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Heart transplantation and
biomarkers: a review about their
usefulness in clinical practice
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Advanced heart failure (AdvHF) can only be treated definitively by heart
transplantation (HTx), yet problems such right ventricle dysfunction (RVD),
rejection, cardiac allograft vasculopathy (CAV), and primary graft dysfunction
(PGD) are linked to a poor prognosis. As a result, numerous biomarkers have
been investigated in an effort to identify and prevent certain diseases sooner.
We looked at both established biomarkers, such as NT-proBNP, hs-troponins,
and pro-inflammatory cytokines, and newer ones, such as extracellular
vesicles (EVs), donor specific antibodies (DSA), gene expression profile (GEP),
donor-derived cell free DNA (dd-cfDNA), microRNA (miRNA), and soluble
suppression of tumorigenicity 2 (sST2). These biomarkers are typically linked
to complications from HTX. We also highlight the relationships between each
biomarker and one or more problems, as well as their applicability in routine
clinical practice.
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Introduction

Heart transplantation (HTx) is the definitive treatment for advanced heart failure

(AdvHF). It reduces the mortality rate and improves the quality of life of patients (1).

However, there are still several contraindications to heart transplantation, most of

which are serious concomitant diseases such as severe peripheral disease or

malignancies with a poor prognosis (Table 1) (2). According to Olmsted County,

Minnesota, the availability of new drugs and devices and the introduction of new

surgical techniques have led to an increase in the number of patients with AdvHF in

AHA stage C from 93,600 to 124,800 and in AHA stage D from 15,600 to 156,000.

Despite this, the number of heart donors is not increasing, resulting in a mismatch

between supply and demand (3).

For this reason, it has become necessary to draw up lists in which patients with AdvHF

are stratified according to the severity of HF. One of the best-known criteria for such a

classification is the US list allocation system, the United Network for Organ Sharing

(UNOS) allocation criteria. It divides patients into six categories based on their clinical

status, comorbidities and the use of mechanical support and/or positive inotropes.

Patients with status 1 have a higher priority than patients with status 6, who have a

lower priority (Table 2) (4).

After HTx, immunosuppressive drugs are usually used to protect against

complications related to autoimmunity. To identify patients with early rejection,

invasive procedures such as endomyocardial biopsy (EMB) and coronary angiography
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TABLE 1 Heart transplantation indications and contraindications
according to the ESC guidelines (2).

Indications
Advanced heart failure

No other therapeutic option, except for LVAD as BTT

Contraindications
Active infections

Severe peripheral arterial or cerebrovascular disease

Pharmacologic irreversible pulmonary hypertension

Malignancy with poor prognosis

Irreversible liver dysfunction or irreversible renal dysfunction

Systemic disease with multiorgan involvement

Other serious comorbidity with poor prognosis

Pre-transplant BMI >35 kg/m2

Current alcohol or drug abuse

Psychological instability that jeopardizes proper follow-up and intensive therapeutic
regime after heart transplantation

Insufficient social supports to achieve compliant care in the outpatient setting

TABLE 2 UNOS allocation criteria (4).

Status Criteria
1 • VA-ECMO

• Non-dischargeable, surgically implanted, non endovascular
biventricular support device

• MCSD with life-threatening ventricular arrhythmia

2 • IABP
• Non-dischargeable, surgically implanted, non endovascular LVAD
• VT or VF without mechanical support
• MCSD with device malfunction or failure
• TAH, BiVAD, RVAD, or VAD for single ventricle patients
• Percutaneous endovascular MCSD

3 • Dischargeable LVAD for discretionary 30 days
• Multiple inotropes or single high-dose inotrope with continuous

hemodynamic monitoring
• Single inotrope with continuous monitoring
• VA-ECMO after 7 days; IABP or percutaneous endovascular

circulatory support device after 14 days
• Non-dischargeable, surgically implanted, non endovascular LVAD

after 14 days
• Mechanical support device with complication

4 • Dischargeable LVAD without discretionary 30 days
• Inotropes without hemodynamic monitoring
• Retransplant
• Diagnosis of CHD, ischemic heart disease with intractable angina,

hypertrophic CM, restrictive CM, amyloidosis

5 • On waitlist for at least one other organ at the same hospital

6 • All other active candidates

CHD, congenital heart disease; CM, cardiomyopathy; ECMO, veno-arterial
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for vasculopathies are often required (5). Several studies have

shown associations between several HTx complications and

different types of biomarkers, emphasizing the useful utility of

the latter. This review describes the association between

biomarkers and HTx complications and analyses their unique

and important use in clinical practice.

extracorporeal membrane oxygenation; IABP, intra-aortic balloon pump; (R/l) VAD,

(right/left) ventricular assist device; TAH, total artificial heart; VA-MCSD, mechanical

circulatory support device; VF, ventricular fibrillation; VT, ventricular tachycardia.

Complications in heart transplantation

Primary graft dysfunction (PGD) is the number one cause of

early mortality in HTx. The International Society of Heart and

Lung Transplantation (ISHLT) defines PGD as a primary graft

failure involving the left and/or right ventricle, with

echocardiographic and hemodynamic changes requiring

inotropic/vasopressor support and usually necessitating the use of

circulatory support devices. The pathophysiology of PGD is not

well understood, although an ischemia-reperfusion mechanism

may be suspected. PGD usually manifests with hemodynamic

instability and cardiogenic shock (5).

Right ventricular dysfunction (RVD) is another problem

commonly caused by pulmonary hypertension (PH) in recipients.

It often occurs in patients with an elevated pulmonary vascular

resistance (PVR) greater than 4 WU, a systolic pulmonary

arterial pressure (sPAP) greater than 60 mmHg and a

transpulmonary gradient greater than 15 mmHg. Vasodilators for

the pulmonary circulation and often positive inotropes are the

treatment of choice for patients with RVD (5).

The occurrence of infections in HTx is a common complication

due to the use of immunosuppressive drugs. In the first month,

nosocomial infections are the most common infections, less

severe are mucocutaneous candidiasis and zoster reactivations. In

the second month of HTx, CMV, toxoplasmosis, aspergillosis

and P. jirovecii infections are the most common pathogens. From

the sixth month onwards, the aetiological pathogens no longer

differ from those that occur in immunocompetent patients (5).

HTx rejection is usually divided into hyperacute, cellular and

humoral rejection. Hyperacute rejection is due to pre-formed
Frontiers in Cardiovascular Medicine 02
antibodies against donor antigens. Erythrocyte antigens of the

AB0 group and HLA are the most common targets of these

antibodies. In this type of rejection, it is extremely important to

avoid incompatibilities between the transplant and the patient

during the pre-transplant assessment. Cellular rejection is the

most common form, characterized by the presence of

inflammatory cells in the myocardium, usually T-cells and

neutrophils. Finally, humoral rejection is caused by antibodies

(usually anti-HLA) against the vascular endothelium and is

usually associated with a poor outcome. Immunosuppressive

therapy and plasmapheresis are the therapies used to combat

these complications (5).

Cardiac allograft vasculopathy (CAV) is a late complication

characterized by a persistent perivascular inflammatory state

associated with intimal hyperplasia. It manifests clinically in the

form of coronary syndromes and is the most important life-

limiting factor. In these patients, coronary angiography is

performed at regular intervals to assess the early development of

coronary disease and its progression. Since the pattern of

coronary atherosclerosis in these patients is diffuse,

revascularization is often difficult, making re-transplantation the

only definitive therapy (5).

Immunosuppression is also associated with the development of

tumours. Non-Hodgkin lymphoma (NHL), Hodgkin lymphoma

(HL), Kaposi sarcoma (KS), anogenital and hepatic tumours are

the most commonly documented (5).

A summary of HTx complications can be found in Figure 1.
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FIGURE 1

Main heart transplantation complications.
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Natriuretic peptides

The International Program on Chemical Safety (IPCS), led by

the World Health Organization (WHO), describes biomarkers as

“any substance, structure or process that can be measured in the

body or its products and that affects or predicts the occurrence

of outcomes or disease” (6).

Natriuretic peptides are a family of hormones/paracrine factors

normally secreted by the ventricles of the heart. Atrial natriuretic

peptide (ANP) is secreted by the atria, while brain natriuretic

peptide (BNP) is secreted by the atria in the physiological state

and by the ventricles during left ventricular remodelling. The

increasing dilation of the ventricles triggers the secretion of the

peptides. The main receptor of ANP and BNP is the natriuretic

peptide receptor-A (NPR-A), which lowers blood pressure by

causing natriuresis and diuresis, vasodilation, an increase in

endothelial permeability and antagonization of the renin-

angiotensin system (RAAS). They inhibit ventricular hypertrophy

and ventricular remodelling. C-type natriuretic peptide (CNP) is

secreted by the atria, ventricles, kidneys and cartilage cells. Its

main receptor is the natriuretic peptide receptor-B (NPR-B),

whose activity is closely linked to bone growth (7, 8).

BNP and the N-terminal pro-peptide (NT-proBNP) are often

elevated in transplanted patients, especially in the first two

months after HTx. Several studies have demonstrated the

association between elevated BNP blood levels and graft

rejection. Ogawa et al. found a close link with cellular rejection.

Similarly, Wu et al. demonstrated a correlation between BNP and

humoral rejection (9). Mandeep et al. found a connection

between hemodynamic disturbances, right-sided cardiac

abnormalities (including RVD and tricuspid regurgitation) and
Frontiers in Cardiovascular Medicine 03
elevated BNP levels. They discovered that the hemodynamic

disturbances in these patients lead to coronary vasculopathy (10).

BNP is also associated with ischemia-reperfusion injury in the

early stages after HTx, indeed, Mcllroy et al. found a relation

with this and PGD, with a sensitivity of 100% and a specificity

of 44% (11).

NT-proBNP was the central molecule in the study led by Arora

et al. Using a population of 220 HTx patients, they demonstrated not

only a link between the pro-peptide and allograft rejection, CAV and

mortality, but also that NT-proBNP can be used to diagnose

rejection (12). Avello et al. confirmed the link between this

molecule and rejection, determining a sensitivity of 87.6% and a

specificity of 70% (13), meanwhile Knook et al. has estimated a

cut-off of 63 pmol/L as a risk factor for late rejection > 2R, finding

a sensitivity and specificity of 86% and 94% respectively (14). This

molecule can even predict the risk of developing CAV prior to

HTx: the higher the levels, the higher the likelihood. In addition,

the increase in NT-proBNP levels is associated with kidney and

liver dysfunction after transplantation (15).
Troponins

In human heart, troponin complex is a crucial component of

muscular fibres, and it consists of three subunits: C, T and I

troponin. The last two are currently used to detect myocardial

damage and death (16). High-sensitivity troponin T (hs troponin-

T) is a biomarker strictly related with PDG, it is indeed higher in

patients with such complication, being more specific than NT-

proBNP, with high values in the early phases of HTx. Méndez

et al. has demonstrated that hs troponin-T can be used for both left
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and right ventricular graft dysfunction with a sensitivity of 75% and

specificity of 87% (17).

Troponin T and I can predict the risk of development of CAV.

Also, troponin-T concentrations are significantly associated with

microvascular fibrin deposits, arteriolar endothelial activation,

macrophage infiltrates, depletion of vascular fibrinolytic and

anticoagulant components, which lead to coronary disease (18).

On the other hand, Laberrere et al. found that troponin-I is

frequently elevated in patients with fibrin deposits in

microcirculation (19). Moreover, Miller et al. developed a

retrospective analysis which found that modest elevations in donor

troponin T and I at the time of cardiac harvest are associated with

a reduced long-term risk of CAV (20).

Recent studies have found a strong relationship between hs-

troponins and HTx-related problems. Dyer et al. verified their

association with rejection in a 42-patient trial in 2012, with an

area under the curve (AUC) of 0.89 (21). Fitzsimons et al.

demonstrated a sensitivity of 8%–100% and specificity of 13%–

88% for ACR detection, with a low PPV and a relatively high

NPV (79%–100%) (22), and Patel et al. demonstrated that a cut-

off of 15 ng/L had a sensitivity of 94%, specificity 60%, PPV

18%, and NPV 99% (23).
Soluble suppression of tumorigenesis-2
(sST2)

Interleukin-33 (IL-33), also known as Suppression of

Tumorigenesis-2 Ligand (ST2l), is a molecule whose signalling

pathway (mediated by its receptor ST2) is strictly associated with

the immune system, but which also has anti-apoptotic, anti-fibrotic

and anti-hypertrophic effects in the heart (24). In 2002, Weinberg

et al. discovered sST2, a decoy receptor for ST2 that is usually

overexpressed in myocardial injury or cell death. It is secreted by

cardiac myocytes, endothelial cells, alveolar epithelium and various

types of blood cells (CD4+ T lymphocytes, mast cells) (25).

Due to its role in myocardial damage, several studies

investigated sST2 as a possible marker for allograft rejection.

Pascal-Figal et al. reported a correlation between ST2 levels and

acute allograft rejection in adults (26), while Matheus et al.

confirmed this for the paediatric population (27). Grupper et al.

also demonstrated that postoperative sST2 levels ≥35 ng/ml are

frequently associated with humoral rejection (28). On the other

hand, a 2021 study guided by Zhang, found that low levels of

this molecule are related with CAV (29).
Pro-inflammatory cytokines

Cytokines are molecular mediators which modulate

inflammatory response via complex pathways. They are used as

biomarkers for many pathologies such as immunoproliferative

disorders, inflammatory diseases, sepsis, and heart failure (30).

This family of molecule is usually divided into pro-

inflammatory cytokines, such as Tumour Necrosis Factor- α

(TNF-α), Interleukin-1β (IL-1 β), IL-6, IL-8 and IL-12, and anti-
Frontiers in Cardiovascular Medicine 04
inflammatory cytokines, IL-4, IL-6, IL-10, IL-11, IL-13, IL-1

receptor antagonist (IL-1RA) and TGF-β. While the first group

facilitates inflammatory reactions, communicating with the

surrounding tissues of a death cell and entering the systemic

circulation to activate the immune cells and to induce the acute-

phase reaction, the second group inhibits inflammatory pathways

and the production of pro-inflammatory cytokines (31).

While the first group promotes inflammatory responses by

communicating with the surrounding tissue of a dead cell and

entering the systemic circulation to activate immune cells and

trigger the acute-phase response, the second group inhibits

inflammatory pathways and the production of pro-inflammatory

cytokines (31).

Deng et al. have shown an association, in the early post-

operative period, between raised IL-6 and TNF- α levels, IL-2

suppression and early systolic and diastolic dysfunction. Even

more, IL-2 suppression was related to acute rejection (32).

Similar findings were confirmed for the right ventricle by Lei (33).

Przybylek et al. investigated several molecules that could be

used as a CAV biomarker. They found a positive correlation

between pro-inflammatory cytokines (except for interferon-γ)

and coronary vasculopathy. These findings were also confirmed

for the right ventricle (34).
Donor specific antibodies

Anti-HLA donor-specific antibodies (DSA) develop in 50% of

solid organ transplant recipients (35). Antibodies like these are

seen in 3%–11% of HTx patients prior to treatment, and 10%–

30% acquire DSA after transplantation (de novo DSA) (36).

Immune-assay is used to evaluate them, and the most recent

technique, the Scintillation Proximity Assay (SPA), has

outperformed the Complement-Dependent Cytotoxicity (CDC)

assay in both sensitivity and specificity. SPA tests the specificity

and relative strength of complement-binding and non-

complement-binding HLA antibodies by attaching single pure

HLA antigens to distinct microspheres (36).

Anti-HLA DSA are found in almost every humoral rejection

after HTx, so they were removed from the ISHLT criteria for

humoral rejection in 2012 (although their evaluation is still

strongly recommended) (35, 36). Studies have demonstrated their

association with both asymptomatic and symptomatic CAV, and

have even underlined their presence as a risk factor for coronary

vasculopathy (36). DSA against anti-HLA class II, especially DQ,

are most strongly associated with graft loss (36).

There are specific DSA antibodies that can be used to detect

HTx complications. Anti-MHC class I related chain A (MICA)

detect cellular rejection (37), while the presence of anti-

angiotensin 1 receptor (AT1R) prior to transplantation increases

the risk of cellular and humoral rejection (38). Anti-vimentin

antibodies are usually associated with the development of CAV (39).

Tran et al. (2016) investigated the formation of de novo DSA

antibodies and CAV, rejection, and graft survival in paediatric

HTx patients, discovering a significant adverse impact in all of

them (40). Previously, in 2008, Kaczmarek et al. identified the
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same high connections with adult patients in a trial with 213 HTx

patients (41), while Smith et al. and Ho et al. recognized de novo

DSA as a predictor of poor survival (42, 43).

In terms of humoral rejection and CAV, Nath et al. revealed a

link between them and DSA antibodies in 2010 (44), conclusions

that were corroborated by Ho et al. in adult patients (45) and

Ware et al. and Peng et al. in children (46, 47). Several more

trials confirmed this relationship and found a robust correlation

between CAV and humoral rejection in these patients (48–50).
Circulating extracellular vescicles

The Extracellular Vesicles (EVs) are lipidic vesicles secreted by

all types of cells into the extracellular matrix. They are divided

according to their size, biochemistry, and function in micro

vesicles, exosomes and apoptotic bodies. Castellani et al.

developed a study which demonstrated the higher number of

EVs concentration in plasma in patients with cellular or humoral

rejection with a receiver operating characteristics curves provided

an AUC range of 0.73–0.94 for detecting acute rejection and an

accuracy of 86.5% (51). Kennel et al. in 2018 identified 15

differentially expressed proteins during rejection using liquid

chromatography–tandem mass spectrometry analysis of serum

exosomes (52). Vesicles C4d + are the most common studied and

are linked with humoral rejection (53), indeed Hu et al. in 2020,

after the purification of donors’ heart exosomes with anti-donor

HLA I antibody beads, identified C4d protein expression as

marker for acute rejection (54).
Donor derived cell-free DNA

Cell-free DNA (cfDNA) is circulating DNA generated from

dead cells; in transplanted patients, cfDNA may originate from

both the recipient and the donor of the graft, in which case it is

known as donor-derived cfDNA (dd-cfDNA). It is derived from

apoptotic and necrotic cells and can be utilized to detect

rejection. Recent methods to differentiate recipient cfDNA from

dd-cfDNA include single nucleotide polymorphisms (SNPs),

genotyping the whole-genome using the patients’ pre-transplant

DNA, and then comparing each donor-recipient pair to identify

meaningful SNPs. A different technique is to estimate the

recipient genotype, and then use a computational approach to

detect donor and recipient SNPs (55).

Multiple investigations have demonstrated that elevated dd-

cfDNA in patients typically correlates with CAV, acute rejection,

and poor survival (56–58). Snyder et al. found a rise of dd-

cfDNA in the setting of acute rejection with an AUC of 0.84 at a

threshold of 1.7% for the detection of 2R acute cellular rejection

(ACR) or humoral rejection (AMR) in 2011 (59), Vlaminck et al.

found similar results in 2014, with an AUC of 0.83 and 0.95 for

the diagnosis of moderate and severe rejection, respectively (60).

Agbor-Enoh et al. observed that patients with histological

evidence of acute rejection had higher dd-cfDNA levels than

controls with mild or no rejection (0.38% vs. 0.03%, p 0.001),
Frontiers in Cardiovascular Medicine 05
and that levels were higher in AMR than ACR (61). Finally, the

multicentre trial from AlloMap Registry validated the clinical

utility of dd-cfDNA for acute allograft rejection surveillance,

finding a NPV of 97% and sensitivity of 44% (62).
Gene expression profiling

Measuring the expression of genes in different cell types is known

as gene expression profiling (GEP). This needs to be ascertained by

evaluating the cellular quantities of messenger RNA (mRNA)

utilizing real-time PCR (rt-PCR) and next-generation sequencing

technologies. Transcription is the process by which mRNA is

produced from DNA, and it is often utilized as a building block in

the endoplasmic reticulum for protein synthesis (63).

Using rt-PCR, the Cardiac Allograft Rejection Gene Expression

Observational (CARGO) investigation assessed 11 genes in

peripheral blood mononuclear cells. In stable HTx patients, the

overexpression of these genes may be utilized to identify

moderate-to-severe acute cellular rejection. With a 99% NPV and

a 10% PPV, the AlloMap test is the commercial molecular

expression of GEP (64). The use of this test in patients with a

low pre-test chance of rejection has been confirmed by the

HEARTBiT research and other studies (65), providing a NPV of

99% for moderate-severe cellular rejection and low PPV (66–68).

Tarazon et al. have recently investigated the expression of

mitochondrial genes in peripheral blood cells as a potential

rejection diagnostic (69), moreover, these RNA sequences have

been shown to activate the immune system, which makes them

both a possible rejection mediator and a marker (70, 71).

The Invasive Monitoring Attenuation through Gene Expression

(IMAGE) study noticed that the 2-year cumulative rates for

composite primary outcome patients monitored with AlloMap and

EMB were similar, 14.5% and 15.3%, verifying that HTx patients

with low rejection risk who received heart transplant for more

than 6 months can benefit from PBMC GEP instead of invasive

assessment (72). The CARGO II trial confirmed its predecessor’s

outcomes, achieving PPV values of 4% and 4.3% at months 2–6

and >6 after HTx, respectively, and NPV values of 98.4% and

98.3% (66). Finally, Loupy et al. revealed that tissue-based

evaluations of multiple pathogenesis-based transcripts suggesting

NK burden, endothelium activation, macrophage burden, and

interferon-effects can be utilized to identify humoral rejection and

correlate with the degree of injury and disease activity (73). while

Shahzad et al. conducted a pilot study on the capacity of PBMC

GEP to evaluate CAV with good results in 2010 (74).
Micro RNA

MicroRNAs, or non-coding RNA sequences of 20–25

nucleotides, serve a variety of purposes in human cells. In order

to inhibit or enhance gene transcription, they are frequently

attached to mRNA or proteins (75). Different types of miRNAs

are released by death cells in response to different types of

allograft rejection (76).
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Three different types of miRNAs—miR-139-5p, miR-151a-5p,

and miR-186-5p—that were enhanced in HTx rejection have

recently been found by Kennel et al. MiR-29c-3p was discovered to

be typically linked to humoral rejection, whereas miR-486-5p was

linked to cellular rejection (despite being highly expressed in red

blood cells, which may also have high levels in haemolysis) (77, 78).

Conversely, an increase in endothelium-enriched miRNAs is

typically associated with CAV. According to Singh et al.,

individuals with CAV had increased levels of miR-21-5p, miR-

92a-3p, miR-92a1-5p, miR-126-3p, and miR-126-5p; miR-92a-3p

was especially elevated in patients with stable atherosclerosis, and

miR-92a-1-5p levels in native CAV (79). MiR-628-5p was

effectively analysed by Neumann et al. as a novel CAV marker (80).

Despite the fact that numerous investigations in the general

community have been designed, the connection between
FIGURE 2

Main biomarkers in heart transplantation and their principal activities.
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miRNAs and diastolic functioning in the HTx population has

not been thoroughly examined. In particular, Chade et al. found

high levels of miR-183 and miR-376c and low concentrations of

miR-1271-3p and miR-196a in diastolic cardiomyopathy (81),

meanwhile Zhang et al. demonstrated the positive correlation

between miR-19b-3p and miR-181b-5p and diastolic dysfunction

(82) and Sun et al. had the same results with miR-133a-1-

rs8089787 (83).
Other biomarkers

A molecule known as antigen carbohydrate-125 (CA-125) is

frequently utilized in oncology as a marker for endometrial,

gallbladder, and ovarian cancer (84–86). It often drops in the
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first few months following transplant in HTx patients, typically by

10–20 UI/mL eight months following surgery. According to López-

Vilella et al., cellular rejection was linked to its rise (87).

Drugs intended to prevent rejection often have antiproliferative

effects, which result in lymphocytopenia, which is defined as a

lymphocyte count <3,000/mm3 in HTx patients. Intriguingly, a

number of investigations revealed a correlation between temporary

lymphocytopenia and CAV, autoimmune responses, and rejection.

This is most likely due to the relationship between the condition

and the reactive buildup of donor T-cells, which compromises

peripheral tolerance (88). The lymphocyte-neutrophil ratio (LNR),

which has been shown by Choi et al. to be a significant HTx

producer and that levels >0.46 are linked to acute rejection (89).

Finally, as an indicator of inflammation, the liver and adipose

tissue release C Reactive Protein (CRP), an acute phase protein. In

HTx patients, Arora et al. discovered both a correlation between

CRP, CAV, and CRP and CRP and all-cause death (12).

See Figure 2 for an overview of the biomarkers’ primary

functions, and Table 3 for a table showing the relationships

between the biomarkers and HTx problems.
Biomarkers in the early post transplant
period

In addition to PGD, during the first month after the HTx the

most common complications are arrhythmias and pericardial
TABLE 3 Synthesis of HTx complications and biomarkers association,
ordered by their sensitivity and specificity.

Complication Sensitivity Specificity
Rejection • BNP (+++)

• NT-proBNP (+++)
• sST2 (++)
• DSA (++)
• dd-cfDNA (++)
• GEP (++)
• miR 139-5p, miR 151a-5p,

miR 186-5p (++)
• EV (+)
• CA 125 (+)
• Lymphocytopenia (+)
• Low LNR (+)

• miR 139-5p, miR 151a-5p,
miR 186-5p (+++)

• sST2 (+)
• BNP (+)
• NT-proBNP (+)
• DSA (+)
• dd-cfDNA (+)
• GEP (+)
• EV (+)
• CA 125 (+)
• Lymphocytopenia (+)
• Low LNR (+)

CAV • miR 21-5p, miR-92a-3p,
miR-92a1-5p, miR-126-3p,
miR-126-5p (+++)

• NT-proBNP (+++)
• hs-troponins (+++)
• DSA (++)
• CRP (++)
• EV (+)
• Pro-inflammatory

cytokines (+)

• miR 21-5p, miR-92a-3p,
miR-92a1-5p, miR-126-3p,
miR-126-5p (+++)

• NT-proBNP (+)
• hs-troponins (+)
• Pro-inflammatory

cytokines (+)
• DSA (+)
• EV (+)
• CRP (+)

PGD • BNP (+++)
• Pro-inflammatory

cytokines (++)

• BNP (+)
• Pro-inflammatory

cytokines (+)

RVD • BNP (+++)
• hs-troponins (+++)
• Pro-inflammatory

cytokines (+)

• BNP (+)
• hs-troponins (+)
• Pro-inflammatory

cytokines (+)

Mortality • NT-proBNP (+++)
• CRP (++)

• NT-proBNP (+)
• CRP (+)
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effusion. Less common problems are mediastinal haemorrhage

and sternal wound infection (90).

Arrhythmias in transplanted patients is commonly in case of

prolonged graft ischemia, perioperative reperfusion injury, re-

warming of cold myocardial tissue, blunt trauma, and unbalanced

serum electrolytes (91). Furthermore, a time of ischemia superior

to 4 h increases 30-days, 1-year mortality and the rates of chronic

rejection (92). Sympathetic denervation, surgical trauma, ischemic

injury to the sinus node, and graft ischemia are the main causes

of post-surgical bradycardia, which is one of the most common

arrhythmias in the early-postoperative (93). Atrial fibrillation, on

the other hand, is one of the most common tachyarrhythmias,

being detected in 10%–24% of HTx patients (94). Finally,

premature ventricular contractions are present in 100% of these

patients in the first month after HTx and are not associated with

mortality (95), but worsening or sustained ventricular arrhythmia

must be investigated immediately since their association with CAV

and acute rejection (92, 96–98).

Albert et al. noticed that high CRP levels were associated with an

increased risk of SCD, whereas Streitner et al. reported high levels of

CRP, NT-proBNP, and IL-6 in patients who experienced an

electrical storm (99, 100). IL-6 is closely linked to ventricular

tachycardia (VT), ventricular fibrillation (VF), and SCD

(101–103). Several studies have shown a connection between high

levels of natriuretic peptides and hs-troponins and VF/VT and SCD

(104–108). Liu et al., in particular, hypothesized an ischemic

explanation for cardiac arrhythmias, citing troponins generated

during myocardial necrosis (109). The MADIT-CRT trial reported

an increased risk of ventricular arrhythmias and death in patients

with a 10% increase in sST2 concentration after one year, although

an elevated concentration at baseline was not predictive of VT/VF

(110). Finally, higher levels of Galectin-3, a protein expressed after

tissue damage that is involved in mRNA splicing, anti-apoptotic

signalling control, pathogen detection, and inflammation processes,

can predict ventricular arrhythmias in SCD patients (111).

Pericardial effusion is often found after HTx, especially in patients

with no prior cardiac surgery (112, 113), in cases of receiver-donor

mismatch (113), and in patients receiving cyclosporine as part of

immunosuppressive medication (114). It usually occurs within the

first three months of surgery, and its relationship with graft

rejection is controversial; Valentine et al. and Ciliberto et al. saw a

positive correlation between them (115), Hauptman et al., on the

other hand, noticed a lack of association between acute rejection

and pericardial effusion (113). Tanaka et al. and Kramer et al.

reported that high BNP levels in pericardial fluid (PF) are

connected to both systolic and diastolic left ventricular dysfunction

(116, 117), whereas fibroblast growth factor 2 levels are linked to

the extent of coronary collaterals (118, 119) and unstable angina

(120). Finally, fatty-acid binding protein and troponins higher in PF

than plasma are correlated with myocardial ischemia (121–123).
Future perspectives

Every day, new biomarkers are identified and new technologies

are applied in laboratories to render identification more accurate
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and sensible. The newly discovered molecules can be employed for a

variety of purposes, including recognizing high-risk patients,

determining pathologies’ specific phenotypes, and analysing specific

therapeutic targets.

In regard to the first functionality, predicting the risk as early as

feasible and establishing risk ratings can assist the physician in

determining when and how to begin the appropriate therapy.

Genomic sequencing and nucleic acid-based biomarkers

(miRNAs, cfDNA, etc.) may hold the key for accomplishing this

objective. Furthermore, these new biomarkers might identify

individual resistances and vulnerability to diseases, as well as

their clinical manifestations, allowing for highly specific precision

treatment. Finally, the distinct interactions with a drug could be

determined, enabling not only to initiate more appropriate

immunosuppressive therapies to reduce the incidences of HTx

comorbidities, but also to predict potential adverse effects and

pharmacokinetic properties even before the drug was assumed.
Conclusions

Many biomarkers are available to aid in the early detection of

cardiovascular disease in recipients of heart transplants. These

indicators can be used in conjunction with contemporary imaging

techniques like T1/T2-mapping in cardiac magnetic resonance and

Speckle Tracking Echocardiography to identify early cardiac

dysfunction and ensure that patients receiving the best care

possible on time. The primary drawback of the biomarkers

examined in HTx is their frequent lack of specificity; for example,

hs-troponins may be raised in both CAV and PDG. dd-cfDNA is

not useful for diagnosing patients who have had numerous

transplants. RNA molecules are scarcer, but new research indicates

that they are more selective.
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