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Simple Summary: The prognosis of advanced gastric cancer patients remains unfavorable. Molecu-
lar heterogeneity has proven to be a major determinant of clinical outcomes. We characterized the
transcriptome of the two major subgroups by highlighting the different biological and molecular
pathways. We explored their association with clinicopathological features and survival. This com-
parative study aimed to define a reproducible in silico analysis so that the molecular mechanisms
underlying carcinogenesis, disease natural history and the identification of new therapeutic targets
can be traced.

Abstract: Gastric cancer (GC) molecular heterogeneity represents a major determinant for clinical
outcomes, and although new molecular classifications have been introduced, they are not easy to
translate from bench to bedside. We explored the data from GC public databases by performing
differential gene expression analysis (DEGs) and gene network reconstruction to identify master
regulators (MRs), as well as a gene set analysis (GSA) to reveal their biological features. Moreover,
we evaluated the association of MRs with clinicopathological parameters. According to the GSA, the
Diffuse group was characterized by an epithelial-mesenchymal transition (EMT) and inflammatory
response, while the Intestinal group was associated with a cell cycle and drug resistance pathways.
In particular, the regulons of Diffuse MRs, such as Vgll3 and Ciita, overlapped with the EMT and
interferon-gamma response, while the regulons Top2a and Foxm1 were shared with the cell cycle
pathways in the Intestinal group. We also found a strict association between MR activity and several
clinicopathological features, such as survival. Our approach led to the identification of genes and
pathways differentially regulated in the Intestinal and Diffuse GC histotypes, highlighting biologically
interesting MRs and subnetworks associated with clinical features and prognosis, suggesting putative
actionable candidates.

Keywords: gastric cancer; molecular classification; prognostic biomarkers; master regulator; gene
expression profile

1. Introduction

Gastric cancer (GC) was responsible for 769,000 deaths in 2020, ranked sixth for in-
cidence and third for mortality [1]. Although treatment approaches have improved, the
prognosis of advanced GC patients remains unfavorable, with a 5-year survival rate of
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less than 5% [2]. GC is characterized by both intra- and inter-tumoral heterogeneity [3];
thus, several classification systems have aimed to categorize different subtypes from a
morphological point of view. Among them, the Lauren classification is the most widely
used, and it separates GCs into Intestinal, Diffuse and mixed subtypes [4]. Additionally, a
classification from the World Health Organization (WHO) [5] has been recently updated
with a more systematic approach to stratifying GC into five main histological subtypes: the
Intestinal subtypes from the Lauren classification (tubular, papillary and mucinous) and
Lauren’s Diffuse types (poorly cohesive, signet ring cells and mucinous). WHO classifica-
tion also includes mixed carcinoma and other less frequent gastric tumors. Nonetheless,
categorization into a few macro-groups is burdened by excessive internal heterogeneity,
resulting in conflicting evidence based on histopathological phenotypes for predicting
patient prognosis or response to therapy. Additionally, the GC diversity also hinders the
identification of prognostic markers from a molecular point of view (e.g., p53 or E-cadherin).
Next-generation sequencing contributes to the establishment of new molecular classifica-
tions of gastric cancer, focusing on biological characteristics. The Cancer Genome Atlas
(TCGA) identified four genomic gastric cancer subtypes: Epstein-Barr virus-associated
(EBV), microsatellite instable (MSI), genomically stable (GS) and chromosomal instability
(CIN) groups [6]. On the other hand, the Asian Cancer Research Group (ACRG) focused
on gene expression profiles and classified gastric cancer into four subtypes with distinct
clinical outcomes: microsatellite stable (MSS), epithelial-mesenchymal transition (EMT),
MSI, MSS/p53 active and MSS/p53 inactive. This approach opens new possibilities to treat
the disease in a tailored way [7]. Although, in recent years, many research efforts have proven
that distinct molecular groups showed peculiar clinicopathological as well as prognostic
characteristics [8–15], the integrative analysis of multiple genomic and proteomic datasets
still remains expensive and quite complicated to translate into the clinical setting [16,17].
In this view, since histological assessment remains a cheap and widespread method, it
would be of immense interest to thoroughly research the molecular differences between
the Intestinal and Diffuse subtypes and the underlying gene networks responsible for the
different biological behaviors. To the best of our knowledge, few studies have focused on
the characterization of molecular differences within Lauren’s classification [18,19], and a
reconstruction of the signaling networks differentially active between subtypes is lacking.
Therefore, we more deeply investigated the associations of Lauren’s histotypes with clinico-
pathological features, searching for differentially expressed gene lists accordingly weighted.
Additionally, we traced the transcriptional subnetworks characterizing the Intestinal and
Diffuse subtypes and explored their associations with clinicopathological features and sur-
vival. This comparative study aimed to define a reproducible analysis so that the molecular
mechanisms underlying carcinogenesis, disease behavior and the identification of new
therapeutic targets can be traced.

2. Materials and Methods
2.1. Data Collection

TGCA (https://www.cancer.gov/tcga (accessed on 15 June 2021)) and the Genotype-
Tissue Expression (GTEx) project (https://www.gtexportal.org/home/ (accessed on 15
June 2021)) are repositories, collected with high throughput, of clinical data of many tumors
and normal tissues from many organs. Although unifying cancer and normal RNA sequenc-
ing data from diverse sources represents a bioinformatics challenge, TCGA and GTEx RNA-
seq data were successfully merged by Wang et al. enabling cross-study analysis of RNA-
sequencing data [20]. From the UCSC Xena browser (https://xenabrowser.net/datapages/
(accessed on 15 June 2021)), we retrieved the dataset (TCGA TARGET GTEx transcript
expression by RSEM using UCSC TOIL RNA-seq recompute), clinical data and gene annota-
tions. After crossing the RNA-seq dataset and clinical data, we obtained the data of 380 gastric
cancer RNA-seqs, 32 adjacent normal (non-diseased) tissues and 112 normal samples. All
the information about TCGA samples’ clinical data, pathology reports and tissues were eas-
ily retrievable by the cBioPortal (https://www.cbioportal.org/ (accessed on 15 June 2021))

https://www.cancer.gov/tcga
https://www.gtexportal.org/home/
https://xenabrowser.net/datapages/
https://www.cbioportal.org/
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website, while the “GTEx Tissue Harvesting Work Instruction” provided all the available
information about the GTEx tissues. From the GEO repository [21], we retrieved the ACRG
(GSE62254) [7] and GSE15459 [22] datasets containing 300 and 200 GCs, respectively.

2.2. Patient Selection and Study Design

This study included GC patients who underwent upfront gastrectomy for a malig-
nant disease nbetweem January 2014 and March 2019 and were collected in the TGCA
dataset. The GSE62254 dataset included n = 300 primary independent GC specimens at
the time of the total or subtotal gastrectomy at Samsung Medical Centre, Seoul, South
Korea, from 2004–2007 (all the tissue specimens were in a chemo-naïve state during the
primary resection of gastric cancer). Case selection criteria were histologically confirmed
adenocarcinoma of the stomach, surgical resectioning of primary GC, age ≥18 years and
complete pathological, surgical, treatment and follow-up data. Patients in the GSE15459
dataset from the National Cancer Centre in Singapore had a median follow-up period of
13.47 months, and 91 patients died by the end of the study period. Histopathological data
are provided in Ooi CH et al. [22].

2.3. Data Processing

RNA-seq and clinical data of the GTEx and TCGA databases were used to investigate
transcriptomic profiles of the GC and normal gastric tissue, as performed by Russi et al. [23].
The previous histological categorizations were:

• Signet-Ring Cells (SRC),
• Diffuse (poorly cohesive, not SRC)
• Intestinal mucinous,
• Intestinal papillary,
• Intestinal tubular,
• Intestinal not otherwise specified (iNOS),
• Stomach not otherwise specified (sNOS).

Initially, the sNOS and SRC samples were filtered out due to the missing histology
and unclear different behaviors [24], respectively. From now on, we refer to the poorly
cohesive without SRCs as “Diffuse” (n = 62). On the other hand, Intestinal samples behave
in a heterogeneous way, considering the association with clinical features and the survival
results. We filtered out the papillary samples due to their scarcity (n = 7). Moreover, by
performing a differential expression analysis (p-value < 0.05 and |FC > 1.5|), we included,
in the “Intestinal” category, the tubular samples, representing most of the Intestinal adeno-
carcinomas [25], together with the iNOS or mucinous samples. Interestingly, compared
with the tubular samples, mucinous samples showed 2828 DEGs while iNOS showed
only 511. This result, together with the differences in survival and clinicopathological
features (Supplementary Materials Figures S1–S6), suggested the exclusion of the mucinous
samples from the Intestinal subgroup and further investigation of the possibility of retaining
the iNOS. In this way, after differential gene expression analysis (adjusted p-value < 0.05
and |FC| > 1.5) between the Diffuse and the union of the Intestinal (tubular and iNOS)
samples, we created a Venn diagram (in Supplementary Materials Figure S7). The 6827
DEGs, resulting from the comparison between the Diffuse vs. Intestinal (merged), showed
great overlap with the Diffuse vs. tubular (88%) and the Diffuse vs. iNOS genes (80%). From
now on, we refer to the tubular and iNOS as “Intestinal” (n = 140). Our final categorization,
based on molecularly homogeneous histological types, was:

• Diffuse (poorly cohesive, not SRC),
• Intestinal (tubular and iNOS).

The rationale of the study is summarized through a schematic workflow in Supple-
mentary Materials Figure S8.
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2.4. Statistical Analysis
2.4.1. Association with Clinical Features and Survival Analyses

We evaluated, with chi-square test, the association of the selected clinical variables
and the histological type. We depicted the significant association with correlation plots.
Moreover, by multivariate Cox proportional hazards analysis, we calculated the overall
survival (OS), the disease-specific survival (DSS), the disease-free survival (DFS) and the
progression-free interval (PFI) associated with the above clinical features. We applied the
Akaike information criterion (AIC) based on a stepwise procedure to obtain the best candi-
date for the final Cox proportional hazards models, which were depicted as forest plots.

2.4.2. Differential Expression Analysis and Venn

The regression-like model implemented by the edgeR [26] was used to perform dif-
ferential expression analysis on RNA-seq data, while the limma implementation was used
for the microarray data. According to the clinical data, we selected 62, 135 and 75 Diffuse
samples and 140, 146 and 99 Intestinal samples from the TCGA, ACRG and GSE15459
datasets to perform a differential expression analysis. According to the explorative analysis,
the pathologic stage and N feature of the TNM staging system were used as blocking factors
in the TCGA data generalized linear modeling. A gene was considered as differentially
expressed (DEG) if (1) corrected (FDR) p-value < 0.05 and (2) expression change > |1.5|-fold
(log2FC > |0.58|).

2.4.3. Gene-Set Enrichment Analyses and Master Regulator Analyses (MRA)

The overrepresentation of the Molecular Signatures Database’s (MSigDB) [27] hall-
mark (HM), gene ontology (GO), KEGG pathways, motifs, miRNA targets, chromosome
position and immune system gene sets for each DEG list was obtained by applying the
ClusterProfiler [28]. We considered statistically significant the gene sets resulting from
the analysis of the TCGA data with an FDR adjusted p-value < 0.05. We retrieved, from
the aracne.networks [29], the AP-ARACNE [30] inferred networks for the TCGA-STAD
database. There are 6054 inferred subnetworks called regulons, which have HUB tran-
scription regulators (TFs, co-TFs, etc.) called master regulators (MRs). Exploiting the mra
function implemented in the corto [31], we scored the enrichment of each candidate MR
in subgroups and samples according to the logcpm (logarithmic counts per million) of the
genes in the dataset. The enrichment score (ES) reflected the degree to which a regulon
was overrepresented at the top or bottom of a ranked list of genes. The higher the ES, the
more active the subnetwork associated with the candidate MR. Moreover, to highlight the
biological function of the MR’s regulon, we evaluated its overlap with the enriched gene
sets. A hypergeometric test was performed to identify the significant overlaps. Statisti-
cal analysis was performed using the computing environment R (R Core Team, Vienna,
Austria) [32].

2.4.4. Single Sample Gene Set Enrichment Analysis (ssGSEA) and Single Sample Master
Regulator Analysis (ssMRA)

To better describe the heterogeneity of the two groups, we performed both ssGSEA
and ssMRA to obtain the activation or deactivation normalized enriched score (NES) for
each gene set or each MR’s inferred small subnetwork (regulon) in each sample.

2.4.5. Association of MRs with Clinical and Survival Features

We evaluated, by linear modeling, the association of the selected clinical variables and
each MR’s profile obtained by ssMRA. We depicted selected interesting associations with a
ggplot2 [33]. Moreover, we described by univariate Cox analysis the overall, disease-specific,
disease-free and progression-free survival associated with the MRs’ NES. Selected results
are depicted as forest plots.
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3. Results
3.1. In Silico-Refined Histological Subtypes Have Similar Clinicopathological Characteristics

A multivariate analysis was performed to evaluate the association of several clinico-
pathological features with the two histological subgroups. A total of 380 GC patients were
eligible for our study: 62 were categorized as Diffuse, 12 as signet, 139 as stomach NOS,
17 as Intestinal mucinous, 7 as Intestinal papillary, 71 as Intestinal tubular, 69 as Intestinal
NOS and 3 with no clinicopathological annotation. The patient characteristics and clinico-
pathological data are in Supplementary Materials Table S1. The man-to-woman ratio was
2/1. Around 60% were proximal while 40% were distal; 43% of tumors were the Intestinal
type, and >50% were pathological stage ≥III. An association of the histological groups
described above resulted in the pathologic stage, lymph nodes ratio (Figure S1), and with a
primary therapy outcome (χ2 p-value < 0.01). Via multivariate Cox proportional hazards
analysis, we investigated the association of clinical features with the overall survival (OS),
disease-specific survival (DSS), disease-free survival (DFS) and progression-free interval
(PFI). The best-fit model according to Akaike Information Criterion (AIC) for the over-
all survival comprises the histology and pathologic stage (global p-value = 1.3 × 10−06),
while histology, pathologic stage and microsatellite status best model the DSS (global
p-value = 1.4 × 10−06). Forest plots of the stepwise selected models are depicted in Sup-
plementary Materials Figures S2–S5. According to the data processing paragraph, a total
of 202 patients were clearly identified: 62 were categorized as Diffuse and 140 as Intestinal
(including 71 tubular histotypes). The association profiles of the new Intestinal (Figure S6)
and old Intestinal tubular and iNOS (Supplementary Materials Figure S1) with lymph nodes
ratio and pathologic stage were clearly overlapping; thus, supporting our choice of merging
the latter. The patients’ characteristics and clinical data for each new histological group are
represented in Table 1.
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Table 1. Patient characteristics and clinicopathological data.

Characteristics
Histological Type

Diffuse (n = 62) Intestinal (n = 140)

Age (years, median with
range) 61.5 (53–70) 67 (58–72)

Woman 27 (44%) 47 (34%)
Gender Man 35 (56%) 93 (66%)

Anatomic

Antrum Distal 31 (51%) 50 (37%)
Cardia Proximal 5 (8%) 18 (13%)

Fundus Body 22 (36%) 55 (40%)
Gastroesophageal Junction 3 (4.8%) 13 (10%)

Missing 1 4
Distal 31 (53%) 50 (41%)

Proximal 27 (47%) 73 (59%)
Anatomic JGCA

(Japanese Gastric Cancer
Association) Missing 4 17

Pathologic stage

I 5 (8%) 21 (15%)
II 18 (31%) 25 (18%)
III 31 (53%) 70 (52%)
IV 5 (8%) 21 (15%)

Missing 3 3
T1 0 (0%) 10 (7%)
T2 16 (26%) 28 (20%)
T3 23 (37%) 64 (46%)
T4 23 (37%) 38 (27%)

Pathologic T

Missing 0 33

Pathologic N

N0 13 (21%) 33 (24%)
N1 18 (29%) 34 (25%)
N2 15 (24%) 42 (31%)
N3 16 (26%) 27 (20%)

Missing 0 4
M0 54 (90%) 125 (91%)
M1 6 (10%) 12 (9%)Pathologic M

Missing 2 3

Microsatellite
status

MSS 46 (74%) 90 (64%)
MSI.L 7 (11%) 24 (17%)
MSI.H 9 (15%) 26 (19%)

Missing 0 0
Complete
Response 31 (55%) 74 (63%)

Partial Response 1 (2%) 3 (3%)
Stable Disease 7 (12%) 11 (9%)

Progression
Disease 17 (30%) 29 (25%)

Primary therapy
outcome success

Missing 6 23
NOS: not otherwise specified; JCGA: Japanese gastric cancer association; MSS: microsatellite stable; MSI.L:
microsatellite instable low; MSI.H: microsatellite instable high; CR: complete response; PR: partial response; SD:
stable disease; PD: progressive disease. Percentages, given as histology, are among each characteristic without the
missing samples.

Almost 70% of tumors were the Intestinal type. The man-to-woman ratio was 2:1
in the Intestinal and about 1:1 in the Diffuse GC. About 60% of the Intestinal GC were
proximal, whereas GC localization was quite similar between the two sites in the Diffuse
GC. Pathological stage ≥ III represented over 60% for both histological types.

Overall, there was no significant association between the histological (Diffuse and
Intestinal) types and clinical data according to the χ2 test as well as with survival. Therefore,
no other variables influenced the downstream analyses which focused on the molecular
and functional characterization of GC subtypes.

3.2. Functional Enrichment Highlighted a Different Biological Behavior for the Two
Histological Subtypes

We performed several hierarchical steps of differential gene expression and functional
enrichment analyses to evaluate the biological differences between the two GC histological
subgroups and pinpoint respective candidate biomarkers. We first defined the differentially
expressed genes between the GC (both Diffuse and Intestinal samples) and the normal
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mucosa samples (adjusted p-value <0.05 and |FC| > 1.5) by obtaining 12,106 upregulated
and 5562 downregulated genes. We subsequently defined 4076 upregulated genes in the
Diffuse vs. Intestinal samples and 2751 upregulated genes in the Intestinal vs. Diffuse samples.
Finally, after the intersection between the GC upregulated and Diffuse or Intestinal upreg-
ulated genes, according to the Venn diagram in Figure 1A, we defined 1659 upregulated
genes in both GC vs. normal mucosa and Diffuse vs. Intestinal samples as a Diffuse signature.
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Figure 1. (A) Venn diagram showing the intersection among the genes differentially upregulated
in Diffuse or Intestinal samples and in GC (tumor) samples from TGCA, STAD or normal ones from
GTEx datasets, respectively. The number of genes in bold indicates distinctive Diffuse tumors and
Intestinal tumors as compared with normal tissues. (B,C) Bar plot of hallmark categories enriched
with upregulated genes in the Diffuse or Intestinal subtypes. N is the number of samples.

Similarly, we defined as an Intestinal signature 1839 upregulated genes in both GC
vs. healthy mucosa and in the Intestinal vs. Diffuse samples (Supplementary Materials
File S1). Among the upregulated genes in GC vs. healthy mucosa (normal), around 25% are
subtype-specific, defining two refined lists of GC histology-related candidate biomarkers.
Interestingly, as suggested by the literature, ERBB2 results were strongly upregulated in
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Intestinal GC and CDH1 downregulated in the Diffuse type. To capture the relationships
among the DEGs and gain biological insight into the global gene expression patterns that
differentiate the Diffuse from Intestinal GC specimens, we performed a gene set analysis
(GSA) using the mSigDB gene sets comprising, among others, hallmark and GO gene sets.
The GSA results (adjusted p-value < 0.05) are reported in Table 2.

Table 2. Summary of the significantly enriched gene sets in Diffuse and Intestinal GC samples.

Diffuse Intestinal

N. Out of TOT % N. Out of TOT %

Hallmarks 12/50 24% 6/50 12%
GOs 775/10,192 7.6% 184/10,192 1.8%
Pathways 926/5529 16.7% 257/5529 4.6%
Chromosome positions 6/299 2% 9/299 3%
Motifs/miRNAs 550/3735 14.7% 6/3735 0.16%
Immunologic signature 958/4872 19.6% 79/4872 1.6%

Diffuse tumors appeared to enrich a higher number of gene sets for all categories
except for the positional one. Hallmark categories related to the epithelia-mesenchymal
transition (EMT) and cellular cycle defined a clear biological difference between the two GC
subtypes (Figure 1B,C). On the other hand, in the Intestinal tumors, we found enriched gene
sets associated with cell cycle regulation, division and proliferation. Indeed, as recently
reviewed, E2F’s transcription factor is a critical regulator of genes essential for cell cycle
progression and control of cell proliferation [34]. Overall, evaluating the hallmarks and
other ontologies, the Diffuse subtype seemed to be mainly characterized by an invasive
phenotype, whereas the Intestinal subtype showed a proliferative one [35]. Moreover, the
other gene sets (GO and pathways) depicted some remarkable differences between Diffuse
and Intestinal GC, falling into the same biological features of the enriched hallmarks (Sup-
plementary Materials Files S2 and S3). Among the top enriched pathways in the Diffuse
type of GC, we found a signature related to multi-cancer invasiveness and extracellular
matrix organization. Finally, we found some active pathways involved in immune system
cell regulation as well as GOs relative to immune cell regulation and extracellular matrix
organization (Supplementary Materials File S2). The pathways characterizing the Intestinal
GC, in addition to other cancer-related pathways, were involved in cell cycle regulation
and response to growth factors and hormones (EGFR, estradiol, progesterone). Indeed,
the high endogenous estrogen exposure in women was indicated to be a protective factor,
which explains the higher incidence of Intestinal GC in men [36]. Regarding GOs, peculiar
for the Intestinal type of GC were those involved in cell division, chromosome segregation
and embryo development, delineating a different biology for this GC histological type
(Supplementary Materials File S3). Overall, based on DEGs and functional enrichment
through GSA, we highlighted two distinct biological phenotypes. An invasive behavior
is characterized by the upregulation of EMT-related genes in the Diffuse type, and a pro-
liferative behavior is characterized by the upregulation of cell cycle-related genes in the
Intestinal type.

3.3. Gene Regulatory Networks Highlights Different Putative Hub Genes

We aimed to focus on MRs eligible for pathway-targeting therapy. First, we pictured
the gene interdependence and exploited the inferred GC gene regulatory network. Accord-
ing to Carro M.S. and Chen J.C. [37,38], we obtained a set of putative MRs, each activating or
repressing its inferred small subnetwork known as a regulon. In Figure 2A,B, as an example,
we reported the top five MRs in Diffuse and Intestinal GCs. A complete MR list is reported in
Supplementary Materials File S4.
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Figure 2. (A,B) Intestinal and Diffuse top master regulators. Each network is indicated by its MR.
The genes in each network are shown in a barcode-like diagram showing all transcriptome genes
from most downregulated (left) to most upregulated (right). Positively (red) and negatively (blue)
correlated targets are overlaid on the differential expression signature as bars of different colors.
Normalized enrichment score (NESes) and p-values are also indicated. To the right, the twelve
highest-likelihood network putative targets of each MR are shown in red if upregulated or in blue
if downregulated and with a pointed arrow if predicted to be activated by the centroid protein or
with a blunt arrow if predicted to be repressed. (C,D) Heatmaps of the biological characterization of
the top MRs in Diffuse and Intestinal subgroups. The intensity of the red color is proportional to the
overlap between the genes in the regulon of the MR and the ones in the hallmark gene set.

Out of the 3608 significant MRs (p-value <0.01), 2058 were active in Diffuse GC while
1550 were active in Intestinal GC. Beyond the statistical significance of MRs, we focused
our study on those that were likely relevant to cancer biology features by overlapping
each MR’s regulon with significantly enriched gene sets from the GSA analysis. In this
way, we aimed to give a biological characterization of the data-driven regulons which were
significantly overrepresented by MR analysis. Hallmark gene sets, more than the others,
immediately summarized and suggested specific well-defined biological states; thus, we
focused on MRs overlapping with them (Figure 2C,D). Overlaps with the other gene set
collections are reported in Supplementary Materials Figures S9–S18. Among those with
the highest enrichment score, the regulon VGLL3, an unfavorable prognostic marker in
GC [39], resulted in the highest association with EMT (Figure 2C) in Diffuse GCs as well as
with the invasiveness signature resulting from the interactions between cancer cells and
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the microenvironment (Supplementary Materials Figure S10). We also found a significant
overlap between the HLF’s targets and the VGLL3 regulon (Supplementary Materials
Figure S11). In line with the hallmarks, VGLL3, INHBA and PRRX1, Diffuse GC regulons
intersected with GOs relative to collagen synthesis and extracellular matrix organization.
This biological phenotype seemed to be also regulated by miRNAs. Indeed, among the
significantly enriched motifs overlapping with VGLL3, INHBA and PRRX1 regulons, we
found MIR5682, MIR29A_3P and MIR29B_3P/MIR29C_3P ones (Supplementary Materi-
als Figure S11). These miRNAs shared 174 target genes, which were mainly involved in
extracellular matrix organization. Three MRs, namely CD86, CIITA and IL-16, seemed to
characterize an immune signature of the Diffuse GC subtype considering the overlap with
IFN-γ, KRAS, inflammatory response and allograft rejection (Figure 2C). Moreover, the
invasive biology of the Diffuse type of GC could also be explained by the association of
CD86, CIITA and IL-16 MR activity with the enrichment of IL6, JAK and STAT3 signaling.
The overlap between the three MRs and the chr1q23 and chr7q34 cytogenetic bands (Supple-
mentary Materials Figure S9), where localized genes are involved in lymphocyte activation
and antigen presentation to T cells (CD84, CD48, CD1C) and gene coding for several T cell
receptor variable regions, seemed to define an activation of the T cell-mediated response.
In addition, CD86, IL16 and CIITA regulons intersected with several GO gene sets (Supple-
mentary Materials Figure S12) confirming their role in T cell activity regulation and IFN-γ
production. Finally, the CIITA regulon was significantly associated with MAML1 and ETS
target genes (Supplementary Materials Figure S11), which were involved in the regulation
of differentiation, survival and proliferation of lymphoid cells, even with the expression
of cytokines and chemokines. On the contrary, in Intestinal GC, the regulons of the active
MRs, FOXM1 and TOP2A, resulted in strongly associated hallmark and GO, relative to the
mitotic spindle assembly, G2/M checkpoint and E2F gene sets (Figure 2D) together with
Kang doxorubicin resistance and the Farmer breast cancer cluster 2 (proliferation and 8q
amplicon genes) gene set, respectively (Supplementary Materials Figure S15). The HNF1
transcription factor gene set appeared enriched in Intestinal GC (Supplementary Materials
Figure S16) while, beyond the 8q24 band (as expected from enriched the Farmer breast
cancer cluster 2), the chrXq28 band resulted in significant association between the regulons
of the SSX1, SSX4 and SOLHLH1 MRs, which are involved in stem cell maintenance and
are indicated as cancer and testis antigens (Supplementary Materials Figure S14). By high-
lighting the biologically relevant gene networks active in the two histological types of GC,
a distinct cancer cell phenotype was confirmed for Diffuse and Intestinal GCs. Moreover,
several putative target genes that may modify the aberrant cell phenotype clearly emerged.

3.4. The Association of MRs Activity with Clinical Variables or Prognosis Confirms the Relevance
of Underlying Molecular Profile

Although the two histological subgroups investigated here are widely recognized in
clinical practice, their consistency is weakened by molecular and clinical heterogeneity. We
aimed to highlight the more homogeneous subnetworks for each subtype and pinpoint
subnetworks related to patient outcomes and tumor features, even if not related to the
histological division. Accordingly, we highlighted some interesting MR examples. We per-
formed an ssGSEA and obtained the grade of activation or deactivation (NES) for each
gene set in each sample by identifying those MRs capable of influencing patient outcomes
and GC natural history. The heatmap in Supplementary Materials Figure S19 depicts the
profile of the top five MRs in Diffuse and Intestinal GCs for each sample. Thanks to this
analysis, we can pinpoint the MRs that more homogeneously associate with the Diffuse
or Intestinal groups or molecularly identify different samples, which may be candidates
for a different classification or treatment strategy. To characterize the activity of each MR,
we investigated, with a linear model, the association between histological and molecular
characteristics. Meaningful results (F-test p-value < 0.05) are reported in Supplementary
Materials File S5. As proof of concept, we explored some interesting results given to the
community in a useful dataset to generate hypotheses. The MLH1 NES strongly associated
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with the microsatellite status in both Diffuse and Intestinal GC samples as depicted in
Figure 3A, being a factor independent from histology.
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Differences between the two subgroups can also be appreciated, as is the case of MR
DHCR24 in Figure 3B, which was significantly associated with microsatellite status in the
Diffuse but not Intestinal samples. Moreover, in Figure 3C, we can appreciate the case of the
MR TRIM24 as very differently active in Intestinal vs. Diffuse GC only in the MSS samples.
These examples showed the possibility of exploring the association of an MR with any clinical
feature when its behavior is homogeneous or different between subgroups or is different
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among feature levels. Lastly, in Figure 3D, the MR ERBB2 results were significantly associated
with gender in the Diffuse but not Intestinal samples, suggesting a putative gender- and
histology-driven rethink of treatment strategies. Using the Cox proportional-hazards model,
we described the change in OS, DSS, DFS or PFI if the NES of the MRs rose by one unit.
In Supplementary Materials File S6, we report all the significant results (p-value < 0.05).
Interestingly, the MR CGB5, having the higher hazard ratio (HR) considering OS, DSS
and PFI results, was associated with a worse prognosis while the MR ARHGAP33 results,
having the lower HR considering DSS and PFI and the second lowest by OS, were associated
with a better prognosis. For each patient and for every additional NES unit of the MR
CGB5, the risk of death, disease-specific death and disease progression increased by 79%
(HR 1.79), 152% (HR 2.52) and 112% (HR 2.12), respectively. On the contrary, for each
patient and every additional NES unit of the MR ARHGAP33, the risk of death, death by
disease and disease progression fell by 30% (HR 0.70), 44% (HR 0.56) and 48% (HR 0.52),
respectively. When we looked at the Cox proportional-hazards model results, focusing
on the MRs previously highlighted, it was very easy to pinpoint the HR of the VGLL3,
INHBA and PRRX1 regulons, 27% (HR 1.27), 44% (HR 1.44) and 46% (HR 1.46). The worst
prognosis, related to a higher activity of regulons, was associated (p-value << 0.001) with
Diffuse tumors and a greater tumor mass (TNM:T). In addition, among the worst prognosis
of MRs associated with EMT, there was SNAI2 (OS HR: 1.51 and DSS HR: 1.52). ILF3
regulon was associated with a better prognosis (DFI HR 0.53 and PFI HR 0.75) and with
high activity in Intestinal tumors (p-value << 0.001). Moreover, the ACIN1 (an apoptosis-
related gene) regulon (see Supplementary Materials Figure S20) was associated with a
better prognosis (OS HR 0.73 and DSS HR 0.68 and PFI HR 0.67) and with high activity in
Intestinal tumors (p-value < 0.001). According to Townson SM et al. [40], the SAFB gene acts
as a negative regulator of cell proliferation. This evidence corroborated our result showing
that the high activity of the SAFB regulon (see Supplementary Materials Figure S21) in
Intestinal tumors was strongly associated (p-value << 0.001) with a better prognosis (OS HR
0.78, DSS HR 0.73 and PFI HR 0.78). Finally, our results were validated in the ACRG and
GSE15459 cohort, by performing differential gene expression analyses on GSA and MRA in
Diffuse and Intestinal GCs. We reported, as Venn diagrams, the overlaps among the DEGs
(Figure 4A,B) and MRs (Figure 4C,D).

In Table 3, we report the amount of overlapping enrichments between TCGA-STAD
and each validation dataset.

Table 3. Summary of the differentially enriched categories between Diffuse and Intestinal GC in TCGA,
ARCG and GSE15459 dataset. Statistically significant (p-value < 0.01) overlaps are in bold.

TCGA ARCG GSE15459 TCGA vs.
ARCG

TCGA vs.
GSE15459

Enriched in Diffuse

hallmark 12 8 6 7 * 5 *
Go 926 837 675 522 * 301 *

Pathways 775 942 925 566 * 452 *
Motif 550 1089 1762 391* 480 *

Chromosome positions 6 4 4 1 0

Enriched in Intestinal

hallmark 6 7 6 5 * 4 *
GO 184 133 313 62 * 82 *

Pathways 257 400 912 184 * 209 *
Motif 6 6 44 0 2 *

Chromosome positions 9 2 3 1 1
* Statistically significant (p-value < 0.01) overlaps.



Cancers 2022, 14, 4961 13 of 18

Cancers 2022, 14, x  12 of 19 
 

 

the MR TRIM24 as very differently active in Intestinal vs. Diffuse GC only in the MSS sam-

ples. These examples showed the possibility of exploring the association of an MR with 

any clinical feature when its behavior is homogeneous or different between subgroups or 

is different among feature levels. Lastly, in Figure 3D, the MR ERBB2 results were signif-

icantly associated with gender in the Diffuse but not Intestinal samples, suggesting a puta-

tive gender- and histology-driven rethink of treatment strategies. Using the Cox propor-

tional-hazards model, we described the change in OS, DSS, DFS or PFI if the NES of the 

MRs rose by one unit. In Supplementary Materials File S6, we report all the significant 

results (p-value < 0.05). Interestingly, the MR CGB5, having the higher hazard ratio (HR) 

considering OS, DSS and PFI results, was associated with a worse prognosis while the MR 

ARHGAP33 results, having the lower HR considering DSS and PFI and the second lowest 

by OS, were associated with a better prognosis. For each patient and for every additional 

NES unit of the MR CGB5, the risk of death, disease-specific death and disease progres-

sion increased by 79% (HR 1.79), 152% (HR 2.52) and 112% (HR 2.12), respectively. On the 

contrary, for each patient and every additional NES unit of the MR ARHGAP33, the risk 

of death, death by disease and disease progression fell by 30% (HR 0.70), 44% (HR 0.56) 

and 48% (HR 0.52), respectively. When we looked at the Cox proportional-hazards model 

results, focusing on the MRs previously highlighted, it was very easy to pinpoint the HR 

of the VGLL3, INHBA and PRRX1 regulons, 27% (HR 1.27), 44% (HR 1.44) and 46% (HR 

1.46). The worst prognosis, related to a higher activity of regulons, was associated (p-value 

<< 0.001) with Diffuse tumors and a greater tumor mass (TNM:T). In addition, among the 

worst prognosis of MRs associated with EMT, there was SNAI2 (OS HR: 1.51 and DSS HR: 

1.52). ILF3 regulon was associated with a better prognosis (DFI HR 0.53 and PFI HR 0.75) 

and with high activity in Intestinal tumors (p-value << 0.001). Moreover, the ACIN1 (an 

apoptosis-related gene) regulon (see Supplementary Materials Figure S20) was associated 

with a better prognosis (OS HR 0.73 and DSS HR 0.68 and PFI HR 0.67) and with high 

activity in Intestinal tumors (p-value < 0.001). According to Townson SM et al. [40], the 

SAFB gene acts as a negative regulator of cell proliferation. This evidence corroborated 

our result showing that the high activity of the SAFB regulon (see Supplementary Mate-

rials Figure S21) in Intestinal tumors was strongly associated (p-value << 0.001) with a bet-

ter prognosis (OS HR 0.78, DSS HR 0.73 and PFI HR 0.78). Finally, our results were vali-

dated in the ACRG and GSE15459 cohort, by performing differential gene expression anal-

yses on GSA and MRA in Diffuse and Intestinal GCs. We reported, as Venn diagrams, the 

overlaps among the DEGs (Figure 4A,B) and MRs (Figure 4C,D).  

 

Figure 4. Venn diagrams showing the overlap between the TCGA and the validation dataset data.
(A) The overlap of the DEGs between Diffuse vs. Intestinal subgroups in TCGA and ACRG dataset.
(B) The overlap of the DEGs between Diffuse vs. Intestinal subgroups in TCGA and GSE15459 dataset.
(C) The overlap of the MRs between Diffuse vs. Intestinal subgroups in TCGA and ACRG dataset.
(D) The overlap of the MRs between Diffuse vs. Intestinal subgroups in TCGA and GSE15459 dataset.
All overlaps in bold are statistically significant (p-vaule < 0.01).

Moreover, 59 MRs associated with the OS by Cox analysis in the TCGA dataset
were confirmed in both ARCG and GSE15459 (Supplementary Materials File S7). Among
them, there are some of the biologically characterized Diffuse MRs like SNAI2, ANTXR1,
PRRX1, EYA4, VGLL3, AEBP1, PDGFRB, THY1, LZTS1 and FSTL1. Using this approach, we
identified a set of clinically relevant MRs that more homogeneously associated with the Diffuse
or Intestinal type of GC or associated with a known clinical feature. These data may be useful
to characterize patients, addressing them to a different classification or treatment strategy.

4. Discussion

Despite its decreasing incidence, GC remains one of the most common causes of
death for neoplasm worldwide. Recent epidemiological trends indicate a relative increase
in the rate of the Diffuse histotype, especially in western countries [41–45]. The biological
bases of the Diffuse type of GC behavior are still poorly characterized and, in particular, a
precise signaling network reconstruction is lacking. In this work, we aimed to highlight
the molecular determinants that characterize the two main histological GC subtypes by
generating a biological network-based model. We first investigated the relations among the
histological groups and the other clinicopathological data, finding a relevant association
with the pathologic stage, the TNM:N and therapy outcomes. Moreover, by multivariate
Cox proportional hazards analysis, we found that histology and pathologic stages were
independent factors influencing overall survival. Since several histological groups were
numerically too small for suitable analyses, we divided the samples into two transcription-
ally homogeneous groups: Diffuse (poorly cohesive, not SRC) and Intestinal (tubular and
iNOS). We highlighted that there was no significant association between these groups and
clinicopathological data as well as survival. According to this, the clinical and survival
differences reported above could be imputed to the SRC and non-tubular Intestinal groups.
Subsequently, we deployed a computational pipeline aimed to highlight the key genes,
networks and pathways characterizing the two groups. Differential expression analysis pro-
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duced two refined lists of GC histology-related candidate biomarkers. Enrichment analyses,
as well as master regulator analyses, highlighted a greater number of activated gene sets
and regulons in Diffuse than in Intestinal GC. The MRs, by their nature, represented a robust
way to describe key genes and network features of a characterized group. The regulons,
being data-inferred subnetworks, might have a cryptical biological meaning so the overlap
with significantly enriched gene sets strongly hints about their function as a biological
labeler. This step allowed us to select activated subnetworks showing literature-derived,
biologically interesting features but retained possibly related non-literature-derived gene
connections. The ssMRA allowed us to investigate the homogeneity of the subgroups’ MRs,
pinpointing which MR might be a better candidate for this classification and which one
could lead to a different classification or treatment strategy. As matter of fact, the activity of
many MRs showed an association with survival while there was no difference between the
Diffuse and Intestinal subgroups, hinting at a possible different classification. Interestingly,
two independent datasets validated many of the results confirming the goodness of the
computational pipeline and showing the robustness of the MR analysis across different
datasets. It is important to remember that the MR represents an entire network (the regu-
lon), suggesting the underlying molecular explanation of the observed biological behavior.
For example, the Cox proportional-hazards model associates the MR VGLL3 with a worse
prognosis and the Fisher test associates VGLL3 with Diffuse tumors and a greater tumor
mass (TNM:T), according to a previous report [39]. In this way, we pinpointed the field of
investigation for possible subsequent studies because we suggested a wide, biologically
coherent network, rather than a single gene associated with survival. Indeed, we speculated
that the negative impact of VGLL3 activity on a patient’s prognosis could be related to
its role in modulating EMT, collagen synthesis and extracellular matrix organization as
highlighted by the intersection of the gene network and several gene sets. Its biological
activity has also been demonstrated in vitro by Hori N et al., who described the promotion
of an EMT-like phenotype and an increased motility in VGLL3-expressing lung cancer
cells [46]. SNAI2 is another enriched MR. It is a prototypical epithelial-to-mesenchymal
transition transcriptional factor, which promotes the loss of cell adhesion and polarity,
conferring a migratory and invasive phenotype. SNAI2 is also indicated as a molecular
determinant of cancer stem cell behavior and therapy resistance [47].

Our study showed that the Diffuse type of GC was also characterized by the dysregula-
tion of immune signaling that, according to Hill et al., created a favorable microenvironment
promoting tumor progression, invasiveness, angiogenesis and metastasis [48]. The role
of MRs involved in this crosstalk between cancer and immune cells can be dual either
modulating or stimulating the immune system. Indeed, CD86 is known to bind CTLA-4 to
inhibit antigen presenting cells and the activation of T cells [49]. CIITA and IL16 promote
immune cell activation and a pro-inflammatory microenvironment that can compromise
the integrity of the gastric epithelium. It has been demonstrated that CIITA promotes the
expression of MHC class II, which favor CD8+ T cell activation, and that its expression
is induced by IFN-γ [9,50,51], a significantly enriched hallmark that we found in the Dif-
fuse type of GC. Interestingly, IFN-γ seemed to also be a driver of disease progression
during chronic gastritis to metaplasia by direct killing gastric parietal cells [52]. Similarly,
IL-16 activity was found to be associated with disease progression in many cancer types,
including those of the gastrointestinal tract [53]. A pro-inflammatory microenvironment
can also be explained by the enrichment of the KRAS signaling hallmark, since it includes
several genes that code for chemokines and cytokines (LIF, CXCL10, etc.), which overlap
with those in the other immune hallmarks. The heatmaps evidencing the association of
MRs with GOs, pathways and other gene sets enriched in Diffuse or Intestinal GC subtypes
remark the biological features outlined by hallmarks. The overlap between the three MRs
highly enriched in Diffuse GC and positional gene sets seemed to define an activation of the
T cell-mediated response. Indeed, in the chr1q23 cytogenetic band localized genes were
involved in lymphocyte activation and antigen presentation to T cells (CD84, CD48, CD1C).
On the other hand, Intestinal GC was characterized by MRs (such as FOXM1, TOP2A and
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CENPF) involved in mitotic spindle assembly, G2/M checkpoint regulation and expression
of E2F target genes, suggesting a proliferative phenotype. The association between a prolif-
erative GC subtype and Intestinal histology was previously reported to be characterized by
the upregulation of the centromeric family of proteins (CENPs), among them CENPF [54].
Authors demonstrated that CENPs, in particular CENP-I, promoted cell proliferation and
migration, apoptosis inhibition and EMT and is associated with the TP53 mutation. Inter-
estingly, ATM and p53 regulated FOXM1 expression via E2F in Epirubicin resistant breast
cancer [55], highlighting a possible connection between CENPF, FOXM1 and E2F regulons.
The FOXM1 regulon also showed great overlap with Kang doxorubicin resistance gene set.
Recently, Qi W. et al. demonstrated that the regulation of the level of ERBB2 in the gastric
cancer cell lines, accordingly produced a change in the expression of FOXM1, indicating that
the expression level of FOXM1 was at least partially regulated by ERBB2 [56]. Interestingly,
Qi W. et al. also revealed that FOXM1 and ERBB2 expression was associated with poor
survival. Similarly, the E2F family of transcription factors (E2Fs) regulated many cellular
processes, canonically cell cycles but also angiogenesis, DNA damage response, apoptosis
and drug resistance both in cancer and cancer stem cells [34]. According to these findings,
in Intestinal GC, the chrXq28 band resulted in significantly associated activity between
SSX1, SSX4 and SOLHLH1 MRs, which are involved in stem cell maintenance and are
indicated as cancer and testis antigens [57]. The enriched positional gene set included
genes that seemed to play a role in embryonic development [58], GC transformation and
progression (the MAGEA gene family) [59] and telomere maintenance (DKC1) [60]. In-
terestingly, this cytogenetic band included genes of the PRAME regulon that is known to
confer a growth advantage to cancer cells [61,62]. In addition, Intestinal GC enrichment of
HNF1 transcription factor target motifs suggested a marked transcriptional activity and
modulation of cholesterol and sterol homeostasis, essential for cell division [63]. HNF1
proteins also regulate the embryonic development of gastrointestinal tract organs [64].

5. Conclusions

Our results showed that distinct biological features characterize Diffuse and Intestinal
gastric cancers, suggesting molecular bases for clinicopathological differences between the
two histotypes. In particular, Diffuse GC is characterized by the alteration of pathways in-
volved in immune cell regulation and extracellular matrix organization, while the Intestinal
type is associated with impairments to the cell cycle regulation pathways and alteration of
response to growth factors and hormones. Overall, the histological differences between
Diffuse and Intestinal GC are based on genetic and epigenetic factors and neither of these
two ways can be ignored. Many studies have shown that unveiling the molecular com-
plexity of cancer can help predict specific cancer biomarkers (diagnostic, prognostic and
drug-susceptibility) and design biological network-based anti-cancer therapies [7,22,23] by
shifting from a single-gene to a gene-network personalized therapy approach. The charac-
terization of these signaling networks could also lead to the identification of targets aimed
to improve anti-tumor immunity and overcome the immune escape mechanisms of cancer
cells. This is because gene regulatory networks can help to resolve key issues in cancer
research by reflecting information from multiple regulatory levels.
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subtypes of gastric cancer: From Laurén to molecular pathology. Oncotarget 2018, 9, 19427–19442. [CrossRef] [PubMed]
4. Lauren, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a

histo-clinical classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [CrossRef]
5. Fléjou, J.-F. [WHO Classification of digestive tumors: The fourth edition]. Ann. Pathol. 2011, 31, S27–S31. [CrossRef]
6. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014,

513, 202–209. [CrossRef]
7. Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.-M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al. Molecular analysis

of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456. [CrossRef]
8. Böger, C.; Krüger, S.; Behrens, H.M.; Bock, S.; Haag, J.; Kalthoff, H.; Röcken, C. Epstein-Barr virus-associated gastric cancer reveals

intratumoral heterogeneity of PIK3CA mutations. Ann. Oncol. 2017, 28, 1005–1014. [CrossRef]
9. Lee, H.H.; Kim, S.Y.; Jung, E.S.; Yoo, J.; Kim, T.-M. Mutation heterogeneity between primary gastric cancers and their matched

lymph node metastases. Gastric Cancer 2019, 22, 323–334. [CrossRef]
10. Mathiak, M.; Warneke, V.S.; Behrens, H.-M.; Haag, J.; Böger, C.; Krüger, S.; Röcken, C. Clinicopathologic characteristics of

microsatellite instable gastric carcinomas revisited: Urgent need for standardization. Appl. Immunohistochem. Mol. Morphol. 2017,
25, 12–24. [CrossRef]

11. Pectasides, E.; Stachler, M.D.; Derks, S.; Liu, Y.; Maron, S.; Islam, M.; Alpert, L.; Kwak, H.; Kindler, H.; Polite, B.; et al. Genomic
heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma. Cancer Discov. 2018, 8, 37–48. [CrossRef]
[PubMed]

12. Polom, K.; Böger, C.; Smyth, E.; Marrelli, D.; Behrens, H.-M.; Marano, L.; Becker, T.; Lordick, F.; Röcken, C.; Roviello, F.
Synchronous metastatic gastric cancer-molecular background and clinical implications with special attention to mismatch repair
deficiency. Eur. J. Surg. Oncol. 2018, 44, 626–631. [CrossRef] [PubMed]

13. Marrelli, D.; Polom, K.; Pascale, V.; Vindigni, C.; Piagnerelli, R.; De Franco, L.; Ferrara, F.; Roviello, G.; Garosi, L.; Petrioli, R.; et al.
Strong Prognostic Value of Microsatellite Instability in Intestinal Type Non-cardia Gastric Cancer. Ann. Surg. Oncol. 2016, 23,
943–950. [CrossRef]

14. Marrelli, D.; Polom, K.; Neri, A.; Roviello, F. Clinical impact of molecular classifications in gastric cancer. Updates Surg. 2018, 70,
225–232. [CrossRef]

15. Polom, K.; Marano, L.; Marrelli, D.; De Luca, R.; Roviello, G.; Savelli, V.; Tan, P.; Roviello, F. Meta-analysis of microsatellite
instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br. J. Surg. 2018, 105, 159–167.
[CrossRef] [PubMed]

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1016/j.mpmed.2019.02.002
http://doi.org/10.18632/oncotarget.24827
http://www.ncbi.nlm.nih.gov/pubmed/29721214
http://doi.org/10.1111/apm.1965.64.1.31
http://doi.org/10.1016/j.annpat.2011.08.001
http://doi.org/10.1038/nature13480
http://doi.org/10.1038/nm.3850
http://doi.org/10.1093/annonc/mdx047
http://doi.org/10.1007/s10120-018-0870-6
http://doi.org/10.1097/PAI.0000000000000264
http://doi.org/10.1158/2159-8290.CD-17-0395
http://www.ncbi.nlm.nih.gov/pubmed/28978556
http://doi.org/10.1016/j.ejso.2018.02.208
http://www.ncbi.nlm.nih.gov/pubmed/29545085
http://doi.org/10.1245/s10434-015-4931-3
http://doi.org/10.1007/s13304-018-0546-0
http://doi.org/10.1002/bjs.10663
http://www.ncbi.nlm.nih.gov/pubmed/29091259


Cancers 2022, 14, 4961 17 of 18

16. Sohn, B.H.; Hwang, J.-E.; Jang, H.-J.; Lee, H.-S.; Oh, S.C.; Shim, J.-J.; Lee, K.-W.; Kim, E.H.; Yim, S.Y.; Lee, S.H.; et al. Clinical
significance of four molecular subtypes of gastric cancer identified by the cancer genome atlas project. Clin. Cancer Res. 2017, 23,
4441–4449. [CrossRef] [PubMed]

17. Wang, Q.; Xie, Q.; Liu, Y.; Guo, H.; Ren, Y.; Li, J.; Zhao, Q. Clinical characteristics and prognostic significance of TCGA and ACRG
classification in gastric cancer among the Chinese population. Mol. Med. Rep. 2020, 22, 828–840. [CrossRef]

18. Zhang, M.; Hu, S.; Min, M.; Ni, Y.; Lu, Z.; Sun, X.; Wu, J.; Liu, B.; Ying, X.; Liu, Y. Dissecting transcriptional heterogeneity in
primary gastric adenocarcinoma by single cell RNA sequencing. Gut 2021, 70, 464–475. [CrossRef]

19. Min, L.; Zhao, Y.; Zhu, S.; Qiu, X.; Cheng, R.; Xing, J.; Shao, L.; Guo, S.; Zhang, S. Integrated analysis identifies molecular
signatures and specific prognostic factors for different gastric cancer subtypes. Transl. Oncol. 2017, 10, 99–107. [CrossRef]

20. Wang, Q.; Armenia, J.; Zhang, C.; Penson, A.V.; Reznik, E.; Zhang, L.; Minet, T.; Ochoa, A.; Gross, B.E.; Iacobuzio-Donahue, C.A.;
et al. Unifying cancer and normal RNA sequencing data from different sources. Sci. Data 2018, 5, 180061. [CrossRef]

21. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippe, K.H.; Sherman, P.M.;
Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Res. 2013, 41, D991–D995. [CrossRef]
[PubMed]

22. Ooi, C.H.; Ivanova, T.; Wu, J.; Lee, M.; Tan, I.B.; Tao, J.; Ward, L.; Koo, J.H.; Gopalakrishnan, V.; Zhu, Y.; et al. Oncogenic pathway
combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009, 5, e1000676. [CrossRef] [PubMed]

23. Russi, S.; Calice, G.; Ruggieri, V.; Laurino, S.; La Rocca, F.; Amendola, E.; Lapadula, C.; Compare, D.; Nardone, G.; Musto, P.; et al.
Gastric normal adjacent mucosa versus healthy and cancer tissues: Distinctive transcriptomic profiles and biological features.
Cancers 2019, 11, 1248. [CrossRef] [PubMed]

24. Mariette, C.; Carneiro, F.; Grabsch, H.I.; van der Post, R.S.; Allum, W.; de Manzoni, G. European Chapter of International Gastric
Cancer Association Consensus on the pathological definition and classification of poorly cohesive gastric carcinoma. Gastric
Cancer 2019, 22, 1–9. [CrossRef]

25. Hu, B.; El Hajj, N.; Sittler, S.; Lammert, N.; Barnes, R.; Meloni-Ehrig, A. Gastric cancer: Classification, histology and application of
molecular pathology. J. Gastrointest. Oncol. 2012, 3, 251–261. [CrossRef] [PubMed]

26. McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to
biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [CrossRef]

27. Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [CrossRef]

28. Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters.
OMICS 2012, 16, 284–287. [CrossRef]

29. Mercatelli, D.; Ray, F.; Giorgi, F.M. Pan-Cancer and Single-Cell Modeling of Genomic Alterations Through Gene Expression. Front
Genet. 2019, 10, 671. [CrossRef]

30. Giorgi, F.M.; Lachmann, A.; Lopez, G.; Califano, A. ARACNe-AP: Gene network reverse engineering through adaptive partition-
ing inference of mutual information. Bioinformatics 2016, 32, 2233–2235. [CrossRef]

31. Mercatelli, D.; Lopez-Garcia, G.; Giorgi, F.M. corto: A lightweight R package for gene network inference and master regulator
analysis. Bioinformatics 2020, 36, 3916–3917. [CrossRef] [PubMed]

32. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Aus-
tria, 2019.

33. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016;
p. 276. ISBN 978-3-319-24277-4.

34. Xie, D.; Pei, Q.; Li, J.; Wan, X.; Ye, T. Emerging role of E2F family in cancer stem cells. Front. Oncol. 2021, 11, 723137. [CrossRef]
[PubMed]

35. Huang, L.; Wu, R.-L.; Xu, A.-M. Epithelial-mesenchymal transition in gastric cancer. Am. J. Transl. Res. 2015, 7, 2141–2158.
36. Chandanos, E.; Rubio, C.A.; Lindblad, M.; Jia, C.; Tsolakis, A.V.; Warner, M.; Gustafsson, J.-A.; Lagergren, J. Endogenous estrogen

exposure in relation to distribution of histological type and estrogen receptors in gastric adenocarcinoma. Gastric Cancer 2008, 11,
168–174. [CrossRef]

37. Carro, M.S.; Lim, W.K.; Alvarez, M.J.; Bollo, R.J.; Zhao, X.; Snyder, E.Y.; Sulman, E.P.; Anne, S.L.; Doetsch, F.; Colman, H.; et al.
The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010, 463, 318–325. [CrossRef] [PubMed]

38. Chen, J.C.; Alvarez, M.J.; Talos, F.; Dhruv, H.; Rieckhof, G.E.; Iyer, A.; Diefes, K.L.; Aldape, K.; Berens, M.; Shen, M.M.; et al.
Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 2014, 159,
402–414. [CrossRef]

39. Zhang, L.; Li, L.; Mao, Y.; Hua, D. VGLL3 is a prognostic biomarker and correlated with clinical pathologic features and immune
infiltrates in stomach adenocarcinoma. Sci. Rep. 2020, 10, 1355. [CrossRef]

40. Townson, S.M.; Dobrzycka, K.M.; Lee, A.V.; Air, M.; Deng, W.; Kang, K.; Jiang, S.; Kioka, N.; Michaelis, K.; Oesterreich, S. SAFB2,
a new scaffold attachment factor homolog and estrogen receptor corepressor. J. Biol. Chem. 2003, 278, 20059–20068. [CrossRef]

41. Roviello, F.; Marano, L.; Ambrosio, M.R.; Resca, L.; D’Ignazio, A.; Petrelli, F.; Petrioli, R.; Costantini, M.; Polom, K.; Macchiarelli,
R.; et al. Signet ring cell percentage in poorly cohesive gastric cancer patients: A potential novel predictor of survival. Eur. J. Surg.
Oncol. 2022, 48, 561–569. [CrossRef]

http://doi.org/10.1158/1078-0432.CCR-16-2211
http://www.ncbi.nlm.nih.gov/pubmed/28747339
http://doi.org/10.3892/mmr.2020.11183
http://doi.org/10.1136/gutjnl-2019-320368
http://doi.org/10.1016/j.tranon.2016.11.003
http://doi.org/10.1038/sdata.2018.61
http://doi.org/10.1093/nar/gks1193
http://www.ncbi.nlm.nih.gov/pubmed/23193258
http://doi.org/10.1371/journal.pgen.1000676
http://www.ncbi.nlm.nih.gov/pubmed/19798449
http://doi.org/10.3390/cancers11091248
http://www.ncbi.nlm.nih.gov/pubmed/31454993
http://doi.org/10.1007/s10120-018-0868-0
http://doi.org/10.3978/j.issn.2078-6891.2012.021
http://www.ncbi.nlm.nih.gov/pubmed/22943016
http://doi.org/10.1093/nar/gks042
http://doi.org/10.1016/j.cels.2015.12.004
http://doi.org/10.1089/omi.2011.0118
http://doi.org/10.3389/fgene.2019.00671
http://doi.org/10.1093/bioinformatics/btw216
http://doi.org/10.1093/bioinformatics/btaa223
http://www.ncbi.nlm.nih.gov/pubmed/32232425
http://doi.org/10.3389/fonc.2021.723137
http://www.ncbi.nlm.nih.gov/pubmed/34476219
http://doi.org/10.1007/s10120-008-0475-6
http://doi.org/10.1038/nature08712
http://www.ncbi.nlm.nih.gov/pubmed/20032975
http://doi.org/10.1016/j.cell.2014.09.021
http://doi.org/10.1038/s41598-020-58493-7
http://doi.org/10.1074/jbc.M212988200
http://doi.org/10.1016/j.ejso.2021.09.003


Cancers 2022, 14, 4961 18 of 18

42. Marrelli, D.; Pedrazzani, C.; Morgagni, P.; de Manzoni, G.; Pacelli, F.; Coniglio, A.; Marchet, A.; Saragoni, L.; Giacopuzzi, S.;
Roviello, F.; et al. Changing clinical and pathological features of gastric cancer over time. Br. J. Surg. 2011, 98, 1273–1283.
[CrossRef]

43. Henson, D.E.; Dittus, C.; Younes, M.; Nguyen, H.; Albores-Saavedra, J. Differential trends in the intestinal and diffuse types of
gastric carcinoma in the United States, 1973-2000: Increase in the signet ring cell type. Arch. Pathol. Lab. Med. 2004, 128, 765–770.
[CrossRef] [PubMed]

44. Amorosi, A.; Palli, D. Epidemiology of intestinal and difuse types of gastric carcinoma: A time-trend study in Finland with
comparison between studies from high- and low-risk areas. Cancer 1994, 73, 1533. [CrossRef]

45. Marrelli, D.; Polom, K.; de Manzoni, G.; Morgagni, P.; Baiocchi, G.L.; Roviello, F. Multimodal treatment of gastric cancer in the
west: Where are we going? World J. Gastroenterol. 2015, 21, 7954–7969. [CrossRef] [PubMed]

46. Hori, N.; Takakura, Y.; Sugino, A.; Iwasawa, S.; Nomizo, K.; Yamaguchi, N.; Takano, H.; Yamaguchi, N. Vestigial-like family
member 3 stimulates cell motility by inducing high-mobility group AT-hook 2 expression in cancer cells. J. Cell. Mol. Med. 2022,
26, 2686–2697. [CrossRef]

47. Zhou, W.; Gross, K.M.; Kuperwasser, C. Molecular regulation of Snai2 in development and disease. J. Cell Sci. 2019, 132, jcs235127.
[CrossRef]

48. Hill, D.G.; Yu, L.; Gao, H.; Balic, J.J.; West, A.; Oshima, H.; McLeod, L.; Oshima, M.; Gallimore, A.; D’Costa, K.; et al. Hyperactive
gp130/STAT3-driven gastric tumourigenesis promotes submucosal tertiary lymphoid structure development. Int. J. Cancer 2018,
143, 167–178. [CrossRef]

49. Sobhani, N.; Tardiel-Cyril, D.R.; Davtyan, A.; Generali, D.; Roudi, R.; Li, Y. CTLA-4 in Regulatory T Cells for Cancer Immunother-
apy. Cancers 2021, 13, 1440. [CrossRef]

50. Hippo, Y.; Yashiro, M.; Ishii, M.; Taniguchi, H.; Tsutsumi, S.; Hirakawa, K.; Kodama, T.; Aburatani, H. Differential gene expression
profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res. 2001, 61,
889–895.

51. Satoh, A.; Toyota, M.; Ikeda, H.; Morimoto, Y.; Akino, K.; Mita, H.; Suzuki, H.; Sasaki, Y.; Kanaseki, T.; Takamura, Y.; et al.
Epigenetic inactivation of class II transactivator (CIITA) is associated with the absence of interferon-gamma-induced HLA-DR
expression in colorectal and gastric cancer cells. Oncogene 2004, 23, 8876–8886. [CrossRef]

52. Osaki, L.H.; Bockerstett, K.A.; Wong, C.F.; Ford, E.L.; Madison, B.B.; DiPaolo, R.J.; Mills, J.C. Interferon-γ directly induces gastric
epithelial cell death and is required for progression to metaplasia. J. Pathol. 2019, 247, 513–523. [CrossRef]

53. Richmond, J.; Tuzova, M.; Cruikshank, W.; Center, D. Regulation of cellular processes by interleukin-16 in homeostasis and cancer.
J. Cell. Physiol. 2014, 229, 139–147. [CrossRef] [PubMed]

54. Wang, J.; Liu, X.; Chu, H.-J.; Li, N.; Huang, L.-Y.; Chen, J. Centromere Protein I (CENP-I) Is Upregulated in Gastric Cancer, Predicts
Poor Prognosis, and Promotes Tumor Cell Proliferation and Migration. Technol. Cancer Res. Treat. 2021, 20, 15330338211045510.
[CrossRef]

55. Millour, J.; de Olano, N.; Horimoto, Y.; Monteiro, L.J.; Langer, J.K.; Aligue, R.; Hajji, N.; Lam, E.W.F. ATM and p53 regulate
FOXM1 expression via E2F in breast cancer epirubicin treatment and resistance. Mol. Cancer Ther. 2011, 10, 1046–1058. [CrossRef]
[PubMed]

56. Qi, W.; Li, X.; Zhang, Y.; Yao, R.; Qiu, W.; Tang, D.; Liang, J. Overexpression of Her-2 upregulates FoxM1 in gastric cancer. Int. J.
Mol. Med. 2014, 33, 1531–1538. [CrossRef] [PubMed]

57. Tio, D.; Kasiem, F.R.; Willemsen, M.; van Doorn, R.; van der Werf, N.; Hoekzema, R.; Luiten, R.M.; Bekkenk, M.W. Expression of
cancer/testis antigens in cutaneous melanoma: A systematic review. Melanoma Res. 2019, 29, 349–357. [CrossRef] [PubMed]

58. Lee, Y.-M.; Chang, W.-C.; Ma, W.-L. Hypothesis: Solid tumours behave as systemic metabolic dictators. J. Cell. Mol. Med. 2016, 20,
1076–1085. [CrossRef] [PubMed]

59. Lian, Y.; Sang, M.; Gu, L.; Liu, F.; Yin, D.; Liu, S.; Huang, W.; Wu, Y.; Shan, B. MAGE-A family is involved in gastric cancer
progression and indicates poor prognosis of gastric cancer patients. Pathol. Res. Pract. 2017, 213, 943–948. [CrossRef]

60. Garus, A.; Autexier, C. Dyskerin: An essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing,
and telomere maintenance. RNA 2021, 27, 1441–1458. [CrossRef]

61. Hermes, N.; Kewitz, S.; Staege, M.S. Preferentially Expressed Antigen in Melanoma (PRAME) and the PRAME Family of
Leucine-Rich Repeat Proteins. Curr. Cancer Drug Targets 2016, 16, 400–414. [CrossRef]

62. Napolitano, G.; Tagliaferri, D.; Fusco, S.; Cirillo, C.; De Martino, I.; Addeo, M.; Mazzone, P.; Russo, N.A.; Natale, F.; Cardoso,
M.C.; et al. A novel member of Prame family, Gm12794c, counteracts retinoic acid differentiation through the methyltransferase
activity of PRC2. Cell Death Differ. 2020, 27, 345–362. [CrossRef]

63. Fernández, C.; Lobo Md, M.D.V.T.; Gómez-Coronado, D.; Lasunción, M.A. Cholesterol is essential for mitosis progression and its
deficiency induces polyploid cell formation. Exp. Cell Res. 2004, 300, 109–120. [CrossRef] [PubMed]

64. Lau, H.H.; Ng, N.H.J.; Loo, L.S.W.; Jasmen, J.B.; Teo, A.K.K. The molecular functions of hepatocyte nuclear factors—In and
beyond the liver. J. Hepatol. 2018, 68, 1033–1048. [CrossRef] [PubMed]

http://doi.org/10.1002/bjs.7528
http://doi.org/10.5858/2004-128-765-DTITIA
http://www.ncbi.nlm.nih.gov/pubmed/15214826
http://doi.org/10.1002/1097-0142(19940301)73:5&lt;1533::AID-CNCR2820730535&gt;3.0.CO;2-J
http://doi.org/10.3748/wjg.v21.i26.7954
http://www.ncbi.nlm.nih.gov/pubmed/26185368
http://doi.org/10.1111/jcmm.17279
http://doi.org/10.1242/jcs.235127
http://doi.org/10.1002/ijc.31298
http://doi.org/10.3390/cancers13061440
http://doi.org/10.1038/sj.onc.1208144
http://doi.org/10.1002/path.5214
http://doi.org/10.1002/jcp.24441
http://www.ncbi.nlm.nih.gov/pubmed/23893766
http://doi.org/10.1177/15330338211045510
http://doi.org/10.1158/1535-7163.MCT-11-0024
http://www.ncbi.nlm.nih.gov/pubmed/21518729
http://doi.org/10.3892/ijmm.2014.1732
http://www.ncbi.nlm.nih.gov/pubmed/24715000
http://doi.org/10.1097/CMR.0000000000000569
http://www.ncbi.nlm.nih.gov/pubmed/30615012
http://doi.org/10.1111/jcmm.12794
http://www.ncbi.nlm.nih.gov/pubmed/26843513
http://doi.org/10.1016/j.prp.2017.05.007
http://doi.org/10.1261/rna.078953.121
http://doi.org/10.2174/1568009616666151222151818
http://doi.org/10.1038/s41418-019-0359-9
http://doi.org/10.1016/j.yexcr.2004.06.029
http://www.ncbi.nlm.nih.gov/pubmed/15383319
http://doi.org/10.1016/j.jhep.2017.11.026
http://www.ncbi.nlm.nih.gov/pubmed/29175243

	Introduction 
	Materials and Methods 
	Data Collection 
	Patient Selection and Study Design 
	Data Processing 
	Statistical Analysis 
	Association with Clinical Features and Survival Analyses 
	Differential Expression Analysis and Venn 
	Gene-Set Enrichment Analyses and Master Regulator Analyses (MRA) 
	Single Sample Gene Set Enrichment Analysis (ssGSEA) and Single Sample Master Regulator Analysis (ssMRA) 
	Association of MRs with Clinical and Survival Features 


	Results 
	In Silico-Refined Histological Subtypes Have Similar Clinicopathological Characteristics 
	Functional Enrichment Highlighted a Different Biological Behavior for the Two Histological Subtypes 
	Gene Regulatory Networks Highlights Different Putative Hub Genes 
	The Association of MRs Activity with Clinical Variables or Prognosis Confirms the Relevance of Underlying Molecular Profile 

	Discussion 
	Conclusions 
	References

