed unfolding trees, Tu = Tv implies f(G0, u) = f(G0, v)
and  is uniquely defined.

Finally, considering the properties of SAUHGs given in Sec. 5.2.1, we can state the
universal approximation capability of the SGNNs on bounded SAUHGs. Since its proof
proceeds analogously to the one in Chapter 4, what remains to prove is that a domain
of SAUGH graphs with continuous attributes can be partitioned into small subsets, so
that the attributes of the graphs are almost constant in each partition. Moreover, in
probability, a finite number of partitions is su�cient to cover a large part of the domain.
This can be summarized in the following Lemma.

Lemma 5.20. For any probability measure P on D0, and any reals �, �, where � > 0,
� � 0, there exists a real b̄ > 0, which is independent of �, a set D̄0 ✓ D0, and a finite
number of partitions D̄0

1, . . . , D̄0
p of D̄0, where D̄0

j = G0
j ⇥ {vj}, with G0

j ✓ G0 and vj 2 G0
j,

such that:
1. P (D̄0) � 1� � holds;
2. for each j, all the graphs in G0

j have the same structure, i.e., they di↵er only in the
values of their attributes;

3. for each set D̄0
j, there exists a hypercube Hj ⇢ RNM2k such that �G 2 Hj holds

for any graph G0 2 G0
j with N = maxG02G0 |V 0| and M = maxG02G0 |E0|. Here, �G0

denotes the vector obtained by concatenating all the attribute vectors of both nodes
and edges of G0, namely �G0 = [AG0 |⌦G0 ], where AG0 is the concatenation of all the
node attributes and ⌦G0 is the concatenation of all edge attributes;

4. for any two di↵erent sets G0
i, G0

j, i 6= j, their graphs have di↵erent structures, or
their hypercubes Hi, Hj are disjoint, i.e., Hi

T
Hj = ;;

5. for each j and each pair of graphs G1, G2 2 G0
j, the inequality k�G1 � �G2k1  �

holds;
6. for each graph G0 2 D̄0, the inequality k�G0k1  b̄ holds.

Proof. The proof is similar to the one contained in [1]. The only remark needed here is
that we can consider the whole concatenating of all attributes from both nodes and edges
without loss of generality; indeed, if we were considering the node and the edge attributes
separately, we would need conditions on the hypercubes, s.t.:

kAG1 �AG2k1  �A, �A > 0,

and k⌦G1 �⌦G2k1  �⌦, �⌦ > 0.
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Then we can stack those attribute vectors, as in the statement, s.t. :

k�G1 � �G2k1 = k
�
[AG1 |0] + [0|⌦G1 ]

�
�
�
[AG2 |0] + [0|⌦G2 ]

�
k1

 kAG1 �AG2k1 + k⌦G1 �⌦G2k1
 �A + �⌦ := �

which allows us to exploit the same proof contained in [1].

We are now able to give an important result.

Theorem 5.21 (Universal Approximation Theorem by SGNN). Let G0 be the domain of
bounded SAUHGs with the maximal number of nodes N = max

G02G0
|G0|. For any measurable

function f 2 F(G0) preserving the attributed unfolding equivalence (cf. Def. 5.18), any
norm k · k on R, any probability measure P on G0, for any reals ✏,� where ✏,� > 0,
there exists a SGNN defined by the continuously di↵erentiable functions COMBINE(k),
AGGREGATE(k), at iteration k  2N � 1, and by the function READOUT, with hidden
dimension d = 1, i.e, hk

v 2 R 8i, such that the function ' (realized by the GNN) computed
after 2N � 1 steps for all G0 2 G0 satisfies the condition

P (kf(G0, v)�'(G0, v)k  ") � 1� �.

Following what done in Chapter 4, the proof is carried on by proving the equivalence
of the above Theorem with the following one, where the domain contains a finite number
of graphs and the attributes are integers.

Theorem 5.22. For any finite set of p patterns
{(G0

j , v)| G0
j 2 G0, v 2 V 0

j , j 2 [p]}, with the maximal number of nodes in the domain N =
maxG02G0 |G0|, for any function ⌧ which preserves the attributed unfolding equivalence,
and for any real " > 0, there exist continuously di↵erentiable functions AGGREGATE(k),
COMBINE(k), 8 k  2N � 1, s.t.

hk
v = COMBINE(k)

⇣
h(k�1)
v ,AGGREGATE(k)

⇣
{{hk�1

u }}u2ne[v], {{!{u,v}}}u2ne[v]

⌘⌘

and a function READOUT, with hidden dimension d = 1, i.e, hk
v 2 R, so that the

function ' (realized by the SGNN), computed after 2N � 1 steps, satisfies the condition

|⌧ (G0
j , v)�'(G0

j , v)|  " for any v 2 V 0
j . (5.6)

Proof. As for the proof of Theorem 4.12, the idea is designing a GNN that can approximate
any function ⌧ that preserves the attributed unfolding equivalence. According to Thm. 5.19
there exists a function , s.t.

⌧ (G0
j , v) = (Tv).

Therefore, the GNN has to encode the attributed unfolding tree into the node attributes,
i.e., for each node v, we want to have hv = O(Tv), where O is an encoding function that
maps attributed unfolding trees into real numbers. The existence and injectiveness of O
are ensured by construction. More precisely, the encodings are constructed recursively by
the AGGREGATE(k) and the COMBINE(k) functions using the neighborhood information,
i.e., the node and edge attributes.
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Consequently, the theorem can be proven given that there exist appropriate functions
O, AGGREGATE(k), COMBINE(k) and READOUT.

For this purpose, the functions AGGREGATE(k) and COMBINE(k) must satisfy 8 k 
2N � 1:

O(T k
v ) = hk

v

= COMBINE(k)
⇣
h(k�1)
v ,AGGREGATE(k)

⇣
{{hk�1

u }}u2ne[v], {{!0
{u,v}}}u2ne[v]

⌘⌘

= COMBINE(k)
⇣
O(T k�1

v ),AGGREGATE(k)
⇣
{O(T k�1

u )}u2ne[v], ⌦
0
ne[v]

⌘⌘
.

In a simple solution, AGGREGATE(k) decodes the attributed trees of the neighbors u
of v, T k�1

u , and stores them into a data structure to be accessed by COMBINE(k). The
detailed construction of the appropriate functions is given in Chapter 4.

Adopting an argument similar to that in Chapter 4, it is proven that the previous
theorem is equivalent to Thm. 5.21.

Theorem 5.23. Theorem 5.21 holds if and only if Theorem 5.22 holds.

Figure 5.3 summarize the structure of the proof of Theorem 5.21.

Figure 5.3: Structure of the proof of Theorem 5.21.

We want now to study the case when the employed components (COMBINE, AGGREGATE,
READOUT) are su�ciently general to be able to approximate any function preserving the
unfolding equivalence. We call this class of networks, QS , SGNN models with universal
components. To simplify our discussion, we introduce the transition function f (k) to
indicate the concatenation of the AGGREGATE(k) and COMBINE(k), i.e.,

f (k)(hk
v , {{hk�1

u , u 2 ne[v]}}{{!{u,v}}}u2ne[v]) =

COMBINE(k)
⇣
h(k�1)
v ,AGGREGATE(k)

⇣
{{h(k�1)

u }}u2ne[v], {{!{u,v}}}u2ne[v]

⌘⌘

Then, we can formally define the class QS .

Definition 5.24. A class QS of SGNN models is said to have universal components if, for

any ✏ > 0 and any continuous target functions COMBINE
(k)

, AGGREGATE
(k)

, READOUT,
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there exists an SGNN belonging to QS , with functions COMBINE(k)
✓ , AGGREGATE(k)

✓ ,
READOUT✓ and parameters ✓ such that

���f̄ (k)(h, {h1, . . . ,hn})� f (k)✓ (h, {h1, . . . ,hn})
���
1
 ✏

��READOUT(q)� READOUT✓(q)
��
1  ✏ ,

holds, for any vectors h, h1, . . . ,hn 2 Rd, q 2 Rd. The transition functions f̄ (k) and f (k)✓

correspond to the target function and the SGNN, respectively.

The following result shows that Theorem 5.21 still holds even for SGNNs with universal
components.

Theorem 5.25 (Approximation by Neural Networks). Assuming that the hypotheses
of Theorem 5.21 are fulfilled and QS is a class of SGNNs with universal components.
Then, there exists a parameter set ✓ and some functions COMBINE(k)

✓ , AGGREGATE(k)
✓ ,

READOUT✓, implemented by Neural Networks in QS , such that the thesis of Theorem 5.21
holds.

Proof. The proof is identical to the one of the Theorem 4.17 contained in Chapter 4.

5.3.2 GNNs for Dynamic Graphs

Suitable functions that preserve the unfolding equivalence on dynamic graphs are dynamic
systems. Before this statement is formalized and proven in Prop. 5.28, dynamic systems
and their property to preserve the dynamic unfolding equivalence are defined in the
following.

Definition 5.26 (Dynamic System). Let G be a domain of dynamic graphs and let
V =

S
t Vt.

A dynamic system is defined as a function dyn : D := I ⇥ G ⇥ V ! Ro formalized
for G = (Gt)t2I 2 G, and v 2 Vt by

dyn(t, G, v) := g(xv(t)). (5.7)

Here, g : Rs ! Ro is an output function, and the state function xv(t) is determined by

xv(t) =

(
a(t, G, v) if t = 0

f(xv(t� 1),a(t� 1, G, v)) if t > 0,

for v 2 Vt, where a : I ⇥ G ⇥ V ! Rs is a function that processes the graph snapshot at
time t and provides an s-dimensional internal state representation for each node v. Finally,
f : Rs ⇥ Rs ! Rs is a recursive function, that is called state update function.

Definition 5.27. A dynamic system dyn(·, ·, ·) preserves the dynamic unfolding
tree equivalence on G if and only if for any input graph sequences G1, G2 2 G, and two
nodes u, v 2 V it holds

v ⇠DUT u =) dyn(t, G1, v) = dyn(t, G2, u) 8t.
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The class of dynamic systems that preserve the unfolding equivalence on D will be
denoted with F(D). A characterization of F(D) is given by the following result (following
the work in [1]).

Proposition 5.28 (Functions of dynamic unfolding trees). A dynamic system dyn belongs
to F(D) if and only if there exists a function  defined on attributed trees such that for
all (t, G, v) 2 D it holds

dyn(t, G, v) = 
⇣�

Tv(i)
�
i2[t]

⌘
.

Proof. We show the proposition by proving both directions of the equivalence relation:

): If there exists  such that dyn(t, G, v) = 
⇣�

Tv(i)
�
i2[t]

⌘
for all triplets (t, G, v) 2 D,

then for any pair of nodes u 2 G1, v 2 G2 with u ⇠DUT v it holds

dyn(t, G1, u) = 
⇣�

Tu(i)
�
i2[t]

⌘
= 

⇣�
Tv(i)

�
i2[t]

⌘
= dyn(t, G2, v).

(: On the other hand, if dyn preserves the unfolding equivalence, then we can define 
as


⇣�

Tv(i)
�
i2[t]

⌘
= dyn(t, G, v).

Note that the above equality is a correct specification for a function. In fact, if


⇣�

Tv(i)
�
i2[t]

⌘
= 

⇣�
Tu(i)

�
i2[t]

⌘

implies dyn(t, G, u) = dyn(t, G, v), then  is uniquely defined.

Finally, the universal approximation of the Message-Passing GNN for dynamic graphs
can be stated.

Theorem 5.29 (Universal Approximation Theorem by DGNN). Let G = (Gt)t2I be
a discrete dynamic graph in the graph domain G and N = maxG2G |G| be the maximal
number of nodes in the domain. Let dyn(t, G, v) 2 F(D) be any measurable dynamical
system preserving the unfolding equivalence, k · k be a norm on R, P be any probability
measure on D and ✏,� be any real numbers where ✏,� > 0. Then, there exists a DGNN
composed by SGNNs with 2N � 1 layers and hidden dimension d = 1, and Recurrent
Neural Network with state dimension s = 1 such that the function ' realized by this model
satisfies

P (kdyn(t, G, v)�'(t, G, v)k  ") � 1� � 8t 2 I.

To prove the theorem above, we need some preliminary results. Using the same
argument used for SAUHGs in Theorem 5.21, we need, as a preliminary result, the
extension of [1] (Lemma 1) to the domain of dynamic graphs D, analogously to the
extension to the domain of SAUHGs in Lemma 5.20.

Remark 5.30. Lemma 5.20 holds for the domain of dynamic graphs D. Indeed, taking
into account the argument in [77], one can establish a bijection between the domain of
dynamic graphs and the domain of SAUHGs; on the latter, we can directly apply Lemma
5.20.



i
i

i
i

i
i

i
i

5.3. Approximation Capability of GNNs for SAUHGs and DGNNs 59

Thm. 5.29 is equivalent to the following, where the domain contains a finite number of
elements in D and the attributes are integers.

Theorem 5.31. For any finite set of p patterns

{(t(j), G(j), v(j))| (t(j), G(j), v(j)) 2 D, j 2 [p]}

with the maximal number of nodes N = maxG2G |G| and with graphs having integer features,
for any measurable dynamical system preserving the unfolding equivalence, k · k be a norm
on R, P be any probability measure on D and ✏ be any real number where ✏ > 0. Then,
there exists a DGNN as defined in Def. 5.5 such that the function ' (realized by this
model) satisfies the condition

||dyn(t(j), G(j), v(j))� '(t(j), G(j), v(j))||  " (5.8)

8 j 2 [p] where t(j) 2 I.

Proof. The proof involves assuming that the output dimension is o = 1, i.e., dyn(t, G, v) 2
R, but the result can be extended to the general case with o 2 N by concatenating
the corresponding results. As a result of Thm. 5.28, there exists a function , s.t.
dyn(t, G, v) = g(xv(t)) = ((Tv(i))i2[t]) where Tv(i) is an attributed unfolding tree.
Given Nt as the number of nodes of the graph at timestep t, in order to store the graph
information, an attributed unfolding tree of depth 2Nt � 1 is required for each node, in
such a way that  can satisfy

dyn(t, G, v) = ((Tv(i))i2[t]) = ((TNt
v (i))i2[t]).

The required depth is a straight consequence of Theorem 4.9. The main idea behind the
proof of Theorem 5.31 is to design a DGNN that can encode the sequence of attributed
unfolding trees (Tv(i))i2[t] into the node attributes at each timestep t, i.e, qv(t) =
#t((Tv(i))i2[t]). This is achieved by using a coding function that maps sequences of
t + 1 attributed trees into real numbers. To implement the encoding that could fit the
definition of the DGNN, two coding functions are needed: the r function, which encodes
the attributed unfolding trees, and the family of coding functions #t. The composition of
these functions is used to define the node’s attributes, and the DGNN can produce the
desired output by using this encoded information as follows:

qv(0) = hv(0) = #0

�
r�1(hv(0))

�

qv(t) = #t

�
APPENDt

�
#�1

t�1(qv(t� 1)),r�1(hv(t))
�� (5.9)

where the ausiliar function APPENDt is defined similarly as in Chapter 4 and the r,
#t coding functions are defined in the following.

APPENDt

Let T k(v) be the domain of the attributed unfolding trees with root v, up to a certain
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depth d. The function
APPENDt : {(T k

v (i))i2[t�1]} [ ; ⇥ T k(v)! {(T k
v (i))i2[t]} is defined as follows:

APPEND0

�
;, T k

v (0)
�

:= T k
v (0)

APPENDt

��
T k
v (0), . . . , T k

v (t� 1)
�
, T k

v (t)
�

:=
�
T k
v (0), . . . , T k

v (t� 1), T k
v (t)

�

Intuitively, this function appends the unfolding tree snapshot of the node v at time t to
the sequence of the unfolding trees of that node at the previous t� 1 timesteps.

In the following, the coding functions are defined; their existence and injectiveness are
provided by construction.

The r Coding Function
Let r := µr � ⌫r be a composition of any two injective functions µr and ⌫r with the
following properties:

- µr is an injective function from the domain of static unfolding trees, calculated on
the nodes in the graph Gt, to the Cartesian product N ⇥ NP ⇥ ZA = NP+1 ⇥ ZA,
where P is the maximum number of nodes a tree could have.
Intuitively, in the Cartesian product, N represents the tree structure, NP denotes the
node numbering, while, for each node, an integer vector in ZA is used to encode the
node attributes. Notice that µr exists and is injective since the maximal information
contained in an unfolding tree is given by the union of all its node attributes and all
its structural information, which just equals the dimension of the codomain of µr.

- ⌫r is an injective function from NP+1 ⇥ ZA to R, whose existence is guaranteed by
the cardinality theory, since the two sets have the same cardinality.

Since µrt and ⌫rt are injective, also the existence and the injectiveness of rt is ensured.

The #t Coding Family

Similarly to r, the functions #t := µ#t � ⌫#t are composed by two functions µ#t and ⌫#t

with the following properties:

- µ#t is an injective function from the domain of the dynamic unfolding trees T k
t (v) :=

{(T k
v (i))i2[t]} to the Cartesian product Nt ⇥NtPt ⇥ ZtA = Nt(Pt+1) ⇥ ZtA, where Pt

is the maximum number of nodes a tree could have at time t.
- ⌫#t is an injective function from Nt(P+1) ⇥ ZtA to R, whose existence is guaranteed

by the cardinality theory, since the two sets have the same cardinality.

Since µ#t and ⌫#t are injective, also the existence and the injectiveness of #t are ensured.

The recursive function f, AGGREGATE(k)
t , COMBINE(k)

t

The recursive function f has to satisfy

f
�
qv(t� 1),hv(t)

�
= #t

�
(Tv(i))i2[t]

�
= qv(t),

where the hv(t) is the hidden representation of node v at time t extracted from the t-th
SGNN, i.e., hv(t) = SGNN (Gt, v). In particular, at each iteration i, we have
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hk
v(t) = COMBINE(k)

t

⇣
hk�1
v (t),AGGREGATE(k) �{{hk�1

u (t)}}u2ne[v](t), {{!{u,v}(t)}}u2ne[v](t)

�⌘

Further, the functions AGGREGATE(k)
t and COMBINE(k)

t – following the proof in [50] –
must satisfy

O(T k
v (t)) = hk

v(t) =

COMBINE(k)
t

⇣
hk�1
v (t),AGGREGATE(k)

t

�
{{hk�1

u (t) }}u2ne[v](t), {{!{u,v}(t)}}u2ne[v](t)

�⌘

= COMBINE(k)
t

⇣
O(T k�1

v (t)),AGGREGATE(k)
t ({{O(T k�1

u (t)) }}u2ne[v](t))
⌘

8 k  2N � 1 and 8 t 2 I.
For example, the trees can be collected into the coding of a new tree, i.e.,

AGGREGATE(k)
t (O(T k�1

u (t)), u 2 ne[v](t)) = O([u2ne[v](t)O
�1(O(T k�1

u (t)))),

where [u2ne[v](t) denotes an operator that constructs a tree with a root having void

attributes from a set of subtrees (see Fig. 4.5). Then, COMBINE(k)
t assigns the correct

attributes to the root by extracting them from T k�1
v (t), i.e.,

COMBINE(k)
t (O(T k�1

v (t)), b) = O(ATTACH(O�1(O(T k�1
v (t))),O�1(b))),

where ATTACH is the operator defined as shown in Figure 4.5 in Chapter 4.
Now, notice that, with this definition, AGGREGATE(k)

t , COMBINE(k)
t , and READOUTdyn

may not be di↵erentiable. Nevertheless, Eq. (5.8) has to be satisfied only for a finite

number of graphs, namely Gj . Thus, we can specify other functions AGGREGATEt
(k)

,

COMBINEt
(k)

, and READOUT, which produce exactly the same computations when they
are applied on the graphs Gj , but that can be extended to the rest of their domain so
that they are continuously di↵erentiable. Obviously, such an extension exists since those
functions are only constrained to interpolate a finite number of points 1.

The READOUTdyn function
Eventually, READOUTdyn must satisfy:

(·) := READOUTdyn(#t(·))

so that, ultimately,

dyn(t, G, v) =

READOUTdyn

�
#t

�
APPENDt

�
#�1

t�1(qv(t� 1)),r�1(hv(t))
���

1
Notice that a similar extension can also be applied to the coding function O and to the decoding

function O
�1

. In this case, the coding function is not injective on the whole domain, but only on the

graphs mentioned in the theorem.
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The equivalence between Theorem 5.29 and Theorem 5.31 is formally proven by the
following Theorem.

Theorem 5.32. Theorem 5.29 holds if and only if Theorem 5.31 holds.

Proof. The proof is similar to the one contained in [1]. Nevertheless, we want to highlight
that in this case, patterns are taken from D := I ⇥ G ⇥ V, as we are proving it in the
context of the dynamic graphs.

Figure 5.4 summarize the structure of the proof of Theorem 5.29.

Figure 5.4: Structure of the proof of Theorem 5.29.

Theorem 5.29 intuitively states that, given a dynamical system dyn, there is a DGNN
that approximates it. The functions which the DGNN is a composition of (such as the
dynamical function f , COMBINE(k), AGGREGATE(k), etc.) are supposed to be continuously
di↵erentiable, but their analytical formulation is not defined. This situation does not
correspond to practical cases where the DGNN adopts particular architectures, and those
functions are Neural Networks, or more generally, parametric models – for example, made
of layers of sum, max, average, etc. Thus, it is of fundamental interest to clarify whether
the theorem still holds when the components of the DGNN are parametric models.

Definition 5.33. A class QD of discrete DGNN models is said to have universal compon-
ents if the employed SGNNs have universal components as defined in Def. 5.24 and the
employed recurrent model is designed such that for any ✏1, ✏2 > 0 and any continuously
di↵erentiable target functions f, READOUTdyn there is a discrete DGNN in the class
QD, with functions f✓, READOUTdyn,✓ and parameters ✓ such that, for any input vectors
h 2 Rd, q,q? 2 Rs, it holds

��f(q,h)� f✓(q,h)
��
1  ✏1,��READOUTdyn(q

?)� READOUTdyn,✓(q
?)
��
1  ✏2.

Then we can show that Theorem 5.29 still holds even for discrete DGNNs with universal
components.

Theorem 5.34 (Approximation by Neural Networks). Assume that the hypotheses of
Thm. 5.29 are fulfilled and QD is a class of discrete DGNNs with universal components.
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Then, there exists a parameter set ✓, and the functions f , READOUTdyn , implemented by
Neural Networks in QD, such that Theorem 5.29 holds.

Proof. The idea of the proof follows from the same reasoning adopted for Theorem 4.17
in Chapter 4. Intuitively, since the discrete DGNN of Thm. 5.29 is implemented by
continuously di↵erentiable functions, its output depends continuously on the possible
changes in the DGNN implementation: small changes in the function implementation
cause small changes in the DGNN outputs. Therefore, the functions of the DGNN of
Thm. 5.29 can be replaced by Neural Networks, provided that those networks are suitable
approximators.

As in the proof of the dynamic version of the approximation theorem, without loss of
generality, we will assume that the attribute dimension is d = 12.

First of all, note that Thm. 5.29 ensures that we can find continuously di↵erentiable
functions f̄ , READOUTdyn such that, for the corresponding function '̄ implemented by
the DGNN it holds:

P (kdyn(t, G, v)� '̄(t, G, v)k  "

2
) � 1� � 8 t 2 I, ✏,� > 0. (5.10)

Considering that the theorem has to hold only in probability, we can also assume that
the domain is bounded to a finite set of patterns {(t(k), (Gt)

(k)
t2I , v

(k)) | i = 1, . . . , p} (as in
Theorem 5.31). As a result, the functions , f̄ and READOUTdyn are bounded and have a
bounded Jacobian. We can take the maximum of these Jacobians, which we will denote
as B.

Moreover, let f✓, READOUTdyn,✓ be universal components for DGNN, as in Def. 5.33,
that approximate f̄ , READOUTdyn, respectively. Further, let ✏1, ✏2, > 0 be the correspond-
ing approximation errors, i.e.,

��f(q,h)� f✓(q,h)
��
1  ✏1, and

��READOUTdyn(Q(t))� READOUTdyn,✓(Q(t))
��
1  ✏2

(5.11)

hold 8 t 2 I.

Now, from the proof of Theorem 5.25 we know that

P (kSGNNi(G, v)� SGNN✓,i(G, v)k  ✏s) � 1� �i

for i 2 [t], ✏s > 0 and for any norm. Then we can take every �i small enough, s.t.

kSGNNi(G, v)� SGNN✓,i(G, v)k1  ✏s

holds on a finite set of patterns large enough to include those ones of the i-th timestep
of each patterns of dynamic graphs on which Eq. (5.10) holds.

Therefore, if we define h̄(t) := SGNNi(Gt) and h✓(t) := SGNN✓,i(Gt) we have

|h̄(t)� h✓(t)k1 =
��SGNNi(Gt)� SGNN✓,i(Gt)

��
1  ✏s.

2
A GNN can theoretically be modeled with multiple components by stacking Neural Networks for each

dimension, respectively.
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In addition, let H̄(t) and H✓(t) be the internal representations produced by SGNN
andSGNN✓, stacked over all the nodes of the input graph. Then it holds

kH̄(t)�H✓(t)k1  N✏s 8 t 2 I, (5.12)

where N = maxG2G |G| is the maximum number of nodes of the static graphs input in the
bounded domain. Let again Q̄(0) := H̄(0) and Q̄(t) := F̄ (Q̄(t� 1), H̄(t)) be the stacking
of the internal states produced by DGNN’s internal recursive function f̄ . Analoguously,
let Q✓(0) := H✓(0) and Q✓(t) := F̄✓(Q✓(t � 1),H✓(t)) be the output produced by the
corresponding function of the parameterized DGNN.

Then it holds:

kQ̄(0)�Q✓(0)k1 = kH̄(0)�H✓(0)k1  N✏s (5.13)

and

kf̄(Q̄(0), ·)� f̄(Q✓(0), ·)k1  BkQ̄(0)�Q✓(0)k1
kf̄(·, H̄(1))� f̄(·,H✓(1))k1  BkH̄(1)�H✓(1)k1

for a bound B on the Jacobian of f̄(q,h) 8 t 2 I and 8 q, which, along with Eq. (5.12)
and Eq. (5.13) gives

kf̄(Q̄(0), ·)� f̄(Q✓(0), ·)k1  N✏sB

kf̄(·, H̄(1))� f̄(·,H✓(1))k1  N✏sB
(5.14)

Therefore, we have that:
t = 1 :

kQ̄(1)�Q✓(1)k1
=kf̄(Q̄(0), H̄(1))� f✓(Q✓(0),H✓(1))k1

add 0
= kf̄(Q̄(0), H̄(1))� f̄(Q✓(0), H̄(1))

+ f̄(Q✓(0), H̄(1))� f̄(Q✓(0),H✓(1))

+ f̄(Q✓(0),H✓(1))� f✓(Q✓(0),H✓(1))k1
4-ineq.
 kf̄(Q̄(0), H̄(1))� f̄(Q✓(0), H̄(1))k1

+ kf̄(Q✓(0), H̄(1))� f̄(Q✓(0),H✓(1))k1
+ kf̄(Q✓(0),H✓(1))� f✓(Q✓(0),H✓(1))k1

(5.14)
 2N✏sB + N✏1

:=�1(✏s, ✏1).
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t > 0: Analogously, it follows for t > 1 that

kQ̄(t)�Q✓(t)k1
=kf̄(Q̄(t� 1), H̄(t))� f✓(Q✓(t� 1),H✓(t))k1
=kf̄(Q̄(t� 1), H̄(t))� f̄(Q✓(t� 1), H̄(t))

+ f̄(Q✓(t� 1), H̄(t))� f̄(Q✓(t� 1),H✓(t))

+ f̄(Q✓(t� 1),H✓(t))� f✓(Q✓(t� 1),H✓(t))k1
kf̄(Q̄(t� 1), H̄(t))� f̄(Q✓(t� 1), H̄(t))k1

+ kf̄(Q✓(t� 1), H̄(t))� f̄(Q✓(t� 1),H✓(t))k1
+ kf̄(Q✓(t� 1),H✓(t))� f✓(Q✓(t� 1),H✓(t))k1

N�0B + N✏sB + N✏1

:=�1(✏s, ✏1).

The above reasoning can then be applied recursively to prove that

kQ̄(t)�Q✓(t)k1  �t(✏s, ✏1),

where �t(✏s, ✏1) could be found as little as possible, according to ✏s, ✏1. Finally, let ✏2 > 0,
so that

k'̄(t, G, v)�'✓(t, G, v)k1
= kREADOUTdyn(Q̄(t))� READOUTdyn,✓(Q✓(t))k1
 kREADOUTdyn(Q̄(t))� READOUTdyn(Q✓(t))k1
+ kREADOUTdyn(Q✓(t))� READOUTdyn,✓(Q✓(t))k1
 �tB + ✏2 = �(✏s, ✏1, ✏2).

Thus, we choose ✏s, ✏1, ✏2, s.t. �  "
2 ; going back in probability, we obtain

P (k'̄(t, G, v)�'✓(t, G, v)k  "

2
) � 1� � 8 t 2 I,

which, along with Eq. (5.10), proves the result.

Remark 5.35. The following remarks may further help to understand the results proven
in the previous paragraphs:

• Thm. 5.21 suggests an alternative approach to process several graph domains with a
universal SGNN model. Actually, almost all the graphs, including, e.g., hypergraphs,
multigraphs, directed graphs, etc., can be transformed to SAUGHs with node and
edge attributes [77]. Then, we can use a universal GNN model on such a domain
using su�ciently expressive AGGREGATE and COMBINE functions.

• Thms. 5.21 and 5.29 specify that the approximation is modulo unfolding equivalence,
or, correspondingly, modulo WL equivalence. It can be observed that in the dynamic
case, only a part of the architecture a↵ects the equivalence. Actually, a dynamic
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GNN contains two modules: the first one, an SGNN, produces an embedding of
the input graph at each time instance; the second component contains a Recurrent
Neural Network that processes the sequence of the embeddings. The dynamic
unfolding equivalence is defined by sequences of unfolding trees, which are built
independently for each node and time instance by the SGNN. Similarly, the dynamic
WL equivalence is defined by sequences of colors defined independently at each time
step. Intuitively, the Recurrent Neural Network does not a↵ect the equivalence,
since Recurrent Neural Networks can be universal approximators and implement
any function of the sequence without introducing other constraints beyond those
already introduced by the SGNN.

• Thm. 5.29 does not hold for any Dynamic GNN, as we take into account a discrete
recurrent model working on graph snapshots (also known as Stacked DGNN). Nev-
ertheless, several DGNNs of this kind are listed in [76], such as GCRN-M1 [80],
RgCNN [81], PATCHY-SAN [82], DyGGNN [83], and others. Still, the approxima-
tion capability depends on the functions AGGREGATE and COMBINE designed for
each GNN working on the single snapshot and the implemented Recurrent Neural
Network. For example, the most general model, the original RNN, has been proven
to be a universal approximator [84].

5.4 Experimental Validation

In this Section, we support our theoretical findings with an experimental setup. For this
purpose, we show that a DGNN can approximate a function FDWL : G ! N that models
the 1-DWL test. The function FDWL assigns to each dynamic graph a target label that
represents the class of equivalence of the 1-DWL. We focus on the ability of the DGNN to
approximate this function, so only training performances are considered, i.e., we do not
investigate the generalization capabilities over a test set. Since the 1-DWL test provides
the finest partition of graphs reachable by a DGNN, the mentioned task experimentally
evaluates the expressive power of DGNNs.

Dataset. The dataset consists of dynamic graphs, i.e., vectors of static graph snapshots
of fixed length T . Each static snapshot is one of the graphs in Fig. 5.5. Since the dataset
is composed of all the possible combinations of the four graphs, it contains 4T dynamic
graphs. Given that the graphs in Fig. 5.5 are pairwise 1-WL equivalent ( a) is 1-WL
equivalent to b) and c) is 1-WL equivalent to d) ), the number of classes is 2T , with
4T

2T = 2T graphs in each class. For each dynamic graph, the target is the corresponding
1-DWL output, represented as a natural number. For training purposes, the targets are
normalized between 0 and 1 and uniformly spaced in the interval [0, 1]. Therefore, the
distance between each class label is d = 1/2T . A dynamic graph G with target yG will be
said to be correctly classified if, given out = DGNN(G), we have |out� yG| < d/2.

Experimental setup. The Dynamic Graph Neural Network used in the experiments is
composed of two modules: a Graph Isomorphism Network (GIN) [13] and a Recurrent
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a) b)

c) d)

Figure 5.5: The four static graphs used as components to generate the synthetic dataset. Graphs

a) and b) are equivalent under the static 1–WL test; same holds for c) and d).

Neural Network (RNN), which together implement the static GNN and the temporal
network f of Eq. (5.1), respectively. Since it has been proven that the GIN is a universal
architecture [13] and the RNNs are universal approximators for dynamical systems on
vector sequences [84], the architecture used in the experiments fits the hypothesis of
Thm. 5.29. Thus, it can approximate any dynamic system of the temporal graph domain.
The MLP in the GIN has one hidden layer and the output layer of same size, which is
hgin 2 {1, 4, 8} with the hyperbolic tangent as activation function and batch normalization.
The GIN includes 6 message passing layers3, for graph-focused tasks, it is su�cient to
perform the message-passing convolution for several times equal to the maximum number
of nodes over the graphs in the dataset domain. After the last GIN layer, a linear layer
Wgin out of size hgin ⇥ hgin out is applied, where hgin out is fixed equal to 8. Furthermore,
hrnn = 8 is the size of the hidden state of the RNN. The model is trained over 300 epochs
using the Adam optimizer with a learning rate � = 10�3. Each setting is therefore
described by fixing the GIN hidden layer hgin and the time length T of the samples in the
synthetic dataset described above and is evaluated over 10 runs. The overall training is
then performed on an Intel(R) Core(TM) i7-9800X processor running at 3.80GHz using
31GB of RAM and a GeForce GTX 1080 Ti GPU unit4.

Results. Our experimental results are summarized in Figure 5.6.

The evolution of the training accuracy over the epochs for di↵erent GIN hidden layer
sizes (and consequently, for di↵erent hidden representation sizes) hgin and for dynamic
graphs up to time lengths of T = 4 and T = 5 is presented. All the architectures statistically
reach 100% accuracy for experiments on both time lengths. Even with fixing hgin = 1
this DGNN achieves perfect classification at a slower rate. It may appear surprising that,
even with a hidden representation of size 1, the DGNN can well approximate the function

3
As investigated in Subsection 5.35.

4
Code available at https://github.com/AleDinve/dyn-gnn.

https://github.com/AleDinve/dyn-gnn


i
i

i
i

i
i

i
i

68 5. Universality of GNNs for SAUHGs and Dynamic GNNs

(a) (b)

Figure 5.6: Train accuracy over the epochs for a DGNN trained on the dataset containing

dynamic graphs up to time length T = 4 (a) and T = 5 (b).

FDWL. However, as we already pointed out in Section 5.3, the possibility of reaching the
universal approximation with a feature of dimension 1 is confirmed by Thm. 5.29.

In the upcoming chapters, we will move our focus from the approximation power of
GNNs to the theoretical analysis of their generalization capabilities, which is a fundamental
aspect of every neural network model. In more detail, in the next chapter we will present
new bounds on the VC dimension, a measure of complexity commonly used to assess the
generalization capacity, for modern GNNs.
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Chapter 6

VC dimension of message passing GNNs with
Pfa�an activation functions

Message passing GNNs with common activation functions such as hyperbolic tangent,
sigmoid and arctangent still lack of a characterization in terms of VC dimension.

This chapter aims to close this gap, providing new bounds for modern message
passing GNNs with Pfa�an activation functions. Pfa�an functions are a large class of
di↵erentiable maps, which includes activation functions like tanh, logsig, atan, and, more
generally, most of the function used in Engineering having continuous derivatives up to
any order.

The contributions of this chapter are schematized below.

• We provide upper bounds for message passing GNNs with Pfa�an activation functions
with respect to the main hyperparameters, such as the feature dimension, the hidden
feature size, the number of message passing layers implemented and the total number
of nodes in the training domain. To prove these results we exploit theoretical results
in the literature that link the theory of Pfa�an functions and the characterization
of the VC dimension of the model via topological analysis.

• We also study the trend of the VC dimension w.r.t. the colors in the dataset obtained
by running the WL test. The theoretical result suggests that the number of colors
have an important e↵ect on the GNN generalization capability. On one hand, a large
total number of colors in the training set improves generalization, since it increases
the examples available for learning; on the other hand, a large number of colors in
each graph raises the VC dimension and therefore it increases the empirical risk
value.

• Our theoretical findings are experimentally assessed by a preliminary experimental
study; specifically, we evaluate the gap between the predictive performance on the
training and test data.

The chapter is organized as follows. In Section 6.1, we introduce the main concepts
and the notation used. In Section 6.2, we state and discuss our main theoretical results.
Then, in Section 6.3, we report the experimental validation of our achievements.

6.1 Notation and preliminaries

VC dimension — The Vapnik–Chervonenkis (VC) dimension is a measure of complexity
of a hypothesis set, which can be used to bound the empirical error of machine learning
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models. Formally, a binary classifier L with parameters ✓ is said to shatter a set of patterns
{x1, . . . ,xn} if, for any binary labeling of the examples {yi}i=1,...,n, yi 2 {0, 1}, there

exists ✓ s.t. the model L correctly classifies all the patterns, i.e.
nP

i=0
|L(✓,xi) � yi| = 0.

The VC dimension of the model L is the dimension of the largest set that L can shatter.

The VC dimension has been linked with the generalization capability of machine
learning models. Actually, given a training set and a test set for the classifier L, whose
patterns are i.i.d. samples extracted from the same distribution, the VC dimension allows
to compute a bound on the di↵erence between the training and test error. Formally, it
has been proved [85] that, for any ⌘ > 0,

Pr
�
test error  training error +

r
1

N

⇥
VCdim

�
log(

2N

VCdim
) + 1

�
� log(

⌘

4
)
⇤�

= 1� ⌘ (6.1)

holds, where N is the size of the training dataset and VCdim is the VC dimension of L.

Pfa�an Functions Formally, a Pfa�an chain of order ` � 0 and degree ↵ � 1 in an
open domain U ✓ Rn is a sequence of analytic functions f1, f2, . . . , f` in U satisfying the
di↵erential equations

dfj(x) =
X

1in

gij(x, f1(x), . . . , fj(x))dxi

for 1  j  `. Here, gij(x, y1, . . . , yj) are polynomials in x 2 U and y1, . . . , yj 2 R of
degree not exceeding ↵. A function f(x) = P (x, f1(x), . . . , f`(x)), where P (x, y1, . . . , y`) is
a polynomial of degree not exceeding �, is called a Pfa�an function of format format(f) =
(↵,�, `).

Pfa�an maps are a large class of functions that includes most of the functions with
continuous derivatives used in practical applications [86]. Note that the arctangent atan,
the logistic sigmoid logsig and the hyperbolic tangent tanh are Pfa�an functions, with
format format(atan) = (3, 1, 2), format(logsig) = (2, 1, 1), and format(tanh) = (2, 1, 1),
respectively.

6.1.1 Results from the literature

In the following, we will recall some notation and some results from the literature that are
crucial to the development of the proof of the main results of this chapter.

Let ⌧1, . . . , ⌧s̄ be a set of C1 infinitely di↵erentiable functions from Rp+� to R. Suppose
that �(y,✓),y 2 R� , ✓ 2 Rp is a quantifier–free logical formula constructed using the
logical ”and” and atoms in the form of ⌧i(y,✓) = 0. Note that, fixed ✓, �(·,✓) takes as
input a vector y and returns a logical value, so that it can be used as a classifier with
input y and parameters ✓. Later, we will see that ⌧1, . . . , ⌧s̄ can be specified so that �(·,✓)
defines the computation of a GNN. Moreover, its VC dimension can be easily defined.
In fact, � is said to shatter a set S = {ȳ1, . . . , ȳr} if, for any set of binary assignments
� = [�1, . . . , �r] 2 {0, 1}r, there exist parameters ✓̄ such that, for any i, �(yi, ✓̄) is true if
�i = 1, and �(yi, ✓̄) is false if �i = 0. Then, the VC dimension of � is defined as the size
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of the maximum set that � can shatter, i.e.,

VCdim(�) = max
S is shattered by �

|S|

Interestingly, it can be shown that the VC dimension of �(·,✓) can be studied by
analysing the topological properties of the inverse image of the components of �(y, ·) for
every input y. More precisely, let ȳ1, . . . , ȳz be vectors in R�̄ , and T : Rp̄ ! Rū, ū  p̄,
be defined as

T(✓̄) = [⌧̄1(✓̄), . . . , ⌧̄ū(✓̄)], (6.2)

where ⌧̄1(✓̄), . . . , ⌧̄ū(✓̄) are functions of the form ⌧i(ȳj , ✓̄), i.e., for each r, 1  r  ū, there
exist integers i and j such that ⌧̄r(✓̄) = ⌧i(ȳj , ✓̄). Let [✏1, . . . , ✏ū] be a regular value of T 1

and assume that there exists a positive integer B that bounds the number of connected
components of T�1(✏1, . . . , ✏ū) and does not depend on the chosen ✏1, . . . , ✏ū and on the
ȳj selected to be contained in the ⌧̄i. Then, the following theorem holds ([87]).

Theorem 6.1 ([87]). The VC dimension of � is bounded as follows:

VCdim(�)  2 log B + p̄(16 + 2 log s̄) .

The theorem provides a bound for the VC dimension that depends on the number p̄ of
parameters, on the total number s̄ of functions ⌧i, and on B, which may further depend
on the number of parameters.

Then, a bound on B can be obtained based on the literature. The following result
provides a bound for equations of Pfa�an functions.

Theorem 6.2 ([88]). Consider a system of equations q̄1(✓) = 0, . . . , q̄k(✓) = 0, where q̄i,
1  i  k, are Pfa�an functions in a domain P ✓ Rp̄, having a common Pfa�an chain
of length ¯̀ and maximum degrees (↵̄, �̄). Then the number of connected components of the
set {✓|q̄1(✓) = 0, . . . , q̄k(✓) = 0} is bounded by

2
¯̀(¯̀�1)

2 +1(↵̄+ 2�̄ � 1)p̄�1((2p̄� 1)(↵̄+ �̄)� 2p̄ + 2)
¯̀

6.2 Main Results

Our main result provides a bound on the VC dimension of GNNs in which COMBINE(t),
AGGREGATE(t) and READOUT are Pfa�an functions. More precisely, we consider a
slightly more general version of the GNN model in Eq. (2.1), where the updating scheme is

h(t+1)
v = COMBINE(t+1)�h(t)

v ,AGGREGATE(t+1)({{h(t)
u |u 2 V }}, Av)

�
, (6.3)

and Av is the v–th column of the connectivity matrix, which represents the neighborhood
of v. The advantage of the model in Eq. (6.3) is that it makes explicit the dependence of
AGGREGATE(t) on the graph connectivity. Actually, here we want to underline what the
inputs of AGGREGATE(t) are to clarify and make formally precise the assumptions that
those functions are Pfa�an and have a given format.

1
We recall that [✏1, . . . , ✏ū] is a regular value of T if either T

�1
([✏1, . . . , ✏ū]) = ; or T

�1
([✏1, . . . , ✏ū]) is

a (p̄� ū)–dimensional C1
–submanifold of Rp̄

.
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6.2.1 Main bounds

Our main result, namely Theorem 6.4, provides a bound on the VC dimension of general
GNNs with Pfa�an activation function and on GNNs with logistic sigmoid activation
function w.r.t. the total number p̄ of parameters, the number of computation units H , the
number of layers L, the feature dimension d, the maximun number N of nodes in a graph,
and the attribute dimension q. Here, we assume that GNN computation units include the
neurons computing the hidden features and the outputs. Thus, there is a computation
unit for each component of a feature, each layer, each node of the input graph and a
further computation unit for the READOUT.

The first step of the proof consists of defining a set of equations ⌧i(y,✓) = 0 that
specifies the computation of a GNN. Obviously, ✓ includes just the GNN parameters,
namely ✓ = ⇥. If COMBINE(k) has pcomb parameters for 1  k  L, AGGREGATE(k) has
pagg parameters for 1  k  L, and READOUT has pread parameters, the total number of
parameters is L(pcomb + pagg) + pread.

Moreover, intuitively, y represents the input of a GNN, so that for a given graph
G = (G,L) in G each y contains some vectorial representation of G, namely the Nq
graph attributes in LG, and a vectorial representation of the adjacency matrix, which
requires N(N � 1)/2 elements. Furthermore, to define the equations, we use the same
trick as in[87] and we introduce new variables for each computation unit of the network.
Those variables belongs to the input y of ⌧ . More precisely, we consider a vector of d
variables h(k)

v for each node v and for each layer k. Note that, since we may be interested in
defining more computations of the GNN on more graphs at the same time, here v implicitly
addresses a specific node of some graph in the domain. Finally, a variable READOUT
for each graph contains just a single output of the GNN. In total, the dimension of y is
p̄ = Nq + N(N � 1)/2 + NdL + 1.

Then, by (2.1), the computation of GNN is straightforwardly defined by the following
set of LNd + Nq + 1 equations,

h(0)
v �↵v = 0 (6.4)

h(k)
v � COMBINE(k+1)�h(k)

v ,AGGREGATE(k+1)({{h(k)
u |u 2 ne(v)}},A)

�
= 0 (6.5)

READOUT� READOUT({{h(L)
v : v 2 V }})) = 0 (6.6)

where A is the variable storing the adjacency matrix of the input graph. We can assume
that A is valid for every graph in the domain if the domain is made by finite graphs.

The following lemma specifies the format of Pfa�an functions involved in the above
equations.

Lemma 6.3. Let COMBINE(t), AGGREGATE(t) and READOUT be Pfa�an functions with
format, respectively, (↵comb,�comb, `comb), (↵agg,�agg, `agg), (↵read,�read, `read) w.r.t. the
variables y and ✓ described above, then:

1. the left part of Eq. (6.4) is a polynomial of degree 1;

2. the left part of Eq. (6.5) is a Pfa�an function with format
(↵agg + �agg � 1 + ↵comb�agg,�comb, `comb + `agg);
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3. the left part of Eq. (6.6) is a Pfa�an function with format
(↵read,�read, `read);

4. Eqs. (6.4)–(6.6) constitute a system of Pfa�an equations with a maximal format
(↵system,�system, `system), where ↵system = max{↵agg + �agg � 1 + ↵comb�agg,↵read},
�system = max{�comb,�read} and `system = LNd(`comb + `agg) + `read.

Proof. The first point is straightforwardly evident, while the third is true by definition.
The second point can be derived by applying the composition lemma for Pfa�an functions
[89], according to which, if two functions f and g have format (↵f ,�f , `f ) and (↵g,�g, `g),
respectively, then their composition f � g has format (↵g + �g � 1 + ↵f�g,�f , `f + `g).
Finally, the fourth point is obtained by taking the maximum of the format of the involved
Pfa�an equations also observing that the common chain is the concatenation of the
chains.

We can now state the main result of this chapter.

Theorem 6.4. Let us consider the GNN model described by Eq. (6.3). If COMBINE(t),
AGGREGATE(t) and READOUT are Pfa�an functions with format (↵comb,�comb, `comb),
(↵agg,�agg, `agg), (↵read,�read, `read), respectively, then the VC dimension satisfies

VCdim
�
GNN

�
 2 log B + p̄(16 + 2 log s̄) (6.7)

where B  2
¯̀(¯̀�1)

2 +1(↵̄+ 2�̄ � 1)p̄�1((2p̄� 1)(↵̄+ �̄)� 2p̄ + 2)
¯̀
, ↵̄ = max{↵agg + �agg �

1 + ↵comb�agg,↵read}, �̄ = max{�comb,�read},
p̄ = pcomb(0) + pagg(0) +(L� 1)(pcomb + pagg)+ pread, ¯̀= p̄H, H = LNd(`comb + `agg)+ `read
and s̄ = LNd + Nq + 1 hold. By substituting the definitions in Eq. (6.7), we obtain

VCdim
�
GNN

�
 p̄

2(LNd(`comb + `agg) + `read)
2

+ 2p̄ log (3�)

+ 2p̄ log ((4��2)p̄)+2�2�)
+ p̄(16 + 2 log(LNd+Nq + 1)) (6.8)

where ↵̄, �̄  � for a constant � 2 R.

Proof. Let T be defined as in Eq. (6.2), where ⌧i(y,✓) = 0 are the equations in (6.4),
(6.5), (6.6). Combining Theorem 6.2 with the formats provided by point 3. of Lemma 6.3,
for any input graph and any value of the variables y, the number of connected components
of T�1 satisfies

B  2
¯̀(¯̀�1)

2 +1(↵̄+ 2�̄ � 1)p̄�1((2p̄� 1)(↵̄+ �̄)� 2p̄ + 2)
¯̀
, (6.9)

where p̄ = pcomb(1) + pagg(1) + (L � 1)(pcomb + pagg) + pread, ↵̄ = ↵system, �̄ = �system,
¯̀= p̄(LNd(`comb + `agg) + `read).

By Theorem 6.1, the VC dimension of the GNN described by Eqs. (6.4)–(6.6) is
bounded by

VCdim(GNN)  2 log B + p̄(16 + 2 log s̄) , (6.10)
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where s̄ = LNd + Nq + 1. Thus, substituting Eq. (6.9) in Eq. (6.10), we have:

VCdim
�
GNN

�
 2 logB + p̄(16 + 2 log s̄)

 2 log

✓
2

¯̀(¯̀�1)
2 +1(↵̄+ 2�̄ � 1)p̄�1((2p̄� 1)(↵̄+ �̄)� 2p̄+ 2)

¯̀
◆
+

+ p̄(16 + 2 log s̄)

= ¯̀(¯̀�1)+2(p̄�1) log
�
↵̄+2�̄�1

�
+2¯̀log

�
(2p̄�1)(↵̄+�̄)�2p̄+2

�
+

+ p̄(16 + 2 log s̄) + 2,

obtaining Eq. (6.7).
If we denote H = LNd((`comb + `agg) + `read), we have:

VCdim
�
GNN

�
 p̄H(p̄H � 1) + 2(p̄� 1) log(↵system + 2�system � 1)

+2p̄H log
�
(2p̄� 1)(↵system + �system)� 2p̄ + 2

�

+p̄(16 + 2 log(s̄)) + 2 (6.11)

 p̄2H2 + 2p̄ log (3�)

+2p̄H log ((4� � 2)p̄ + 2� 2�)

+p̄(16 + 2 log(s̄)) + 2.

Then, by replacing p̄, H and s̄, and setting � = max{↵̄, �̄}, it follows that:

VCdim
�
GNN

�
 (pcomb(1)+pagg(1)+(L�1)(pcomb+pagg)+pread)

2
(LNd(`comb+`agg)+`read)

2

+ 2(pcomb(1) + pagg(1) + (L� 1)(pcomb + pagg) + pread) log (3�)

+ 2(pcomb(1) + pagg(1) + (L� 1)(pcomb + pagg) + pread)·

· log
⇣
(4� � 2)(pcomb(1) + pagg(1) + (L� 1)(pcomb + pagg) + pread) + 2� 2�

⌘

+ (pcomb(1)+pagg(1)+ (L�1)(pcomb+pagg)+pread)(16+2 log(LNd+Nq+1)) ,

which leads to Eq. (6.8) as in the thesis.

We observe that the dominant term is p̄2H2 = p̄2(LNd(`comb + `agg) + `read)2. Thus,
the theorem suggests that the VC dimension is O(p̄2L2N2d2), w.r.t. the number of
parameters p̄ of the GNN, the number of Layers L, the number N of graph nodes, and
the feature dimension d. Note that those hyperparameters are related by constraints,
which should be considered in order to understand how the VC dimension depends on
the single hyperparameters. Thus, the VC dimension is at most O(p4) since, when the
number of parameters p grows, also the number L of layers and/or the feature dimension
d grow. Interestingly, such a result is similar to those already obtained for feedforward
and recurrent neural networks with Pfa�an activation functions.

Table 6.1 compares our result with those available in the literature. Therefore, even if
GNNs are more complex, the order of growth of the VC dimension, w.r.t the parameters,
is the same of those simple models. The following theorem clarifies how the VC dimension
depends on each hyperparameter.

Theorem 6.5. With respect to the Pfa�an functions COMBINE(k), AGGREGATE(k) and
READOUT defined in Theorem 6.4, if pcomb, paggr, pread 2 O(d), then the VC dimension of
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Activation function Bound References

Modern GNNs

Piecewise polynomial O(p log(Cp) + p log(N)) [55]

tanh, logsig or atan O(p4N2) this work

tanh, logsig or atan O(p4C2) this work

Original GNNs [2]

Polynomial O(p log(N)) [28]

Piecewise polynomial O(p2N log(N)) [28]

tanh, logsig or atan O(p4N2) [28]

Positional RecNNs

Polynomial O(pN) [90]

logsig O(p4N2) [90]

Sequences (recurrent neural networks)

Polynomial O(pN) [91]

Piecewise polynomial O(p2N) [91]

tanh or logsig O(p4N2) [91]

Vectors (Static multilayer networks)

Binary O(p log p) [92, 93, 94]

Polynomial O(p log p) [95]

Piecewise polynomial O(p2) [95, 91]

tanh, logsig or atan O(p4) [87]

Table 6.1: Upper bounds on VCdim of common architectures: p is the number of network

parameters, N the number of nodes in the input graph or sequence, while C is the maximum

number of colors per graph.

a GNN defined as in Equation (2.1), w.r.t. p̄, H, N, L, d, q satisfies

VCdim
�
GNN

�
 O(p̄4)

VCdim
�
GNN

�
 O(N2)

VCdim
�
GNN

�
 O(L4)

VCdim
�
GNN

�
 O(d6)

VCdim
�
GNN

�
 O(q2)

Proof. Based on Theorem 6.4, we can derive the orders of growth of the VC dimension
w.r.t. the dimension of the features, the number of layers and the graph dimension,
obtaining Theorem 6.5.

The proof of Theorem 6.4 adopts the same reasoning used in [87], to derive a bound on
the VC dimension of feedforward neural networks with Pfa�an activation functions, and
in [28], to provide a bound for the first GNN model. Intuitively, the proof is based on the
following steps: it is shown that the computation of GNNs on graphs can be represented
by a set of equations defined by Pfa�an functions with format (↵̄, �̄, ¯̀), where ↵̄, �̄, ¯̀
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are those defined in the theorem; then, the bound is obtained exploiting a result in [87],
that connects the VC dimension with the number of connected components in the inverse
images of a system of Pfa�an equations, and a result in [88], that allows to estimate
the required number of connected components. Note that our bound and other bounds
obtained for networks with Pfa�an activation functions are larger than those for networks
with simpler activations. As explained in [87] and [28], such a di↵erence is likely to be
due to the fact that tight bounds are more di�cult to achieve with Pfa�an functions and
also depends on the current general limits of mathematics in the field.

6.2.2 Computation of the main bounds for a specific GNN model

In this section, we derive the VC dimension bounds specifically for the architecture
described by Eqs. (2.4)–(2.5).

Given an attributed graph domain G, containing graphs up to N nodes and whose
attributes have dimension q, let a GNN be described by the updating scheme defined by
Equation (2.4). The hidden states are initialised as h(0)

v = ↵v.

As in Section 6.2.1, the first step of the proof consists of defining a set of equations
⌧i(y,✓) = 0 that specifies the computation of a GNN. Obviously, ✓ includes just the GNN
parameters, namely ✓ = ⇥. It can be easily calculated that the total number of parameters
is p = (2d + 1)(d(L� 1) + q + 1)� q. Indeed, the parameters are:

• W(1)
comb,W

(1)
agg 2 Rq⇥d,b(1) 2 R1⇥d, so that we have 2dq + d parameters;

• W(k)
comb,W

(k)
agg 2 Rd⇥d,b(k) 2 R1⇥d for k = 2, . . . , L, so that we have (2d2 + d)(L� 1)

parameters;

• w 2 Rd⇥1, b 2 R, so that we have d + 1 parameters (we consider o = 1 for ease of
computation).

Summing up, we have 2dq + d + (2d2 + d)(L� 1) + d + 1 = (2d + 1)(d(L� 1) + q + 1)� q
parameters. Moreover, intuitively y represents the input of a GNN, so that for a given
graph G = (G,L) in G each y contains some vectorial representation of G, namely the
Nq graph attributes in LG and a vectorial representation of the adjacency matrix, which
requires N(N � 1)/2 elements.

To define the equations, we use the same trick as in[87] and we introduce new variables
for each computation unit of the network. Those variables belong to the input y of ⌧ .
More precisely, we consider a vector of d variables h(k)

v for each node v and for each layer
t. Note that v implicitly addresses a specific node of some graph in the domain, since we
may be interested in defining more computations of the GNN on more graphs at the same
time. Finally, a variable READOUT for each graph contains just a single output of the
GNN. In total, the dimension of y is Nq + N(N � 1)/2 + NdL + 1.

Then, by Equation (2.4), the computation of the GNN is straightforwardly defined by
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the following set of LNd + Nq + 1 equations,

h(0)
v �↵v = 0 (6.12)

h(k)
v � �

⇣
h(k�1)
v W(k)

comb +
P

u h
(k�1)
u W(k)

aggmv,u + b(k)
⌘

= 0 (6.13)

READOUT� �
⇣P

v2V h(L)
v W + b

⌘
= 0 (6.14)

where mv,u is a binary value, which is 1 when v and u are connected and 0, otherwise.
The following lemma specifies the format of Pfa�an functions involved in the above

equations.

Lemma 6.6. Let � be a Pfa�an function in x with format (↵�,��, `�), then w.r.t. the
variables y and w described above,

1. the left part of Equation (6.12) is a polynomial of degree 1;

2. the left part of Equation (6.13) is a Pfa�an function having format (2+3↵�,��, `�);

3. the left part of Equation (6.14) is a Pfa�an function having format (1+2↵�,��, `�);

4. Equations (6.12)–(6.14) constitute a system of Pfa�an equations with format (2 +
3↵�,��, H`�), where the shared chain is obtained by concatenating the chains of
H = LNd + 1 equations in (6.13),(6.14) that include an activation function.

Proof. The first point is straightforward. The second and third points can be derived
by applying the composition lemma for Pfa�an functions. Actually, the formula inside
� in Equation (6.13) is a polynomial of degree 3, due to the factors h(k�1)

u W(k)
aggmv,u,

while formula inside � in Equation (6.14) is a polynomial of degree 2, due to the factors
h(L)
v W. Moreover, polynomials are Pfa�an functions with null chains, with ↵ equal to

0 and � equal to their degrees. Thus, the functions inside the � in Equations (6.13)
and (6.14) have format (0, 3, 0) and (0, 2, 0), respectively. Then, the thesis follows
by the composition lemma in[89], according to which if two functions f and g have
format (↵f ,�f , `f ) and (↵g,�g, `g), respectively, then their composition f � g has format
(↵g + �g � 1 + ↵f�g,�f , `f + `g). Finally, the fourth point is a consequence of the fact
that the equations are independent and the chains can be concatenated. The length of
the chain is an obvious consequence of the fact that there are H = LNd + 1 equations
using �. The degree is obtained copying the largest degree of a Pfa�an function, which is
the one in Equation (6.13).

Now we can state the main results on the VC dimension of the GNN model described
by Eqs. (2.4), (2.5).

Theorem 6.7. Let us consider the GNN model described by Eqs. (2.4), (2.5). If � is a
Pfa�an function in x with format (↵�,��, `�), then the VC dimension satisfies

VCdim
�
GNN

�
 2 log B + p̄(16 + 2 log s̄)

where B  2
¯̀(¯̀�1)

2 +1(↵̄ + 2�̄ � 1)p̄�1((2p̄ � 1)(↵̄ + �̄) � 2p̄ + 2)
¯̀
, ↵̄ = 2 + 3↵�, �̄ = ��,

¯̀= p̄H`�, and s̄ = LNd + Nq + 1 holds.
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If � is the logistic sigmoid activation function, we have

VCdim
�
GNN

�
 p̄2H2 + 2p̄ log (9) + 2p̄H log (16p̄) + p̄(16 + 2 log(s̄))

Proof. As in 6.2.1, it is enough to combine Lemma 6.6, Theorem 6.2 and Theorem 6.1 to
obtain the bounds stated in the thesis. The bounds on the VC dimension of the specific
GNN with logsig as activation function is easily found since the format of logsig is (2,1,1):

VCdim
�
GNN

�
 ((2d+ 1)(d(L� 1) + q + 1)� q)2(LNd+ 1)

2

+ 2((2d+ 1)(d(L� 1) + q + 1)� q) log (9)

+ 2((2d+ 1)(d(L� 1) + q + 1)� q) log (16((2d+ 1)(d(L� 1) + q + 1)� q))

+ ((2d+ 1)(d(L� 1) + q + 1)� q)(16 + 2 log(LNd+Nq + 1)) .

The following theorem shows that the obtained bounds are perfectly coherent with the
ones achieved in the general case.

Theorem 6.8. The VC dimension of a GNN defined as in Equation (2.1), w.r.t. p̄, H, N, L, d, q
satisfies

VCdim
�
GNN

�
 O(p̄2H2)

VCdim
�
GNN

�
 O(N2)

VCdim
�
GNN

�
 O(L4)

VCdim
�
GNN

�
 O(d6)

VCdim
�
GNN

�
 O(q2)

Proof. Based on Theorem 6.7, we can derive the orders of growth of the VC dimension
w.r.t. the dimension of the features, the number of the layers and the graph dimension,
obtaining Theorem 6.8.

6.2.3 Bounds with 1–WL colors

The developed theory is easily adapted to the case when nodes can be grouped according
to their colors defined by the Weisfeiler–Lehman algorithm. Since a group of nodes with
the same color are computationally equivalent, then the corresponding equations can be
merged. Formally, for a given graph G, let C1(G) =

PL
k=1 Ck(G) be the number of colors

generated by 1–WL, where Ck(G) is the number of colors at step k > 0. Moreover, let us
assume that Ck(G) is bounded in the domain, namely there is C1 such that C1(G)  C1

for all the graphs G in the domain. Similarly, let C0(G) be the number of colors of the
graph generated by 1–WL at the initial step and assume that there exists C0 such that
C0(G)  C0 for all the graphs of the domain. The following theorem provides a bound on
the VC dimension w.r.t. the numbers of colors.

Theorem 6.9. Assume a subset S ✓ G and consider a GNN using the logistic sigmoid
logsig as the activation function. The VC dimension of the GNN satisfies

VCdim
�
GNN(C1)

�
 O(C2

1 )

VCdim
�
GNN(C0)

�
 O(log(C0)).
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Proof. Let us call Basic GNN (BGNN) the model of Eqs. (2.4)–(2.5). The proof is based
on the introduction of an extended version, which we call EGNN, that can simulate the
BGNN. Due to this capability, the EGNN can shatter any set that is shattered by the
BGNN so that its VC dimension is greater or equal to the VC dimension of the BGNN.
The proof will follow by bounding the VC dimension of the former model.
More precisely, the EGNN exploits the same aggregation mechanism of the BGNN to
compute the features, which is described by Eq. (2.4). On the other hand, the READOUT
function is defined as

READOUT
⇣
{{h(L)

v | v 2 V }}
⌘

:= f
⇣X

v2V

wh(L)
v cv + b

⌘
, (6.15)

where cv are additional real inputs used to weight each node feature in the READOUT
function. The simulation is based on the following steps.

1) Each input graph G of the BGNN is transformed to another graph G0, where all the
nodes having the same 1–WL color are merged into a single node and the edges are
merged consequently;

2) The EGNN is applied to G0 and each cv is set equal to the number of nodes that
have been merged to obtain node v.

Note that a GNN cannot distinguish nodes with the same color as the computation is the
same on all these nodes. Thus, the BGNN and the EGNN produce the same features on
nodes sharing color. As a consequence, also the READOUTs of the two models have the
same output, when the cv are equal to the number of nodes within each color cluster.
Given these assumptions, the number of equations describing the Pfa�an variety associated
to the EGNN is reduced to sc = C1d+C0q +1, which can be used in place of s̄ in Theorem
6.1. Moreover, also the chains of the Pfa�an functions in merged equations can be merged
and we have that H can be replaced by Hc = C1d + 1. Finally, the length of the chain `
of Theorem 6.2 is replaced by ¯̀

c = p̄Hc`�.

With the above changes, we can replace the variables in Eq. (6.11) as in 6.2.1, obtaining:

VCdim
�
GNN

�
 p̄Hc(p̄Hc � 1) + 2p̄ log (9)

+2p̄Hc log (16p̄� 7)

+p̄(16 + 2 log(s̄c)) + 2

 p̄2(C1d + 1)2 + 2p̄ log (9)

+2p̄(C1d + 1) log (16p̄� 7)

+p̄(16 + 2 log(C1d + C0q + 1)).

and the thesis holds.

The obtained result suggests that the VC dimension depends quadratically on the
total number of node colors and logarithmically on the initial number of colors. Actually,
a GNN processes all the nodes of a graph at the same time and the GNN architecture is
similar to a feedforward network where some computation units are replicated at each
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node. Thus, the complexity of the GNN grows with the number of nodes and this explains
the dependence of the VC dimension on the number of nodes (see Theorem 6.8). On
the other hand, nodes with the same colors cannot be distinguished by the GNN: this
means that, in theory, we can use the same computation units for a group of nodes sharing
the color. Therefore, to get tighter bounds on the VC dimension, we can consider the
number of colors in place of the number of nodes. Finally, it is worth mentioning that if
the number of nodes/colors for each graph increases, the VC dimension of the GNN also
increases and, as a consequence, decreases its generalization capability, which also depends
on the number of patterns in the training set (see Eqs. (6.1)). In GNNs and graph focused
tasks, each graph of the training set is a pattern, but graphs with the same set of colors
have to be considered duplicates; in node focused tasks, the nodes are patterns and the
nodes with the same color are duplicates. Thus, the generalization performance of a GNN
improves when the total number of graph/node colors in the training set increases, in
both graph and node focused tasks.

6.3 Experimental validation

In this section, we present an experimental validation of our theoretical results. We will
show how the VC dimension of GNNs evolves along with the variation of the parameters
respecting the bounds found in Theorems 6.8 and 6.9. In our experimental framework we
will exploit the GNN convolution described in Eqs. (2.4) - (2.5).

6.3.1 Experimental setting

We design two experimental frameworks to assess the validity, respectively, of Theorems
6.8 and 6.9. For both frameworks, we train a Graph Neural Network made by message
passing layers defined as in Equation (2.4), where the activation function f is either arctan
or tanh; the final READOUT layer is an a�ne layer Wout 2 Rd⇥o, after which a logsig
activation function is applied; here o denotes the dimension of the output. The model is
trained via Adam optimizer with an initial learning rate � = 10�3. The hidden feature
size is denoted by d and the number of layers by L.

E1: We measure the evolution of the di↵erence between training and validation accuracy
di↵ = train acc� test acc through the training epochs, over the NCI1 dataset taken
from the TUDataset repository [96]. The choice of the datasets has been driven
by their binary classification nature. On the first part of the experiment, we fix
the hidden feature size to d = 32 and let the number of layers vary in the range
L 2 [2, 3, 4, 5, 6], to measure how di↵ evolves. On the second part, we fix the number
of layers to L = 3 and let the hidden feature size d vary in [8, 16, 32, 64, 128], to
perform the same task. We train the model for 500 epochs in each run, with the
batch size fixed at 32.

E2: We measure the evolution of the di↵erence between training and validation accuracy
di↵ = train acc� test acc through the training epochs over the dataset NCI1, whose
graphs are increasingly ordered according to the ratio |V (G)|

Ck(G) , splitted in 4 di↵erent
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groups. The intuition here is that, being the number of nodes of the graphs bounded,
splitting the ordered dataset should provide datasets in which the total number of
colors is progressively increasing. Hidden size is fixed as d = 16, the number of

Split 1 Split 2 Split 3 Split 4

# Nodes 27667 30591 31763 32673

# Colors 26243 26569 24489 16348

min
G

#Nodes(G)
#Colors(G) 1.000 1.105 1.208 1.437

max
G

#Nodes(G)
#Colors(G) 1.105 1.208 1.437 8

Figure 6.1: Summary of the parameters for each split of the ordered NCI1 dataset for the task

E2.

layers is fixed as L = 4, the batch size is fixed equal to 32. We report in Table 6.1
the reference values for each split. We train the model for 2000 epochs (the number
of epochs is greater with respect to task E1 because this task presented greater
instability during the training optimization)

Each experiment is statistically evaluated over 10 runs. The overall training is performed
on an Intel(R) Core(TM) i7-9800X processor running at 3.80GHz, using 31GB of RAM and
a GeForce GTX 1080 Ti GPU unit. The code developed to run the experiments exploits
the Python package PytorchGeometric; the code can be found at https://github.com/
AleDinve/vc-dim-gnn.

6.3.2 Experimental results

Task E1 Numerical results for the NCI1 dataset are reported in Figures 6.2–6.3. The
behaviour of the evolution of di↵ proves to be consistent with the bounds provided by
Theorem 6.8 with respect to increasing the hidden dimension or the number of layers.
Although it is hard to establish a precise function that links the VC dimension to di↵,
given also the complex nature of the theoretical framework as the one of the Pfa�an
functions, we can partially rely on Equation (6.1) (which is valid for large sample sets) to
argue that our bounds are verified by this experimental setting.

Task E2 Here, numerical results for the NCI1 dataset are reported in Figure 6.4. Similar
observations as for the experimental setting E1 can be drawn here: indeed, the evolution
of di↵ in our experiment is consistent with the bounds presented in Theorem 6.9 as the
ratio between colors and nodes increases.

In the next chapter, we will examine the generalization capabilities of GNNs through
the lens of cognitive tasks. In particular, we will assess the ability of GNNs to learn the
so–called identity e↵ects.

Pytorch%20Geometric
https://github.com/AleDinve/vc-dim-gnn
https://github.com/AleDinve/vc-dim-gnn
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(a) (b)

(c) (d)

Figure 6.2: Results on the task E1 for GNNs with activation function arctan. Pictures (a) and

(c) show the evolution of di↵ through the epochs, for di↵erent values of d, keeping fixed L = 3,

and for di↵erent values of L, keeping fixed d = 32; Picture (b) shows how di↵ evolves as the

hidden size increases, while Picture (d) shows how di↵ evolves as the number of layers increases.
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(a) (b)

(c) (d)

Figure 6.3: Results on the task E1 for GNNs with activation function tanh. Pictures (a) and (c)

show the evolution of di↵ through the epochs, for di↵erent values of d, keeping fixed L = 3, and

for di↵erent values of L, keeping fixed d = 32; Picture (b) shows how di↵ evolves as the hidden

size increases, while Picture (d) shows how di↵ evolves as the number of layers increases.
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(a) (b)

Figure 6.4: Results on the task E2 for GNNs with activation function tanh. Picture (a) shows

the evolution of di↵ through the epochs, for di↵erent values of V (G)
Ck(G)

, keeping fixed L = 4 and

d = 16; Picture (b) shows how di↵ evolves as the ratio V (G)
Ck(G)

increases.
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Chapter 7

Learning Identity E↵ects with GNNs

This chapter examines the generalization limits and capabilities of GNNs when learning
identity e↵ects, a task that determines whether an object is made up of two identical
components or not. More precisely, we consider two tasks. In the former, we deal with
graphs constituted by two nodes connected by an edge: the goal is to distinguish whether
the nodes have the same attributes. In the latter, the graphs are made by two distinct
cycles of nodes connected by an edge: the objective is to distinguish whether the two
cycles have the same length or not. Those two tasks intuitively model two basic cases of
learning identity e↵ects with graphs. The former is about the recognition of identities
related to node attributes, whereas the latter is about the recognition of identities about
graph structure. We will see that a GNN can solve the latter task, but not the former.

The chapter is structured as follows. In Section 7.1 we review theory of impossibility
theorems for invariant learners, namely some literature results that will be used to derive
the main results. In Section 7.2, we present and prove our main theoretical results. Section
7.3 shows numerical experiments conducted to validate our findings.

7.1 Rating impossibility for invariant learners

Let us recall the theory of rating impossibility [67], which will be applied to the case of
identity e↵ect learning. In general, we assume to train a machine learning model (ML
model) to perform a rating assignment task, which consists of giving a rating r to a
pattern x. Let I be the set of all possible inputs x. Our ML model is trained on a
dataset D ✓ I ⇥ R consisting of a finite set of input-rating pairs (x, r). The model is
trained via a suitable optimization method ⇥, such as Stochastic Gradient Descent (SGD)
or Adaptive Moment Estimation (Adam) [97], which, for any given training dataset D,
outputs the optimized set of parameters ⇥ = ⇥(D) 2 Rp of a model ' = '(⇥, ·). The
rating prediction on a novel input x 2 I is then given by r = '(⇥,x). Formally, after
training, the ML model implements a map L : D⇥I ! R such that L(D,x) = '(⇥(D),x)
holds.

Given the stochastic nature of neural network training, we adopt a nondeterministic
point of view. Hence we require the notion of equality in distribution. Two random

variables X, Y taking values in Rq are said to be equal in distribution (denoted by X
d
= Y )

if P(X  x) = P(Y  x) for all x 2 Rq, where inequalities hold componentwise. Rating

impossibility happens when L(D,x1)
d
= L(D,x2) for two inputs x1 6= x2 drawn from I \D.

Su�cient conditions for rating impossibility are identified by the following theorem from
[67], which involves the existence of an auxiliary transformation ⌧ of the inputs.
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Theorem 7.1 (Rating impossibility for invariant learners, [67, Thm 1]). Consider a
dataset D ✓ I ⇥ R and a transformation ⌧ : I ! I such that

(i) ⌧(D)
d
= D (invariance of the data).1

Then, for any learning algorithm L : D ⇥ I ! R and any input x 2 I such that

(ii) L(⌧(D), ⌧(x))
d
= L(D,x) (invariance of the algorithm),

we have L(D, ⌧(x))
d
= L(D,x).

This theorem states that under the invariance of the data and of the algorithm, the
learner cannot assign di↵erent ratings to an input x and its transformed version ⌧(x).
This leads to rating impossibility when ⌧(x) 6= x and x, ⌧(x) 2 I \ D.

We conclude by recalling some basic notions on SGD training. Given a dataset D, we
aim to find parameters ⇥ that minimize an objective function of the form

F (⇥) = L(('(⇥,x), r) : (x, r) 2 D), ⇥ 2 Rp,

where L is a (possibly regularized) loss function. We assume F to be di↵erentiable over
Rp in order for its gradients to be well defined. Given a collection of subsets (Di)

k�1
i=0 with

Di ✓ D (usually referred to as training batches, which can be either deterministically or
randomly generated), we define FDi as the function F where the loss is evaluated only on
data in Di. In SGD-based training, we randomly initialize ⇥0 and iteratively compute

⇥i+1 = ⇥i � ⌘i
@FDi

@⇥
(⇥i), (7.1)

for i = 0, 1, . . . , k � 1, where the sequence of step sizes (⌘i)
k�1
i=0 is assumed to be either

deterministic or random and independent of (Di)
k�1
i=0 . Note that, being ⇥i a random

vector for each i, the output of the learning algorithm L(D,x) = '(⇥i,x) is a random
variable.

7.2 Theoretical analysis

In this Section, we present our results. More specifically, in Section 7.2.1 we focus on the
study of learning identity e↵ects for a two-letter word dataset. In this case, the dataset
is constituted of graphs with two nodes, which are labeled with an alphabet letter and
linked by an edge. The goal is to recognize whether the two letters of the nodes are equal
or not. We establish a rating impossibility theorem for GNNs on such a dataset under
certain technical assumptions related to the invariance of the node attributes. In Section
7.2.2, we study the GNN capability in recognizing graph connectivity and we consider
dicyclic graphs, which are constituted by two cycles connected by an edge. It is proved
that symmetric dicyclic graphs can be distinguished from asymmetric ones by the 1–WL
test, and consequently by GNNs.

1
Here, by abuse of notation, ⌧(D) := {(⌧(x), r) : (x, r) 2 D} holds.
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7.2.1 What GNNs cannot learn: rating impossibility theorem

Let us assume that the input space is in the form I = Rq ⇥Rq and the learning algorithm

L(D,x) = f(B,Gu + Hv,Hu + Gv), 8x = (u,v) 2 I, (7.2)

where ⇥ = (B,G,H) are the trained parameters defined as

G = W(1)
comb, H = W(1)

agg,

B =
⇣
b(1),W(2)

comb,W
(2)
agg,b

(2) . . . ,W(N)
comb,W

(N)
agg ,b(N)

⌘
.

and the W,b are those defined in (2.4). Here, f denotes a parametric ML model in the
parameters ⇥ = (B,G,H) and the input x = (u,v). With respect to the function '
above defined, we have that '((B,G,H), (u,v)) = f(B,Gu+Hv,Hu+Gv). The learner
defined by equation (7.2) mimics, in this specific setting, the behaviour of several GNN
architectures, GCN included, over graphs composed by two nodes (see Figure 7.1). In fact,
when the graph is composed by only two nodes, the convolution ends up being a weighted
sum of the hidden states of the two nodes, i.e., h(k)

ne = h(k)
u and

h(k+1)
v = �

�
W(k+1)

comb h(k)
v + W(k+1)

agg h(k)
u + b(k+1)

�
.

This property will have practical relevance in Theorem 7.4 and its experimental realization
in Section 7.3.2.

v u ↵(v) =

�

������

0
1
0
...
0

�

������
↵(u) =

�

������

1
0
0
...
0

�

������

3

Figure 7.1: Graph modeling of a two–nodes graph: a vertex feature ↵(v) 2 Rq is attached to

each node v of a two–node undirected graph, according to a given encoding E . In this figure, E is

the one–hot encoding.

In the following result we identify su�cient conditions on the dataset D and the
training procedure able to guarantee invariance of GNN-type models of the form (7.2)
trained via SGD to a suitable class of transformations ⌧ .

Theorem 7.2 (Invariance of GNN-type models trained via SGD). Assume the input
space is in the form of I = Rq ⇥ Rq. Let ⌧ : I ! I be a linear transformation defined by
⌧(x) = (u, ⌧2(v)) for any x = (u,v) 2 I, where ⌧2 : Rq ! Rq is linear. Moreover, assume
that

• the matrix T2 2 Rq⇥q associated with the transformation ⌧2 is orthogonal and
symmetric;

• the dataset D = {((ui,vi), ri)}ni=1 is invariant under the transformation ⌧2⌦ ⌧2, i.e.,

(ui,vi) =
�
⌧2(ui), ⌧2(vi)

�
, 8i = 1, . . . , n. (7.3)
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Suppose k iterations of SGD as defined in (7.1) are used to determine parameters ⇥k =
(Bk,Gk,Hk) with objective function

F (⇥) =
nX

i=1

`
�
f(B,Gui + Hvi,Hui + Gvi), ri

�
+ �R(B),

where ⇥ = (B,G,H) are the parameters, � � 0 is a real meta-parameter, `, f and R are
real-valued functions, representing the loss, the model and a regularization term, respectively,
and defined so that F is di↵erentiable. Suppose the random initialization of the parameters
B, G and H to be independent and that the distributions of G0 and H0 are invariant
with respect to right-multiplication by T2. Then, the learner L defined by L(D,x) =

f(Bk,Gku + Hkv,Hku + Gkv), for x = (u,v), satisfies L(D,x)
d
= L(⌧(D), ⌧(x)).

Proof. Given a batch Di ✓ D, define Ji := {j 2 {1, . . . , n} : ((uj ,vj), rj) 2 Di} and

FDi(⇥) =
X

j2Ji

`(f(B,Gvj + Huj ,Hvj + Guj), rj) + �R(B).

Moreover, consider an auxiliary objective function, defined by

F̃Di(B,G1,H1,H2,G2) =
X

j2Ji

`(f(B,G1vj + H1uj ,H2vj + G2uj), rj) + �R(B).

Observe that FDi(⇥) = F̃Di(B,G,H,H,G). Moreover,

@FDi

@B
(⇥) =

@F̃Di

@B
(⇥) (7.4)

@FDi

@G
(⇥) =

@F̃Di

@G1
(⇥) +

@F̃Di

@G2
(⇥) (7.5)

@FDi

@H
(⇥) =

@F̃Di

@H1
(⇥) +

@F̃Di

@H2
(⇥) (7.6)

Moreover, replacing Di with its transformed version ⌧(Di) = {((uj , ⌧2(vj)), rj)}j2Di , we
see that F⌧(Di)(⇥) = F̃Di(B,G,HT2,H,GT2). This leads to

@F⌧(Di)

@B
(⇥) =

@F̃Di

@B
(B,G,HT2,H,GT2) (7.7)

@F⌧(Di)

@G
(⇥) =

@F̃Di

@G1
(B,G,HT2,H,GT2)

+
@F̃Di

@G2
(B,G,HT2,H,GT2)T

T
2 (7.8)

@F⌧(Di)

@H
(⇥) =

@F̃Di

@H1
(B,G,HT2,H,GT2)T

T
2

+
@F̃Di

@H2
(B,G,HT2,H,GT2). (7.9)
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Now, denoting ` = `(f, r) and f = f(B,u,v), we have

@F̃Di

@G1
=
X

j2Di

@`

@f

@f

@u
vT
j ,

@F̃Di

@H1
=
X

j2Di

@`

@f

@f

@u
uT
j ,

@F̃Di

@H2
=
X

j2Di

@`

@f

@f

@v
vT
j ,

@F̃Di

@G2
=
X

j2Di

@`

@f

@f

@v
uT
j .

In addition, thanks to assumption (7.3), we have uT
j T

T
2 = uT

j and vT
j T

T
2 = vT

j for all
j 2 Ji. Thus, we obtain

@F̃D

@G1
TT

2 =
@F̃D

@G1
,

@F̃D

@H1
TT

2 =
@F̃D

@H1
, (7.10)

@F̃D

@H2
TT

2 =
@F̃D

@H2
,

@F̃D

@G2
TT

2 =
@F̃D

@G2
. (7.11)

Now, let (B0
0,G

0
0,H

0
0)

d
= (B0,G0,H0) and let (B0

i,G
0
i,H

0
i) for i = 1, . . . k be the

sequence generated by SGD, applied to the transformed data ⌧(D). By assumption, we

have B0
0

d
= B0, G0

d
= G0

0
d
= G0

0T2 and H0
d
= H0

0
d
= H0

0T2 . We now show by induction

that B0
i

d
= Bi , Gi

d
= G0

i
d
= G0

iT2 and Hi
d
= H0

i
d
= H0

iT2 for all indices i = 1, . . . , k. Using
equations (7.4) and (7.7) and the inductive hypothesis, we have

B0
i+1 = B0

i � ⌘i
@F⌧(Di)

@B
(B0

i,G
0
i,H

0
i)

= B0
i � ⌘i

@F̃Di

@B
(B0

i,G
0
i,H

0
iT2,H

0
i,G

0
iT2)

d
= Bi � ⌘i

@F̃Di

@B
(Bi,Gi,Hi,Hi,Gi)

= Bi � ⌘i
@F⌧(Di)

@B
(Bi,Gi,Hi) = Bi+1.
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Similarly, using equations (7.5), (7.8) and (7.11) and the inductive hypothesis, we see that

G0
i+1 = G0

i � ⌘i
@F⌧(Di)

@G
(B0

i,G
0
i,H

0
i)

= G0
i � ⌘i

 
@F̃Di

@I
(B0

i,G
0
i,H

0
iT2,H

0
i,G

0
iT2)

+
@F̃Di

@L
(B0

i,G
0
i,H

0
iT2,H

0
i,G

0
iT2)T

T
2

!

= G0
i � ⌘i

 
@F̃Di

@G1
(B0

i,G
0
i,H

0
iT2,H

0
i,G

0
iT2)

+
@F̃Di

@G2
(B0

i,G
0
i,H

0
iT2,H

0
i,G

0
iT2)

!

d
= Gi � ⌘i

 
@F̃Di

@G1
(Bi,Gi,Hi,Hi,Gi)

+
@F̃Di

@G2
(Bi,Gi,Hi,Hi,Gi)

!

= Gi � ⌘i
@FDi

@G
(Bi,Gi,Hi) = Gi+1.

One proceeds analogously for H0
i+1 using equations (7.6), (7.9) and (7.10). Similarly, one

also sees that G0
i+1T2

d
= Gi+1 and H0

i+1T2
d
= Hi+1 combining the previous equations

with symmetry and orthogonality of T2.
In summary, we have

L(D,x) = f(Bk,Gku + Hkv,Hku + Gkv)

d
= f(B0

k,G
0
ku + H0

kv,H0
ku + G0

kv)

d
= f(B0

k,G
0
ku + H0

kT2v,H0
ku + G0

kT2v)

= L(⌧(D), ⌧(x)),

which concludes the proof.

Remark 7.3 (On the assumptions of Theorem 7.2). At first glance, the assumptions of
Theorem 7.2 might seem quite restrictive, especially the assumption about the invariance
of the distributions of G0 and H0 with respect to right-multiplication by the symmetric
orthogonal matrix T2. Yet, this hypothesis holds, e.g., when the entries of G0 and H0

are independently and identically distributed according to a centered normal distribution
thanks to the rotational invariance of isotropic random Gaussian vectors (see, e.g., [98,
Proposition 3.3.2]). This is the case in common initialization strategies such as Xavier
initialization [99]. In addition, numerical results presented in Section 7.3 suggest that
rating impossibility might hold in more general settings, such as when the model f includes
ReLU activations (hence, when F has points of nondi↵erentiability) or for models trained
via Adam as opposed to SGD.
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Application to identity e↵ects

As a practical application of Theorem 7.2 to identity e↵ects, we consider the problem of
classifying identical two-letter words of the English alphabet A := {A,B, . . . ,Z}, following
[67]. Consider a training set D formed by two-letter words that do not contain Y nor Z.
Words are assigned the label 1 if they are composed by identical letters and 0 otherwise.
Our goal is to verify whether a learning algorithm is capable of generalizing this pattern
correctly to words containing the letters Y or Z. The transformation ⌧ of Theorem 7.2 is
defined by

⌧(xY) = xZ, ⌧(xZ) = xY, and ⌧(xy) = xy, (7.12)

for all letters x, y 2 A, with y 6= Y,Z. Note that this transformation is of the form ⌧ = I⌦⌧2,
where I is the identity map. Hence, it fits the setting of Theorem 7.2. Moreover, since
D does not contain Y nor Z letters, ⌧(D) = D. Hence, condition (i) of Theorem 7.1 is
satisfied.

In order to represent letters as vectors of Rq, we need to use a suitable encoding. Its
choice is crucial to determine the properties of the transformation matrix T2 associated
with ⌧2, needed to apply Theorem 7.2. Formally, an encoding of an alphabet A is a set of
vectors E ✓ Rd, of the same cardinality of A, to which letters can be associated with. In
our case, |A| = 26 = |E|. We say that an encoding is orthogonal if it is an orthonormal set
of Rd. For example, the popular one-hot encoding E = {ei}26i=1 ✓ R26, i.e., the canonical
basis of R26, is an orthogonal encoding.

In this setting, every word is modeled as a graph defined by two nodes connected by
a single unweighted and undirected edge. Each node v is labeled with a node feature
↵(v) 2 Rq, corresponding to a letter’s encoding. For instance, Figure 7.1 represents a
two-letter word with one-hot encoding.

Theorem 7.4 (Inability of GNNs to classify identical two-letter words outside the training
set). Let E ✓ R26 be an orthogonal encoding of the English alphabet A and let L be
a learner obtained by training a GNN of the form (2.4) via SGD to classify identical
two-letter words. Assume that words in the training set D do not contain the letter Y nor
Z. Then, L assigns the same rating (in distribution) to any word of the form xy where

y 2 {Y,Z}, i.e., L(D, xY)
d
= L(D, xZ) for any x 2 A. Hence, it is unable to generalize to

identity e↵ect outside the training set.

Proof. As discussed above, the transformation ⌧ defined by (7.12) is of the form ⌧ = I⌦⌧2.
Moreover, the matrix associated with the linear transformation ⌧2 is of the form T2 =
B�1PB, where B is the change-of-basis matrix from the orthonormal basis associated
with the encoding E to the canonical basis of R26 (in particular, B is orthogonal and
B�1 = BT ) and P is a permutation matrix that switches the last two entries of a vector,
i.e., using block-matrix notation,

P =

2

64
I 0

0
0 1
1 0

3

75 , I 2 R24⇥24.

Hence, T2 is orthogonal and symmetric, and therefore fits the framework of the Theorem
7.2.
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On the other hand, as discussed in Section 7.2.1, every GNN of the form (2.4) is a

model of the form (7.2). Thus, Theorem 7.2 yields L(D, xy)
d
= L(⌧(D), ⌧(xy)), for all

letters x, y 2 A. In particular, L(D, xY)
d
= L(⌧(D), xZ), which corresponds to condition

(ii) of Theorem 7.1. Recalling that ⌧(D) = D, also condition (i) holds. Hence, we can
apply Theorem 7.1 and conclude the proof.

7.2.2 What GNNs can learn: identity e↵ects on dicyclic graphs

We now analyze the expressivity of GNNs to learn identity e↵ects related to the topology of
the graphs in the dataset. This novel setting requires to design ex novo the formulation of
our problem. In fact, we are not focusing on the feature matrix XG of a graph anymore, but
on its adjacency matrix A, which contains all the topological information. Here we focus
on a particular class of graphs, which we call dicyclic graphs. A dicyclic graph is a graph
composed by an m-cycle and an n-cycle, linked by a single edge. Since a dicyclic graph is
uniquely determined by the length of the two cycles, we can identify it with the equivalence
class [m, n] over the set of pairs (a, b), a, b 2 N, defined as [m, n] := {(m, n), (n, m)}. A
dicyclic graph [m, n] is symmetric if m = n and asymmetric otherwise.

In this section we provide an analysis of the expressive power of GNNs when learning
identity e↵ects on dicyclic graphs (i.e., classifying whether a dicyclic graph is symmetric
or not). We start by proving a lemma that shows how information propagates through the
nodes of a cycle, during the 1–WL test iterations, when one of the nodes has a di↵erent
initial color with respect to all the other nodes.

Lemma 7.5 (1-WL test on m-cycles). Consider an m-cycle in which the vertices are
numbered from 0 to m� 1 clockwise, an initial coloring c(0) = [0, 1, . . . , 1]T 2 Nm (vector
indexing begins from 0, and the vector is meant to be circular, i.e., c(0)(m) = c(0)(0)), and
define the function HASH as

8
>>>><

>>>>:

HASH(0, {{j, h}}) = 0

HASH(i, {{j, h}}) = i if j 6= h, i < bm2 c
HASH(i, {{j, h}}) = i + 1 if j = h, i < bm2 c
HASH(bm2 c, {{j, h}}) = bm2 c

,

with j, h  bm2 c. Then, HASH is an injective coloring over the m-cycle at each iteration k
of the 1–WL test. This gives, at each iteration 0  k < L = bm2 c, the coloring

8
>><

>>:

c(k)(i) = i if 0  i  k

c(k)(i) = k + 1 if k < i < m� k

c(k)(i) = m� i if m� k  i < m

, (7.13)

and the 1-WL test terminates after L = bm2 c iterations (i.e., c(L) = c(L�1)), giving bm2 c+1
colors.

Proof. We prove the lemma by induction on k.
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Case t = 1 We start with c(0)(0) = 0 and c(0)(i) = 1, for i = 1, . . . , m� 1. We only have
three hashing cases:

� HASH(0, {{1, 1}}) = 0, the color assigned to node 0;

� HASH(1, {{0, 1}}) = 1, the color assigned to nodes 1 and m� 1;

� HASH(1, {{1, 1}}) = 2, the color assigned to all nodes 1 < i < m� 1.

This shows that c(1) satisfies (7.13) and that HASH is injective at iteration k = 1. Hence,
the claim is true for k = 1.

Inductive step k ! k+1 Assume that the inductive hypothesis is true for step t. Hence,
our coloring is of the form (7.13) and that HASH is injective at iteration k. This means
that for 0 < i  k we have c(k)(i� 1) < c(k)(i) < c(k)(i + 1) and for m� k  i < m� 1
we have c(k)(i + 1) < c(k)(i) < c(k)(i� 1); thus, for 0 < i  k or m� k � 1  i < m� 1,
we see that

c(k+1)(i) = HASH(c(k)(i), {{c(k)(i� 1), c(k)(i + 1)}} = i.

For i = k + 1 we have c(k)(i � 1) < c(k)(i) = c(k)(i + 1) and for i = m � k � 2 we have
c(k)(i + 1) < c(k)(i) = c(k)(i� 1); therefore, for i = k + 1 and i = m� k � 2, we also have

c(k+1)(i) = HASH(c(k)(i), {{c(k)(i� 1), c(k)(i + 1)}} = i.

For all the remaining indices k+1 < i < m�k�2, we have c(k)(i�1) = c(k)(i) = c(k)(i+1),
so

c(k+1)(i) = HASH(c(k)(i), {{c(k)(i� 1), c(k)(i + 1)}}
= (k + 1) + 1 = k + 2.

The HASH function is still injective, as for 0 < i  k + 1 we have c(k)(i� 1) < c(k)(i) <
c(k)(i + 1), for m � k � 1  i < m � 1 we have c(k)(i + 1) < c(k)(i) < c(k)(i � 1),
and for k + 1 < i < m � k � 1 it holds HASH(c(k)(i), {{c(k)(i � 1), c(k)(i + 1)}}) =
HASH(k + 1, {{k + 1, k + 1}}) = k + 2. Therefore, we have

8
>><

>>:

c(k+1)(i) = i if 0  i  k + 1

c(k+1)(i) = k + 2 if k + 1 < i < m� k � 1

c(k+1)(i) = m� i if m� k � 1  i < m

.

Termination of the 1–WL test At iteration bm2 c � 1 we have

8
>><

>>:

c(b
m
2 c�1)(i) = i if 0  i  bm2 c � 1

c(b
m
2 c�1)(i) = bm2 c if i = bm2 c or i = dm2 e

c(b
m
2 c�1)(i) = m� i if dm2 e+ 1  i < m

.

This concludes the proof.
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t = 0 t = 1 t = 2

Figure 7.2: Graphical illustration of Lemma 7.5: a 6-cycle reaches a stable coloring in b 6
2c = 3

steps with b 6
2c+ 1 = 4 colors. Numbers are used to identify nodes.

A graphical representation of Lemma 7.5 can be found in Figure 7.2. We observe
that the specific node indexing of Lemma 7.5 was adopted just to ease computations;
nevertheless, it is possible to construct a HASH function for other choices of node indexing.
This is due to the fact that the mapping depends only on the topological structure in
each node’s neighborhood. This lemma represents the core of next theorem’s proof, which
establishes the ability of the 1-WL test to classify dicyclic graphs with identical cycles.
Intuitively, if we have a dicyclic graph where node colors are uniformly initialized, one
step of 1–WL test yields a coloring depending entirely on the number of neighbours for
each node. In a dicyclic graph [m, n] we always have m + n� 2 nodes of degree two and
2 nodes of degree three, so c(1)(i) = 1 for all 2-degree nodes i, and c(1)(j) = 0 for the
two 3-degree nodes j. Hence, each cycle of the dicyclic graph satisfies the initial coloring
hypothesis of Lemma 7.5.

Theorem 7.6 (1-WL test on dicyclic graphs). The 1–WL test gives the same color to the
3-degree nodes of a uniformly colored dicyclic graph [m, n] (i.e., c(0) = 0 2 Nm+n) if and
only if m = n. Therefore, the 1–WL test can classify symmetric dicyclic graphs.

Proof. After one iteration on the 1–WL test, regardless of the symmetry of the dicyclic
graph, we obtain a coloring in which only 3-degree nodes have a di↵erent color, whose
value we set to 0. We can therefore split the coloring vector c(1) 2 Nm+n in two subvectors,
namely, c(1) = [(c(1)1 )L, (c(1)2 )L]T corresponding to each cycle, respectively, and where
c(1)1 (0) and c(1)2 (0) correspond to the 3-degree nodes. We treat the symmetric and the
asymmetric cases separately.

The symmetric case We let c(0)1 = c(0)2 = c(0)0 , with c(0)0 = [0, 1, . . . , 1]. In this case, we
run the 1–WL test in parallel on both vectors c(k)1 and c(k)2 , where the HASH function in
Lemma 7.5 is extended on the 3-degree nodes as HASH(0, {{0, j, h}}) = 0. Therefore, for
each k � 0,

c(k+1)
0 (0) = HASH(c(k)0 (0), {{c(k)0 (0), c(k)0 (1), c(k)0 (m� 1)}}) = 0.

Thanks to Lemma 7.5 we obtain c
(bm

2 c)
1 = c

(bm
2 c)

2 , which is a stable coloring for the whole
graph, as the color partition is not refined anymore.
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(a) (b)

Figure 7.3: Stable 1-WL coloring for di↵erent types of dicyclic graphs: as stated in Theorem

7.6, 3-degree nodes have the same color in symmetric dicyclic graphs, and di↵erent color in the

asymmetric ones.

The asymmetric case Without loss of generality, we can assume m = length(c(k)1 ) 6=
length(c(k)2 ) = m + � for some � 2 N, � > 0. We also assume for now that m is odd
(the case m even will be briefly discussed later). We extend the HASH function from
Lemma 7.5 to colors j, h > bm2 c. For j > bm2 c or k > bm2 c we define

8
>><

>>:

HASH(0, {{j, h}}) =1
HASH(i, {{j, h}}) = bm2 c+ i if j 6= k, i  bm2 c
HASH(i, {{j, h}}) = bm2 c+ i + 1 if j = k, i  bm2 c

.

Running in parallel the 1–WL test on the two cycles, computing the coloring vectors
c
(bm

2 c+1)
1 and c

(bm
2 c+1)

2 up to iteration bm2 c+ 1, for i = bm2 c+ 1 we have c2(i) = bm2 c+ 1.
Therefore, given the extension of the HASH function just provided, this new color starts to
backpropagate on the indices i < bm2 c+ 1 , i > m� h� bm2 c � 1 until it reaches the index

0. As a consequence, it exists an iteration index L such that c(L)
2 (0) = HASH(0, {{j, k⇤}})

with k⇤ > bm2 c and, finally, c(L)
2 (0) =1, giving c(L)

1 (0) 6= c(L)
2 (0), as claimed.

The case in which m is even works analogously, but we have to modify the HASH
function in a di↵erent way to preserve injectivity. In particular, for j, h  m/2, we define

(
HASH(i, {{j, h}}) = m

2 if j = k, i = m
2

HASH(i, {{j, h}}) = m
2 + 1 if j 6= k, i = m

2

.

This concludes the proof.

Theorem 7.6 establishes in a deterministic way the power of the 1–WL test in terms
of distinguishing between symmetric and asymmetric dicyclic graphs, given a su�cient
number of iterations directly linked with the maximum cycle length in the considered
domain. Examples of 1-WL stable colorings on dicyclic graphs are presented in Figure 7.3.

Employing well-known results in the literature concerning the expressive power of
GNNs (see [20, 13] and in particular Theorem 2.2), we can prove the main result of this
subsection on the classification power of GNNs on the domain of dicyclic graphs.

Corollary 7.7 (GNNs can classify symmetric dicyclic graphs). There exist a GNN of the
form (2.4) and a READOUT function able to classify symmetric dicyclic graphs.
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Proof. Let [m, n] be a dicyclic graph and c(L) be the stable coloring of [m, n] produced by
the 1-WL test with initial uniform coloring. By Theorem 7.6 the graph can be correctly
classified by the 1–WL test, i.e., by its stable coloring. Using Theorem 2.2, a GNN f⇥
exists such that f⇥ can learn the stable coloring for each input graph for each iteration
step t. Let c(L) be the stable coloring computed by a GNN for a dicyclic graph [m, n]. Let
(u, v) be the 3-degree nodes of the dicyclic graph. Then, the READOUT can be modeled
as

READOUT(c(L)) =

(
1 if c(L)(u) = c(L)(v)

0 otherwise
.

With such a READOUT, the GNN assigns the correct rating to the dicyclic graph (i.e., 1
if the graph is symmetric, 0 otherwise).

Remark 7.8 (The gap between theory and practice in Corollary 7.7). Corollary 7.7
shows that GNNs are powerful enough to match the 1–WL test’s expressive power for the
classification of symmetric dicyclic graphs (as established by Theorem 7.6). However,
it is worth underlining that this result only proves the existence of a GNN model able
to perform this task. In contrast to the results presented in Section 7.2.1, this corollary
does not mention any training procedure. Nevertheless, the numerical experiments in
Section 7.3.3 show that GNNs able to classify symmetric dicyclic graphs can be trained in
practice, albeit achieving generalization outside the training set is not straightforward and
depends on the GNN architecture.

7.3 Numerical results

This section presents the results of experimental tasks designed to validate our theorems.
We analyze the consistency between theoretical and numerical findings, highlighting the
significance of specific hypotheses, and addressing potential limitations of the theoretical
results.

7.3.1 Experimental Setup

We take in account two di↵erent models for our analysis:

• The Global Additive Pooling GNN (Gconv-glob) applies a sum pooling at the end
of the message-passing convolutional layers [12]. In the case of the 2-letter words
setting, the resulting vector hglob 2 Rh undergoes processing by a linear layer, while
in the dicyclic graphs setting, an MLP is employed. A sigmoid activation function is
applied at the end.

• The Di↵erence GNN (Gconv-di↵ ), takes the di↵erence between the hidden states of
the two nodes in the graph (in the 2-letter words setting) or the di↵erence between
the hidden states of the 3-degree nodes (in the dicyclic graphs setting) after the
message-passing convolutional layers. The resulting vector hdi↵ 2 Rh is then fed
into a final linear layer, followed by the application of a sigmoid activation function.



i
i

i
i

i
i

i
i

7.3. Numerical results 99

The choice of the last READOUT part is driven by empirical observation on their
e↵ectiveness on the two di↵erent tasks.
Training is performed on an Intel(R) Core(TM) i7-9800X processor running at 3.80GHz
using 31GB of RAM along with a GeForce GTX 1080 Ti GPU unit2.

7.3.2 Case study #1: two-letter words

To validate Theorem 7.2, we consider a classification task using the two-letter word identity
e↵ect problem described in Section 7.2.1, following the experimental setup presented in
[67].

Task and datasets

In accordance with the setting of Section 7.2.1, each word is represented as a graph
consisting of two nodes connected by a single unweighted and undirected edge (see
Figure 7.1). Each node is assigned a node feature x 2 R26, corresponding to a letter’s
encoding.

The training set Dtrain includes all two-letter words composed of any English alphabet
letters except Y and Z. The test set Dtest is a set of two-letter words where at least one of
the letters is chosen from Y,Z. Specifically, we consider Dtest = {YY,ZZ,YZ,ZT,EY, SZ}.

Vertex feature encodings

In our experiments, we consider four di↵erent encodings of the English alphabet, following
the framework outlined in Section 7.2.1. Each encoding consists of a set of vectors drawn
from R26.

• One-hot encoding : This encoding assigns a vector from the canonical basis to each
letter: A is encoded as e1, B as e2, ..., and Z as e26.

• Haar encoding : This encoding assigns to each letter the columns of a 26 ⇥ 26
orthogonal matrix drawn from the orthogonal group O(26) using the Haar distribution
[100].

• Distributed encoding : This encoding assigns a random combination of 26 bits to
each letter. In this binary encoding, only j bits are set to 1, while the remaining
26� j bits are set to 0. In our experiments, we set j = 6.

• Gaussian encoding : This encoding assigns samples from the multivariate normal
distribution N (0, I), where 0 2 Rn and I 2 Rn⇥n. In our experiments, we set
n = 16.

Observe that only the one-hot and the Haar encodings are orthogonal (see Section 7.2.1)
and hence satisfy the assumption of Theorem 7.4. On the other hand, the distributed and
the Gaussian encodings do not fall within the setting of Theorem 7.4.

2
Code available at https://github.com/AleDinve/gnn_identity_effects.git.

https://github.com/AleDinve/gnn_identity_effects.git
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Figure 7.4: Numerical results for the rating task on the two-letter words dataset using Gconv-

glob with L = 1, 2, 3 layers. Rating should be equal to 1 if words are composed by identical

letters, 0 otherwise. The distributed and Gaussian encodings, which deviate from the framework

outlined in Theorem 7.2, exhibit superior performance compared to the other encodings. The

other encodings makes the transformation matrix orthogonal and symmetric, being themselves

orthogonal encodings.

We run 40 trials for each model (i.e., Gconv-glob or Gconv-di↵, defined in Section
7.3.1) with l layers (ranging from 1 to 3). In each trial, a di↵erent training set is randomly
generated. The models are trained for 5000 epochs using the Adam optimizer with a
learning rate of � = 0.0025, while minimizing the binary cross-entropy loss. The hidden
state dimension is set to d = 64, and Rectified Linear Units (ReLUs) are used as activation
functions.

The numerical results are shown in Figures 7.4–7.5, where we propose two di↵erent
types of plots:

• On the top row, we compare the ratings obtained using the four adopted encodings.
The first two words, AA and a randomly generated word with nonidentical letters,
denoted xy, are selected from the training set to showcase the training accuracy.
The remaining words are taken from Dtest, allowing assessment of the generalization
capabilities of the encoding scheme outside the training test. The bars represent
the mean across trials, while the segments at the center of each bar represent the
standard deviation.

• On the bottom row, we show loss functions with respect to the test set over the
training epochs for each encoding. The lines represent the average, while the shaded
areas represents the standard deviation.
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Figure 7.5: Numerical results for the rating task on the two-letter words dataset using Gconv-di↵

with L = 1, 2, 3 layers. The same observations to those in Figure 7.4 can be made here as well.

Our numerical findings indicate that the rating impossibility theorem holds true for
the one-hot encoding and the Haar encoding. However, notable di↵erences in behavior
emerge for the other two encodings. The 6-bit distributed encoding exhibits superior
performance across all experiments, demonstrating higher rating accuracy and better loss
convergence. The Gaussian encoding yields slightly inferior results, yet still showcases some
generalization capability. It is important to note that despite variations in experimental
settings such as architecture and optimizer (specifically, the use of ReLU activations and
the Adam optimizer), the divergent behavior among the considered encodings remains
consistent. This highlights the critical role of the transformation matrix T2 within the
hypothesis outlined in Theorem 7.4. It is interesting to notice that increasing the number
of layers contributes to the so-called oversmoothing e↵ect [101, 102]: many message passing
iterations tend to homogenize information across the nodes, generating highly similar
features.

7.3.3 Case study #2: dicyclic graphs

We now consider the problem of classifying unlabeled symmetric dicyclic graphs, introduced
in Section 7.2.2. In Corollary 7.7 we proved the existence of GNNs able to classify symmetric
dicyclic graphs. In this section, we assess whether such GNNs can be computed via training
(see also Remark 7.8). With this aim, we consider two experimental settings based on
di↵erent choices of training and test set: an extraction task and an extrapolation task,
summarized in Figures 7.8 and 7.10, respectively, and described in detail below. Each task
involves running 25 trials for the Gconv-glob and Gconv-di↵ models defined in Section



i
i

i
i

i
i

i
i

102 7. Learning Identity E↵ects with GNNs

7.3.1. The number of layers in each model is determined based on the specific task.

The models are trained over 5000 epochs using a learning rate of � = 0.001. We employ
the Adam optimizer, minimizing the binary crossentropy, and incorporate the AMSGrad
fixer [103] to enhance training stability due to the large number of layers. Labels are all
initialized uniformly as h(0)

v = 1 for each node in each graph. The hidden state dimension
is set to d = 100, and ReLU activation functions are utilized.

The results presented in Figures 7.6, 7.8, and 7.10 should be interpreted as follows:
each circle represents a dicyclic graph [m, n]; the color of the circle corresponds to the
rating, while the circle’s radius represents the standard deviation.

(a) nmax = 16 (b) nmax = 20

Figure 7.6: Perfect classification of symmetric dicyclic graphs by nmax iterations of the 1-WL

test.

1–WL test performance

In Theorem 7.6 we showed that the 1–WL test can classify symmetric dicyclic graphs. This
holds true regardless of the length of the longer cycle, provided that a su�cient number of
iterations is performed. The results in Figure 7.6 show that the 1–WL test achieves indeed
perfect classification accuracy in nmax iterations, where nmax is the maximum length of a
cycle in the dataset, in accordance with Theorem 7.6.

Extraction task

In this task, we evaluate the capability of GNNs to generalize to unseen data, specifically
when the minimum length of cycles in the test dataset is smaller than the maximum length
of those in the training dataset. More specifically, the training set Dtrain consists of pairs
[m, n] where 3  m, n  nmax and m, n 6= k with 3  k  nmax, while the test set Dtest

comprises pairs [k, a] with 3  a  nmax. Figure 7.7 illustrates this setting.



i
i

i
i

i
i

i
i

7.3. Numerical results 103

Figure 7.7: Graphical illustration of the extraction task. In this example, nmax = 6 and k = 5.

In our experiments, we set nmax = 8 and consider k values of 7, 6, and 5. In this
setting, |Dtest| = (8� 2) · 2� 1 = 11 and |Dtrain| = (8� 2)2 � |Dtest| = 25. The number of
GNN layers is L = nmax. The numerical results are presented in Figure 7.8. We observe
that the Gconv-di↵ model achieves perfect performance in our experiments (standard
deviation values are not reported because they are too low), showing consistence with the
theoretical setting. On the other hand, the Gconv-glob model demonstrates good, but not
perfect, performance on the test set. A critical point in our numerical examples seems
to be k = 5, which falls in the middle range between the minimum and maximum cycle
lengths in the training set (3 and 8, respectively). This particular value is closer to the
minimum length, indicating a relatively unbalanced scenario.

Overall, the di↵erent performance of Gconv-di↵ and Gconv-glob on the extraction task
shows that, despite the theoretical existence result proved in Corollary 7.7, the choice of
architecture is crucial for achieving successful generalization.

Extrapolation task

In this task, we assess GNNs’ ability to generalize to unseen data with cycle lengths
exceeding the maximum length in the training dataset. Specifically, the training set
Dtrain comprises pairs [m, n] where 3  m, n  nmax, while the test set Dtest consists of
pairs [nmax + k, n0] with 0 < k  g and 3  n0  nmax + g. Figure 7.9 illustrates the
extrapolation task.

In our experiments, we set nmax = 8 and consider values of g as 1, 2, and 3. The
number of GNN layers is L = nmax + g. Therefore, |Dtrain| = (8� 2)2 = 36, |Dtest,g=1| =
(9� 2) · 2� 1 = 13, |Dtest,g=2| = (10� 2) · 4� 4 = 28 and |Dtest,g=3| = (11� 2) · 6� 9 = 45.
Numerical results are presented in Figure 7.10. In the extraction task, both models
achieved perfect training accuracy. Conversely, in the extrapolation task, the Gconv-glob
model struggles to classify the training set accurately, especially when the number of
layers is equal to 9. This behavior may be attributed to the homogeneous nature of sum
pooling at the end of the message passing, as it does not take into account the role of
3-degree nodes (which play a key role in our theory, as illustrated by Theorem 7.6 and
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Corollary 7.7).
On the other hand, the Gconv-di↵ model consistently achieves perfect training accuracy

over the training set and achieves perfect generalization for g = 1, showing once again the
importance of architecture choice in practice. However, when g � 2 there is a noticeable
region of misclassification for pairs [m, n] where m, n � nmax. This behavior could be
explained by the limited capacity of the hidden states, but the optimization process might
also play a significant role. Moreover, for g � 2 the numerical results of the extrapolation
task resemble the rating impossibility phenomenon observed in the two-letter words
framework. However, it is important to note that, at least for the Gconv-di↵ model, we
observe significantly di↵erent ratings between graphs [m, nmax + g] where m < nmax and
graphs [nmax + i, nmax + j] with i, j > 0. In contrast, in the two-letter words framework
ratings typically do not exhibit such a consistent and distinguishable pattern.
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Figure 7.8: Extraction task performed by di↵erent GNN models, namely Gconv-glob (left) and

Gconv-di↵ (right). We set nmax = 8, l = 8 and, from top to bottom, k = 7, 6, 5 .
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Figure 7.9: Graphical illustration of the extrapolation task. In this example, nmax = 5 and

g = 2.
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Figure 7.10: Extrapolation task performed by di↵erent GNN models, namely Gconv-glob (left)

and Gconv-di↵ (right). We set nmax = 8 and, from top to bottom, (L, g) = (9, 1), (10, 2), (11, 3) .
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Chapter 8

Other works

The chapter is dedicated to the discussion of works carried out during the PhD and not
strictly related to the main topics of this thesis. In more detail Section 8.1 study some
bounds on the topological complexity of common loss functions in terms of Betti numbers’s
characterization, analysing the e↵ect of skip connections and `2 regularization on the
topological complexity [P05]. In Section 8.2 we describe derivation of the Recurrent Kernel
limit of di↵erent Reservoir Computing topologies, showing that di↵erent topologies can
lead to the same asymptotic limit [P06]. The content of publication [P08] is reported
in Section 8.3, where we describe how Physics Informed Neural Networks (PINNs) can
be profitably used to construct a parameterization of a planar domain by only knowing
its boundary representation. Finally, we describe in Section 8.4 a new method for the
analysis of the Visual Sequential Search Test (VSST), a neurocognitive task commonly
used in clinical settings as a diagnostic tool for the evaluation of frontal functions, based
on the episode matching algorithm [P07].

8.1 A topological description of loss surfaces based on

Betti Numbers

In setting up the training procedure for learning models, the characterization of the loss
function to be minimized is a crucial aspect, as the whole training e�ciency relies on its
shape, which in turn depends on the network architecture. Several works have already
dealt with the analysis of the surface of the loss function, identifying conditions for the
presence (or absence) of spurious valleys in a theoretical [104] or empirical-driven way
[105], pointing out the role of saddle points in slowing down the learning [106], and giving
hints on the topological structure of the loss for networks with di↵erent types of activation
functions [107, 108].

The contribution of publication [P05] aims to give a characterization of the complexity
of loss functions based on a topological argumentation. More precisely, given a layered
neural network N and a loss function LN computed on some training data, we will measure
the complexity of LN by the topological complexity (w.r.t. the set of parameter ✓) of the
set SN = {✓|LN (✓)  z}. Such an approach is natural, since SN , observed at each level z,
provides the form of the loss function: for example, if LN has k isolated minima, then SN
has k disconnected regions for some small z.

In our investigation, we determined that when a network employs a Pfa�an non-
linearity, both the Mean Square Error (MSE) and Binary Cross Entropy (BCE) loss
functions can be represented as Pfa�an functions. Subsequently, we analyzed the respective
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Pfa�an chains obtained in each case. In more detail, we examined the di↵erences in the
complexity and performance of the Pfa�an chains resulting from the use of the two loss
functions.

When studying the complexity of the loss landscape, a super-exponential dependency
on the network parameters has been found; interestingly, a qualitative di↵erence can be
highlighted between the shallow and the deep case, as we focus on the impact of the number
of neurons h. Indeed, as the number of layers starts to increase, the superexponential
dependency involves a term h2, and not h anymore. This result is aligned with the general
intuition and previous works in literature [30]. In any case, the asymptotic analysis shows
that the sum of Betti numbers has an exponential dependency on the square of the number
of samples m. We also derived the characterization of the topological complexity for
loss functions with an additional `2 regularization term; from our analysis point of view,
it seems that the presence of a regularization term is not implied in the design of the
loss landscape, pointing out to a di↵erent role of the regularization itself in the network
training, e.g. the optimization process. Moreover, in our study, we demonstrated that
incorporating skip connections (as in ResNets [109]) into the network does not a↵ect the
Betti numbers’ bounds.

8.2 Extension of Recurrent Kernels to di↵erent Reser-

voir Computing topologies

Reservoir Computing is a machine learning technique used for training Recurrent Neural
Networks, which fixes the internal weights of the network and trains only a linear layer,
resulting in faster training times [110]. Its simplicity and e↵ectiveness have made it
a popular choice for various tasks [111]. Additionally, the random connections within
Reservoir Computing networks make them a useful framework for comparison with
biological neural networks [112].

In the last years, researchers have proposed several methods to optimize and enhance
the performance and e�ciency of Reservoir Computing. The availability of these di-
verse Reservoir Computing variants provides flexibility in selecting the most appropriate
configuration for a given task.

Increasing the number of neurons in a Reservoir Computing network leads to the
convergence of its behavior to a recurrent kernel, as discussed in [113]. In machine learning,
kernel methods are commonly employed to train linear models on non-linear data by
calculating scalar products between input points in a dual space. Recurrent Kernels are
a variant in which these scalar products are dynamically updated over time based on
changes in the input data. As kernel methods require the calculation of scalar products
between all pairs of input points, recurrent kernels o↵er an interesting alternative to
Reservoir Computing when the number of data points is limited. Additionally, recurrent
kernels have been useful for theoretical studies, such as stability analysis in Reservoir
Computing, as they provide a deterministic limit with analytical expressions [114]. Prior
research on Recurrent Kernels has been mainly limited to vanilla Reservoir Computing
and structured transforms. In publication [P06], we have derived the Recurrent Kernel
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Figure 8.1: Recurrent Kernels associated with various Reservoir Computing topologies. RC and

sparse RC converge to the same RK limit when the reservoir size N ! 1. Leaky RC and Deep

RC converge to their corresponding limits.

limit of di↵erent reservoir topologies. We have shown that di↵erent topologies can lead to
the same asymptotic limit.

Figure 8.2: (Left) Error metric normalized between 0 and 1 as a function of sparsity for di↵erent

reservoir sizes. (Right) Sparsity threshold above which the error metric is within 10% of the

non-sparse limit. This gives an admissible sparsity level which decreases with the reservoir size.

More specifically, the presence of sparsity does not a↵ect convergence at all, which
justifies the sparse initialization of reservoir weights to speed up computation. Convergence
has been studied numerically and validated for a wide range of parameters, especially for
bounded activation functions.
Finally, we have derived how Recurrent Kernels extend to Deep Reservoir Computing,
and how it sheds new insight on how to set the consecutive reservoir sizes. In a nutshell, a
good rule of thumb to choose the reservoir sizes in Deep Reservoir Computing is to choose
them all equal. First reservoirs can be chosen slightly (around 5%) larger than the last
ones to decrease further the distance with the asymptotic limit performance.
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8.3 Splines Parameterization of Planar Domains by

Physics-Informed Neural Networks

The generation of structured grids on bounded domains is a crucial issue in the development
of numerical models for solving di↵erential problems. In particular, the representation of
the given computational domain through a regular parameterization allows us to define a
univalent mapping which can be computed as the solution of an elliptic problem, equipped
with suitable Dirichlet boundary conditions.

Points generated via Coons Linear parameterization with Coons and zoom in.

Points generated via inpaint Linear parameterization with inpaint and zoom in.

Points generated via PINNs. PINNs-QI parameterization and zoom in.

Figure 8.3: Hourglass-shaped domain.

In the last two decades machine learning and deep learning techniques have started to
play an active role in the setting up of new methods for the numerical solution of PDEs,
[115, 116, 117]. In particular, Physics Informed Neural Networks (PINNs) [118, 119, 120]
have emerged as an intuitive and e�cient deep learning framework to solve PDEs, carrying
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on the training of a neural network by minimizing the loss functional which incorporates the
PDE itself, informing the neural network about the physical problem to be solved. In the
paper, we exploit the PINN model in order to solve the PDE associated to the di↵erential
problem of the parameterization on both convex and non-convex planar domains, for which
the describing PDE is known. The main contribution of this work consisted in introducing a
novel algorithm to compute a single patch planar domain parameterizations. In particular,
the discrete description of the computational domain was achieved by using PINNs; then,
the final parameterization was obtained by means of quasi-interpolation(QI): a local
approach to construct approximants to given functions or data with full approximation
order. The considered QI operator provides a spline parameterization, i.e., a continuous
description, of the desired smoothness. Figure 8.3 shows a visual comparison between
classical methods used in literature and our method.

8.4 Visual Sequential Search Test Analysis: An Al-

gorithmic Approach

The Trail Making Test (TMT) is a popular neuropsychological test, commonly used in
clinical settings as a diagnostic tool for the evaluation of some frontal functions. While
classical TMT requires an individual to draw lines sequentially connecting an assigned
sequence of letters and/or numbers (the ROIs) with a pencil or mouse, the same task can
be performed by using the eye-tracking technology and asking the subject to fixate the
sequence of ROIs in the prescribed order [121]. Eye-tracking studies have proved their
e�cacy in the diagnosis of many common neurological pathologies, such as Parkinson’s
disease, brain trauma and neglect phenomena.
The Visual Sequential Search Test (VSST) is an eye-tracking modified version of TMT
which evaluates high order cognitive functions. Visual search can be quantified in terms
of the analysis of the scan-path, which is a sequence of saccades and fixations. Thus,
the identification of precise scores of the VSST may provide a measure of the subject’s
visual spatial ability and high order mental activity. The VSST is a repeated search task,
in which patients are asked to connect by gaze a logical sequence of numbers and letters.
In publication [P07] we present an algorithmic approach to the analysis of the VSST
based on the episode matching method. The data set included two groups of patients,
one with Parkinson’s disease, and another with chronic pain syndrome, along with a
control group. First, we pre-processed the data recording the fixation sequence as a series
of symbols (possible repeated) representing the fixated locations. Since the observed
sequences (scan-paths) have a length quite di↵erent from each other, a global alignment is
not suitable to evidence their similarity (if any) [122]. Therefore, we proposed to compare
the expected scan-path with the observed scan-path using dot-plots. This provided a
visual and hence a qualitative comparison between them but did not permit to evaluate
it quantitatively. Then, we used the episode matching method, traditionally used in
bioinformatics applications, to assign a score to a set of patients, under a specific VSST
task to perform. The proposed score was validated by comparing the performance of
the three di↵erent groups: the group of patients with extrapyramidal disease, the second
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one of patients su↵ering from chronic pain syndrome and the control group. Our results,
as expected, confirmed the worst performance of extrapyramidal patients than the chronic
pain and control groups, in general. In particular, the medians of the three classes were
significantly di↵erent from each other, so suggesting that our method can be employed as
a measure of the performance in the VSST. The method we proposed is illustrated in the
flowchart of Figure 8.4.

Figure 8.4: Flowchart of our method to compute the score of the performance in the Visual

Sequential Search Task.
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Chapter 9

Conclusions

This thesis has been dedicated to giving a comprehensive theoretical overview of modern
GNNs, under the lens of two crucial aspects such as their approximation power and
their generalization capabilities. In Chapter 4, GNNs have been proven to be universal
approximators over the domain of undirected node–attributed graphs, modulo the unfolding
equivalence. A bound on the required number of layers and a su�cient condition for
universality has been provided. This result has been extended in Chapter 5 to GNN
models that act over the domains of SAUHGs and dynamic graphs similarly.

As future work, extending all our results for graphs in continuous–time representation
would be interesting. One di�culty in this context is deciding whether two continuous–time
dynamic graphs are called WL equivalent since there are many possibilities for dealing with
the given timestamps. The investigation of the equivalence of dynamic graphs requires
determining the handling of dynamic graphs that are equal in their structure but di↵er in
their temporal occurrence, i.e., dependent on the commitment of the WL equivalence or
the unfolding tree equivalence, it is required to decide whether the concepts need to be
time–invariant. For time–invariant equivalence, the following concepts hold as they are.
In the case in which two graphs with the same structure should be distinguished when they
appear at di↵erent times, the node and edge attributes can be extended by an additional
dimension carrying the exact timestamp. Thereby, the unfolding trees of two (structural)
equal nodes would be di↵erent, having di↵erent timestamps in their attributes. Then, all
dynamic graphs G(j) 2 G are defined over the same time interval I. This assumption can
be made without loss of generality, since the set of timestamps of G(j) noted by IG(j) can
be padded by including missing timestamps tq and G(j) can be padded by empty graphs

G(j)
q where V (j)

q = ;, E(j)
q = ;, ↵q(;) = ;, !q(;) = ;.

Furthermore, this thesis considers extensions of the usual 1–WL test and the commonly
known unfolding trees. Further future work could be to investigate extensions, for example,
the n–dim attributed/dynamic WL test or other versions of unfolding trees, covering GNN
models not considered by the frameworks used in this thesis. These extensions might result
in a more exemplary classification of the expressive power of di↵erent GNN architectures.

Moreover, the results shown in Chapters 4 and 5 mainly focus on the expressive power
of GNNs. However, GNNs with the same expressive power may di↵er for other funda-
mental properties, e.g., the computational and memory complexity and the generalization
capability. Understanding how the architecture of AGGREGATE(i), COMBINE(i), and
READOUT impact those properties is of fundamental importance for practical applications
of GNNs.

In Chapter 6 we derived new bounds for the VC dimension of modern message
passing GNNs with Pfa�an activation functions, closing the gap left in the literature with
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respect to the set of common used activation functions; moreover, we exhibit a preliminar
experimental validation to partially show consistency between theory and practice.

Several directions of improvement can be provided: first of all, our analysis lacks of
lower bounds, which could give a more precise intuition of the degradation of generalization
capabilities for GNNs within the architectural framework here analyzed. In addition,
providing a map between the VC dimension and the di↵erence between the training
and test accuracy would be much more informative; we could establish a quantitative
measure with respect to the number of parameters that could allow us to better explain
the experimental performance. Finally, it would be interesting to extend the analysis on
the VC dimension to other GNN paradigms, such as Graph Transformers [123] and Graph
Di↵usion Models [124].

In Chapter 7, we extensively investigate the generalization capabilities of GNNs when
learning identity e↵ects through a combination of theoretical and experimental analysis.
From the theoretical perspective, we established that GNNs, under mild assumptions,
cannot learn identity e↵ects when orthogonal encodings are used in a specific two–letter
word classification task. On the positive side, we showed the existence of GNNs able to
successfully learn identity e↵ects on dicyclic graphs, thanks to the expressive power of
the Weisfeiler–Lehman test. The experimental results strongly support these theoretical
findings and provide valuable insights into the problem. In the case of two–letter words,
our experiments highlight the key influence of encoding orthogonality on misclassification
behavior. Our experiments on dicyclic graphs demonstrate the importance of the correct
architecture selection in order to achieve generalization.

Several directions of future research naturally stem from our analysis. First, while
Theorem 7.4 identifies su�cient conditions for rating impossibility, it is not known whether
(any of) these conditions are also necessary. Moreover, numerical experiments on two–
letter words show that generalization outside the training set is possible when using
nonorthogonal encodings; justifying this phenomenon from a theoretical perspective is
an open problem. On the other hand, our numerical experiments on dicyclic graphs
show that achieving a good generalization depends on the choice of the architecture; this
suggests that rating impossibility theorems might hold under suitable conditions on the
GNN architecture in that setting. Another interesting open problem is the evaluation of
the GNNs’ expressive power on more complex graph domains. In particular, conducting
extensive experiments on molecule analyses mentioned in Section 3.2.2, which naturally
exhibit intricate structures, could provide valuable insights into modern chemistry and
drug discovery applications.
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