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MMSE Design of RIS-Aided Communications with
Spatially-Correlated Channels and Electromagnetic

Interference
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Luca Sanguinetti, Senior Member, IEEE and Rui Chen, Member, IEEE

Abstract—Consider a communication system in which a single-
antenna user equipment exchanges information with a multi-
antenna base station via a reconfigurable intelligent surface
(RIS) in the presence of spatially correlated channels and
electromagnetic interference (EMI). To exploit the attractive
advantages of RIS technology, accurate configuration of its
reflecting elements is crucial. In this paper, we use statistical
knowledge of channels and EMI to optimize the RIS elements for
i) accurate channel estimation and ii) reliable data transmission.
In both cases, our goal is to determine the RIS coefficients that
minimize the mean square error, resulting in the formulation
of two non-convex problems that share the same structure. To
solve these two problems, we present an alternating optimization
approach that reliably converges to a locally optimal solution.
The incorporation of the diagonally scaled steepest descent algo-
rithm, derived from Newton’s method, ensures fast convergence
with manageable complexity. Numerical results demonstrate the
effectiveness of the proposed method under various propagation
conditions. Notably, it shows significant advantages over existing
alternatives that depend on a suboptimal configuration of the
RIS and are derived on the basis of different criteria.

Index Terms—Reconfigurable intelligent surface (RIS), elec-
tromagnetic interference (EMI), channel estimation, spectral
efficiency, minimum mean square error (MMSE), spatially cor-
related channels.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RIS) have received
remarkable interest in the context of next-generation wireless
systems [1]–[4]. A RIS comprises a planar array of M
reflective elements positioned at sub-wavelength intervals.
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Each element’s impedance can be adjusted to introduce a
controllable phase-shift to the incoming wave before reflecting
it. By optimizing the phase-shift pattern throughout the RIS, it
becomes possible to control the reflected wavefront and shape
it into a directed beam aimed at the intended receiver [4]. In a
communication system in which a single-antenna user equip-
ment (UE) exchanges information with a multi-antenna base
station (BS) via a RIS, accurate estimation of the cascaded
channel (from the UE to RIS and from the RIS to the BS) is
crucial to properly design the phase-shifts and harness the at-
tractive advantages of the RIS technology. Nevertheless, this is
a complicated task, primarily due to passive nature of the RIS
and the challenges posed by high-dimensional channels [5],
[6]. The existence of electromagnetic interference (EMI) [7]–
[11], which can occur naturally in any environment [12],
[13], further complicates the task. The aim of this paper is
to design the elements of the RIS with the primary goal of
initially achieving a precise estimate of the cascaded channel
and subsequently enhancing the spectral efficiency (SE) of the
system. In contrast to most of previous studies, we consider
the existence of EMI.

A. Relevant literature

The quality of channel state information (CSI) plays a
critical role in determining the performance of RIS-based
communications. As a passive device, a RIS cannot estimate
the channel locally or actively transmit pilot signals. There-
fore, channel estimation must be performed at the BS or
UE. In single-user systems, the least-square (LS) estimator
[14], [15], the reduced-subspace LS (RS-LS) estimator [6], the
bilinear generalized approximate message passing algorithm
[16] and the bilinear adaptive vector approximate message
passing algorithm [17] can be employed to accurately estimate
the cascaded channel. In multi-user scenarios, the PARAllel
FACtor-based channel estimation framework is introduced
in [18] to efficiently estimate the cascaded channels; while
in [19], exploiting the linear correlation among multi-user
cascaded channels, the estimation of the angle information of
the BS-RIS channel is combined with the LS estimator used
to estimate the channel gains, significantly reducing the pilot
overhead. Besides, the always-ON channel estimation protocol
is proposed in [20], which greatly reduces the required pilot
overhead by exploiting the common-link structure of multi-
user cascaded channels. Moreover, a two-step multi-user joint
channel estimation method based on compressed sensing is
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proposed in [21] to acquire CSIs of multiple users simultane-
ously, taking advantage of the sparsity of cascaded channels.

After accurate channel estimation, appropriate RIS phase
configuration is also crucial for RIS-aided data transmission.
Under the assumption of known CSI, in RIS-aided single-
user systems, [22] applies the branch-and-bound method to
design the optimal RIS configuration with the criterion of
minimizing the transmit power; while [23] proposes the deep
deterministic policy gradient algorithm to obtain the optimal
RIS phase shifts to maximize the downlink received SNR. In
[24], to maximize the ergodic SE, the optimal RIS phase shifts
are derived using the semidefinite relaxation algorithm under
the premise of shaping the transmitted beamforming with the
principal eigenvector of the channel. Similarly, for multi-user
systems, the genetic algorithm [25] and the gradient projection
method [26] are applied to design the optimal RIS phase
shifts for maximizing the minimum signal-to-interference-
plus-noise ratio (SINR), thus ensuring balanced performance
among different users. In [27], the transmit beamforming
vector and RIS phase shifts are alternately optimized using the
Lagrangian multiplier method and the distributed alternating
direction method of multipliers, respectively, to maximize the
sum rate.

Besides, as a passive device, the RIS does not amplify
signals, but relies on directional reflection. Therefore, to en-
sure a satisfactory signal-to-noise ratio (SNR) at the receiver,
RIS is required to be equipped with a significant surface
area for wireless communications. As the size of the RIS
increases, it becomes more susceptible to EMI, which may
originate from various natural causes, such as atmospheric
noise [12], or result from intentional or unintentional human
activities, such as signals serving other users [28] or radiation
from power lines [12]. In [7], the authors show that the EMI
power reflected by the RIS may severely affect the system
performance since it grows proportionally to the RIS size.
However, to the best of our knowledge, the existing studies on
RIS-aided communications typically ignore the EMI, and only
a few papers have considered the impact of EMI. In [7], the
SINR for RIS-aided communications in the presence of EMI
is derived, indicating that the SINR only increases linearly
with the RIS size, rather than the conventional squared growth
without interference. Based on this SINR, [8] quantitatively
analyze the block error rate, capacity and system goodput of
RIS-aided communications with EMI. Additionally, [9] point
out that the EMI may pose a potential threat to the physical
layer security of RIS-aided communications. Hence, the EMI
is an unavoidable factor that needs to be considered in the
design of RIS-aided communications. In our recent paper
[10], the cascaded channel of an RIS-aided system under
constant EMI is accurately estimated using a conservative RS-
LS estimator. Under the same assumption of constant EMI,
[11] present the first EMI cancellation method applicable to
the RIS-aided data transmission.

B. Contribution
As discussed above, reliable RIS-based data transmission

depends on accurate CSI. However, existing research on
channel estimation and data transmission in RIS-aided sys-

tems is generally considered as two separate components,
each designed based on different criteria. To the best of
our knowledge, there are few papers that jointly consider
the channel estimation and data transmission in RIS-aided
systems and optimize the overall configuration of RIS based
on a unified criteria. Among them, there are [29] and [30],
in which the optimization of the RIS for data transmission
is performed based on the statistical knowledge of the node
location. The validity of such approaches is therefore limited
to cases where the channel is closely related to the node
positions, namely in scenarios where there is a strong line-
of-sight (LoS) component in both the BS-RIS and RIS-UE
links. To overcome the above issues, in this paper we aim to
design both the channel estimation and data transmission for
RIS-aided communications using a unified criterion. Besides
considering more general channel models, we also take into
account the presence of EMI, which cannot be generally
neglected due to the nature of RIS. In this respect, existing
literature assumes that the interference experienced by RIS-
based communications is approximately constant throughout
the entire period, while how to efficiently configure the
RIS phase shifts in the presence of random interference for
accurate channel estimation and data transmission remains an
open issue. To address these issues, this paper aims to propose
a joint design framework for RIS-aided communications in
the presence of random interference. In summary, our main
contributions are as follows:

• We first derive the linear minimum mean square error
(LMMSE) estimator for the cascaded channel and then
employ this estimate to formulate the LMMSE combiner
at the BS with the aim of improving the SE. In both
instances, the efficacy of the estimator and combiner
hinges on the phase-shift coefficients of the RIS. To
optimize overall performance, we investigate a scheme
designed to determine the RIS elements, with the goal
of minimizing the MSE separately for both channel
estimation and data transmission.

• Since both instances involve solving a non-convex prob-
lem to compute the optimal RIS configuration, we first
propose an ad-hoc factorization of the MMSE and then
we provide an iterative algorithm, which ensures conver-
gence to a locally optimal solution.

• The optimization algorithms, employing the principle of
alternating optimization (AO), leverage the knowledge
of the second-order statistics of channels and EMI to
implement a projected gradient scheme based on a novel
variant of Newton’s method, which balances convergence
speed with low computational load.

• Numerical results validate the method’s efficacy across
various propagation conditions, highlighting its substan-
tial advantages over existing alternatives relying on sub-
optimal RIS configurations.

C. Paper Outline and Notation
The remainder of this paper is organized as follows. In

Section II, we introduce the model adopted for the system,
propagation channels and EMI. In Section III, the channel
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Fig. 1: RIS-aided communication system.

estimation problem is addressed by means of the LMMSE
criterion, followed by the SE computation using the LMMSE
combining scheme, which minimizes the MSE between the
data signal and the received signal after combining. In Sec-
tion IV, we provide an iterative algorithm with provable
convergence that allows to optimize the RIS according to
the MSE criteria adopted in the channel estimation and data
transmission phases. Numerical results are given in Section V
while conclusions are drawn in Section VI.

Matrices are denoted by bold uppercase letters (i.e., X),
vectors are represented by bold lowercase letters (i.e., x), and
scalars are denoted by normal font (i.e., x). (·)T, (·)H and
(·)−1 stand for the transpose, Hermitian transpose and inverse
of the matrices. The symbol ⊗ represents the Kronecker
matrix product, while ⊙ represents the Hadamard product.
The notation x = vec(X) defines the linear transformation
that converts an P ×Q-dimensional X into a column vector
x with size PQ × 1 by stacking the columns of X on
top of each other, ||x|| signifies the Euclidean norm of the
vector x, and tr {X} indicates the trace of the square matrix
X. The notation E{·} represents the statistical expectation,
mod (·, ·) denotes the modulus operation and ⌊·⌋ truncates the
argument.

II. SYSTEM MODEL

We consider the RIS-aided communication1 from a single-
antenna UE to an N -element BS, as shown in Fig. 1. The
RIS is equipped with M passive reconfigurable elements,
forming a uniform planar array (UPA) with MH rows and MV

columns, where M = MHMV . The horizontal and vertical
element spacing is set to dM , and the elements are labeled
row-by-row as m ∈ [1,M ]. Then, the location of the m-th
element relative to the origin can be expressed as um = [0,
mod (m − 1,MV )dM , ⌊(m − 1)/MV ⌋dM ]T [31]. When a
plane-wave impinges on the RIS from the azimuth angle φ
and elevation angle ϑ, the array response vector can be written
as [32]

a(φ, ϑ) =
[
ejkT(φ,ϑ)u1 , . . . , ejkT(φ,ϑ)uM

]T
, (1)

where

k(φ, ϑ) =
2π

λ
[cosϑ cosφ, cosϑ sinφ, sinϑ]T (2)

1The RIS serves a specific UE with the obstructed direct path to the BS,
while signals from other UEs captured by the RIS can be considered EMI.

is the wave vector and λ is the wavelength. The BS antennas
are also deployed as a UPA [32] with NH rows and NV

columns, so that N = NHNV . The horizontal and vertical
antenna spacing is set to dN . The array response vector at the
BS has the same form as (1) but uses the antenna spacing dN
of the BS [32].

We consider a block-fading model where each channel takes
one realization in a coherence block of τc channel uses and
independent realizations across blocks. The channel from the
UE to the RIS is called h and modelled as the correlated
Rayleigh fading channel2 h ∼ NC(0M ,Rh) [31], [32], with
Rh ∈ CM×M being the spatial correlation matrix:

Rh = βh

∫ ϑU

ϑL

∫ φU

φL

fh(φ, ϑ)a(φ, ϑ)a
H(φ, ϑ)dϑdφ, (3)

where βh is the channel gain, and fh(φ, ϑ) is the normalized
spatial scattering function with

∫∫
fh(φ, ϑ)dϑdφ = 1.

The narrowband channel from the m-th RIS element
to the n-th BS element is indicated as gm,n. We call
gn = [gn,1, gn,2, . . . , gn,M ]T ∈ CM the channel vec-
tor from the RIS to the n-th BS element, while g′

m =
[g1,m, g2,m, · · · , gN,m]T ∈ CN denotes the channel vector
from the m-th RIS element to the BS array. Using the
Kronecker model [5], [33], we have that

gn ∼ NC(0M , [Rg′
m
]n,nRgn) (4)

g′
m ∼ NC(0N , [Rgn ]m,mRg′

m
) (5)

where [Rg′
m
]n,nRgn and [Rgn ]m,mRg′

m
are the spatial corre-

lation matrices of gn and g′
m, respectively. Both Rgn and

Rg′
m

have the same form as (3) but must be computed
using the specific spatial scattering function and channel gain
corresponding to gn and g′

m.
We assume the channels gn (and thus g′

m) and h are
independent of each other. The cascaded channel between
the UE and the n-th element of the BS is given by the M -
dimensional vector

xn = gn ⊙ h. (6)

A common practice in existing RIS-aided communications
is to only consider the signals generated by the system,
and thereby neglecting the EMI or “noise” (or “pollution”)
that is inevitably present in any environment. The EMI may
arise from a variety of natural, intentional or non-intentional
causes, for example, man-made devices and natural back-
ground radiation. In this paper, we call e(i) ∈ CM the vector
collecting the EMI during the i-th channel use, which ac-
counts for any uncontrollable factor (e.g., of electromagnetic
or hardware nature) disturbing the incoming signals at the
RIS. We model it as e(i) ∼ NC(0M , σ2

eRe) and assume
that it takes independent realizations across channel uses,
i.e., E{e(i)e(i′)H} = 0 for i ̸= i′. The normalized spatial
correlation matrix Re ∈ CM×M has the same form of (3),

2Although the proposed MMSE solution is derived using the correlated
Rayleigh fading model, it can be extended to the Rician and LoS channel
models by utilizing the appropriate models.
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Fig. 2: Block diagram of the receiver based on the minimum
MSE criterion in the RIS-aided communication. The commu-
nication is divided in two parts: (I) channel estimation, and
(II) data transmission.

i.e.,

Re =

∫ ϑU

ϑL

∫ φU

φL

fe(φ, ϑ)a(φ, ϑ)a
H(φ, ϑ)dϑdφ, (7)

but with a different spatial scattering function fe(φ, ϑ).

III. SYSTEM OPERATION

We assume that the system operates according to a com-
munication protocol wherein the data transmission phase
is preceded by a training phase for channel estimation, as
shown in Fig. 2, where the τc available channel uses are
employed for: τ for training phase and τc − τ for uplink
payload transmission. Both the training phase and the uplink
data transmission phase are designed based on the LMMSE
criterion. As the RIS is devised to aid the communication
with UEs that have bad or absent direct links, we neglect the
direct link from the UE to the BS and focus on the design of
RIS phase-shifts aimed at enhancing the performance of the
cascaded channel.

A. Pilot Transmission and Linear MMSE Estimation

We assume that the training sequence of length τ is
composed by all ones and denote ϕ(i) ∈ CM the vector
collecting the controllable phase-shifts {ϕm(i) ∈ [0, 2π);m =
1, . . . ,M}3 introduced by the RIS during the i-th channel use.
The training signals at the RIS can be written as

ytr
RIS(i) =

√
ρtrh+ e(i), (8)

where ρtr is the power of the training signal, and e(i) can be
regarded as an additive interference to h. After RIS reflection,
the training signal ytrn (i) received by the n-th BS antenna takes
the form:

ytrn (i) =
√
ρtrϕ(i)Txn + wn(i) + zn(i), (9)

where

wn(i) = ϕ(i)T (gn ⊙ e(i)) (10)

is the EMI reflected from the RIS to the BS, and zn(i) ∼
NC(0, σ

2) is the additive white Gaussian noise. Notice that

3In practice, due to constraints imposed by the hardware configuration,
the phase-shifts of RIS elements are typically discrete. For convenience, we
assume here that the RIS phase-shifts are continuously adjustable.

the term wn(i) depend on the RIS configuration. By collecting
all the training signals received at the n-th BS antenna during
the τ channel uses of the training phase, we obtain ytr

n =
[ytrn (1), . . . , y

tr
n (τ)]

T ∈ Cτ given by

ytr
n =

√
ρtrΦτxn +wtr

n + ztrn , (11)

where

Φτ = [ϕ(1),ϕ(2), · · · ,ϕ(τ)]T ∈ Cτ×M , (12)

wtr
n = [wn(1), . . . , wn(τ)]

T and ztrn = [zn(1), . . . , zn(τ)]
T.

Accordingly, the vector ytr = [ytr
1
T
, . . . ,ytr

N
T
]T ∈ CNτ ,

obtained by collecting the signals received at the BS array
during the training phase, takes the form

ytr =
√

ρtrΦNτx+wtr + ztr (13)

with

ΦNτ = IN ⊗Φτ , (14)

and x = [xT
1 , . . . ,x

T
N ]T ∈ CMN , wtr = [wtr

1
T
,. . . ,wtr

N
T
]T ∈

CNτ and ztr = [ztr1
T
, . . . , ztrN

T
]T ∈ CNτ .

Due to the ability to utilize the sensing mode of RIS to
obtain the statistical information of channels and EMI [34], we
assume that the BS has knowledge of the correlation matrices
Rx = E{xxH} and Rtr

w = 1
σ2
e
E{wtr(wtr)

H}. These are given
by (see Appendix A)

Rx = Rg′
m
⊗ (Rgn ⊙Rh) = Rg′

m
⊗Rc (15)

and

Rtr
w = Rg′

m
⊗
((
ΦτRqΦ

H
τ

)
⊙ Iτ

)
, (16)

where we have defined

Rc = Rgn ⊙Rh ∈ CM×M (17)

and

Rq = Rgn ⊙Re ∈ CM×M (18)

for subsequent use. If τ = 1, then (16) reduces to

Rtr
w = Rg′

m
⊗
(
ϕTRqϕ

∗) , (19)

from which, by applying (AC)⊗ (BD) = (A⊗B)(C⊗D)
twice, we get

Rtr
w = ΦN

(
Rg′

m
⊗Rq

)
ΦH

N (20)

with
ΦN = IN ⊗ ϕT. (21)

The statistics above are used to compute x̂, the LMMSE
estimate of x based on ytr.

Lemma 1. The LMMSE estimate of x based on the observa-
tion of ytr is

x̂ =
1√
ρtr

RxΦ
H
Nτ

(
Rtr

y

)−1
ytr, (22)

where Rtr
y = 1

ρtrE{ytr(ytr)
H} is given by

Rtr
y = ΦNτRxΦ

H
Nτ +

σ2
e

ρtr
Rtr

w +
σ2

ρtr
INτ . (23)
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The estimation error x̃ = x− x̂ has correlation matrix

Rx̃ = E{x̃x̃H} = Rx −RxQ
tr(Φτ )Rx (24)

with
Qtr(Φτ ) = ΦH

Nτ

(
Rtr

y

)−1
ΦNτ . (25)

Proof: The proof follows from standard arguments and
is given in Appendix A for completeness.

From (24), the MSE is given by

Ex(Φτ ) = tr {Rx̃} = tr
{
Rx −RxQ

tr(Φτ )Rx

}
, (26)

which depends only on Φτ since the channel statistics are
fixed and given.
Remark 1. A scheme that dispenses from knowledge of
statistics is the LS channel estimator [32]. In this case, we
have that

x̂ =
1√
ρtr

A1y
tr (27)

with A1 =
(
ΦH

NτΦNτ

)−1
ΦH

Nτ , and the MSE takes the form

E ′x(Φτ ) = tr
{
Rx − 2ℜe (A1ΦNτRx) +A1R

tr
y A

H
1

}
. (28)

By using (23) and A1ΦNτ = INτ , we obtain

E ′x(Φτ ) = tr

{
σ2
e

ρtr
A1R

tr
wA

H
1 +

σ2

ρtr
(
ΦH

NτΦNτ

)−1
}
. (29)

Alternatively, one may resort to the RS-LS estimate, which can
be obtained by employing the reduced-subspace linear filter
[6], i.e.,

x̂ =
1√
ρtr

A2y
tr (30)

where

A2 = Us

(
UH

s Φ
H
NτΦNτUs

)−1
UH

s Φ
H
Nτ , (31)

and Us ∈ CMN×r spans the signal subspace of Rx con-
taining x, and r = rank{Rx}. This estimator has already
been applied in the cascaded channel estimation for RIS-aided
communications with constant EMI [10]. The MSE is given
by

E ′′x (Φτ ) = tr

{
σ2
e

ρtr
A2R

tr
wA

H
2 +

σ2

ρtr
(
UH

s Φ
H
NτΦNτUs

)−1
}
.

(32)
When r < MN , the RS-LS estimator offers superior perfor-
mance compared to the LS estimator due to noise removal
from the unused channel dimensions [6].

Remark 2. The LMMSE estimator in (22) can be applied for
any τ ≥ 1, but better results are achieved for larger values
of τ . The LS estimator in (27) requires τ ≥ M , which may
be large, whereas the RS-LS estimator in (30) relaxes the
required number of pilots to τ ≥ r

N [6].

B. Uplink Spectral Efficiency and Linear MMSE Combining
Similar to (9), the uplink received signal at the n-th antenna

during data transmission is

yn =
√
ρϕTxns+ wn + zn, (33)

where ρ is the power of the transmitted signal s ∈ C and

wn = ϕT (gn ⊙ e) (34)

is the reflected EMI. The received vector y = [y1, . . . , yN ]T ∈
CN at the BS takes the form

y =
√
ρΦNxs+w + z, (35)

where z ∼ NC(0, σ
2IN ) while w = [w1, . . . , wN ]T is such

that

Rw =
1

σ2
e

E{wwH} = ΦN

(
Rg′

m
⊗Rq

)
ΦH

N (36)

with Rq being given by (18). The BS estimates the signal s
by using the combining vector v to obtain

ŝ = vHy =
√
ρvHΦNxs+ vHw + vHz. (37)

To design the combining vector, we adopt the LMMSE
criterion that aims to minimize the MSE given by Es =
E{|vHy−s|2

∣∣x̂}, where E{·
∣∣x̂} denotes the expectation con-

ditioned to the channel estimate x̂. From (37), we obtain

Es = 1 + ρvHRyv − 2
√
ρℜe

(
vHΦN x̂

)
, (38)

with Ry = 1
ρE{yy

H} given by

Ry = ΦN

(
x̂x̂H +Rx̃

)
ΦH

N +
σ2
e

ρ
Rw +

σ2

ρ
IN . (39)

Minimizing (38) with respect to v yields

v =
1
√
ρ
R−1

y ΦN x̂, (40)

so that the minimum MSE is given by

Es(ϕ) = 1− x̂HQ(ϕ)x̂ (41)

with
Q(ϕ) = ΦH

NR−1
y ΦN . (42)

Similar to (26), the MSE (41) depends only on ϕ. An
achievable SE can be computed using the so-called hardening
capacity bound, which has received great attention in the
massive MIMO literature, e.g., [35, Sec. 4.2] since it can
be used with any combining scheme and channel estimation
method. By adding and subtracting

√
ρE
{
vHΦNx

}
s, the

combined signal vHy can be rewritten as

vHy =
√
ρE
{
vHΦNx

}
s+ ξ, (43)

where
ξ =
√
ρ
(
vHΦNx− E

{
vHΦNx

})
s+ vHw + vHz (44)

has zero mean, i.e., E {ξ} = 0 and is uncorrelated with the
input s, i.e., E {ξs∗} = 0. In this case, an achievable SE can
be obtained as ([35, App. C.3.4])

SE =
τc − τ

τc
log2

(
1 +

∣∣E{vHΦNx
}∣∣2

E {|ξ|2}

)
(45)

with
E
{
|ξ|2
}
=E

{∣∣vHΦNx
∣∣2}− ∣∣E{vHΦNx

}∣∣2 (46)

+
σ2
e

ρ
E
{
vHRwv

}
+

σ2

ρ
E
{
||v||2

}
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Algorithm 1 The AO outer loop iteration

Input: Desirable accuracy ϵ and the initial phase-shifts Φ
(0)
τ

Output: Optimized RIS phase-shift matrix Φopt
τ

1: Init. initialize k = 0 and ∆E = 1.
2: Λ(k+1) ← substitute Φ

(k)
τ into (50);

3: Ex
(
Λ(k+1),Φτ

)
← substitute Λ(k+1) into (52);

4: while ∆E
Ex(Λ(k+1),Φτ)

> ϵ do

5: ∆E ← Ex
(
Λ(k+1),Φτ

)
;

6: Algorithm 2 ← Φ
(k)
τ ;

7: Ψ⋆ ← Perform Algorithm 2;
8: Φ

(k+1)
τ ← ej∠Ψ⋆

;
9: k = k + 1;

10: Λ(k+1) ← substitute Φ
(k)
τ into (50);

11: Ex
(
Λ(k+1),Φτ

)
← substitute Λ(k+1) into (52);

12: ∆E = Ex
(
Λ(k+1),Φτ

)
−∆E ;

13: end while
14: Φopt

τ ← Φ
(k)
τ .

15: end procedure

and the expectations are computed with respect to all sources
of randomness.

IV. RIS OPTIMIZATION

We now present an algorithm for designing RIS phase-
shifts, which aims to minimize MSE in both the channel
estimation and data transmission phases.

A. Optimizing RIS for Channel Estimation

The channel estimation phase is considered first. To min-
imize the channel estimation error in (26), we can exploit
the dependence on Φτ , and design it to solve the following
optimization problem:

min
Φτ∈F

Ex(Φτ ) (47)

where the feasible set

F = {Φτ ∈ Cτ×M | |[Φτ ]i,m| = 1;∀i,m} (48)

captures the fact that the RIS is a passive device whose
coefficients must have unitary modulus.

The optmization problem (47) is not convex in Φτ and find-
ing its solution involves the optimization over large matrices.
To solve it, we rewrite (26) as

Ex(Φτ ) = tr {Rx −Λ(Φτ )ΦNτRx} , (49)

with

Λ(Φτ ) = RxΦ
H
Nτ

(
Rtr

y

)−1
. (50)

Moreover, we make a simplifying assumption, that is, we
neglect the fact that Λ(Φτ ) depends on the value of Φτ .
Hence, we rewrite the objective function in (47) as

Ex(Φτ ) = Ex(Λ,Φτ ), (51)

as if Λ and Φτ were independent variables. Under this
hypothesis, (47) can be solved by following an AO approach

to alternately optimize Λ and Φτ . The AO is an iterative algo-
rithm whose key advantage is that it simplifies the optimiza-
tion process by breaking it into smaller subproblems, which
are easier to solve. The AO approach is especially helpful
when the original problem involves complicated interactions
or dependencies among the variables. In particular, we pro-
pose a two-step iterative algorithm, where Ex is alternatively
optimized with respect to Λ and Φτ . Being Λ(k) and Φ

(k)
τ

the values found at iteration k, at iteration k + 1 we proceed
as follows:

1) Having fixed the value of Φτ = Φ
(k)
τ , we minimize

(51) by computing Λ(k+1) as Λ(Φτ ) in (50). This
optimization is unconstrained and is a straightforward
application of MSE minimization;

2) Fixing Λ = Λ(k+1), the MSE takes the expression given
in

Ex (Λ,Φτ ) = tr
{
ΛRtr

y Λ
H − 2ℜ [ΛΦNτRx] +Rx

}
= tr

{
Λ

(
ΦNτRxΦ

H
Nτ +

σ2
e

ρtr
Rtr

w +
σ2

ρtr
INτ

)
ΛH

−ΛΦNτRx −RxΦ
H
NτΛ

H +Rx

}
(52)

and Ex(Λ,Φτ ) is now a convex function of Φτ . The
RIS phase-shift matrix is computed as the solution of
the minimization

Φ(k+1)
τ = arg min

Φτ∈F
Ex
(
Λ(k+1),Φτ

)
. (53)

Regarding the convergence of the above algorithm we can
observe that, since in both steps we minimize the MSE, at each
iteration the MSE either decreases or reaches a point where it
remains unchanged. Given that the MSE is a positive value,
the procedure will ultimately converge to a local optimum. In
the remainder of the paper, we will mention the iterations of
the AO algorithm as outer loop iterations.

1) Solving (53) via Projected Gradient Method: Although
the objective function in (53) is convex with respect to Φτ , the
optimization problem is still non-convex due to the presence
of the unitary modulus constraint. Given the simplicity of
projecting any solution onto the feasible set F , this type of
constraint leads to the use of the projected gradient (PG)
method. The PG is an iterative algorithm, which, although
sub-optimal, is effective and shows fast convergence towards
a local optimum. The idea is to employ gradient descent,
iterated until convergence, to solve the unconstrained problem
and then project the solution on the feasible set F . In practice,
we need to introduce an extra auxiliary loop variable Ψ(s)

to describe the intermediate RIS coefficients during gradient
descent. The application of the PG method requires to define
the gradient and Hessian of the complex matrix (52), which
are given in Appendix B.

After that, the PG algorithm is initialized by setting Ψ(0) =

Φ
(k)
τ , the last solution of the AO algorithm, then the two steps

of the PG method are:

1) Compute the unconstrained RIS coefficient matrix by
solving the unconstrained problem via gradient descent.
Employing the gradient (75) in Appendix B, Ψ(s) is
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Algorithm 2 The PG inner loop iteration

Input: Desirable accuracy ε, step size α and Φ
(k)
τ

Output: Ψ⋆

1: Init. initialize s = 0, Ψ(s) = Φ
(k)
τ and ∆Ψ = 1.

2: while ∆Ψ > ε
3: G(s) ← ∇ΨEx

(
Λ,Ψ(s)

)
via (75);

4: ∆Ψ ←∥G(s) ∥;
5: D(s) ←

(
∇2

ΨEx
(
Λ,Ψ(s)

)
⊙ IτM

)−1
via (79);

6:
[
Ψ(s+1)

]
i,m
←
[
Ψ(s)

]
i,m
−

α[G(s)]
(m−1)τ+i

[D(s)]
(m−1)τ+i,(m−1)τ+i

;

7: s = s+ 1;
8: end while
9: Ψ⋆ ← Ψ(s);

10: end procedure

updated as[
Ψ(s+1)

]
i,m
=
[
Ψ(s)

]
i,m
− α

[
D(s)∇ΨEx

(
Λ,Ψ(s)

)]
z
,

(54)
where D(s) ∈ CτM×τM is an Hermitian positive
definite matrix and the value of Λ is the outcome of
the previous outer loop AO iteration. We denote with
Ψ⋆ the matrix obtained at convergence.

2) Project Ψ⋆ onto F , by normalizing the amplitude of
each entry to unity, i.e.4,

Φ(k+1)
τ = ej∠Ψ⋆

. (55)

2) Solving (54) via Newton’s Method: Gradient descent is
iterative by nature and (54) may need to be iterated several
times before achieving convergence, so that the speed of
convergence and the choice of the stepsize α are important
issues for this type of iterative methods. In particular, when
the Hessian of the objective function is known, we can choose

D(s) =
(
∇2

ΨEx
(
Λ,Ψ(s)

))−1

. (56)

In this case, the iterative algorithm is indicated as the Newton’s
method and has the great advantage of being able to find
the minimum of a quadratic function as (52) with very few
iterations [36]. From Appendix B, for the single-input and
single-output (SISO) case the Hessian is

∇2
ΨEx (Λ,Ψ) = 2ΛHΛ⊗Rc +

2σ2
e

ρtr
((
ΛHΛ

)
⊙ Iτ

)
⊗Rq,

(57)

and we can conclude that the elements in the diagonal of
∇2

ΨEx are all positive, being obtained as products of positive
factors. It can be shown that the same property applies also
to the multiple-input single-output (MISO) case. Accordingly,
considered the potentially high computational complexity of
inverting the τM × τM Hessian matrix, a simplified version
of the Newton’s method, which is valid when the elements on
the diagonal of the Hessian are all strictly positive, is obtained

4The projection method used is required to be designed based on the
feasible set of RIS phase-shifts. When the RIS phase-shifts are discrete, the
minimization of the Euclidean distance criterion can be applied to obtain the
optimal solution within the feasible set.

Algorithm 3 Optimization of ϕ during the transmission part

Input: Desirable accuracy ξ, and the initial phase-shifts ϕ(0)

Output: Optimized RIS phase-shifts ϕopt

1: Init. initialize k = 0 and ∆E = 1.
2: v(k+1) ← substitute ϕ(k) into (40);
3: Es(v(k+1),ϕ; x̂)← substitute v(k+1) into (38);
4: while ∆E

Es(v(k+1),ϕ;x̂)
> ξ do

5: ∆E ← Es(v(k+1),ϕ; x̂);
6: θ⋆ ← Apply the PG method for (61);
7: ϕ(k+1) ← ej∠θ⋆

;
8: k = k + 1;
9: v(k+1) ← substitute ϕ(k) into (40);

10: Es(v(k+1),ϕ; x̂)← substitute v(k+1) into (38);
11: ∆E = Es(v(k+1),ϕ; x̂)−∆E ;
12: end while
13: ϕopt ← ϕ(k).
14: end procedure

by approximating the Hessian by the elements of its main
diagonal, so that it is

D(s) =
(
∇2

ΨEx
(
Λ,Ψ(s)

)
⊙ IτM

)−1

. (58)

In this specific case, the update rule for the diagonally scaled
steepest descent method takes the form[
Ψ(s+1)

]
i,m

=
[
Ψ(s)

]
i,m
−

α [∇ΨEx](m−1)τ+i

[∇2
ΨEx](m−1)τ+i,(m−1)τ+i

. (59)

The AO outer and PG inner loop iterations for alternating
optimization Λ and Φτ are summarized in Algorithm 1 and
Algorithm 2, respectively.

B. Optimizing RIS for Data Transmission

In the following, we consider the RIS phase-shift design
for the data transmission phase. This phase-shift would be
alternately optimized with the combiner at the BS following
steps similar to those in Algorithms 1 and 2. To proceed
further, we rewrite (41) as a function of v and ϕ and formulate
the optimization problem as follows:

min
ϕ
Es(v,ϕ; x̂), s.t. |[ϕ]m| = 1. (60)

Considered that also Ry depends on ϕ, Es(v,ϕ; x̂) is a non-
convex function of ϕ and to solve (60) we can follow once
again the AO approach.

Let ϕ(k) be the vector of RIS coefficients at iteration k,
then v(k+1) is computed by replacing ΦN with IN ⊗ ϕ(k)T

in (40). The new vector of RIS coefficients ϕ(k+1) can be
found by solving

ϕ(k+1) = argmin
ϕ
Es(v(k+1),ϕ; x̂),

s.t. |[ϕ]m| = 1, (61)

and it can be solved by applying the PG method, with the
required gradient and Hessian provided in (82) and (83)
of Appendix B. Then, the specific steps to obtain ϕopt are
summarized in Algorithm 3. Since the MSE decreases at each
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TABLE I: The Computational Complexity of Solving (60).

Step Complexity
Ry O(M2N3)

AO v(k+1) O(MN3)
Es(v(k+1),ϕ; x̂) O(MN2)

PG Gradient O(M3N3)
Hessian O(M3N3)

iteration until it reaches a point where it remains unchanged,
the procedure necessarily converges to a local optimum.

C. Optimization Execution and Complexity Discussion

As illustrated by Algorithms 1 and 2, the RIS phase-shift
Φτ used during the training phase is alternately optimized
with the LMMSE estimator Λ(Φτ ), utilizing only known
correlation matrices Rx and Rtr

w , without requiring any online
information. Consequently, the RIS phase-shift used during
the training phase can be designed offline without consuming
any channel uses. Leveraging this phase-shift, the optimal
LMMSE estimate x̂ of the cascade channel can be obtained
online according to (22). Subsequently, as depicted by Al-
gorithm 3, the RIS phase-shift5 used for uplink online data
transmission is optimized based on the estimate x̂ and the
second-order statistics Rx and Rw. Finally, the combined
signal ŝ is obtained at the BS based on (43) by utilizing
the optimal LMMSE combiner v(ϕopt). In general, when the
spatial correlation matrices Rx and Rw (also Rtr

w) remain
constant, the proposed MMSE solution can be continuously
applied in the RIS-aided communication with EMI. However,
if the required second-order statistics change, it is necessary
to remeasure them before executing the MMSE solution.

Considering that the optimization of RIS phase-shifts used
during the data transmission phase relies on the online es-
timate x̂, we evaluate the computational complexity of this
process here, as shown in Table I. Before executing optimiza-
tion Algorithm 3, the covariance Ry = 1

ρE{yy
H} needs to

be computed first according to (39). The complexity of this
process is O(M2N3), primarily arising from matrix multipli-
cation. Then, following Algorithm 3, during the AO outer loop
iteration, the computational complexity of calculating v(k+1)

and Es(v(k+1),ϕ; x̂) is O(MN3) and O(MN2), respectively.
While during the PG inner loop iteration, the computational
complexity mainly comes from computing the gradient and
Hessian of Es(v(k+1),θ; x̂), both with complexity O(M3N3).
Considering the significant number of elements in the practical
RIS, the computational complexity during the PG inner loop
iteration is much higher than that during the AO outer
loop iteration. Therefore, in the practical application of the
proposed approach, it may be advantageous to execute the
gradient descent only once within the inner loop iteration.
This may result in an increase in the number of AO outer

5Due to the significant shift in the role of EMI, this RIS phase-shift cannot
be directly applied to the downlink transmission. However, similar to the steps
in Algorithm 3, the optimal RIS phase-shift for the downlink can be obtained
through alternating optimization of the LMMSE detector at the UE and the
RIS phase-shift.
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Fig. 3: The RMSEs vs. k for the LMMSE estimator with AO.

loop iteration, but overall, it can accelerate the convergence
speed of the proposed method.

V. NUMERICAL RESULTS

Numerical results are now given to verify the performance
of the proposed channel estimation and transmission schemes.
We begin by considering a SISO scenario, with the exception
of Fig. 4 (b). The required gradient and Hessian matrices in
the SISO case are provided in Appendix B. Unless otherwise
stated, the RIS is equipped with M = 36 elements with
MH = MV = 6, and the vertical and horizontal inter-element
distances are set to λ/2. The pilot length is set to τ = M = 36
and the coherence interval is τc = 10τ = 360 symbols.

A. Channel Estimation Analysis

The accuracy of the channel estimators is evaluated in terms
of the relative MSE (RMSE), defined as E{∥x− x̂∥2/M}.
The scattering function fh(φ, ϑ) in the spatial correlation
matrix Rh for the UE-RIS channel follows the Gaussian
distribution within the△h = 10◦ neighborhood of (φh, ϑh) =
(70◦,−20◦), and the scattering function fgn(φ, ϑ) in Rgn

also follows the Gaussian distribution within the △gn = 5◦

neighborhood of (φgn , ϑgn) = (−60◦,−30◦). The scattering
function fe(φ, ϑ) in Re for the EMI is selected the Gaussian
distribution within the △e = 20◦ neighborhood of (φe, ϑe) =
(−10◦, 20◦), as illustrated in Table II.

We explore three different approaches in this part:
1) The first is the proposed AO approach for minimizing

MSE, defined in Algorithms 1 and 2 and simply referred
to as ‘MMSE’ in the figures.

2) The second is the RS-LS estimator defined in (30),
where the RIS is optimized based on [6]. The RIS

TABLE II: Simulation parameters.

Cascaded Channel EMI
φh ϑh φgn ϑgn φe ϑe

70◦ −20◦ −60◦ −30◦ −10◦ 20◦

△h = 10◦ △gn = 5◦ △e = 20◦

{fi(φ, ϑ)|i = gn, h, e}: Gaussian Model
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Fig. 4: The RMSEs vs. SNR for different estimators and RIS
phase-shift configurations. (a) SISO case. (b) MISO case.

configuration obtained by RS-LS is denoted as Φ0 and
used as the initial phase in Algorithm 1.

3) The third approach is referred to as ‘MMSE-Φ0’, where
the RIS shifts are Φ0, but unlike RS-LS, the linear
filter is calculated as in (50), i.e., based on the LMMSE
criterion.

Besides, we assume α = 0.5 and ϵ = 10−5 for the proposed
approach, and to improve simulation speed, we apply the
diagonally scaled steep descent method only once within the
inner loop iteration defined in Algorithm 2.

Fig. 3 depicts the RMSE of the LMMSE estimator with
the AO algorithm as a function of the outer iteration count
k under varying SNRs and SIRs. The abbreviation ‘RS-LS
Init.’ signifies that the AO algorithm is initiated with Φ0,
the optimal phase-shifts for the RS-LS estimator. In contrast,
‘Random Init.’ denotes the initialization of the AO algorithm
with random unit-modulus phase-shifts. As detailed in Section
IV, the AO algorithm converges progressively as k increases.
Notably, the AO algorithm exhibits slightly faster convergence
when initialized with Φ0 compared to when initialized with
random unit-modulus phase-shifts. This observation motivates
our choice to employ the Φ0 initialization in the forthcoming
simulations.

Fig. 4 shows the RMSE as a function of SNR when
SIR = 5 dB both in the SISO and MISO scenarios. In the
MISO case, the UPA at the BS consists of 2×2 antennas. For
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Fig. 5: The RMSEs vs. SIR for different estimators and RIS
phase-shift configurations.
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Fig. 6: The RMSEs vs. τ for different estimators and RIS
phase-shift configurations.

comparison purposes, we also show the results of ‘MMSE’
and ‘RS-LS’ schemes when SIR =∞, i.e. EMI is not present,
which are denoted ‘w/o EMI’. Let us first consider the case
where the RIS is not affected by interference. In this case,
both the LMMSE and RS-LS estimators show linearly de-
creasing MSE with SNR. Also, LMMSE outperforms RS-LS
especially at low SNRs, which is consistent with expectations
for MMSE estimation compared to LS. In the presence of
EMI, a threshold approximately corresponding to SNR = SIR
is observed in all cases, i.e., when SIR begins to be the
predominant effect. Moreover, ‘MMSE-Φ0’ outperforms the
RS-LS method by almost 5 dB, even though both methods
use the same RIS configuration Φ0. This is because, in the
MMSE case, the LMMSE criterion takes into account both
noise and EMI statistics. More importantly, the proposed
‘MMSE’ scheme provides consistent gain in terms of ‘MMSE-
Φ0’, which proves the effectiveness of the proposed iterative
RIS optimization approach in Algorithms 1 and 2. Finally,
comparing Fig. 4 (a) and Fig. 4 (b), in the MISO scenario, all
estimators exhibit consistency in performance with those in
the SISO scenario. However, due to the increased channel di-
mension that needs to be estimated, their overall performance
is slightly inferior to the estimators in the SISO scenario.

Fig. 5 shows the RMSE as a function of SIR at an SNR
of 5 dB. The performance of all algorithms shows similar
behavior as in the previous case, with the difference that the
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Fig. 7: The RMSEs vs. M for different estimators and RIS
phase-shift configurations.
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Fig. 8: The RMSEs vs. △e for different estimators and RIS
phase-shift configurations.

threshold appears for SIR ≫ SNR, indicating that EMI is the
most detrimental effect for channel estimation. As before, the
best results are obtained with the proposed LMMSE estimator,
and this behavior is more evident for low SIR, i.e., when the
impact of EMI is higher. Specifically, the performance gap
between ‘RS-LS’ and ‘MMSE’ at SIR = 20 dB is of 8.55
dB, whereas the gap increases to 18.65 dB at SIR = 0 dB.

Fig. 6 shows the RMSE as a function of the pilot length τ
when SNR = 15 dB and SIR = 5 dB. We show in the figure
rc = rank{Rc}, which is the minimum number of pilots that
can be used by the RS-LS scheme according to [6]. It can be
seen from the figure that the LMMSE estimator can be applied
for any τ ≥ 1, but naturally improves its performance as τ
increases. The largest performance improvement is observed
for τ < rc, while the performance tends to reach a threshold as
τ approaches the number of RIS elements M . Conversely, as
expected, the performance of the RS-LS estimator for τ < rc
is very poor due to the insufficient number of pilots. Also in
this case, the performance tends to stabilize as τ approaches
M .

Fig. 7 shows the RMSE as a function of M at SNR =
15dB and SIR = 5 dB. Note that increasing M increases the
number of pilots to be estimated. However, this has only a
limited effect on the channel rank, i.e., on the effective channel
dimension. Thus, the main effect is to increase the RIS gain,
which is beneficial for channel estimation. Accordingly, the
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Fig. 9: The RMSEs vs. k for the LMMSE combiner with AO.
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Fig. 10: The achievable SE vs. SNR for different combiners.

RMSE value of both estimators decreases as M increases. It is
also worth noting that the difference in performance between
‘MMSE’ and ‘RS-LS’ increases with M .

So far, we have assumed that the interference and the pilot
signals come from different directions and do not overlap.
In Fig. 8, we evaluate the RMSE as a function of angular
spread, considering △e from 4◦ to 89◦. The SNR and SIR
are both set to 15 dB. As expected, the gap between ‘MMSE’
and ‘MMSE-w/o-EMI’ increases as △e increases. When the
interference approaches isotropic scattering, i.e., △e ≥ 50◦,
the gap between the two curves reaches 17.34 dB. This is due
to the physical overlap between the UE-RIS channel h and
the interference e(i). Since only the signal subspace under the
assumption of isotropic conditions is used to design Φ0 [6],
the estimators ‘MMSE-Φ0’ and ‘RS-LS’ are less sensitive to
changes in △e compared to the ‘MMSE’ estimator. However,
even in the isotropic case, the ‘MMSE’ estimator still retains
a performance advantage of about 11.78 dB over the RS-LS
estimator.

B. Spectral Efficiency Analysis

We now consider the data transmission phase using the
correlated Rayleigh model as an example. We consider two
approaches:

1) The first one is the proposed LMMSE combiner with
AO defined in Algorithm 3, labeled as ‘MMSE’. The
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Fig. 11: The achievable SE vs. τ under various SNRs and
SIRs. (a) The LMMSE combiner. (b) The LS combiner.

initial ϕ0 for the AO algorithm is set to a row of Φopt
τ ,

the optimal phase-shifts for the LMMSE estimator.
2) Additionally, the conventional LS combiner vLS =

1
ρΦN x̂

(
x̂HΦH

NΦN x̂
)−1

is provided as a reference,
which is designed based on the RS-LS estimate as
shown in (30). In the LS scheme, the RIS phase-shift
ΦRS-LS

τ for the RS-LS estimator is still computed based
on [6], while during the data transmission phase, the
RIS phase-shift for the LS combiner is selected as a
row of ΦRS-LS

τ .
Fig. 9 depicts the RMSE of the LMMSE combiner with

the AO algorithm as a function of the outer iteration count k.
We provide two initial RIS phase-shifts for the AO algorithm:
one is a row of Φopt

τ mentioned above, denoted as ‘LMMSE.
Init.’, and the other is set to the random unit-modulus phase-
shifts, labeled as ‘Random Init.’. To reflect the computational
complexity, the CPU times of the curves initialized with
‘LMMSE. Init.’ is provided in Fig. 9. It can be observed
that the AO algorithm takes approximately 1000 ms to iterate
k = 1000 times, but this also depends on the processor used.
Furthermore, consistent with the conclusion of Fig. 3, the
AO algorithm initialized with ‘LMMSE. Init.’ exhibits slightly
faster convergence compared to that initialized with the ran-
dom unit-modulus phase-shifts. Therefore, for the subsequent
simulations, AO algorithm is initialized with the row of Φopt

τ .
Fig. 10 presents the SE as a function of SNR, in which

the LMMSE combiner with ϕ0 is provided as a benchmark.
When the RIS is almost unaffected by white interference,
i.e., SIR = 30dB, the SE of all combiners exhibits nearly
linear growth with increasing SNR. In the presence of EMI,
a threshold slightly above SNR = SIR can be observed in all
combiners. This indicates that the EMI is the most adverse
factor inhibiting SE in the data transmission phase. Moreover,
due to the adoption of the LMMSE criterion, which considers
both noise and EMI statistics, even when only employing
initial RIS phase-shifts ϕ0, ‘MMSE-ϕ0’ outperforms the
conventional LS combiner. Furthermore, after employing the
AO algorithm, the performance of the LMMSE combiner
is improved by over 2 bits/s/Hz compared to ‘MMSE-ϕ0’.
This underlines the effectiveness of the AO algorithm in the
transmission part.

Fig. 11 depict the SE as a function of pilot length τ for
LMMSE combiner and LS combiner, where the pilot length
is set in the range 1 to τmax = 3M = 108. It can be seen
that for both combiners, the SE does not monotonically vary
with τ . Specifically, for the LS combiner, when τ < M , due
to the poor performance of the RS-LS estimator, as shown in
Fig. 6, the SE of the LS combiner is very poor. Subsequently,
when τ > M , the accuracy of the RS-LS estimator does
not significantly improve with the increase of τ . In this
case, additional pilot sequences would consume the avaiable
coherence interval τc, leading to a decrease in the SE. The
same conclusion can also be drawn for the proposed LMMSE
scheme, namely, when τ > 9, the unnecessary pilot overhead
would decrease the SE. Therefore, a compromise design of the
pilot length is crucial for achieving the optimal SE in RIS-
aided communications. More importantly, comparing Fig. 11
(a) and Fig. 11 (b), we can conclude that the proposed
LMMSE scheme outperforms the conventional LS method
in both SE and required pilot length. This demonstrates the
superiority of the proposed scheme.

C. Performance Comparison for Different Channel Models

We now evaluate the performance of the proposed MMSE
approach with AO in the correlated Rayleigh, Rician, and LoS
channel scenarios to validate its general applicability. Fig. 12
first presents the RMSE of the LMMSE estimator for different
channel models as a function of SNR at SIR = 10 dB. It
is evident that the proposed LMMSE estimator demonstrates
outstanding performance, particularly in the LoS channel,
where its RMSE closely matches that of the ‘MMSE-w/o-
EMI’ case. The Rician channel follows closely behind, while
the performance in the correlated Rayleigh channel is rela-
tively poorer. Despite this, the proposed LMMSE estimator,
guided by the the minimum MSE criterion, achieves an RMSE
below −15 dB for the Rayleigh channel, indicating acceptable
performance. Additionally, after utilizing the proposed AO
method, the ‘MMSE’ method achieves gains of 14.93 dB,
11.26 dB, and 10.27 dB for the LoS, Rician, and correlated
Rayleigh channels, respectively, compared to the ‘MMSE-Φ0’
method.

Fig. 13 depicts the SE of the LMMSE combiner for the
aforementioned three channels as a function of SNR at SIR
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Fig. 13: The SEs vs. SNR for the LMMSE combiner with
different channel models.

= 10 dB. As expected, the LMMSE combiner shows the best
SE for the LoS channel, followed by the Rician channel, with
the correlated Rayleigh channel performing slightly worse.
Additionally, the proposed AO method provides the perfor-
mance improvements of 3.40 bits/s/Hz, 2.93 bits/s/Hz, and
2.48 bits/s/Hz for the LoS, Rician, and correlated Rayleigh
channels, respectively. Combining the results from Fig. 12
and Fig. 13, it is robustly verified that the designed MMSE
scheme is applicable to the correlated Rayleigh, Rician, and
LoS channel scenarios.

VI. CONCLUSIONS

This paper focuses on a RIS-based system in which
a single-antenna UE exchanges information with a multi-
antenna BS, and addresses the problems of channel estimation
and SE optimization. Both problems have been formulated
with the objective of minimizing the MSE. A key aspect is the
optimization of the RIS coefficients with spatially correlated
channels and EMI. The resulting optimization tasks result
in two non-convex problems, both of which are success-
fully addressed by applying an iterative algorithm based on
the principle of alternating optimization, with demonstrated
convergence to locally optimal solutions. Numerical results
demonstrate the effectiveness of the proposed method and its
superiority over state-of-the-art alternatives.

APPENDIX A
We assume that the receiver has knowledge of the statistics

of x and wtr so that the LMMSE estimate of x can be
computed. The spatial correlation matrix Rx ∈ CNM×NM

of x is

Rx = E{xxH} = Rg′
m
⊗ (Rgn ⊙Rh) = Rg′

m
⊗Rc, (62)

from the statistical independence of h and {gn}.
Since the interference {e(i); i = 1, 2, . . . , τ} is spatially

correlated but uncorrelated in time, we have

E
{
wn1

(i)wn2
(j)

∗}
=

{
σ2
eRg′

m
(n1, n2)ϕ(i)

TRqϕ(i)
∗ i = j,

0, i ̸= j,

(63)

where Rg′
m
(n1, n2) is the (n1, n2)-th element of the corre-

lation matrix Rg′
m

. Hence, the correlation matrix of wtr is
given by

Rtr
w =

1

σ2
e

E{wtr(wtr)
H} = Rg′

m
⊗
((
ΦτRqΦ

H
τ

)
⊙ Iτ

)
.

(64)

The LMMSE estimator is the linear filter designed to min-
imize the MSE between the channel x and its estimate
x̂ = 1√

ρtr
RxΦ

H
Nτ

(
Rtr

y

)−1
ytr, i.e.,

Ex(Φτ ) = E
{
∥x− x̂∥2

}
= tr

{
Rx −RxQ

tr(Φτ )Rx

}
.

(65)

APPENDIX B
GRADIENT AND HESSIAN OF (52) AND (38)

Let f : CP×Q → R be a function that is twice differen-
tiable, we define the complex gradient operator as the PQ-
dimensional vector

∇Xf =
∂f

∂x∗ (66)

where x = vec(X). Therefore, if we let z = (q − 1)Q + p,
then it follows that [∇Xf ]z = ∂f

∂x∗
z
= ∂f

∂X∗
p,q

.
Considering the fact that Rx = Rg′

m
⊗Rc, Rtr

w = Rg′
m
⊗((

ΦτRqΦ
H
τ

)
⊙ Iτ

)
and ΦNτ = IN⊗Φτ , we extract the terms

in (52) that are related to Φτ , and represent them sequentially
as follows:

E(k+1)
1 = tr

{
Λ(k+1)HΛ(k+1) Rg′

m
⊗ΦτRcΦ

H
τ︸ ︷︷ ︸

AΦτ

}
, (67)

E(k+1)
2 =

σ2
e

ρtr
tr
{
Λ(k+1)HΛ(k+1) Rg′

m
⊗
[(
ΦτRqΦ

H
τ

)
⊙ Iτ

]︸ ︷︷ ︸
BΦτ

}
,

(68)

E(k+1)
3 = tr

{
Λ(k+1) Rg′

m
⊗ΦτRc︸ ︷︷ ︸
CΦτ

}
, (69)

and

E(k+1)
4 = tr

{
Λ(k+1)H Rg′

m
⊗RcΦ

H
τ︸ ︷︷ ︸

DΦτ

}
. (70)
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Applying the chain rule and abbreviating Λ(k+1) to Λ,
the gradient of (67) to (70) with respect to [Φτ ]i,m can be
expressed as

∇[Φτ ]i,mE
(k+1)
1 = tr


[
∂E(k+1)

1

∂AΦτ

]H
∂AΦτ

∂[Φτ ]i,m


= tr

{
ΛHΛ

[
Rg′

m
⊗ (∂Φτ )RcΦ

H
τ +ΦτRc (∂Φτ )

H

∂[Φτ ]i,m

]}
= tr

{
ΛHΛ

[
Rg′

m
⊗
(
Ji,mRcΦ

H
τ +ΦτRcJ

H
i,m

)]}
, (71)

∇[Φτ ]i,mE
(k+1)
2 =

σ2
e

ρtr
tr


[
∂E(k+1)

2

∂BΦτ

]H
∂BΦτ

∂[Φτ ]i,m

 =
σ2
e

ρtr
·

tr

{
ΛHΛ

[
Rg′

m
⊗

(
(∂Φτ )RqΦ

H
τ +ΦτRq (∂Φτ )

H

∂[Φτ ]i,m
⊙Iτ

)]}

=
σ2
e

ρtr
tr
{
ΛHΛ

[
Rg′

m
⊗
((
Ji,mRqΦ

H
τ +ΦτRqJ

H
i,m

)
⊙Iτ

)]}
,

(72)

∇[Φτ ]i,mE
(k+1)
3 = tr


[
∂E(k+1)

3

∂CΦτ

]H
∂CΦτ

∂[Φτ ]i,m


= tr

{
Λ

(
Rg′

m
⊗ (∂Φτ )Rc

∂[Φτ ]i,m

)}
= tr

{
Λ
(
Rg′

m
⊗ Ji,mRc

)}
,

(73)

and

∇[Φτ ]i,mE
(k+1)
4 = tr


[
∂E(k+1)

4

∂DΦτ

]H
∂DΦτ

∂[Φτ ]i,m


= tr

{
ΛH

(
Rg′

m
⊗Rc (∂Φτ )

H

∂[Φτ ]i,m

)}
= tr
{
ΛH
(
Rg′

m
⊗RcJ

H
i,m

)}
.

(74)

Then, letting z = (m−1)τ+i, the z-th element of the gradient
of (52) with respect to Φτ is computed as

[∇ΦτEx (Λ,Φτ )]z =

tr
{
ΛHΛ

[
Rg′

m
⊗
(
Ji,mRcΦ

H
τ +ΦτRcJ

H
i,m

)]}
+

σ2
e

ρtr
tr
{
ΛHΛ

[
Rg′

m
⊗
((
Ji,mRqΦ

H
τ +ΦτRqJ

H
i,m

)
⊙ Iτ

)]}
−

tr
{
Λ
(
Rg′

m
⊗ Ji,mRc

)}
−tr

{
ΛH
(
Rg′

m
⊗RcJ

H
i,m

)}
, (75)

where Ji,m is a τ×M matrix with the (i,m)-th element being
1 and the other elements being 0.

As in the case of the gradient operator, letting t = (s −
1)Q+ r and z = (q−1)Q+p, the complex Hessian operator
∇2

Xf is the PQ×PQ-dimensional Hermitian matrix defined
as [

∇2
Xf
]
t,z

=
∂2f

∂x∗
t∂xz

=
∂2f

∂X∗
r,s∂Xp,q

. (76)

After that, taking derivatives of (71) and (72) with respect to
[Φτ ]i,m again as follows:

∂∇[Φτ ]i1,m1
E(k+1)
1

∂[Φτ ]i2,m2

= tr

{
ΛHΛ

[
Rg′

m
⊗
Ji1,m1Rc (∂Φτ )

H
+(∂Φτ )RcJ

H
i1,m1

∂[Φτ ]i2,m2

]}
= tr

{
ΛHΛ

[
Rg′

m
⊗
(
Ji1,m1

RcJ
H
i2,m2

+ Ji2,m2
RcJ

H
i1,m1

)]}
,

(77)

and

∂∇[Φτ ]i1,m1
E(k+1)
2

∂[Φτ ]i2,m2

=
σ2
e

ρtr
tr
{
ΛHΛ·[

Rg′
m
⊗

(
Ji1,m1Rq (∂Φτ )

H
+ (∂Φτ )RqJ

H
i1,m1

∂[Φτ ]i2,m2

)
⊙Iτ

]}

=
σ2
e

ρtr
·

tr
{
ΛHΛ

[
Rg′

m
⊗
((
Ji1,m1

RqJ
H
i2,m2

+Ji2,m2
RqJ

H
i1,m1

)
⊙Iτ

)]}
,

(78)

and introducing z1 = (m1−1)τ+i1 and z2 = (m2−1)τ+i2,
the Hessian of (52) with respect to Φτ is computed as.[
∇2

Φτ
Ex (Λ,Φτ )

]
z1,z2

=
σ2
e

ρtr
·

tr
{
ΛHΛ

[
Rg′

m
⊗
((
Ji1,m1RqJ

H
i2,m2

+Ji2,m2RqJ
H
i1,m1

)
⊙Iτ

)]}
+ tr

{
ΛHΛ

[
Rg′

m
⊗
(
Ji1,m1RcJ

H
i2,m2

+ Ji2,m2RcJ
H
i1,m1

)]}
.

(79)
Moreover, considering the special scenario of SISO, in this

case, Rx and Rtr
w degenerate to Rc and

((
ΦτRqΦ

H
τ

)
⊙ Iτ

)
.

Therefore, the gradient and Hessian of (52) with respect to
Φτ can be simplified as

∇Φτ
Ex (Λ,Φτ ) =

2ΛHΛΦτRc +
2σ2

e

ρtr
((
ΛHΛ

)
⊙ Iτ

)
ΦτRq − 2ΛHRc, (80)

and

∇2
Φτ
Ex (Λ,Φτ ) = 2ΛHΛ⊗Rc +

2σ2
e

ρtr
((
ΛHΛ

)
⊙ Iτ

)
⊗Rq.

(81)

Similarly, during the data transmission phase, abbreviating
v(k+1) as v, the elements of the gradient and Hessian of (38)
with respect to ϕ are computed as

[∇ϕEs (v,ϕ; x̂)]m = −2√ρtr
{
x̂vHJNm

}
+ ρtr

{
vvH

[
JNm

(
x̂x̂H +Rx̃ +

σ2
e

ρ

(
Rg′

m
⊗Rq

))
ΦH

N

+ ΦN

(
x̂x̂H +Rx̃ +

σ2
e

ρ

(
Rg′

m
⊗Rq

))
JH
Nm

]}
, (82)

and[
∇2

ϕEs (v,ϕ; x̂)
]
m1,,m2

=

ρtr
{
vvH

[
JNm1

(
x̂x̂H +Rx̃ +

σ2
e

ρ

(
Rg′

m
⊗Rq

))
JH
Nm2

+ JNm2

(
x̂x̂H +Rx̃ +

σ2
e

ρ

(
Rg′

m
⊗Rq

))
JH
Nm1

]}
,

(83)

where JNm = IN ⊗ Jm and Jm is an M -dimensional vector
with the m-th element being 1 and other elements being 0.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3449074

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



14

Correspondingly, in the SISO scenario, where v degenerates
into a complex number, the gradient and Hessian can be
written as

∇ϕEs (v,ϕ; x̂) =

2ρ |v|2 ϕ
(
x̂x̂H +Rx̃ +

σ2
e

ρ
Rq

)
− 2
√
ρv∗x̂H, (84)

and

∇2
ϕEs (v,ϕ; x̂) = 2ρ |v|2

(
x̂x̂H +Rx̃ +

σ2
e

ρ
Rq

)
. (85)
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