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Exploiting Intrinsic Kinematic Null Space for Supernumerary Robotic
Limbs Control

T. Lisini Baldi1,2, N. D’Aurizio1, S. Gurgone3,4, D. Borzelli3,5, A. D’Avella3,5, and D. Prattichizzo1,2

Abstract— Supernumerary robotic limbs (SRLs) gained in-
creasing interest in the last years for their applicability as
healthcare and assistive technologies. These devices can either
support or augment human sensorimotor capabilities, allowing
users to complete tasks that are more complex than those feasible
for their natural limbs. However, for a successful coordination
between natural and artificial limbs, intuitiveness of interaction
and perception of autonomy are key enabling features, especially
for people suffering from motor disorders and impairments.
The development of suitable human-robot interfaces is thus
fundamental to foster the adoption of SRLs.

With this work, we describe how to control an extra degree
of freedom by taking advantage of what we defined the
Intrinsic Kinematic Null Space, i.e. the redundancy of the human
kinematic chain involved in the ongoing task. Obtained results
demonstrated that the proposed control strategy is effective for
performing complex tasks with a supernumerary robotic finger,
and that practice improves users’ control ability.

I. INTRODUCTION

Supernumerary robotic limbs (SRLs) are wearable robotic
devices designed to achieve human sensorimotor augmen-
tation [1]. Such devices enlarge the reachable workspace
by adding artificial degrees of actuation to the human body,
giving the possibility of performing more complex actions
with increased strength, precision, and sensing capabilities.
Differently from exoskeletons and exosuits, which are de-
signed to mirror the kinematic structure of the body part on
which they are worn and are used to empower human natural
movements, SRLs represent additional degrees of freedom
(DoFs) that need to be controlled independently from and/or
simultaneously with biological limbs.

In less than a decade, we have seen the development
of SRLs with different usages (fingers, hands, arms, legs),
actuation systems (fully actuated, underactuated), and design
features (rigid/soft materials, level of anthropomorphism,
etc) [2]. Even if these devices are not naturally part of the
body, an appropriate human-robot interface can allow to
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Fig. 1: A subject exploiting her Intrinsic Kinematic Null
Space for controlling the supernumerary robotic finger.

perceive them as a real extension of the user. Rossi et al.
[3] discovered the emerging of new bioartificial corticospinal
motor synergies using a robotic additional thumb, which
suggests how our motor system is open to very quickly
embody the supernumerary robotic finger into the user’s body
schema.

If adopted as technological support for service and assis-
tance to people with disabilities, ease of use and ease of
learning become fundamental requirements for guaranteeing
device acceptance. For this class of users it is even more
important to boost the user-device synergy and, consequently,
reduce as much as possible the need of help to manage daily
living.

The more intuitive is the control strategy, the faster is
the embodiment of the supernumerary limb [4]. Functional
and user-based control techniques are thus key factors for
encouraging users to take advantage of this technology rather
than perceiving it as a source of frustration. From the user’s
point of view, it is possible to distinguish two different control
strategies: non-autonomous and autonomous. In this paper
we will focus on non-autonomous control, which refers to an
intentional and dedicated control with detailed instructions
from the user. For instance, the user opens or closes a
supernumerary robotic finger by pressing a push button
embedded on a ring worn on the healthy hand as in [5].
With autonomous control, we indicate instead a control signal



which adapts to the user actions without receiving explicit
instructions. As an example, the exoskeleton supporting the
wearer’s gait should follow the intention to walk without
waiting for specific commands on when to take a step.

As regards the non-autonomous control of SRLs, the design
and the purpose of these devices has a tight connection
with the implemented control strategy. On the one hand, it
is not surprising that the higher is the number of sensors
and actuators in the device, the more accurately it can be
moved and may follow the desired trajectory. On the other
hand, the presence of multiple actuators implies a larger
robot operational and configuration space, thus need the
implementation of high level control strategies that allow users
to control the coordinated motion of the degrees of freedom
of the limb, and not the single motor [6], [7]. Conversely,
supernumerary robotic limbs with a low number of degrees
of freedom are easier to control from the user point of view,
exploiting, for example, wearable interfaces like buttons (e.g.
ring interfaces [5], [8], [9]). As a final consideration, since
SRLs are designed to cooperate with the human’s natural
limbs, the major challenge in the development of an effective
control strategy is guaranteeing that it does not affect the
motion of the natural limb. In other words, control policies
should allow an unobtrusive collaboration between robotic
and biological limbs.

In this context, the purpose of this research is to present
a new control paradigm that is strongly centered on users
and their tasks. The fundamental concept is to capitalize on
the human musculoskeletal system’s redundancy to manage
additional DoFs. While here we target the kinematic redun-
dancy, i.e. motions of the body that do not affect the action
performed by the natural limbs, results on using the muscular
redundancy, that is muscle activation patterns that do not
produce net joint torques (such as the co-contraction of two
antagonistic muscles that balance each other out), are already
known and available in [10].

With this work, the Intrinsic Kinematic Null Space control
paradigm is defined and applied to control a supernumerary
robotic limb, more specifically, a wearable extra-finger. To
understand the potential effectiveness of this approach, the
reader should consider the several movements that can be
performed with the task to be accomplished being equal.
Indeed, given the complexity of the human body, having
redundancy while accomplishing a task is not an exception
since the human body has about 244 degrees of freedom
(thanks to 148 bones moved by 147 joints) [11]. Instead
of a model-based approach, we decided to pursue a data-
driven method. Implementing a one-size-fits-all approach by
identifying, calculating, and generalizing the null space of the
Jacobian matrix for every task does not adequately address the
specific constraints faced by people with disabilities. A more
tailored approach is necessary to account for individual needs
and abilities. To the best of our knowledge, this represents
the first attempt to investigate the feasibility and usability
of this novel control strategy for human-device interaction
(Figure 1).

II. INTRINSIC KINEMATIC NULL SPACE CONTROL

A. Definition

Considering the kinematic space of the whole human
body, the kinematic null space is defined by the set of joint
velocities that do not produce any hand (or foot) velocity in
the given configuration of the natural limb. Once the task to
be accomplished is identified, we distinguish between:

i) Extrinsic Kinematic Null Space (EKNS);
ii) Intrinsic Kinematic Null Space (IKNS).

The kinematic null space of joints which are not involved
in such a task belongs to the first category, whereas the
IKNS refers only to joints directly employed in the task. For
instance, grabbing a box with two hands directly involves
joints of shoulders, upper arms, forearms, and wrists, which
are all considered for the IKNS computation. The kinematic
null space of all the other joints (e.g., knees and ankles) is
the EKNS.

B. Identification

Ages, habits, and lifestyles strongly influence how people
interact with objects and surroundings, making individuals
prone to perform tasks differently. Hence, calculating a-priori
the kinematic intrinsic null space on the basis of existing
kinematic models would have signified discarding the inter-
individual variability, which instead is one of the strengths
of this approach. For this reason we developed a procedure
to identify the subjective kinematic intrinsic null space. Even
if the proposed methodology can be generalized to control
an arbitrary number of supernumerary robotic limb DoFs
in various tasks, in this work we focused on the case of a
single-arm task and we tested the effectiveness of the control
strategy for one DoF only.

Kinematic chain identification: The first step of the
procedure comes from the intrinsic kinematic null space
definition (see Section II-A). In other words, the kinematic
chain involved in the task at hand need to be a-priori identified,
and this can be done by considering some general knowledge
on the kinematic constraints of the human body.

For instance, considering a single-arm task, the hand
represents the end-effector, and consequently the joints of
shoulder, elbow, and wrist, and the associated links are the
significant chain for the IKNS computation. User’s arm joint
velocity vectors which do not contribute to change the hand
velocity are then considered as belonging to the IKNS.

Joints motion analysis: Once the task and the signif-
icant chain have been clearly defined, the user is asked to
perform the task, and its movements are recorded, analysed,
and reconstructed using a motion capture system to estimate
the joint values. Joint velocity vectors are considered as
belonging to the IKNS if their contribution to the end-effector
velocity is negligible for the particular application. In the
case of single-arm task, the hand speed is assumed null when
its norm is lower than 0.05m s−1. This threshold is defined
depending on the task.



(a) (b)

Fig. 2: From data collection to interpolation volume estimation
in a representative trial. In (a), the trajectory depicted by the
marker attached to the user’s right hand. In (b), data assigned
to clusters (depicted with grey spheres) and considered for
the PCA. The interpolation volume is depicted in light red.

Principal Component Analysis: To project the multi-
dimensional space of the IKNS in the extra DoFs space, the
acquired values are processed through Principal Component
Analysis (PCA) and reduced into a set of values of linearly
uncorrelated variables, i.e. the Principal Components (PCs).

To deal with the case of a single DoF, the normalized
weighted vector sum of the extracted principal components
that explain at least 80% of the total variation is taken as
direction for controlling the intended DoF and denoted with
Z ∈ R1×n, where n is the cardinality of the IKNS.

Workspace clustering: Since the IKNS varies at
different positions of the end-effector, in theory computing
the null space (and consequently the PCs) for each point in
the arm workspace should be necessary to have a complete
IKNS evaluation. This approach being not practicable and
time consuming, we eased the process computing the null
space base in any point of the user’s workspace starting from
its value in a limited and predefined set of points where
the user motions are recorded, referred to as ‘PCA points’.
The latter are chosen to cover the dexterous region of the
arm workspace and discard the boundaries, i.e. the region of
the reachable workspace where the mobility of the arm is
reduced. For instance, when the arm is fully extended, the
subject cannot move the arm arbitrarily without moving the
hand, thus acquiring data in such kinematic configuration is
useless.

Data captured in the PCA points are clustered using an
algorithm based on the k-means approach which implements
the following steps:

1) compute a minimal bounding box for the recorded data;
2) initialize the N centroids (i.e.,one for each PCA point)

on the surface of the bounding box;
3) for each data point x, compute the euclidean distance

D(x) between x and each centroid, and assign each
observation to the cluster with the closest centroid;

4) compute the new centroid locations as the average of
the observations in each cluster;

5) repeat steps (3) through (5) until cluster assignments re-
main unchanged, or the maximum number of iterations
is reached.

Once the clusters are obtained, data at a distance greater
than an appropriate threshold (evaluated and refined in

accordance with the task characterization) from the centroids
are discarded. Remaining data are used to compute and store
Z for each cluster, as well as minimum (m) and maximum
(M ) values of the user motion along Z for normalization
purposes. Z ∈ R1×n is the direction that projects the current
n-dimensional joint vector q into a monodimensional space.

In the considered case of a single-arm task, the IKNS
changes depending on the relative position of the hand with
respect to the chest. Hence, the null space computed when
the hand is near the chest is different from the one computed
when the arm is outstretched ahead.

Workspace interpolation: Finally, the PCs evaluated in
each PCA point are used to create an interpolation volume
and compute the IKNS-based control signal in any point of
the dexterous workspace, also in those points in which the
null space has not been recorded. Given the interpolation
volume, a 3D Delaunay triangulation-based natural neighbour
interpolation [12], [13] is used to reconstruct the proper
direction. Thanks to this method we can compute online and
seamless the direction associated to the current null space as
a smooth approximation of the directions Z of the nearest
clusters. Thus, the control signal c is calculated as:

c =
Ẑq− m̂

|M̂ − m̂|

where Ẑ ∈ R1×n is the interpolated direction that projects
the current n-dimensional joint vector q into the monodi-
mensional space of DoF, while m̂ and M̂ result from the
interpolation of m and M , and are used to normalize the
the control signal in the range from 0 to 1. Outside the
interpolation volume, Z, m and M of the nearest cluster are
taken to compute the value for controlling the DoF.

Figure 2 shows the steps from data collection to the
estimation of the interpolation volume. The trajectory of the
hand is in Figure 2a, while Figure 2b reports the identified
clusters highlighted with grey spheres, and the interpolation
volume highlighted with a light red solid. Data laying outside
the spheres have been discarded.

III. EXPERIMENTAL CAMPAIGN

We evalutated the IKNS control paradigm described above
with an experimental campaign. The aim was to prove that the
proposed methodology is a viable framework for controlling a
supernumerary robotic finger in an effective way, investigating
also the learning process of the users. Experiments were
conducted both in virtual and in real environments, and
designed to meet the final usage of the supernumerary robotic
finger in activities of daily living (ADLs): grasp objects by
opening/closing the device without moving the hand.

Each participant gave their written informed consent to
participate and was able to discontinue participation at any
time during the experiments. The experimental evaluation
protocols followed the declaration of Helsinki, and there
was no risk of harmful effects on participants’ health. Data
were recorded in conformity with the European General Data
Protection Regulation 2016/679, stored on local repositories
with anonymized identities (i.e., User1, User2), and used only



for the post processing evaluation procedure. Please note that
no sensible data were recorded.

Ten subjects were enrolled in the experimental campaign
(seven males and three females, from 22 to 57 years old,
mean 35± 4.5, all right-handed). None of them had previous
experiences in controlling wearable robots. Each subject
started the experimental session with a calibration procedure,
followed by two experiments with a resting period of more
than an hour between them. A training phase of five minutes
was provided at the beginning of each experiment to acquaint
the participants with the system.

Experiments were carried out in a room equipped with a
Vicon tracking system with ten Vicon Bonita cameras. The
subject was positioned at the centre of the room with retro-
reflective markers attached to different location of its upper
body to track arm joint values. Cameras were positioned at
the upper corners of the room (two per corner with different
orientations, for a total of eight cameras), and on the left and
right side of the subject, fixed to tripods placed on opposite
sides of the room. The body posture was reconstructed online
with a frame rate of 100Hz using Vicon Nexus Software
v3.10 (Vicon Motion Systems Ltd, UK).

A. Calibration

24 retro-reflective markers were attached to the subject
in accordance with the Oxford Upper Body Model [14]. To
calibrate the system, each participant was asked to stand
at the centre of the room for 5 s. A static acquisition and
anthropometric measurements were used to create each user’s
upper body skeleton model, consisting in 24 DoFs .

Thanks to the calibration procedure, the user’s skeleton
is automatically reconstructed and the kinematic model is
fitted online. This step enables the real time capturing of
joint angle values and body segments positions. To gain
awareness of the workspace, participants were asked to seat
and explore the arm workspace with the hand without moving
the torso. After one minute of free exploration, participants
were asked to visualize an imaginary parallelepiped covering
their arm workspace and were instructed to place the hand
in 10 points (8 in the proximity of the vertexes and 2 at the
centres of the upper and lower surfaces) and freely move the
arm for five seconds, holding the hand as steady as possible
(i.e., without changing position and orientation). They were
asked to explore the entire range of motion available in each
position, so as to record minimum and maximum reachable
values. The algorithm described in Section II-B selected
meaningful data and computed the Principal Components for
each of the ten points and the control signal in any point of
the working space, depending on the posture of the user.

B. Virtual Environment

The first experiment aimed at answering the following
research question: Is the generated control signal appropriate
for attaining a desired behaviour? We answered by evaluating
the user’s accuracy in a tracking task, i.e., in following a
predefined reference profile exploiting the proposed control
system. This kind of setup was thought to simulate the

execution of precise opening/closing movements of the
supernumerary robotic finger using the IKNS control.

Three desired trajectories for the control signal c (depicted
in Figure 3 and denoted with T1, T2, and T3 in what
follows) were pseudo-randomly generated. The user was
seated in front of a screen and was instructed to follow the
displayed predefined profiles. This had to be done by using
arm movements belonging to the IKNS to control the vertical
displacement of a circular red pointer, while the horizontal
displacement was updated at constant velocity. Control values
were normalized so as to range from 0 to 100. Each profile
was repeated three times, for a total of nine trials per each
subject. A time of five seconds was provided to reach the
starting condition (i.e., to align the position of the pointer
with the initial flat trend of the trajectory, see Figure 3), then
a pop-up window informed the user about the starting of the
experiment. During the trial, a red line joined the positions
already reached by the pointer and informed the user about
the progress. Each trajectory lasted 25 s, thus the total time
of each trial was 30 s.

For the sake of comparison, we asked each subject to repeat
the same experiment using a commercial gamepad (F310,
Logitech, CH), being this device a gold standard and hence
suitable as a control condition for interpreting the results.

Metrics of interest: We considered the performance
in following a desired profile as metric of success in
accomplishing the task. Similarly to [15], for each trial
we defined the Root Mean Square Error (RMSE) as

RMSEt =
√

1
N

∑N
i=1(yt,i − yi)2, where N is the number

of samples in a trial, yi is the actual control value, and yt,i
is the corresponding target value. Notice that the tracking
RMSE is a suitable metric to evaluate the rapidity and the
accuracy of the robot motions [16]. This is due to the fact that
the RMSE increases both if users are slow in adapting the
control variable and if they miss the targets. In other words,
human control has to be simultaneously fast and accurate to
yield a low RMSE.

Results: Outcomes show a small RMSE in performing
the experiment using the IKNS control. The mean error among
the participants was 3.35±0.83, 5.43±0.92, and 4.50±1.54
for T1, T2, and T3, respectively. In all cases it was lower
than 5.5, which represents the 5.5% of the maximum control
value as the control signal ranges from 0 to 100. These
values are comparable with those obtained using the gamepad,
i.e. 4.13± 0.76 for T1, 4.98± 1.33 for T2, and 4.15± 1.10
for T3. In Figure 3 we report a representative trial (upper
panel) and the mean RMSE among participants (lower panel)
for each trajectory.

A statistical analysis was conducted to compare results
obtained with the two control paradigms. A paired-samples t-
test revealed that there is no statistically significant difference
between the mean RMSEs recorded with the IKNS control
and those recorded with the gamepad control (p = 0.979,
p > 0.05, t(29) = 0.27). No outliers were detected and the
assumption of normality was not violated, as assessed by
Shapiro-Wilk’s test (p = 0.352, p > 0.05).

The fact that there were no statistically significant differ-
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Fig. 3: Results of the experiment conducted in virtual environment. Upper panels: desired trajectories (blue line) together
with the trajectory of the pointer controlled by the user in a representative trial (red line). Lower panels: mean absolute error
(expressed as percentage of Maximum Control Value) computed among all the participants for each desired trajectory. It is
worth noticing that the average absolute error among all the trials is lower than 4.5 for a control value ranging from 0 to
100. Lower panels make evident that the absolute error is lower than 4 when the desired profile is smoothly changing, while
reaches greater values when the user is requested to follow rapid changes.

ences between the two control techniques suggests that the
IKNS control is intuitive enough to allow users to exploit it
with good skills from the first approach, with performance
comparable to those obtained with the most widespread and
used controller. In addition, a careful examination of the lower
panels of Figure 3 makes evident that the absolute error is
lower than 4 when the desired profile is smoothly changing,
while reaches greater values when the user is requested to
follow rapid changes of the path. With both the control
strategies, the highest error derives from the second trajectory
(Figure 3b), which requires the user to rapidly modify the
control value moving from 90 to about 30 in less than 3
seconds. Conversely, the first trajectory (Figure 3a) requires
the user to perform slower movements, and the resulting mean
error for the IKNS control is less than 8 for each participant.

C. Real Environment

On the basis of the promising results obtained in the
previous experiment, we proceeded to evaluate the effec-
tiveness of our system in a real scenario. More in detail, the
second experiment aimed at tackling the following research
question: Is the proposed approach suitable to accomplish
common activities of daily living? To answer, we asked
users to perform a pick-and-place task with multiple objects
and different target locations. Users wore the supernumerary
robotic finger on the right forearm, mimicking a post-stroke
hemiparesis, and controlled the opening/closing actuation
with the same arm using the IKNS control strategy. The
supernumerary robotic finger utilised for the experiment is

(a) (b)

(c) (d)

Fig. 4: Real Environment Experiment. Subjects were asked
to pick (a), lift (b), place (c), and release (d) all the objects
correctly, being as fast as possible and using only their right
(impaired) arm.

a modified version of the one presented in [17]. It is worth
noticing that, to demonstrate the capability of the proposed
approach, the degree of actuation of the wearable device was
controlled in continuous manner, and the range of the IKNS
control signal was mapped into the finger range of motion.

Subjects were seated in front of a table and asked to pick
and place 10 objects taken from the YCB benchmark set



Code Object Weight [g] Dimensions
[mm]

A Rubik’s Cube 84 60 x 60 x 60

B Soft Ball 191 96

C Chips Can 205 75 x 250

D Tomato Soup
Can 349 66 x 101

E Cups 1 14 60 x 62

F Cups 2 21 75 x 68

G Cups 3 28 85 x 72

H Cups 4 35 95 x 76

I Apple 68 75

L Wine glass 133 89 x 137

M Potted Meat Can 370 50 x 97 x 82

TABLE I: Details on the objects used for the Real Environ-
ment Experiment. Objects are taken from the YCB benchmark
set [18].

[18]. Details on the objects are reported in Table I. Objects
were positioned on the table one at a time and each object
was identified with an alphabetical code. The starting and
target locations for the objects were marked on the table,
with predefined positions: start positions were represented
with a green square, whereas the goal positions were marked
with a red circle. All the participants performed the same
pick-and-place tasks. Participants were instructed to pick, lift,
and place in the correct position as fast as possible each
object, using only the right arm. Each pick-and-place task
was considered successfully accomplished if the object was
not dropped during the task execution and the elapsed time
for the single pick-and-place task did not exceed 20 s. A
depiction of the scenarios is in Figure 4.

For the sake of comparison, we asked each subject to
repeat the experiment using the supernumerary robotic finger
controlled with a ring embedding a push button switch
for opening/closing worn on the hand not involved in the
task. This controller was chosen because it was considered
the fastest and easiest control technique for operating the
supernumerary robotic finger.

Metrics of interest: Time to accomplish the task and
number of successes and failures were considered as metrics
for evaluating the performance of the participants.

Results: As a first result, users took on average
8.94±3.26 s to accomplish the pick-and-place task when
exploited the IKNS control (there were 12 failed attempts
out of 100 trials which are not considered in the average
accomplish time), while they needed on average 6.34±0.71
s when they executed the task with the ring, regardless of
the particular object. As expected, elapsed times in the latter
case are lower for all the users and for all the objects. The
reason why this is not a surprising result is that people
are generally familiar with controlling robotic devices using
buttons. Moreover, the small standard deviation among the
trials further highlights the predisposition of users in using

this interface and confirms its effectiveness for comparison
purposes. Differently, the IKNS strategy presents larger
standard deviations. We interpreted this aspect as an indication
of the fact that users need more time and more practice to
gain further confidence and acquaintance with the system in
real scenarios. Finally, it is worth noticing that the higher
number of failures (4 failures out of 10 trials) was observed
with object I (i.e., the apple), and it was reasonably due to
the particular shape of the object. All the other objects have
at most one failure.

To reinforce our hypothesis, we conducted a statistical
analysis on the data. Times needed for moving each object
with the ring and with the IKNS control were compared.
Trials in which users failed were removed and not considered
in the analysis. Data were neither normally distributed, nor
symmetrical with respect to the median. Thus an exact
sign test was used to compare the performance differences
among the two trials. Outcomes of the test confirmed that
performing the trials using the IKNS elicited a statistically
significant median increase in time (1.44 s) compared to the
ring modality, p < 0.01.

IV. CONCLUSIONS AND FUTURE WORK

This study presented a new approach for controlling SRLs
exploiting the redundancy of the human body. This kind
of control takes advantage of movements in the Intrinsic
Kinematic Null Space to enable the user to control su-
pernumerary robotic limbs using the natural limb already
involved in the task. Although IKNS control can be adopted
to cooperate with SRLs in numerous scenarios (e.g. surgical
interventions, handling of loads, etc.), its potential becomes
even more evident in the case of users with disabilities, as
it overcomes the compromise which is often implicit in the
standard non-autonomous control: patients can recover part
of their lost functionalities with SRLs, but the dexterity of
their unimpaired limbs is reduced by the need to control the
wearable robots.

To provide an evaluation of the IKNS control, firstly we
tested the framework in a virtual environment assessing the
user capability of obtaining a desired control signal. Given the
promising results, we asked subjects to test the IKNS control
using a supernumerary robotic finger in the real environment
in a representative ADLs task (such as picking, moving, and
placing real objects).

Results of the experimental campaign demonstrated that
the proposed control strategy is suitable for controlling
an additional DoF. Indeed, subjects showed good skills
in cooperating with the supernumerary robotic finger in a
relatively short time and little practice.

Future research directions include quantifying how fast
users control capabilities improves with practice, as well as
expanding the IKNS approach to govern a larger number of
degrees of freedom.
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