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Abstract: Neural networks with memristors are promising candidates to overcome the limitations of
traditional von Neumann machines via the implementation of novel analog and parallel computation
schemes based on the in-memory computing principle. Of special importance are neural networks
with generic or extended memristor models that are suited to accurately describe real memristor
devices. The manuscript considers a general class of delayed neural networks where the memristors
obey the relevant and widely used generic memristor model, the voltage threshold adaptive memris-
tor (VTEAM) model. Due to physical limitations, the memristor state variables evolve in a closed
compact subset of the space; therefore, the network can be mathematically described by a special
class of differential inclusions named differential variational inequalities (DVIs). By using the theory
of DVI, and the Lyapunov approach, the paper proves some fundamental results on convergence of
solutions toward equilibrium points, a dynamic property that is extremely useful in neural network
applications to content addressable memories and signal-processing in real time. The conditions for
convergence, which hold in the general nonsymmetric case and for any constant delay, are given in
the form of a linear matrix inequality (LMI) and can be readily checked numerically. To the authors
knowledge, the obtained results are the only ones available in the literature on the convergence of
neural networks with real generic memristors.

Keywords: convergence; delay; differential variational inequalities (DVIs); linear matrix inequalities
(LMIs); Lyapunov method; memristor; neural networks

MSC: 68Q06

1. Introduction

Von Neumann computing machines are currently facing severe limitations in analyzing
big data and handling the hard tasks which arise in the Internet of Things (IoT) or cloud
computing [1–3]. These problems are due to the huge power needed for the continuous
exchange of data between the central processing unit (CPU) and the memory (e.g., the RAM)
that are placed at distinct physical locations. The use of emerging nanoscale devices,
such as the memristor, is a promising way to alleviate some of the above problems via
the implementation of new analog and parallel neuromorphic computing paradigms.
Memristors enable implementation in memory computing systems where the same devices
perform the computation and are also able to memorize the result of the computation, thus
mimicking some basic principles of a biological brain [4–8].

One crucial aspect to account for when studying memristor neural architectures is the
memristor model that is used. The ideal memristor, which was introduced in the original
seminal paper by Leon Chua in 1971 [9], is the most basic and simplest model available in
the literature. However, real memristor devices implemented in nanotechnology cannot
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be modeled in a sufficiently accurate way using ideal memristors [10–13]. Rather, more
complex models, named generic or extended memristors, need to be used for real devices.
The reader is referred to [14–19] for a classification and discussion of the hierarchy of
memristor models and for the main models used in the literature.

One of the most fundamental dynamic properties of a neural network is the con-
vergence of solutions toward equilibrium points. It is not possible to overemphasize the
importance of convergence, since it is an essential property to implement content address-
able memories and to design neural networks for solving combinatorial optimization
problems and several other tasks in the field of image and signal processing [20–22]. There
is a huge literature devoted to the convergence of traditional neural networks without
memristors, see, e.g., [23–29] and references therein. On the other hand, the study of the
convergence of memristor neural networks is only in its infancy and very few results are
available in the literature. The authors of [30–32] addressed convergence of Hopfield-type
and cellular neural networks with ideal memristors. General results on convergence have
been established in the case of symmetric interconnections between neurons [30,32], and
for cooperative interconnections [31], using the flux-charge analysis method developed
in [15,33]. The method enables it to be shown that the state space can be decomposed in
invariant manifolds for the dynamics and that, on each manifold, the dynamics is equiv-
alent to that of a memristorless neural network, provided that flux and charge are used
as variables in place of voltage and current. Other results on convergence have been es-
tablished for memristors modeled as switching devices [34–36]. However, the usefulness
and significance of such models in describing real memristor devices have not yet been
clarified. As far as the authors are aware, no results on convergence are available to date
for the important case of memristor neural networks with generic or extended memristors.

The goal of this manuscript is to study the convergence of a class of memristor neural
networks with generic memristors obeying the voltage threshold adaptive memristor
(VTEAM) model [17]. This is a relevant and highly studied model that is extremely flexible
and accurately fits real memristor devices. Moreover, it is computationally efficient and
appropriate for circuit simulation tools. In the neural network, we also account for the
possible presence of constant delays. This feature is of importance, since, in practice,
delays are unavoidable due to the interneuron distance and finite signal transmission
speed. Moreover, the presence of delays enables neural networks to tackle the solution
of some classes of peculiar tasks in real time, including motion detection [37] and inverse
problems [38]. It is worth remarking that, due to physical limitations, the evolution of the
memristor state is constrained in a closed compact interval. We therefore find it useful
to model the memristor neural network via a class of delayed differential inclusions,
named differential variational inequalities (DVIs) [39]. It is known that DVIs are the most
adequate mathematical tool to describe systems with constraints evolving in a closed
subset of the space. In the paper, we provide some easily testable sets of conditions on the
interconnection and delayed interconnection matrices ensuring convergence of solutions
for the memristor neural network. The conditions, which are expressed in the form of a
linear matrix inequality (LMI) [40], are applicable in the general nonsymmetric case and do
not require that the delay is bounded. Examples and numerical simulations are provided
to illustrate the obtained dynamic results.

2. Preliminaries

In this section, we recall some basic properties of tangent and normal cones, and a
class of differential inclusions named DVIs, that are used in the manuscript. The reader is
referred to [39] for a more thorough treatment.
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2.1. Tangent and Normal Cones

Consider a non-empty closed convex set Q ⊂ Rn. The tangent cone to Q at x ∈ Q is
given by [41]

TQ(x) = {v ∈ Rn : lim inf
ρ→0+

dist(x + ρv, Q)

ρ
= 0}

where dist(z, Q) = infy∈Q ‖z − y‖ is the distance of z ∈ Rn from set Q. Furthermore,
the normal cone to Q at x ∈ Q is

NQ(x) = {p ∈ Rn : 〈p, v〉 ≤ 0, ∀v ∈ TQ(x)}.

If, in particular, Q = Kn = [−`, `]n is a hypercube, it can be verified that TKn(z) =
(u(z1), u(z2), · · · , u(zn))> for any z ∈ Kn, where u(ρ) = [0,+∞) if ρ = −`, u(ρ) =
(−∞,+∞) if |ρ| < `, and u(ρ) = (−∞, 0] if ρ = `. Moreover, it can be easily checked that
NKn(z) = (w(z1), w(z2), · · · , w(zn))> for any z ∈ Kn, where w(ρ) = (−∞, 0] if ρ = −`,
w(ρ) = 0 if |ρ| < `, and w(ρ) = [0,+∞) if ρ = `.

The tangent and normal cones enjoy the following properties [39,42].

Property 1. Suppose that Q ⊂ Rn is a non-empty closed convex set. Then:

• for any x ∈ Q, TQ(x) and NQ(x) are non-empty closed convex cones in Rn;
• the normal cone to Q is a monotone operator, i.e., given any x, y ∈ Q and any nx ∈ NQ(x),

ny ∈ NQ(y), we have 〈x− y, nx − ny〉 ≥ 0.
• If Q = Kn = [−`, `]n, and P = diag(p1, p2, · · · , pn) ≥ 0, then we have 〈x − y, P(nx −

ny)〉 ≥ 0 for any x, y ∈ Kn and any nx ∈ NKn(x), ny ∈ NKn(y).

2.2. Differential Variational Inequalities

Let Q ⊂ Rn be a non-empty closed convex set and F : Q → Rn. A differential
variational inequality (DVI) is a problem of the following form [39] (p. 265): find an
absolutely continuous function x(t), t ∈ [ta, tb], such that

x(t) ∈ Q, t ∈ [ta, tb] (1)

and
ẋ(t) ∈ F(x(t))− NQ(x(t)), for almost all (a.a.) t ∈ [ta, tb]. (2)

From a mathematical viewpoint, a DVI is a special class of differential inclusions
whose solutions evolve in a closed convex subset of Rn. The next property summarizes
some fundamental results on DVIs in [39] (Ch. 5) that are needed in the paper.

Property 2. Let Q ⊂ Rn be a non-empty compact convex set and assume F : Q → Rn is
continuous in Q. Then, for any initial condition x0 ∈ Q, the DVI (1) and (2) has at least a solution
x(t), t ∈ [0,+∞), such that x(0) = x0. Furthermore, there exists at least a solution ξ ∈ Q of
the algebraic inclusion 0 ∈ F(ξ)− NQ(ξ), hence x(t) = ξ, t ≥ 0, is a stationary solution to (1)
and (2).

3. Memristor Neural Network
3.1. VTEAM Memristor Model

The ideal memristor was introduced by Leon Chua in the seminal 1971 paper [9] as
the fourth basic passive circuit element. Let v(t) (resp., i(t)) be the voltage (resp., current)
of the memristor and let ϕ(t) =

∫ t
−∞ v(σ)dσ (resp., q(t) =

∫ t
−∞ i(σ)dσ) be the flux (resp.,

charge) of the memristor. An ideal flux-controlled memristor is, by definition, a circuit
element satisfying the constitutive relation

q(t) = q̂(ϕ(t))
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where q̂ : R→ R, q̂ ∈ C1(R), is a given non-linear function. By differentiating in time, we
obtain that an ideal memristor satisfies the quasi-static Ohm’s law

i(t) = g(ϕ(t))v(t)

where g(ϕ) = q̂′(ϕ) is named memductance and the state equation is

ϕ̇(t) = v(t).

Later on, more general classes of memristors were introduced to better model real
memristor devices with respect to an ideal memristor. In the manuscript, we assume that
the memristor is described by the generic memristor model [14]

i(t) = g(x(t))v(t) (3)

ẋ(t) = h̃(x(t), v(t)) (4)

where g(·) : R→ R, g ∈ C0(R), is the memductance and h̃ : R×R→ R, h̃ ∈ C0(R×R),
is a non-linear function. We stress that the state variable x of a generic memristor, in general,
does not coincide with the flux ϕ.

In particular, in the paper, we focus on the VTEAM memristor model introduced
in [17] for which the state evolution is ruled by the equation

ẋ(t) = h̃(x(t), v(t)) .
= h(v(t)) =


ko f f

(
v(t)
vo f f
− 1
)αo f f

0 < vo f f < v(t)

0 von < v(t) < vo f f

kon

(
v(t)
von
− 1
)αon

v(t) < von < 0

(5)

where kon, ko f f , von, vo f f , αon, αo f f are model parameters; the parameters are all positive,
except for von and kon, which are negative. Note that this is a model with a voltage threshold;
that is, the state does not change (dx(t)/dt = 0) when the voltage v(t) belongs to the
interval [von, vo f f ]. Additionally, from a physical viewpoint, the state variable x(·) has to
satisfy the hard constraint

x(t) ∈ K .
= [xon, xo f f ]

where −∞ < xon < xo f f < +∞. Such a constraint is usually enforced mathematically by
using some suitable window functions in (5) [17]. However, it can be more simply and
effectively guaranteed by rewriting (5) as the following DVI

ẋ(t) ∈ h(v(t))− NK(x(t)) (6)

where NK(x(t)) is the normal cone to K at x(t) ∈ K.
The memductance g(·) is not explicitly defined by the VTEAM model and can be

any continuous function, such that g(x) ∈ [1/RON , 1/ROFF] for any x ∈ [xon, xo f f ], where
RON , ROFF > 0. Indeed, the memductance can be described by linear dependence of the
memristance 1/g(·), e.g.,

g(x(t)) =

[
RON +

ROFF − RON
xo f f − xon

(x(t)− xon)

]−1

(7)

as well as an exponential dependence, e.g.,

g(x(t)) =
e
− λ(x(t)−xon)

xo f f −xon

RON
(8)

where λ is a fitting parameter and e−λ = RON
ROFF

.
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3.2. Memristor Delayed Neural Network Model

In the following, we consider a neural network with delays whose basic cell is made by
the interconnection of a capacitor C and a memristor obeying a VTEAM model. By letting,
for simplicity, C = 1, the memristive neural network can be described by the following set
of delayed differential inclusions for i = 1, · · · , N

v̇i(t) =− iMi(t) + ΣN
j=1aij f (vj(t)) + ΣN

j=1aτ
ij f (vj(t− τ)) (9)

ẋi(t) ∈h(vi(t))− NK(xi(t)) (10)

where vi(t) are the capacitor voltages and iMi(t) = g(xi(t))vi(t) are the memristor currents
(i = 1, · · · , N). Moreover, for i, j = 1, · · · , N, aij (resp., aτ

ij) are the neuron interconnections
(resp., delayed neuron interconnections), while the neuron activation f (·) : R→ R is Lips-
chitz in R, i.e., there exists L such that | f (ρ1)− f (ρ2)| ≤ L|ρ1 − ρ2| for any ρ1, ρ2 ∈ R, it is
bounded, i.e.,−∞ < fm ≤ f (ρ) ≤ fM < +∞ for any ρ ∈ R, and it satisfies f (0) = 0. Finally,
τ > 0 is a constant delay. The neural network has an additive interconnecting structure
that is typical of classic models, such as the Hopfield or cellular neural network models.

Equations (9) and (10) can be recast in vector form as follows

V̇(t) =− G(X(t))V(t) + AF(V(t)) + Aτ F(V(t− τ)) (11)

Ẋ(t) ∈H(V(t))− NKX (X(t)) (12)

where V(t) = (v1(t), · · · , vN(t))> and X(t) = (x1(t), · · · , xN(t))> (> denotes the trans-
pose). Additionally, we denote with G(X(t)) = diag(g(x1(t)), · · · , g(xN(t))), F(V(t)) =
( f (v1(t)), · · · , f (vN(t)))>, H(V(t)) = (h(v1(t)), · · · , h(vN(t)))> and with NKX (X(t)) the
normal cone to the hypercube KX = [xon, xo f f ]

N at X(t).

4. Existence and Uniqueness of the Solution

Let us consider the initial value problem (IVP) associated with the delayed memristor
neural network (9) and (10)

V̇(t) =− G(X(t))V(t) + AF(V(t)) + Aτ F(V(t− τ)) (13)

Ẋ(t) ∈H(V(t))− NKX (X(t)) (14)

V(t) =φ(t), t ∈ [−τ, 0] (15)

X(t) =ψ(t), t ∈ [−τ, 0] (16)

with initial conditions (φ(t)>, ψ(t)>)>, where φ ∈ C([−τ, 0],RN) and ψ ∈ C([−τ, 0], KX).
A solution (V(t)>, X(t)>)>, t ∈ [−τ, t̃], of the IVP is a continuous function in t ∈

[−τ, t̃] such that:

• (V(t)>, X(t)>)> ∈ RN × KX , t ∈ [−τ, t̃];
• (V(t)>, X(t)>)> = (φ(t)>, ψ(t)>)>, t ∈ [−τ, 0];
• (V(t)>, X(t)>)> is absolutely continuous in [0, t̃];
• (V̇(t)>, Ẋ(t)>)> satisfies (13) and (14) for a.a. t ∈ [0, t̃].

We find it useful to bring back the analysis of the differential inclusion (9) and (10) to
that of a DVI in a compact convex subset of RN ×RN , so that we can apply Property 2 to
establish the existence of solutions. To this end, we prove the following.

Property 3. Let (V(t)>, X(t)>)>, t ≥ 0, be a solution of the IVP (13)–(16). Let f̃ =
max{| fm|, fM} and consider the hypercube

KV
.
= [−v̄ε, v̄ε]

N (17)
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where
v̄ε = max

i=1,··· ,N

(
ROFF

(
ΣN

j=1|aij| f̃ + ΣN
j=1|aτ

ij| f̃ + ε
))

(18)

and ε > 0. Then, V(t) enters KV in finite time and stays there thereafter.

Proof. Consider V(t) ∈ RN , V(t) /∈ KV and let Ñ 6= ∅ be the set of indexes i = 1, · · · , N
such that |vi(t)| ≥ v̄ε. We note that, for any i ∈ Ñ, we have

v̇i(t) · vi(t) = −g(xi(t))v2
i (t) + ΣN

j=1aij f (vj(t))vi(t) + ΣN
j=1aτ

ij f (vj(t− τ))vi(t)

≤ −1/ROFF|vi(t)|2 + ΣN
j=1|aij| f̃ |vi(t)|+ ΣN

j=1aτ
ij f̃ |vi(t)|

= |vi(t)|
(
−1/ROFF|vi(t)|+ ΣN

j=1|aij| f̃ + ΣN
j=1aτ

ij f̃
)

≤ |vi(t)|
(
−v̄ε/ROFF + ΣN

j=1|aij| f̃ + ΣN
j=1aτ

ij f̃
)

≤ −ε|vi(t)| < 0.

As a consequence, the set KV is positively invariant and globally attractive for V(·).
Additionally, since |v̇i(t)| = |v̇i(t) · vi(t)|/|vi(t)|, it also holds, for any i ∈ Ñ, |v̇i(t)| > ε,
i.e., each component of V(·) which is outside the set [−v̄ε, v̄ε] approaches the same set with
a speed not smaller than ε, thus entering the set in finite time.

In the paper, we are interested in the asymptotic behavior as t → +∞ of the neural
network solutions. On the basis of Property 3, it is enough to consider an IVP whose initial
conditions for variables V(·) is given by φ ∈ C([−τ, 0], KV). Therefore, in what follows, we
consider the IVP for a DVI in the compact convex set KV × KX

V̇(t) ∈− G(X(t))V(t) + AF(V(t)) + Aτ F(V(t− τ))− NKV (V(t)) (19)

Ẋ(t) ∈H(V(t))− NKN (X(t)) (20)

V(t) =φ(t), t ∈ [−τ, 0] (21)

X(t) =ψ(t), t ∈ [−τ, 0] (22)

with initial conditions (φ(t)>, ψ(t)>)>, where φ ∈ C([−τ, 0], KV) and ψ ∈ C([−τ, 0], KX).
A solution (V(t)>, X(t)>)>, t ∈ [−τ, t̃], of the IVP (19)–(22) is defined in the same

way as for the IVP (13)–(16), the only difference being that for the IVP (19)–(22), we have
(V(t)>, X(t)>)> ∈ KV × KX , t ∈ [−τ, t̃].

Property 4. Given any initial conditions (φ(t)>, ψ(t)>)>, where φ ∈ C([−τ, 0], KV) and ψ ∈
C([−τ, 0], KX), there exists a unique solution (V(t)>, X(t)>)>, t ≥ −τ, of the IVP (19)–(22).

Proof. A. Existence of the solution
The proof of the existence of solutions for the system can be achieved through the

method of steps.
In the first step, we show the existence of a solution in t ∈ [−τ, τ]. Let us define the

following IVP in t ∈ [0, τ] for a DVI without delay:Ẇ(t)
Ẏ(t)
θ̇(t)

 ∈
−G(Y(t))W(t) + AF(W(t)) + Aτ F(φ(θ))

H(W(t))
1

−
 NKV (W(t))

NKX (Y(t))
N[−τ,0](θ(t))


= F

W(t)
Y(t)
θ(t)

− NKV×KX×[−τ,0]

W(t)
Y(t)
θ(t)


W(0)

Y(0)
θ(0)

 =

φ(0)
ψ(0)
−τ


(23)
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where W ∈ RN , Y ∈ RN and θ ∈ R. F : KV × KX × [−τ, 0] → R2N+1 is continuous in
KV × KX × [−τ, 0] and (W(0)>, Y(0)>, θ(0))> ∈ KV × KX × [−τ, 0]. Therefore, according
to Property 2, there exists at least one solution to the IVP.

Solving (23) with respect to θ, we obtain θ(t) = t− τ in t ∈ [0, τ] . Suppose now

(
V(t)
X(t)

)
=



(
φ(t)
ψ(t)

)
, t ∈ [−τ, 0](

W(t)
Y(t)

)
, t ∈ [0, τ].

(24)

We have (W(0)>, Y(0)>)> = (φ(0)>, ψ(0)>)>, therefore, (V(t)>, X(t)>)> is con-
tinuous in [−τ, τ] and belongs to KV × KX. Additionally, (V(t)>, X(t)>)> is absolutely
continuous in t ∈ [0, τ], and (V̇(t)>, Ẋ(t)>)> satisfies (19) and (20) for a.a. t ∈ [0, τ]. As a
consequence, (V(t)>, X(t)>)> is a solution in t ∈ [−τ, τ] of the DVI.

As an inductive step, let us assume that (V(t)>, X(t)>)> is a solution in t ∈ [−τ, mτ],
where m is an integer value greater than 1. We define in t ∈ [−τ, 0] the functions Vmτ ∈
C([−τ, 0], KV) and Xmτ ∈ C([−τ, 0], KX) as Vmτ(t) = V(t + mτ) and Xmτ(t) = X(t + mτ),
respectively. Following the procedure in the first step, and choosing (Vmτ(t)>, Xmτ(t)>)>

as the initial condition of the IVP, we obtain a solution (Vm(t)>, Xm(t)>)> in t ∈ [−τ, τ].
Assuming (V(t)>, X(t)>)> = (Vm(t−mτ)>, Xm(t−mτ)>)> in t ∈ [mτ, (m + 1)τ],

we obtain that (V(t)>, X(t)>)> is a solution of the system in t ∈ [−τ, (m + 1)τ], with ini-
tial condition (V(t)>, X(t)>)> = (φ(t)>, ψ(t)>)> in t ∈ [−τ, 0]. Indeed, it can be ob-
served that:

• for the inductive step, (V(t)>, X(t)>)> with initial condition (V(t)>, X(t)>)> =

(φ(t)>, ψ(t)>)> in t ∈ [−τ, 0] is a solution in t ∈ [−τ, mτ];
• since (Vm(t−mτ)>, Xm(t−mτ)>)> is absolutely continuous in t ∈ (0, τ], we have

that (V(t)>, X(t)>)> is absolutely continuous in t ∈ [mτ, (m + 1)τ];
• (V(t)>, X(t)>)> is absolutely continuous in t ∈ [−τ, mτ];
• the limit of (V(t)>, X(t)>)> as t→ mτ+ is equal to the limit of (Vm(t−mτ)>, Xm(t−

mτ)>)> as t → mτ+, i.e., we have (Vm(0)>, Xm(0)>)> = (Vmτ(0)>, Xmτ(0)>)> =
(V(mτ)>, X(mτ)>)>, therefore, (V(t)>, X(t)>)> is continuous in t = mτ;

• (Vm(t)>, Xm(t)>)> is a solution in t ∈ [0, τ] and satisfies (19) and (20). As a conse-
quence, (V(t)>, X(t)>)> satisfies (19) and (20) in t ∈ [mτ, (m + 1)τ].

In conclusion, (V(t)>, X(t)>)> is a solution in t ∈ [−τ, (m + 1)τ] of the system (19)
and (20) with the initial condition (V(t)>, X(t)>)> = (φ(t)>, ψ(t)>)> in t ∈ [−τ, 0].
By induction, this result can be extended to any t ≥ −τ.

B. Uniqueness of the solution
Suppose, for contradiction, that there exist two solutions of (19)–(22) (V1(t)>, X1(t)>)>

and (V2(t)>, X2(t)>)>. The distance between the solutions is defined as:

∆(t) =
1
2

∥∥∥∥(V1(t)
X1(t)

)
−
(

V2(t)
X2(t)

)∥∥∥∥2

2
. (25)

We want to prove that the distance is 0 in any t ∈ [−τ, mτ], where m is a generic
integer greater than or equal to 0.

The proof is easily reached when m = 0, since (V1(t)>, X1(t)>)>− (V2(t)>, X2(t)>)> =
(φ(t)>, ψ(t)>)> − (φ(t)>, ψ(t)>)> = 0. Applying again the method of steps, let us assume
that ∆(t) is equal to 0 in t ∈ [−τ, mτ]. Since (V1(t)>, X1(t)>)> and (V2(t)>, X2(t)>)> are
solutions of (19) and (20), when t ∈ [mτ, (m + 1)τ], we have that:{

V̇1(t) = −G(X1(t))V1(t) + AF(V1(t)) + Aτ F(V1(t− τ))− nV1,t

Ẋ1(t) = H(V1(t))− nX1,t
(26)
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and {
V̇2(t) = −G(X2(t))V2(t) + AF(V2(t)) + Aτ F(V2(t− τ))− nV2,t

Ẋ2(t) = H(V2(t))− nX2,t
(27)

where nV1,t ∈ NKV (V1(t)), nX1,t ∈ NKX (X1(t)), nV2,t ∈ NKV (V2(t)) e nX2,t ∈ NKX (X2(t)).
As a consequence

∆̇(t) =
〈(

V1(t)
X1(t)

)
−
(

V2(t)
X2(t)

)
,
(

V̇1(t)
Ẋ1(t)

)
−
(

V̇2(t)
Ẋ2(t)

)〉
=

〈(
V1(t)−V2(t)
X1(t)− X2(t)

)
,
(

V̇1(t)− V̇2(t)
Ẋ1(t)− Ẋ2(t)

)〉
=
〈
V1(t)−V2(t), V̇1(t)− V̇2(t)

〉
+
〈

X1(t)− X2(t), Ẋ1(t)− Ẋ2(t)
〉

(28)

where:〈
V1(t)−V2(t), V̇1(t)− V̇2(t)

〉
=− 〈V1(t)−V2(t), G(X1(t))V1(t)− G(X2(t))V2(t)〉
+ 〈V1(t)−V2(t), A(F(V1(t))− F(V2(t)))〉
+ 〈V1(t)−V2(t), Aτ(F(V1(t− τ))− F(V2(t− τ)))〉
−
〈
V1(t)−V2(t), nV1,t − nV2,t

〉〈
X1(t)− X2(t), Ẋ1(t)− Ẋ2(t)

〉
=〈X1(t)− X2(t), H(V1(t))− H(V2(t))〉
−
〈

X1(t)− X2(t), nX1,t − nX2,t
〉
.

(29)

According to Property 2:{〈
V1(t)−V2(t), nV1,t − nV2,t

〉
≥ 0〈

X1(t)− X2(t), nX1,t − nX2,t
〉
≥ 0.

(30)

Additionally, remembering that ∆(t) = 0 in t ∈ [−τ, mτ], we observe that V1(t− τ) =
V2(t− τ). As a consequence, starting from (28), we obtain:

∆̇(t) ≤− 〈V1(t)−V2(t), G(X1(t))V1(t)− G(X2(t))V2(t)〉
+ 〈V1(t)−V2(t), A(F(V1(t))− F(V2(t)))〉
+ 〈X1(t)− X2(t), H(V1(t))− H(V2(t))〉

=

〈(
V1(t)−V2(t)
X1(t)− X2(t)

)
,
(
−G(X1(t))V1(t) + AF(V1(t)) + G(X2(t))V2(t)− AF(V2(t))

H(V1(t))− H(V2(t))

)〉
.

(31)

Functions −G(X)V + AF(V) and H(V) are Lipschitz continuous, therefore, there
exists κ ≥ 0 such that

∆̇(t) ≤ 2κ∆(t). (32)

From the Gronwall lemma, we obtain

0 ≤ ∆(t) ≤ ∆(mτ)exp(2κ(t−mτ)) = 0 (33)

i.e., ∆(t) = 0 when t ∈ [−τ, mτ].
By induction, this result can be extended to any t ≥ −τ, proving the uniqueness of

the solution of (19)–(22).

5. Main Results on Convergence

An equilibrium point of the memristor neural network (19) and (20) is a constant
solution (V(t)>, X(t)>)> = (ξ>V , ξ>X )

> ∈ KV × KX , t ≥ −τ, of the IVP (19)–(22). Denote by
πE the set of equilibrium points of (19) and (20). Since f (0) = 0 and h(0) = 0, we have that

∅ 6= π = {(0, ξ>X )
> : 0 ∈ RN , ξX ∈ KX , t ≥ −τ} ⊂ πE.
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Note that there is a continuum of non-isolated equilibrium points, that is a typical
feature of neural networks with non-volatile memristors [15].

Example 1. Let us show via an example that, in the general case, the memristor neural network
(19) and (20) can have equilibrium points not belonging to set π. Let N = 2, and f (ρ) =
1/2(|ρ + 1| − |ρ− 1|), −1 < von < 0 < vo f f < 1, g(x) as in (7) and choose

A =

(
2

RON
0

0 2
RON

)
; Aτ =

(
0 − 2

RON
− 2

RON
0

)
.

If (ṽ1, ṽ2, x̃1, x̃2)
> is an equilibrium point, the following relations hold true

ṽ1 =
2

RON g(x̃1)
( f (ṽ1)− f (ṽ2))

ṽ2 =
2

RON g(x̃2)
( f (ṽ2)− f (ṽ1)).

Since f (ρ) is a piecewise linear function, the equilibrium points of the network can be easily
found explicitly. It can be verified that, in addition to points in π, also ( 4ROFF

RON
,−4, xo f f , xon)>

and (−4, 4ROFF
RON

, xon, xo f f )
> are equilibrium points for the network. Note that, since |ṽi| > 1 >

max{|von|, vo f f }, only the extremal points xon and xo f f can satisfy 0 ∈ h(ṽi)− NK(x̃i).

Definition 1. The memristor neural network (19) and (20) are said to be convergent if, for any
initial conditions (φ(t)>, ψ(t)>)>, where φ ∈ C([−τ, 0], KV) and ψ ∈ C([−τ, 0], KX), the
solution of the IVP (19)–(22) converges toward an equilibrium point as t→ +∞.

We will address convergence under two different sets of conditions for the neuron
activations f (·) and the interconnection and delay interconnection matrices A and Aτ .
Firstly, we enforce the following hypotheses.

Assumption 1. We have f (0) = 0 and 0 < f (vi)/vi ≤ 1 for any 0 6= vi ∈ R and any
i = 1, 2, · · · , N.

Two interesting special cases are the sigmoidal, i.e., bounded and strictly increasing
activations f (ρ) = (2/π) arctan(πρ/2) and f (ρ) = (1/2)(|ρ + 1| − |ρ− 1|) used in the
popular Hopfield neural network [43] and cellular neural network model [21], respectively.
However, it is worth noting that neuron activation functions satisfying Assumption 1 may
not be monotone-increasing.

Assumption 2. There exist a diagonal positive definite matrix P ∈ Rn and a symmetric positive
definite matrix Z ∈ RN×N such that the following LMI holds true

Sws =

(
2PGws − PA− A>P− Z −PAτ

−Aτ>P Z

)
> 0 (34)

where we have let
Gws = diag(1/ROFF, · · · , 1/ROFF) ∈ RN×N .

It is worth noting that, in order to satisfy Assumption 2, it is necessary that matrix
A− Gws is Hurwitz, namely the real part of the eigenvalues of A is less then 1/ROFF.

Theorem 1. Suppose that Assumptions 1, 2 hold. Then the memristor neural network (19) and (20)
is convergent. More specifically:

(1) V(t)→ 0 as t→ +∞ for any initial conditions;
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(2) X(t) converges in finite time, i.e., there exists X∗ ∈ KX and t f < +∞ such that X(t) =
X∗, t ≥ t f , where X∗ and t f depend upon the initial conditions.

Proof. Let us consider the candidate Lyapunov function W(·, ·) : RN+1 → RN given by

W(V(t), t) =
N

∑
i=1

2pi

∫ Vi

0
f (Vi(t))dVi +

N

∑
i=1

N

∑
j=1

∫ t

t−τ
f (Vi(s))zij f (Vj(s))ds. (35)

Note that W(V(t), t) ≥ 0 for any t ≥ 0. Let

T =

(
F(V(t))

F(V(t− τ))

)
∈ R2N .

Consider now the matrix

S = Sws +

(
2P(G(X(t))− Gws) 0

0 0

)
=

(
2PG(X(t))− PA− A>P− Z −PAτ

−Aτ>P Z

)

obtained by replacing Gws with G(X(t)) in Sws. Observe that G(X(t)) − Gws ≥ 0 and
consequently Sws > 0 implies S > 0.

The time derivative of W(·, ·) can be written as

dW(V(t), t)
dt

= −T>ST + 2F>(V(t)) PG(X(t)) (F(V(t))−V(t)), (36)

where 2F>(V(t)) PG(X(t)) (F(V(t))−V(t)) ≤ 0, due to Assumption 2.
We have

dW(V(t), t)
dt

≤ −T>ST ≤ −Λm(S)‖T‖2

≤ −Λm(S)
N

∑
i=1

f (vi(t))2 ≤ 0

for any t ≥ 0, where with Λm(M), we denote the minimum eigenvalue of a matrix M.
Since S > 0, Λm(S) > 0. By integrating the previous inequality, we obtain

W(V(t), t) ≤ W(V(0), 0)−Λm(S)
N

∑
i=1

∫ t

0
f (vi(t))2dt. (37)

Assume, for contradiction, that V(t) 6→ 0 as t→ +∞. From Property 3, we know that,
after a certain finite time, the dynamics of V(t) evolves in the hypercube KV = [−vε, vε]N ,
hence, ‖V(t)‖ ≤ vε

√
N.

Furthermore, the norm of V̇(t) is limited as well. In fact, from (19) in the interior of
the hypercube, we have

‖V̇(t)‖ = ‖ − G(X(t))V(t) + AF(V(t)) + Aτ F(V(t− τ))‖
≤ ‖ − G(X(t))V(t)‖+ ‖AF(V(t))‖+ ‖Aτ F(V(t− τ))‖.

(38)

We know that G(X) ∈ [GOFF, GON ]
N , and from Assumption 1, we can observe that

F(V) ∈ KV . As a consequence, V̇(t) is limited by
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‖V̇(t)‖ ≤ ‖ − G(X(t))V(t)‖+ ‖AF(V(t))‖+ ‖Aτ F(V(t− τ))‖

≤ GONvε

√
N +

√√√√ N

∑
i=1

N

∑
j=1

(
aij f (vj(t))

)2
+

√√√√ N

∑
i=1

N

∑
j=1

(
aτ

ij f (vj(t− τ))
)2

≤ GONvε

√
N +

√√√√ N

∑
i=1

N

∑
j=1

(
max

1≤i,j≤N
|aij| f̃

)2
+

√√√√ N

∑
i=1

N

∑
j=1

(
max

1≤i,j≤N
|aτ

ij| f̃
)2

≤ GONvε

√
N + max

1≤i,j≤N
|aij| f̃ N + max

1≤i,j≤N
|aτ

ij| f̃ N

(39)

where f̃ is the maximum absolute value of function f , defined in Property 3.
Hence, there exist h ∈ {1, · · · , N} and a sequence {tk} → ∞ as k → ∞ such that

vh(tk) → ν 6= 0 as k → +∞. Then, f (vh(tk)) → f (ν) 6= 0 as k → +∞. Assume without
loss of generality f (ν) > 0. Since f (vh(tk)) → f (ν) 6= 0, and ‖V̇(·)‖ is bounded above,
there exist k̄ and ε > 0 such that when k ≥ k̄ we have f (vh(t)) > (1/2) f (ν) > 0 for
t ∈ [tk − ε, tk + ε]. Taking into account that dW(V(t), t)/dt ≤ 0 for any t, we can write

lim
t→+∞

W(V(t), t) ≤ W(V(0), 0)−Λm(S)
N

∑
i=1

∫ ∞

0
f (vi(t))2dt (40)

≤ W(V(0), 0)−Λm(S) ∑
k≥k̄

∫ tk+ε

tk−ε

f (ν)2

4
dt = −∞. (41)

However, this contradicts the positiveness of W(·, ·).
Now, consider that, since V(t)→ 0 as t→ +∞, there exists a time instant t f > 0 such

that maxi |Vi(t)| ≤ max{|von|, vo f f } for any t ≥ t f . Taking into account (5), this implies
Ẋ(t) = 0 for any t ≥ t f , i.e., X(t) converges to X∗ ∈ KN in finite time t f .

In Theorem 1, we have proved the convergence of V(·)→ 0 and the convergence in
finite time of X(·) under suitable hypotheses on the interconnection and delay intercon-
nection matrix (cf. Assumption 2) and on the neuron activations f (·) (cf. Assumption 1).
However, we have been unable to give an estimate of the convergence speed of V(·) or
of the convergence time of X(·). In what follows, we pose a different assumption on the
interconnections that enables us to obtain such quantitative estimates and also permits us
to weaken the restrictions in Assumption 1 for the activations.

Assumption 3. We have 0 ≤ f (vi)/vi ≤ σ for some σ > 0 and for any 0 6= vi ∈ R and any
i = 1, 2, · · · , N.

Assumption 4. There exist three symmetric positive definite matrices P ∈ RN×N , Z ∈ RN×N

and Σ3 ∈ RN×N such that the following LMI holds true

S0 =

 PGws + GwsP− Σ(Σ3 + Z)Σ PA PAτ

A>P Σ3 0
Aτ>P 0 Z

 > 0 (42)

where we have let
Σ = diag(σ, · · · , σ) ∈ RN×N .

We preliminarily recall the following two results.
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Lemma 1 ([44]). Given any real matrices Σ1, Σ2 and a symmetric positive definite matrix Σ3 =
Σ>3 > 0 of appropriate dimensions, the following inequality holds

Σ>1 Σ2 + Σ>2 Σ1 ≤ βΣ>1 Σ3Σ1 + β−1Σ>2 Σ−1
3 Σ2

where β > 0 is a scalar.

Lemma 2 (Schur Complement [40]). Given a symmetric matrix

M =

(
A B

B> C

)
the following equivalence holds true

M > 0 ⇐⇒ C > 0, A− BC−1B> > 0.

Proposition 1. Suppose that Assumptions 3 and 4 hold. Let

0 < k .
= min

{
Λm(S0)
4ΛM(P) , 1

2τ ln
(

1 + Λm(S0)
2ΛM(PAτ Z−1(PAτ)>)

) }
(43)

where ΛM(M) denotes the maximum eigenvalue of matrix M. Then, we have

Sk =

 PGws + PGws − 2kP− Σ(Σ3 + Z)Σ PA PAτ

A>P Σ3 0
Aτ>P 0 e−2kτZ

 > 0.

Proof. In order to show that Sk > 0, let us consider

Ωk = PGws + GwsP− 2kP− Σ(Σ3 + Z)Σ− PAΣ−1
3 A>P− e2kτ PAτZ−1(Aτ)>P

and
Ω0 = PGws + GwsP− Σ(Σ3 + Z)Σ− PAΣ−1

3 A>P− PAτZ−1(Aτ)>P.

Due to Assumption 4, and by applying Lemma 2 to S0, we have Ω0 > 0 and we can
rewrite Ωk as

Ωk = Ω0 − 2kP + (1− e2kτ)PAτZ−1(Aτ)>P.

Since PAτZ−1(Aτ)>P > 0 and consequently ΛM(PAτZ−1(Aτ)>P) > 0, if we choose
k as in (43), the following inequality holds

Λm(Ωk) ≥ Λm(Ω0)− 2kΛM(P) + (1− e2kτ)ΛM(PAτZ−1(Aτ)>P) > 0

and hence Ωk > 0. Taking into account the previous result, and by applying Lemma 2 to
Sk, we finally conclude that Sk > 0.

Theorem 2. Suppose that Assumptions 3 and 4 hold. Then the memristor neural network (19)
and (20) is convergent. More specifically:

(1) V(t)→ 0 exponentially as t→ +∞ with convergence rate k as in (43), i.e.,

‖V(t)‖ ≤

√
ΛM(P) + ΛM(ΣZΣ) 1−e−2kτ

2k
Λm(P)

max
−τ≤θ≤0

‖V(θ)‖e−kt, t ≥ 0
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(2) X(t) converges in finite time, i.e., there exists X∗ ∈ KN such that X(t) = X∗, t ≥ t f ,
where

t f =
1
k

∣∣∣∣∣∣∣∣log


√

ΛM(P)+ΛM(ΣZΣ) 1−e−2kτ

2k
Λm(P) max−τ≤θ≤0 ‖V(θ)‖

v̂


∣∣∣∣∣∣∣∣

and v̂ = min{|von|, vo f f }.

Proof. Let us consider the following candidate Lyapunov function:

W(V(t), t) = e2ktV>(t)PV(t) +
∫ t

t−τ
e2ksF>(V(s))ZF(V(s))ds. (44)

We have W(V(t), t) ≥ e2ktΛm(P)‖V(t)‖2; moreover, the time derivative of (44) can be
written as

dW(V(t), t)
dt

= 2ke2ktV>(t)PV(t) + e2ktV>(t)PV̇(t) + e2ktV̇>(t)PV(t) +

+ e2ktF>(V(t))ZF(V(t))− e2k(t−τ)F>(V(t− τ))ZF(V(t− τ)) =

= e2kt
{

V>(t)(2kP− PG(X(t))− G(X(t))P)V(t)+

+ F>(V(t))A>PV(t) + V>(t)PAF(V(t)) +

+ F>(V(t− τ)))(Aτ)>PV(t) + V>(t)PAτ F(V(t− τ))

+ F>(V(t))ZF(V(t))− e−2kτ F>(V(t− τ)))ZF(V(t− τ)))
}

.

By applying Lemma 1, choosing Σ1 = F(V(t)), Σ2 = A>PV(t) and β = 1, we obtain
the following inequality

F>(V(t))A>PV(t) + V>(t)PAF(V(t)) ≤
F>(V(t))Σ3F(V(t)) + V>PAΣ−1

3 A>PV(t).

Similarly, letting Σ1 = F(V(t− τ))e−kτ , Σ2 = (Aτ)>PV(t)ekτ and β = 1, by Lemma 1,
we obtain

F>(V(t− τ))(Aτ)>PV(t) + V>(t)PAτ F(V(t− τ)) ≤
e−2kτ F>(V(t− τ))ZF(V(t− τ)) + e2kτV>PAτZ−1(Aτ)>PV(t).

As a consequence, we can write the following inequality involving the time derivative
of (44)

dW(V(t), t)
dt

≤ e2kt{V>(t)(2kP− PG(X(t))− G(X(t))P)V(t) +

+ F>(V(t))Σ3F(V(t)) + V>(t)PAΣ−1
3 A>PV(t) +

+ F>(V(t))ZF(V(t)) + e2kτV>(t)PAτZ−1(Aτ)>PV(t)}.

Noting that Σ3 + Z > 0, the following inequality holds

F>(V(t))(Σ3 + Z)F(V(t)) ≤ V>(t)Σ(Σ3 + Z)ΣV(t)

and hence
dW(V(t), t)

dt
≤ −e2kt(V>(t)ΩV(t))
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with matrix Ω defined as

Ω = PG(X(t)) + G(X(t))P− 2kP− Σ(Σ3 + Z)Σ− PAΣ−1
3 A>P− e2kτ PAτZ−1(Aτ)>P.

Noting that G(X(t))− Gws > 0, then Proposition 1 ensures that Ω > Ωk > 0.
Now, let us prove that V(t)→ 0 exponentially as t→ +∞ and give an estimate of the

convergence rate. Since dW(V(t), t)/dt ≤ 0, we can assert that W(V(0), 0) ≥ W(V(t), t),
t ≥ 0. Note that

W(V(0), 0) = V>(0)PV(0) +
∫ 0

−τ
e2ksF>(V(s))ZF(V(s))ds ≤

≤ ΛM(P)‖V(0)‖2 +
∫ 0

−τ
e2ksV>(s)ΣZΣV(s)ds ≤

≤ ΛM(P)‖V(0)‖2 + ΛM(ΣZΣ)
1− e−2kτ

2k
max
−τ≤θ<0

‖V(θ)‖2.

Recalling that W(V(t), t) ≥ e2ktΛm(P)‖V(t)‖2, we finally obtain

‖V(t)‖2 ≤ e−2kt

Λm(P)

(
ΛM(P)‖V(0)‖2 + ΛM(ΣZΣ)

1− e−2kτ

2k
max
−τ≤θ<0

‖V(θ)‖2

)

and hence

‖V(t)‖ ≤

√
ΛM(P)ΛM(ΣZΣ) 1−e−2kτ

2k
Λm(P)

max
−τ≤θ<0

‖V(θ)‖e−kt. (45)

This shows that V(·) is exponentially convergent to 0 with a convergence rate k.
Let us define v̂ = min{|von|, vo f f }. Since V(t) → 0 as t → +∞, there exists a time

instant t f > 0 such that maxi |Vi(t)| ≤ max{|von|, vo f f } for any t ≥ t f . Taking into
account (5), this implies Ẋ(t) = 0 for any t ≥ t f , i.e., X(t) converges to X∗ ∈ KN in finite
time t f .

The worst case estimate of t f is obtained by letting ‖V(t)‖ = v̂. From (45), we
conclude that

t f =
1
k

∣∣∣∣∣∣∣∣log


√

ΛM(P)+ΛM(ΣZΣ) 1−e−2kτ

2k
Λm(P) max−τ≤θ≤0 ‖V(θ)‖

v̂


∣∣∣∣∣∣∣∣.

The next result is an immediate consequence of the results on convergence in the
two theorems.

Proposition 2. Under the assumptions of Theorem 1, or the assumptions of Theorem 2, for the
memristor neural network, we have π ≡ πE.

6. Numerical Simulations

In this section, we report on some simulations performed using MATLAB to illustrate
the dynamic behavior of the considered memristor neural network.

In the simulations, the state evolution of the VTEAM model (5) is described by the
following parameters

vo f f = 10 mV ko f f = 10 nm/s αo f f = 3× 108

von = −10 mV kon = −10 nm/s αon = 3× 108.
(46)
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For the memductance, we have chosen the linear dependence (7), setting its parameters
as follows

ROFF = 1 Ω xo f f = 10 nm
RON = 0.1 Ω xon = 0 nm.

(47)

We considered a two-neuron neural network with interconnection and delay intercon-
nection matrices

A =

(
−1.25 10
−12.5 −1.25

)
; Aτ =

(
1.25 1.25
−12.5/8 12.5/8

)
. (48)

The delay τ is set to 250 ms and the neuron activations are given by the piecewise-linear
function f (ρ) = (1/2)(|ρ + 1| − |ρ− 1|).

According to Property 3, the hypercube KV in (17) is defined by vε = 16.875 V. Substi-
tuting the following matrices

P =

(
0.63 0

0 0.51

)
Z =

(
1.25 0.06
0.06 1.04

) (49)

in matrix Sws defined in Assumption 4, i.e.,

Sws =

(
2PGws − PA− A>P− Z −PAτ

−Aτ>P Z

)
=

=


1.585 0.015 −0.7875 −0.7875
0.015 1.255 0.7969 −0.7969
−0.7875 0.7969 1.25 0.06
−0.7875 −0.7969 0.06 1.04


(50)

and computing the eigenvalues of Sws, i.e.,

λSws =


0.027
0.2749
2.2959
2.5323

 (51)

we observe that Sws > 0, therefore the assumptions of Theorem 1 hold for the neural net-
work.

6.1. Example 1

In this first example, we evaluate the neural network state evolution dynamics setting
sinusoidal initial conditions for the neuron voltages

V(t) =
(

2.35 sin (50πt + 0.2π)
1.15 sin (80πt + 0.3π)

)
V (52)

for t ∈ [−τ, 0] and testing four different initial conditions for the memristor states, i.e.,

X1(0) =
(

0.5
0.5

)
nm X2(0) =

(
0.5
9.5

)
nm

X3(0) =
(

9.5
0.5

)
nm X4(0) =

(
9.5
9.5

)
nm.

(53)
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Figure 1 shows the solutions obtained starting from the initial conditions thus defined.
It can be observed that, in all the simulations, the voltages converge to 0, as predicted by
Theorem 1, even if the trajectories are influenced by the memristor state initial conditions
and dynamics. However, note that the asymptotic values of the memristor states are
different for each simulation, i.e., they depend upon the initial conditions.

Figure 1. Simulations of the memristor neural network considered in Example 1. Each color represents
a different solution, obtained for a specific memristor initial condition. The initial conditions are
labeled by the red markers. The final memristor states are labeled by the black dots. The black dashed
box in the right plot is the hypercube KX = [xon, xo f f ]

2 bounding the memristor states.

Figure 2 shows the time behavior of the specific simulation performed with initial
condition X1(0) = (0.5, 0.5)> nm. From the plot, we can see that when the voltages reach
the threshold von (vo f f ), the memristor dynamics stops, i.e., the memristor states do not
change anymore.

Figure 2. Time domain behavior for the solution in Example 1 having initial condition X1(0) =

(0.5, 0.5)> nm.



Mathematics 2022, 10, 2439 17 of 20

6.2. Example 2

In the second example, we set the initial conditions for the memristor states at

X(0) =
(

5
5

)
nm (54)

and we evaluated the system dynamics starting from four different sinusoidal initial
conditions for the neurons voltages, i.e.,

V1(t) =
(
−2.35 sin (50πt + 0.2π)
−1.15 sin (80πt + 0.3π)

)
V

V2(t) =
(
−2.35 sin (50πt + 0.2π)
1.15 sin (80πt + 0.3π)

)
V

V3(t) =
(

2.35 sin (50πt + 0.2π)
−1.15 sin (80πt + 0.3π)

)
V

V4(t) =
(

2.35 sin (50πt + 0.2π)
1.15 sin (80πt + 0.3π)

)
V.

(55)

Figure 3 shows the solutions obtained starting from the initial conditions defined
above. The simulations show that, regardless of the initial condition, memristor voltages
always converge to 0. The different evolution in time of the neuron voltages, however,
determines different dynamics of the memristor states. In fact, even if the initial memristor
state is the same in each of the four analyzed cases, the subsequent dynamics are different,
with the memristors that reach different asymptotic values for its states at the end of each
simulation. This is better illustrated in Figure 4 for the simulation performed with initial
condition V1(t) = (−2.35 sin (50πt + 0.2π),−1.15 sin (80πt + 0.3π))> V.

Figure 3. Simulations of the memristor neural network considered in Example 2. Each color represents
a different solution, obtained for a specific memristor initial condition. The initial conditions are
labeled by the red markers. The final memristor states are labeled by the black dots. The black dashed
box in the right plot is the hypercube KX = [xon, xo f f ]

2 bounding the memristor states.
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Figure 4. Time domain behavior for the state solution in Example 2 with V1(t) =

(−2.35 sin (50πt + 0.2π),−1.15 sin (80πt + 0.3π))> V.

7. Conclusions

The paper has established some fundamental results on trajectory convergence for a
class of differential inclusions, which are named DVIs, modeling delayed neural networks
with real generic memristors obeying the VTEAM model. The conditions for convergence
hold for any constant delay and they can be applied to nonsymmetric neuron intercon-
nection matrices. Moreover, they can be effectively checked numerically since they are
expressed in the form of LMIs. Although VTEAM can be used to fit several real memristor
models, it is of interest in future work to extend the obtained results to other classes of real
memristors, such as those modeled by extended memristors.
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