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Abstract

The present work is divided into two parts. First, we discuss how the functional
form of thermodynamic observables can be deduced from the geometric
properties of subsets of phase space. The geometric quantities taken into account
are mainly extrinsic curvatures of the energy level sets of the Hamiltonian of a
system under investigation. In particular, it turns out that peculiar behaviors
of thermodynamic observables at a phase transition point are rooted in more
fundamental changes in the geometry of the energy level sets in phase space.
More specifically, we discuss how microcanonical and geometrical descriptions of
phase transitions are shaped in the peculiar Kosterlitz–Thouless phase transition
and in the special case of the ϕ4 model. In the second part, we will focus on the
quantification of quantum entanglement, a topic of great current interest. We
will derive entanglement and quantum correlation measures, from a geometrical
procedure, which are valid for multipartite hybrid states. We also provide
a physical and operational meaning of the proposed entanglement measures
for pure states. Furthermore, we show that the proposed measures can either
be analytically or numerically computed. Finally, we test the validity of the
proposed measure through a variety of examples.
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Introduction

“Geometry will draw the soul towards truth and create the spirit of
philosophy.”

– Plato, The Republic.

Geometry is the language by which Nature manifests itself in the world of
forms and matter. It is an elegant and universal language, yet thoroughly
and meticulously undisclosed. In the twentieth century, physics witnessed
a great sophistication regarding the description of Nature when gravitation
and electromagnetism were formulated as field theories in four-dimensional
space-time. This gave reason to explore the world around us through broader
lenses including geometry. Since then, geometric intuition has been taken more
seriously. For example, in the 1970s, it has been shown that all the building
blocks of quantum field theory can be formulated in terms of geometrical
concepts such as vector bundles, connections, curvatures, covariant derivatives,
and spinors. The geometric description of physical concepts is not only elegant
but also generally useful. For example, Minkowski’s geometrization of special
relativity inspired Albert Einstein to formulate general relativity.
In the present work, we will attempt to bring out the usefulness of geometry in
two different fields that are still not fully understood and well characterized
up to now: classical phase transitions, and the quantification of quantum
entanglement. This thesis is divided into two parts. The first part will be
devoted to the study of classical phase transitions. The characterization of
phase transitions remained an open subject for a long time because there were
no unified theories of phase transitions taking into account the following two
concepts: the occurrence of phase transitions in small systems (for example,
a phase transition appearing in a snowflake), and the occurrence of phase
transitions in systems without symmetry breaking. We will approach phase
transitions using a geometrical way, more precisely, through the geometry and
topology of energy level sets in phase space. We will then study a very peculiar
phase transition, called the Kosterlitz–Thouless phase transition, which occurs
without symmetry breaking. We will show that the phase transition stems from
a change in the topology and geometry of the phase space. Finally, we will apply
the geometrical and topological analysis to another model, namely the two-
dimensional ϕ4 model. This model is known to undergo a second-order phase
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transition. we will thus show that at the transition point, geometric indicators
undergo an abrupt change, which suggests a deeper origin to the phase transition.
The second part will be dedicated to quantum entanglement. The presence
of entanglement in quantum states is widely recognized as one of, if not the,
defining property of quantum mechanics. The nature of quantum entanglement
is well understood for bipartite pure quantum states. However, this is not the
case for pure multipartite entanglement, where entanglement becomes much
more complex, and its characterization and quantification are still open subjects.
What is even more mysterious is that in the case of mixed multipartite quantum
states, other quantum features appear in addition to quantum entanglement. In
fact, mixed entangled states can display other types of non-classical correlations
such as steering and nonlocality. Even stranger: when unentangled states
are mixed, they can display non-classical behavior. Non-locality, steering,
entanglement, and any other type of non-classical correlations all belong to a set
we call quantum correlations. Following a geometrical method, we will propose
a quantum entanglement measure in the case of pure multipartite states. And
for mixed multipartite states, we will define a measure of entanglement and a
measure of quantum correlations for multipartite states.
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PART I

Geometrical characterization of
classical phase transitions
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1

Introduction of part I

Phase transitions (PTs) encompass a very large number of phenomena
that span from the cosmological scale down to the subnuclear scale and thus
cover a huge range of energies and spatial dimensions. Despite their relevance
and the extremely vast literature on this topic, a general and complete theory is
not yet available. The successful and powerful phenomenological theory due to
Landau associates PT with the spontaneous symmetry-breaking phenomenon.
However, there are many systems undergoing PT in the absence of symmetry-
breaking: the liquid-gas PT which is a first-order transition; systems with
continuous symmetry which cannot be broken spontaneously at any finite
temperature in dimensions two or lower according to the Mermin–Wagner
theorem [112]; systems with local symmetries (gauge theories) which, after the
Elitzur theorem [58], undergo PTs in the absence of an order parameter; glasses
and supercooled liquids; amorphous and disordered systems; homopolymers
and proteins undergoing folding transitions

A paradigmatic example of PT in the absence of symmetry-breaking is provided
by the Kosterlitz–Thouless (KT) transitions [101] which manifest in several kinds
of two-dimensional systems in condensed matter, such as the XY ferromagnet
[110] describing spins on a 2D lattice, or a 2D Bose liquid as in the case of
a 2D film of superfluid 4He, with O(2) symmetry [20], or two-dimensional
superconductors [136], or a 2D liquid crystal [167], 2D melting into a ‘liquid
crystal’ phase with sixfold orientational order [82], or the ‘quasi-condensation’
of a uniform 2D fluid of identical bosons [81].

Other transitional phenomena which are experimentally well known but are still
at odds with the existing theoretical frameworks are PTs occurring in small
systems, far from the thermodynamic limit which is commonly considered as a
necessary requisite after the Yang–Lee theory [170]. Among many examples,
we can mention the formation of nanoscopic snowflakes [131], Bose-Einstein
condensation [103], homopolymer [106] and protein [47] folding. Therefore
the motivation for a better understanding of the deep origin of PTs is mainly
twofold: there are many PT phenomena occurring without a symmetry-breaking
that are obviously not encompassed by the Landau–Ginzburg theory, and
there are PTs occurring in nanoscopic or mesoscopic systems (far from the
thermodynamic limit) that are not encompassed by the Yang–Lee theory or by
the Dobrushin–Ruelle theory [65].

During the last two decades, the mentioned deeper level of description of PTs
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has been found to be rooted in a novel and successful explanation of the origin
of chaos in Hamiltonian dynamics tackled by means of Riemannian differential
geometry [123]. Actually, a Hamiltonian flow can be identified with a geodesic
flow on a Riemannian manifold equipped with a suitable metric tensor. Then,
by combining together this geometrization of Hamiltonian dynamics with the
microcanonical study of PT by means of Hamiltonian dynamics, a question
arose naturally: are there peculiar changes in the geometry of the mechanical
manifolds in correspondence with a phase transition? The answer turned out
in the affirmative and, more precisely, it has been found that the topological
properties of certain submanifolds of phase space are at the very grounds of
the occurrence of PT. For a system described by a Hamiltonian of the form
H(p, q) =

∑N
i=1

1
2p

2
i + V (q1 · · · qN ), the relevant manifolds are equivalently

the energy level sets ΣE = {H(p1 · · · pN , q1 · · · qN ) = E ∈ R} and the balls
{ME = H−1 ((−∞, E])}E∈R bounded by the ΣE in phase space, or the potential
level sets Σv = {V (a1 · · · qN ) = v ∈ R} and the balls {Mv = V −1 ((−∞, v])}v∈R
bounded by the Σv in configuration space.

The main difference between the topological approach and the usual association
of PTs with some kind of singularity of the statistical measures is that the
topological approach puts in evidence that all the information concerning the
appearance of a PT is already ‘encoded’ in the interactions among the degrees
of freedom of a system. A fact that is upstream of any signature, singular or
not, of a PT. Otherwise said, the statistical measures are conceptual tools, not
directly accessible to experiments, the singularities of which are used to interpret
the occurrence of PTs phenomena, to the contrary the interactions among
the constituents of a system have their own physical reality (experimentally
accessible) and their knowledge is sufficient to predict the occurrence of a PT
by suitably analyzing the energy level sets H(p1 · · · pN , q1 · · · qN ) = E, or the
potential energy level sets V (q1 · · · qN ) = v.

Besides its application to more traditional transitions [62], this topological
approach has been already successfully used to tackle the PT of a gauge model
in the absence of an order parameter [122]. Moreover, peculiar topological
changes entailing a PT can take place at any finite number of degrees of
freedom, thus allowing to go beyond the thermodynamic limit dogma.

Remarkably, topological concepts are at the core of the KT theory independently
of the above-mentioned approach, in fact for the planar model of classical spins
and for a superfluid two-dimensional film there are spatial vortexes and their
cores are holes in the surface where the system lives. Hence a vortex is called
a topological defect [100]. Adding holes to a surface makes a change of its
homotopy type.

The first part of this thesis will be dedicated to characterizing the KT phase
transition of the XY-2D model in a topological framework, however, instead of
looking at topological changes in real space, we will focus on certain aspects
of the geometry—tightly related to the topology—of the high dimensional
manifolds ΣE and ME in phase space. This is an original work that we have
published in [10] and [8]. Using the in-depth study of the geometrical and
topological properties of the KT phase transition, we will, at the end of this
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part, study another example of application, which is the ϕ4 model. This model
undergoes a second-order phase transition [38], and through our original work
published in [9], we show that geometrical quantities defined in ΣE undergo an
abrupt change.

First, we will characterize the Kosterlitz-Thouless (KT) phase transition
of the XY 2D model in the microcanonical ensemble from the thermodynamic
point of view and we will then investigate the geometry and topology of energy
level sets in phase space to verify the Topological Hypothesis on the deep origin
of phase transitions. The Chapter 2 of this part is devoted to a general review
of the microcanonical thermodynamics. The first part presents an overview
of the microcanonical ensemble thermodynamics. The second part consists
of a brief review of the historical pathway that led to the elaboration of the
Topological Hypothesis on the origin of phase transitions. In Chapter 3 the
KT phase transition in XY 2D model is characterized within the microcanonical
thermodynamic framework previously introduced. The signature of phase
transitions in the microcanonical ensemble can be found in the behavior of
derivatives of the entropy with respect to the energy. The results of numerical
simulations are presented in the last section. In Chapter 4, we present
a very concise review of Riemannian differential geometry and topology of
submanifolds defined as regular level sets of functions in the phase space. In
Chapter 5, we described the microcanonical thermodynamics of XY 2D model
in the geometrical framework introduced in the previous chapter deriving the
expression of an extrinsic geometrical estimator of the topological invariants
of the regular energy level sets. And, we present the results of Hamiltonian
dynamic simulations that investigate the topology and geometry of energy level
sets in the phase space endowed with a Euclidean metric. Finally, in Chapter
6, we will study, as another example of application, the classical ϕ4 model.

17



2

Review of microcanonical
thermodynamics

2.1 Introduction

In this chapter, we present an overview of the thermodynamics of phase
transitions in the microcanonical ensemble and their origin due to the geometry
and topology of phase and configuration space. In Section 2.2, a short review
of the thermodynamics of the microcanonical ensemble and of the classification
schemes is proposed for phase transitions in such a statistical ensemble. In
particular two main classification schemes will be discussed: one (extending the
Ehrenfest classification to the microcanonical ensemble) is based on the loss of
analyticity of the microcanonical entropy SN in the thermodynamic limit, the
other, more recent, is based on the analysis of the inflection points on derivatives
of microcanonical entropy at some order and in finite systems. Both methods
will be used to classify the KT phase transition in the XY 2D model in the next
chapter. Finally, in Section 2.3 a very brief review is presented on the so called
Topological Hypothesis: a conceptual framework where the deep origin of phase
transitions in the microcanonical ensemble has been found in topological and
geometrical properties of the support of the microcanonical measure: the level
sets of (potential) total energy in (configuration) phase space.

2.2 Thermodynamics in the microcanonical ensemble

Introduction to microcanonical statistical ensemble

The foundations of classical statistical mechanics are deeply rooted in many
body dynamical Hamiltonian systems. Let us consider a Hamiltonian system
described by 2N -degrees of freedom (p, q) = (p1, ..., pn, q1, ..., qn) in phase space
Λ and

HN = 1
2

N∑
i=1

(pi)2 + VN (q1, ..., qN ) (2.1)

18



2.2. THERMODYNAMICS IN THE MICROCANONICAL ENSEMBLE

The dynamic of the system is given by Hamilton equations
ṗi = −∂H

∂qi

q̇i = ∂H

∂pi
.

(2.2)

Such equations can be rewritten in a more compact form, introducing the
Hamiltonian vector field XH

XH =
N∑
i=1

(
− ∂H

∂qi
∂

∂pi
+ ∂H

∂pi
∂

∂qi

)
, (2.3)

so that they take the form

dxj
dt = Xj

H , j = 1, ..., 2N (2.4)

where x2i−1 = pi and x2i = qi for i = 1, ..., N . In general, Hamiltonian systems
with a number N ≥ 3 of degrees of freedom are not integrable, i.e. it is not
possible to find N constant of motion in involution. However, the Poincare-
Fermi theorem states that in general for the Hamiltonian systems, N ≥ 3
guarantees the existence of only one constant of motion, the total energy of the
system.

Definition 2.1. For Hamiltonian systems with a number N ≥ 3 of degrees of
freedom, the dynamics remain confined on a hypersurface of constant energy

ΣE = {(p1, ..pN , q1, ..., qN ) ∈ Λ | H(p, q) = E} . (2.5)

If the Hamiltonian system is ergodic on the energy level sets ΣE , i.e. the only
non-zero measure invariant subspace under the Hamiltonian dynamics is ΣE ,
the Birkoff theorem holds

lim
T→+∞

1
T

∫ T

0
f(p(t), q(t)) dt =

∫
ΣE

f(p, q) µ , (2.6)

where f is a real function defined over phase space and µ is the invariant
probability measure on ΣE with respect to the Hamiltonian flow. The probability
density µ can be regarded as the restriction to energy level sets of the invariant
probability density ρ defined on Λ∫

ΣE

fµ =
∫

Λ f δ (H(p, q) − E) ρ∫
Λ δ (H(p, q) − E) ρ . (2.7)

Theorem 2.1 (Liouville’s theorem). The smooth measure defined in the phase
space is invariant under the Hamiltonian flow

LXH
ρ = 0 , (2.8)

where

ρ =
∏N
i=1 dpi ∧ dqi∫

Λ
∏N
i=1 dpi ∧ dqi

. (2.9)
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2.2. THERMODYNAMICS IN THE MICROCANONICAL ENSEMBLE

Proof. In order to prove this we show that LXH
ω = 0 where ω = dp1 ∧ dq1 ∧

... ∧ dqN ∧ dpN is the symplectic volume form. Using the homotopy formula
LV = dıV + ıV d and remembering that dω = 0 we have that

LXH
ω = dıXH

ω = d
N∑
i=1

[
− ∂H

∂qi
dq1 ∧ dp1 ∧ ... ∧ d̂pi ∧ dqi... ∧ dpN ∧ dqn+

+ ∂H

∂pi
dq1 ∧ dp1 ∧ ... ∧ dpi ∧ d̂qi... ∧ dpN ∧ dqN

]
=

=
N∑
i=1

[
− ∂2H

∂qi∂pi
dq1 ∧ dp1 ∧ ... ∧ dpi ∧ dqi... ∧ dpN ∧ dqn+

+ ∂2H

∂qi∂pi
dq1 ∧ dp1 ∧ ... ∧ dpi ∧ dqi... ∧ dpN ∧ dqN

]
= 0 .

(2.10)

■

Therefore, the measure of the volume is preserved by the dynamics. Coming
back to Eq.(2.7), we have∫

ΣE

f µ =
∫

Λ f δ (H(p, q) − E)
∏N
i=1 dpi ∧ dqi∫

Λ δ (H(p, q) − E)
∏N
i=1 dpi ∧ dqi

=
∫

Λ fδ (H(p, q) − E)
∏N
i=1 dpi ∧ dqi

ΩN (E) ,

where

ΩN (E) =
∫

Λ
δ (H(p, q) − E)

N∏
i=1

dpi ∧ dqi (2.11)

is the area of the energy level sets and it is the microcanonical partition function:
in some sense, it counts the "number" of configurations compatible with a given
constraint (here is the constant energy). From this expression, the specific
Boltzmann entropy can be defined

SN (ε) = kB
N

ln
(

ΩN (Nε)
ΩN0

)
, (2.12)

where ε = E/N , N is the total number of degrees of freedom, kB is the
Boltzmann constant and Ω0 is a meaningless arbitrary N -dimensional phase
space volume scale to have a non-dimensional argument in the logarithm. In
what follows we will adopt natural units, i.e. kB = 1.
Thermodynamic relevant observables are generally expressed as the derivatives
of the thermodynamic potentials with respect to the parameters that define
the correspondent statistical ensemble. For the microcanonical ensemble, the
thermodynamic potential is the specific microcanonical entropy SN (ε) defined
in equation (2.12). The basic macroscopic thermodynamic observable is the

20



2.2. THERMODYNAMICS IN THE MICROCANONICAL ENSEMBLE

temperature T defined as the first-order derivative of the entropy with respect
to the specific energy ε at fixed volume v

T =
(
∂S

∂ε

)−1

v

. (2.13)

The specific heat is defined as follows

cv = Cv
N

=
(
∂T

∂ε

)−1

v

= −
(
∂S/∂ε

)2
v(

∂2S/∂ε2
)
v

. (2.14)

As was noted in the introduction, the microcanonical ensemble is the most
fundamental of all statistical ensembles. In fact, from the knowledge of the
microcanonical partition functions all the other statistical ensembles can be
derived. For instance, let us consider the canonical partition function

ZN (β) =
∫

Λ
e−βH(p,q)

N∏
i=1

dpi ∧ dqi , (2.15)

where β = 1
T

. T is the temperature of the canonical statistical ensemble. This
expression can be rewritten as the Laplace transform of the microcanonical
partition function ΩN (E)

ZN (β) =
∫ +∞

0
dE
∫

Λ
e−βH(p,q)δ(H(p, q) − E)

N∏
i=1

dpi ∧ dqi

=
∫ +∞

0
e−βE ΩN (E) dE .

(2.16)

The measure properties of the energy level sets ΣE give the fundamental
characterization of the statistical mechanics of microcanonical statistical
ensemble and consequently of all other statistical ensembles. Moreover, one can
make the link between the canonical specific free energy and the microcanonical
specific entropy. In fact, the last equation can be written in this form

ZN (β) =
∫ +∞

0
exp

{
−
[
βNε+N

1
N

lnΩN (Nε)
]}

dE

=
∫ +∞

0
exp {−N [βε− SN (ε)]} dE .

(2.17)

For large N, we use the saddle point approximation for a fixed β, we derive
ε = ε(β) such that h(ε, β) = βε− SNε is minimized, i.e.

ZN (β) = exp
{

−N

2 [βε̃(β) − S(ε̃(β))]
}∫ +∞

0
exp

{
N
∂2S

∂ε2 |ε=ε̃ (ε− ε̃)2 + O(ε3)
}

dE .

Let us consider the function fN (β) = − 1
N

logZN (β) that its strictly related

to the specific free energy FN (β) = 1
β
fN (β) and let us suppose that SN and

fN converge to the thermodynamic limit to two functions f∞(β) and S∞(ε).
f∞(β) is then the Legendre transform of S∞(ε), i.e.

f∞(β) = inf
ε∈ [0,+∞[

[βε− S∞(ε)] . (2.18)
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First order phase transitions Second order phase transitions∥∥∥∥∂G+(kci )
∂k

− ∂G−(kci )
∂k

∥∥∥∥ = ∆Gki > 0
∥∥∥∥∂2G+(kci )

∂k2 − ∂2G−(kci )
∂k2

∥∥∥∥ = ∆Gk2
i

> 0

Table 2.1: Summary of the classification scheme of phase transitions adopted
by Ehrenfest.

Phase transition in the microcanonical ensemble: the state of art

As we will see later, according to the topological hypothesis, phase transitions
are due to major changes in the topology of the energy level sets. We expect
that such dramatic changes can be reflected in a loss of the ”smoothness” of the
thermodynamic potential defined on these foliated spaces. Is it then possible
to associate phase transitions in a microcanonical ensemble with some loss of
analyticity of the microcanonical entropy S?

Historically, Paul Ehrenfest classified phase transitions in the canonical and grand
canonical ensembles based on the behavior of the thermodynamic potential as
a function of other thermodynamic variables. First-order phase transitions are
those for which the first derivative with respect to one of the thermodynamic
variables of the thermodynamic potential G is discontinuous (presence of a
"jump" in this derivative). Second-order phase transitions are those for which the
second derivative with respect to one of the thermodynamic variables of G is not
continuous. Analogously, the kth order phase transitions have discontinuities in
the kth derivatives of G. This is summarized in Table 2.1 in the case of the first
and second order phase transitions where ∂G+(kci

)/∂ki = lim
ki→k+

ci

(G(ki)/∂ki)

and ∂G−(kci)/∂ki = lim
ki→k−

ci

(G(ki)/∂ki) (kci denotes one of the thermodynamic

variables at the critical point). Thus, according to Ehrenfest’s classification
scheme, the order of the transition is determined by the lowest derivative
exhibiting a singular behavior at the critical point. However, such behavior
can only occur in the thermodynamic limit, as rigorously proved by Yang and
Lee in the grand canonical ensemble [170]. One can wonder if is it possible to
extend the Ehrenfest classification scheme to the microcanonical ensemble. As
we have seen in the last subsection f∞ is the Legendre transform of S∞, then
a loss of analyticity of f∞ can be due to two possible mechanisms: a loss of
analyticity of S∞ or a convex hull in S∞, where the latest mechanism has been
studied in the context of large deviation theory [150].

What if the works on microcanonical ensembles explore ”small” systems where
the thermodynamic limit is not invoked? Following Ehrenfest classification,
no loss of analyticity is expected in the microcanonical entropy in this case.
However, other signatures of phase transitions in microcanonical entropy have
been proposed. Such classification schemes are linked to the inflection points of
the microcanonical entropy and its derivatives. Thus, with this new classification
scheme, one can examine phase transitions in systems with a finite number
of degrees of freedom. Gross [76] was the first who proposed in the 90s a
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classification of phase transitions in the microcanonical ensemble based on the
change of the curvature of the entropy d(k) = d2S/dk2 as a function of a
conserved quantity, or on the change of the determinant of the matrix d(ki) in
the case of more than one conserved quantity. He proposed two classes of phase
transitions, first-order phase transitions with phase separation which involve a
latent heat, are characterized by a negative determinant d(ki) of the entropy
S(ki), and continuous phase transition where two neighboring phases become
indistinguishable, are characterized by a zero determinant d(ki). This idea was
refined by Qi and Bachmann [133], where they proposed a definition for a kth
order phase transitions in the microcanonical ensemble through the analysis
of the inflection point of the microcanonical entropy and its derivatives. Their
argument goes as follows: since in the canonical ensemble, the order parameter
is the temperature, the curve ⟨E⟩(β) shows that the phase transition is marked
by a sudden decrease in the expectation value of the energy of the system ⟨E⟩
at the phase transition. Thus, in the microcanonical ensemble, where the order
parameter is the energy, the curve β(E) responds least sensitively to energy
changes, where β(E) = dS(E)/dE. In other words, it causes a change in the
monotonicity of β(E) which is called an inflection point of least sensitivity.
And, the classification of phase transitions proposed by Qi and Bachmann in
[133], was based on where the inflection point is placed (the point of least
sensitivity). For instance, the occurrence of the second-order phase transition
is characterized by an inflection point in β(E). Whereas the first-order phase
transition is outlined by an infection point in S(E), and this seems consistent,
in the sense that the first-order phase transition is characterized by a latent heat
which can be explained by the energy difference caused by the convex region
in S(E) in the case of finite systems (caused by a surface effect), and by an
inflection point in the thermodynamic limit1. More generally a phase transition
of even order 2k (k is a positive integer) is associated with a least-sensitive
inflection point in the (2k − 1)th derivative of S(E), and the corresponding
negative-valued maximum in the (2k)th derivative of S(E). Analogously, a
phase transition of odd order (2k − 1) occurs if there is a least sensitive inflection
point in the (2k − 2)th derivative of S(E), and the corresponding minimum in
the (2k − 1)th derivative of S(E) is positive. This is summarized in Table ??,
where Sm denotes the (m)th derivative of S.

2.3 Historical motivation of the Topological Hypothesis of
phase transitions

The topological theory of phase transitions has its origin in the geometrical
formulation of Hamiltonian dynamics in the characterization of chaotic systems.
In the mid-’90s, Hamiltonian chaos has been deeply re-investigated [31, 123] from
the Riemannian geometrical point of view. It is very well known [97, 71, 3, 109]
that trajectories of natural motions can be regarded as geodesic in configuration
space endowed with the Jacobi metric. In fact, the paths in configuration space
of the representative point of a Lagrangian system, i.e. a mechanical system

1It is an open question whether the mechanism proposed by [150] for the emergence of
the singularity in the free energy from a convex hull in S is already valid when the convex
hull reduces to a single inflection point.
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(2k-1)-th order PT (2k)-th order PT

S(2k−1) > 0 S(2k) < 0

S(2k) = 0 S(2k+1) = 0

S(2k+1) > 0 S(2k+2) < 0

Table 2.2: Summary of the classification scheme of phase transitions adopted in
the present work.

described by the Lagrangian

L (q, q̇) = 1
2gij q̇

iq̇j − V (2.19)

where gij(q) is a Riemannian metric on the configuration space, are the geodesics
of the energy-dependent Jacobi metric

dsJ =
√

2 (E − V ) gij q̇iq̇j . (2.20)

Such an introduction of a metric structure allowed describing Hamiltonian chaos
in terms of geodesic spread.

Furthermore, it has been shown that critical points of a suitable class of functions
on a manifold and their index are strictly related to the topology of the same
manifold according to Morse theory. In fact, given a generic system of N
degrees of freedom described by a Hamiltonian H = 1

2
∑N
i=1 p

2
i + V (q1, . . . , qN )

or equivalently by the corresponding Lagrangian function L = 1
2
∑N
i=1 q̇

2
i −

V (q1, . . . , qN ) its dynamics can be identified with a geodesic flow of an
appropriate Riemannian differentiable manifold. This differential geometric
framework is given by configuration space ME = {q ∈ RN |V (q) < E} endowed
with the Jacobian metric defined above. Then, Newton equations are retrieved
from the geodesic equations

d2qi

ds2 + Γijk
dqj

ds

dqk

ds
= 0 , (2.21)

where Γijk are the Christoffel connection coefficients of the manifold. Thus, in
this context, the natural question is whether the mechanical manifolds (ME , g)
undergo some peculiar geometrical change when E crosses a critical value Ec that
corresponds to a phase transition. And it has been discovered that this is actually
the case [123]. Moreover, the peculiar geometrical changes associated with phase
transitions were discovered to be also the effects of deeper topological changes
of the potential level sets ΣVN

v := {VN (q1, . . . , qN ) = v ∈ R} in configurations
space, and, equivalently, of the balls {MVN

v = V −1
N ((−∞, v])}v∈R bounded by

the ΣVN
v . In other words, given a Hamiltonian system undergoing a phase

transition, let vc = vc(Ec) be the average potential energy corresponding to the
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phase transition point, a topological change means that the manifolds ΣVN
v<vc

and ΣVN
v>vc

are not diffeomorphic, that is, they cannot be transformed one
into the other with a differentiable application with the differentiable inverse.
Topological changes of these manifolds are related to the presence of critical
points of the potential function V (q) in configuration space. To get an intuitive
idea of the relationship between critical points of a function in a given space
and the topology of its level sets, let us consider a low-dimensional and intuitive
case. Given a smooth function f , bounded below, such that f : RN → R. Its
level sets Σu = f−1(u) are diffeomorphically transformed one into the other by
the flow [86]

dx

du
= ∇f

∥∇f∥2 , (2.22)

where x ∈ RN , i.e., the points of a hypersurface Σu0 with u0 ∈ [a, b] ⊂ R, are
mapped by this flow to the points of another Σu1 with u1 ∈ [a, b], provided
that ∇f never vanishes in the interval [a, b]. In other words, if in the interval
[a, b] the function f has no critical points, all the level sets Σu = f−1(u), with
u ∈ [a, b], have the same topology. Conversely, the appearance of critical points
of f at some critical value uc breaks the diffeomorphicity among the Σu<uc and
Σu>uc . This is illustrated by one of the simplest possible examples in Figure 2.1.
A systematic study is developed within Morse theory of the relationship between

Figure 2.1: The function f is here the height of a point of the bended cylinder
with respect to the ground. In P1 it is df = 0. The level sets Σu = f−1(u) below
this critical point are circles, whereas above are the union of two circles. The
manifolds Mu = f−1((−∞, u]) are disks for u < uc and cylinders for u > uc

the topological properties of a manifold and the critical points of a suitable
class of real-valued functions (Morse functions) defined on it. In particular,
if f ≡ V , Morse’s theory tells us that the existence of critical points of V is
associated with topological changes of the hypersurfaces {Σv}v∈R, and also
of the {Mv}v∈R, provided that V is a good Morse function (that is, bounded
below, with no vanishing eigenvalues of its Hessian matrix). In general, finding
either analytically or numerically all the critical points of a potential V (q) is a
very hard task, often an unfeasible one. Thus in order to get information on the
topology of the manifolds of interest one has to resort to the available theorems
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in differential topology, like the Pinkall theorem [126]. These theorems relate
some total (that is integrated over the whole manifold) geometric property of
a manifold with some information on its topology. Note that Morse indexes
µk(M) of a manifold M count the number of critical points of degree k (the
number of negative eigenvalues of the Hessian of the Morse function). Betti
numbers are related with Morse indexes by the inequalities µk(M) ≥ bk(M).
The bk(M) are dimensions of some groups (homology and cohomology of M)
invariant under diffeomorphisms of M .

In this framework, the Topological hypothesis can be formulated as follows:
The basic origin of phase transitions lies in some topological change (or in the
way the topology changes) of the support of the measure describing a system at
the transition point. In fact, it can be shown [123] that there is a relationship
between geometry and topology of the energy landscape in phase space or in
configuration space, and thermodynamic specific entropy

S(Nε) ≈ 1
2N log

[
Vol

(
S2N−1

1
) 2N−1∑

i=0
bi (ΣNε) +

∫
ΣNε

dσ R̃(Nε)
N !

]
+ r(E),

(2.23)
where bi (ΣNε) are the Betti numbers of the energy level sets ΣE in phase
space. Betti numbers are fundamental topological invariants of a manifold.
This approximate formula establishes a relation between thermodynamics
and the topology of energy level sets in phase space. It was the starting
point for a more rigorous mathematical investigation of the relation between
the topology of (potential) energy in (configuration) phase space, and phase
transitions. The peculiarity of this approach is that phase transitions are
characterized from the point of view of Hamiltonian dynamics. This allows
looking for the characterization of phase transitions as more related to the
geometrical/dynamical properties of the (potential) energy level sets than to
the thermodynamic properties. This has opened up the possibility of predicting
whether or not a system will undergo a phase transition from the properties of
the potential.
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3

Thermodynamics of the
Kosterlitz-Thouless phase

transition

This Chapter is based on a personal work and has been published in Ref.[8].
Phase transitions at the thermodynamic equilibrium can be heuristically
described as an abrupt change of macroscopic properties of the system as
the consequence of a small change in control parameters that define the
statistical ensemble (e.g, the specific energy in the microcanonical ensemble
or the temperature in the canonical ensemble). When the "abrupt change of
macroscopic properties" of the system coincides with a spontaneous symmetry-
breaking phenomenon, it is in general possible to introduce a so-called order
parameter, that, in some cases, quantitatively measures the emergence of the
order in the systems by triggering discontinuities of thermodynamic functions.
In these cases, the characterization and classification of phase transitions are
quite straightforward: e.g., Landau, for example, provided a classification of
phase transitions based on the index of the broken symmetry group. However,
it has been observed that phase transitions can also occur in the absence of
symmetry breaking. A well-known example is the case of the XY model in
two dimensions, where there is a continuous phase transition, yet there is no
symmetry breaking, known as the Kosterlitz-Thouless transition. In this case,
it is harder to provide a classification of phase transitions in the absence of an
order parameter associated with broken symmetry. In this chapter, we will use
the most fundamental thermodynamic ensemble, which is the microcanonical
ensemble, as seen in the previous Chapter, to study the peculiar Kosterltz-
Thouless (KT) phase transition in the 2D XY model. The main features
of the KT phase transition are briefly reviewed in Section 3.1. In Section
3.2 we present a method to calculate derivatives up to the 4th order with
respect to a specific energy of the specific microcanonical entropy, using a
Laplace transform technique. In particular, a computation is performed of the
derivatives of the microcanonical entropy, with respect to the energy up to the
4th order, using a Laplace transform technique, and adapted it to the case where
the total momentum is conserved. In Section 3.3 we present the algorithm
we implemented to sample the energy level sets through the simulation of
Hamiltonian dynamics. Finally, in Section 3.4 we present and comment on the
results of numerical simulations, looking at the signature of the KT transition
in the XY 2D model in the behavior of thermodynamic quantities.

27



3.1. THE XY MODEL 2D

3.1 The XY model 2D

Presentation of the model

The XY model is a 2-vector model on a D-dimensional lattice λ: a 2-dimensional
unit-vector si = (six, siy) = (cos θi, sin θi) is associated to each site i ∈ λ. The
standard Hamiltonian of the XY model in two dimensions is given by

HstdXY(θ) = −J
N∑

⟨i,j⟩=1

si. sj = −J
∑

⟨i,j⟩∈λ×λ

cos (θi − θj), (3.1)

where ⟨i, j⟩ indicates all couples of nearest neighbors (resulting in short-range
interactions) and J is the coupling constant. Such a model can be regarded as
a generalization of the Ising model in the sense that spins can rotate in two
dimensions instead of only pointing in two directions.
Moreover, the Hamiltonian is invariant under the continuous O(2) symmetry
group because the scalar product of two rotating vectors does not change while
the Ising model is invariant under the discrete Z2 symmetry group.
In this work we adopt a modified version of the XY-model on a two dimension
lattice (D = 2): a kinetic term, quadratic in conjugate momenta pi, has been
added at the original Hamiltonian and a fixed constant 2NJ has been added to
the potential energy in order to recover the potential energy for a set of the
coupled harmonic oscillator, i.e.

HXY(p,θ) =
n∑
i=1

n∑
j=1

p2
(i,j)

2 −J
[
2 − cos(θ(i,j) − θ(i,j+1)) − cos(θ(i,j) − θ(i+1,j))

]
.

(3.2)
In what follows periodic boundary conditions have been considered, so for a set
of N = n× n spins, we have that (n+ 1, j) = (1, j) and (i, n+ 1) = (i, 1).
According to Noether’s theorem, this system has two first integrals, the total
energy E = HXY(p,θ) and the total momentum P =

∑
i∈Λ pi associated to the

global O(2) symmetry θi → θi + α.

If one starts bringing the temperature of the spin system down, what happens is
that below the Curie temperature (critical temperature Tc) they begin to align
in a specific direction, which is random1 and the mean magnetization ⟨M⟩ = 0.
Below Tc, the Hamiltonian from above still dictates the behavior of the system,
but the newly occupied ground state of the system has lost2 the original O(2)
symmetry of the Hamiltonian.
However according to the Mermin-Wagner theorem [112], there cannot be a
spontaneous symmetry breaking in systems with continuous symmetry and
short-range interactions in D ≤ 2 dimensions, which means that the XY model
cannot exhibit spontaneous symmetry breaking at finite temperatures, due to
its continuous O(2) symmetry.
Why then does one still consider it a phase transition? It’s known from
numerical simulations that the XY model, has completely different behavior
at low and high temperatures. Indeed, by decreasing the temperature up to

1In the case of a two-dimensional system, it could be any angle θ ∈ [0, 2π).
2In the case of discrete symmetry, it would be called a spontaneous symmetry breaking

which would indicate the presence of a phase transition.
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Tc, the spins start to align in macroscopic regions and this is reminiscent of
symmetry breaking, i.e. a shift from an unordered to an ordered phase.
To see this, let’s compute the correlation of two spins between the origin and
the position x at high temperature. Setting κ = J

T , one has

⟨so. sx⟩ = ⟨cos (θo − θx)⟩

= 1
ZN

N∏
k=1

(∫ 2π

0

dθk
2π

)
cos (θo − θx)eκ

∑
⟨i,j⟩

cos (θi−θj)

= 1
ZN

N∏
k=1

(∫ 2π

0

dθk
2π

)
cos (θo − θx)

∏
⟨i,j⟩

[
1 + κ cos (θi − θj) +O(κ2)

]
= 1
ZN

N∏
k=1

(∫ 2π

0

dθk
2π

)
cos (θo − θx)

[
1 + κ cos (θ1 − θ2)

]
· · ·

(3.3)

with 

∫ 2π

0

dθ1

2π cos(θ1 − θ2) = 0

∫ 2π

0

dθ2

2π cos(θ1 − θ2) cos(θ2 − θ3) = 1
2 cos(θ1 − θ3) .

(3.4)

The only not null contribution to (3.3) comes from the paths γ, where each path
has length r = ∥x∥, and a contribution of order

(κ
2

)r
≪ 1. From this follows

that the main contribution is given by the shortest path. The correlation length
at high temperatures reads then

⟨so. sx⟩ ≈
(κ

2

)r
= e−r/ξ , (3.5)

where ξ = ln (2/κ)−1. The equation (3.5) shows that the correlation decays
exponentially. At low temperatures, as the fluctuations in the angles are going
to be small, at long distances, we take the continuum limit of the lattice model
assuming the angle field is slowly varying 3. Therefore writing

θi − θj = a grad θ(x).êij + O(a2),

where a → 0 is the lattice spacing and êij is the unit vector along the lattice
bond joining sites i and j. Having the Fourier transform of

grad θ(x) = 1
2π

∫
dq (−iq)e−iq.xθ̃(q),

and

cos (θi − θj) ≈ 1 − a

2∥grad θ∥2,

3This is called the spin-wave approximation.
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the Fourier transform of the Hamiltonian is then

H = J
2

∫
d2x

∫
dq dq′

(2π)2 q.q′e−i(q+q′).x θ̃(q)θ̃(−q)

=
∫
dq dq′

(2π)2 q.q′δ(q + q′)θ̃(q)θ̃(−q).
(3.6)

The correlation length reads

⟨cos(θ0 − θr)⟩ = Re⟨ei(θ0−θr)⟩ = Re
[ +∞∑
k=0

ik

k! ⟨ (θ0 − θr)k︸ ︷︷ ︸
Xk

⟩
]

= Re
[ +∞∑
m=0

(i)2m

(2m)! ⟨X
2m⟩
]
,

where this equality holds because of the Gaussian distribution due to the
quadratic and diagonal Hamiltonian (3.6). Knowing that

E
[
X2m] = (2m− 1)! ⟨X2⟩m

2m−1 (m− 1)! ,

one has

⟨cos(θ0 − θr)⟩ =
+∞∑
m=0

(−1)m
2mm! ⟨X2⟩m = e− ⟨(θ0−θr)2⟩

2 , (3.7)

where 4

⟨(θ0 − θr)2⟩ =
∫
dq1 dq2
(2π)2

(
e−iq1.r − 1

)(
e−iq2.r − 1

)
⟨θ̃(q1) θ̃(q2)⟩ , (3.8)

and

⟨θ̃(q1) θ̃(q2)⟩ =
∫
d[θ̃]d[θ̃∗] θ̃(q1) θ̃(q2) e− J

2T

∫
dq dq′

(2π)2 q.q′δ(q+q′)θ̃(q)θ̃(−q)∫
d[θ̃]d[θ̃∗] e− J

2T

∫
dq dq′
(2π)2 q.q′δ(q+q′)θ̃(q)θ̃(−q)

= (2π)2 T
J q2

1
δ(q1 + q2).

(3.9)

We then have

⟨(θ0 − θr)2⟩ = T
J

∫
dq1 dq2

(
e−iq1.r − 1

)(
e−iq2.r − 1

)
q2

1
δ(q1 + q2)

≈ T
J

∫ a−1

r−1
dq

1
q

= T
J log

( r
a

)
.

(3.10)

Finally, the correlation length at low temperatures reads

⟨so. sx⟩ ∝ r−T/J (3.11)
4θr =

∑
q θ̃qe−iq.r and θ0 =

∑
q θ̃q.
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At low temperatures the correlation length has an algebraic decay, this confirms
the fact that the 2D XY model has completely different behavior in the two
regimes. Further, the exponent is not universal but depends on the temperature.
This phase is called quasi-ordered.
The minimization of the energy δH/δθ leads to ∇2θ = 0 which leads to

θ(α) = nα+ c, (3.12)

where n is called the winding number and describes how many times a spin
arrow winds around itself, going around clockwise the vortex center.
The equation (3.12) describes solutions in the form of vortices, which is a special
type of topological defect defined by having a non-zero winding number.
One of the discoveries that earned the 2016 Nobel Prize was that topological
effects play an important role in certain classical phase transitions. The work
of David J. Thouless and J. Michael Kosterlitz explained how two-dimensional
materials, like thin films, can have phase transitions despite lacking a truly
ordered phase. Their key insight was that vortices are bound tightly together
at low temperatures, and yet at high temperature, they become unbound and
proliferate. This sharp change in behavior turns out to be universal and explains
many unconventional phase transitions such as those found in superfluid helium
and superconductors.
The two-dimensional classical XY model studied in this thesis is the simplest
physical model with vortices.

The XY 2D model in the microcanonical ensemble

As we have seen in the last paragraph, we have another integral of motion apart
from the total energy, so it is necessary to be precise about the nature of the
constraint of the total momentum of the system. It seems natural to consider
for the XY model in 2D a particular case of the microcanonical ensemble where
also the total momentum is fixed to be p, as the dynamic will be confined on
hypersurfaces of constant energy over the plane P = p.

ΣE,p = {x = (p1, ..pN , q1, ..., qN ) ∈ Λ | P (x) = p ∧ H(x) = E} . (3.13)

It follows that the microcanonical partition function according to Boltzmann’s
prescription reads

ΩN (E, p) =
∫

Λ
δ (H(p, q) − E) δ (P − p)

N∏
i=1

dpi ∧ dqi (3.14)

so the specific entropy is

SN (ε, p) = 1
N

ln
(

Ω(Nε, p)
Ω0

)
, (3.15)

where Ω0 is an arbitrary constant.
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3.2. HIGH ORDER DERIVATIVES OF BOLTZMANN MICROCANONICAL
ENTROPY WITH CONSERVED NULL TOTAL MOMENTUM

3.2 High order derivatives of Boltzmann microcanonical
entropy with conserved null total momentum

The starting point to describe microcanonical observables is the definition of
the specific entropy

SN (ε, 0) = 1
N

ln ΩN (Nε, 0),

in terms of the area of the total energy level sets Ω(Nε, 0) as seen in the last
section.
To simplify the notation we omit the total momentum fixed to zero in both the
argument of microcanonical entropy SN (ε, 0) → SN (ε) and of the microcanonical
partition function ΩN (E, 0) → ΩN (E). All the relevant thermodynamic
observables, such as the temperature or the specific heat, can be expressed as a
function of the derivatives of the specific entropy SN with respect to specific
energy5 ε. The derivatives of the specific entropy with respect to the specific
energy up to fourth order read

∂SN
∂ε

= Ω′

N

ΩN
,

∂2SN
∂ε2 = N

[
Ω′′

N

ΩN
−
(

Ω′

N

ΩN

)2]
, (3.16)

∂3SN
∂ε3 = N2

Ω′′′

N

ΩN
− 3Ω′′

N

ΩN
Ω′

N

ΩN
+ 2

(
Ω′

N

ΩN

)3
 ,

∂4SN
∂ε4 = N3

Ω′′′′

N

ΩN
− 4Ω′′′

N

ΩN
Ω′

N

ΩN
− 3

(
Ω′′

N

ΩN

)2

+ 12Ω′′

N

ΩN

(
Ω′

N

ΩN

)2

− 6
(

Ω′

N

ΩN

)4
 ,

where the prime corresponds to the derivative with respect to the total energy
E = Nε. In order to characterize the microcanonical thermodynamics of a
given system, a method is needed allowing to calculate of the higher order
derivatives of microcanonical entropy (3.16).
In [120] a method is presented by Pearson and Halicioglu, that allows deriving
the expression of thermodynamic observables in terms of the average of (specific)
kinetic energy and its powers on the ΣE when the only constraint is the fixed
total energy of the system HN = E and for systems whose Hamiltonian is of
the form

HN (p1, ..pN , q1, ..., qN ) = KN (p1, ..pN ) + VN (q1, ..., qN )

=
N∑
i=1

(pi)2

2 + VN (q1, ..., qN ) ,
(3.17)

where VN is a potential energy invariant for global translation VN (q1 +a, ..., qN +
a) = VN (q1, ..., qN ), and KN is the total kinetic energy. Such a method is based

5In the microcanonical ensemble, all the thermodynamic observables can be obtained
deriving the microcanonical entropy with respect to other state variables, e.g. the pressure
p = T (∂vSN )ε depends on the derivative of entropy with respect to the volume v. In what
follows, we do not consider the dependence of the microcanonical entropy on other state
variables but the specific energy ε = E/N .
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on a Laplace transform technique applied to the microcanonical partition
function ΩN (E) and it allows performing integration on the pi variables.
In this thesis, we show how to further develop and adopt such a technique to
the case where the total momentum of the system PN is conserved ad set equal
to zero. Let us consider the Laplace transform of the microcanonical partition
function ΩN (E) (where has been assumed that P = 0)

L[ΩN ](t) =
∫ +∞

0
e−tE ΩN (E) dE,

=
∫ N∏

i=1
dpi δ(P )

∫ N∏
i=1

dqi e−tHN ({p1,...,pN ,q1,...,qN })

=
∫ N∏

i=1
dpi e−t

∑N

i=1
(pi)2

2 δ(P )
∫ N∏

i=1
dqie−tVN (q1,...,qN ) .

(3.18)

In [120] the integration over the N momenta pi is performed resulting in a
Gaussian integral; in the case here considered, however, we have to take into
account the constraint on PN . In order to do this we consider the following
equality for the Dirac delta function

δ(P ) = 1
2π

∫ +∞

−∞
ds eisP , (3.19)

so that

L[ΩN ](t) = 1
2π

∫ N∏
i=1

dpi e
−t
∑N

i=1
(pi)2

2

∫ +∞

−∞
ds eisPN

∫ N∏
i=1

dqie
−tVN (q1···qN )

= 1
2π

∫ N∏
i=1

dpi
∫ +∞

−∞
e− t

2

∑
k

(pk)2
eis
∑

k
pk

∫ N∏
i=1

dqie
−tVN (q1···qN )

= 1
2π

∫ N∏
i=1

dpi

∫ +∞

−∞
dse− t

2

∑
k

(pk−is/t)2
e− Ns2

2t

∫ N∏
i=1

dqie
−tVN (q1···qN )

= 1
(2π)(1− N

2 )

∫ +∞

−∞
ds e− Ns2

2t t−N/2
∫ N∏

i=1
dqie

−tVN (q1···qN )

= 1√
N

1
(2π) 1

2 (1−N)︸ ︷︷ ︸
1/C

∫ N∏
i=1

dqi t−(N−1)/2 e−tVN (q1···qN ) .

(3.20)

We now use the Bromwich integral to inverse the Laplace transform

ΩN (E) = 1
2πiC

∫ γ+i∞

γ−i∞

∫ N∏
i=1

dqi t−(N−1)/2 et[E−VN(q1...qN)]dt ,

where γ is a vertical contour in the complex plane chosen so that all singularities
of t−(N−1)/2 are on the left of it. After using the residues theorem, one obtains
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the final expression for ΩN (E) in the form of an integral over the manifold
ME =

{
(q1, ..., qN ) ∈ Λq |VN (q1, . . . , qN ) ≤ E

}
ΩN (E) = 1

A

∫ N∏
i=1

dqi
[
E − VN (q1 . . . qN )

]N
2 − 3

2 Θ
[
E − VN (q1, . . . , qN )

]
,

(3.21)
where

A = C Γ
(
N

2 − 1
2

)
.

The first four derivatives of the ΩN (E) with respect to the total energy, are
then

Ω′
N (E) =

(
N

2 − 3
2

)
1
A

∫ N∏
i=1

dqi (E − VN )
N
2 − 5

2 Θ (E − VN ) ,

Ω′′
N (E) =

(
N

2 − 3
2

)(
N

2 − 5
2

)
1
A

∫ N∏
i=1

dqi (E − VN )
N
2 − 7

2 Θ (E − VN ) ,

Ω
′′′

N (E) =
(
N

2 − 3
2

)(
N

2 − 5
2

)(
N

2 − 7
2

)
×

× 1
A

∫ N∏
i=1

dqi
(
E − V

)N
2 − 9

2 Θ (E − VN ) ,

Ω
′′′′

N (E) =
(
N

2 − 3
2

)(
N

2 − 5
2

)(
N

2 − 7
2

)(
N

2 − 9
2

)
×

× 1
A

∫ N∏
i=1

dqi (E − VN )
N
2 − 11

2 Θ (E − VN ) .

(3.22)

where the dependence of the potential on generalized coordinates qi has
been omitted to simplify the notation. We notice that each derivative of
the microcanonical partition function appears divided by ΩN . Remembering
that the microcanonical average A(q1 . . . qN ) of any function of generalized
coordinates has the form

⟨A⟩µc = 1
ΩA

∫ N∏
i=1

dqiA(q1 . . . qN )
(
E − VN (q1 . . . qN )

)N
2 − 3

2 ×

× Θ
(
E − VN (q1 . . . qN )

)
,

(3.23)

and that
〈(
E − VN (q1 . . . qN

)a〉
µc

= ⟨Kα
N ⟩µc = Nα ⟨καN ⟩µc where κN is the

specific kinetic energy, we obtain for the first four order derivatives of the
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microcanonical partition function

Ω′
N

ΩN
=
(
N

2 − 3
2

)〈
K−1
N

〉
µc

=
(

1
2 − 3

2N

)〈
κ−1
N

〉
µc

Ω′′
N

ΩN
=
(
N

2 − 3
2

)(
N

2 − 5
2

)〈
K−2
N

〉
µc

=
(

1
2 − 3

2N

)(
1
2 − 5

2N

)〈
κ−2
N

〉
µc

Ω′′′

N

ΩN
=
(
N

2 − 3
2

)(
N

2 − 5
2

)(
N

2 − 7
2

)〈
K−3
N

〉
µc

=
(

1
2 − 3

2N

)(
1
2 − 5

2N

)(
1
2 − 7

2N

)〈
κ−3
N

〉
µc
,

Ω′′′′

N

ΩN
=
(N

2 − 3
2
)(N

2 − 5
2
)(N

2 − 7
2
)(N

2 − 9
2
)〈
K−4
N

〉
µc

=
(1

2 − 3
2N
)(1

2 − 5
2N
)(1

2 − 7
2N
)(1

2 − 9
2N
)〈
κ−4
N

〉
µc
.

(3.24)

In general, it can be derived that the following expression holds in the case
where both the total energy and the total momentum are conserved

Ω(l)
N

ΩN
=

l∏
m=1

(
1
2 − 2m+ 1

2N

)
⟨κ−l⟩µc , (3.25)

where (l) denotes the l-th order derivative with respect to E, while in [120], where
only the constraint on the total energy is considered, the previous expression
reads

Ω(l)
N

ΩN
=

l∏
m=1

(
1
2 − (2m− 1)

N

)
⟨κ−l⟩µc . (3.26)

As we will observe in what follows, the first expression we derived is more
consistent with the geometrical derivation of the expression for the derivatives
of ΩN (E).

Substituting (3.25) in (3.16), we obtain the derivatives of the microcanonical
specific entropy as functions of the microcanonical averages of (powers of) the
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specific kinetic energy κN ,

∂SN
∂ε

=
(

1
2 − 3

2N

)〈
κ−1
N

〉
µc

∂2SN
∂ε2 =N

[(
1
2 − 3

2N

)(
1
2 − 5

2N

)〈
κ−2
N

〉
µc

−
(

1
2 − 3

2N

)2 〈
κ−1
N

〉2
µc

]
∂3SN
∂ε3 =N2

[(
1
2 − 3

2N

)(
1
2 − 5

2N

)(
1
2 − 7

2N

)〈
κ−3
N

〉
µc

+

− 3
(

1
2 − 3

2N

)2(1
2 − 5

2N

)〈
κ−1
N

〉
µc

〈
κ−2
N

〉
µc

+

+ 2
(

1
2 − 3

2N

)3 〈
κ−1
N

〉3
µc

]
∂4SN
∂ε4 =N3

[(
1
2 − 3

2N

)(
1
2 − 5

2N

)(
1
2 − 7

2N

)(
1
2 − 9

2N

)〈
κ−4
N

〉
µc

+

− 4
(

1
2 − 3

2N

)2(1
2 − 5

2N

)(
1
2 − 7

2N

)〈
κ−1
N

〉
µc

〈
κ−3
N

〉
µc

+

− 3
(

1
2 − 3

2N

)2(1
2 − 5

2N

)2 〈
κ−2
N

〉2
µc

+

+ 12
(

1
2 − 3

2N

)3(1
2 − 5

2N

)〈
κ−2
N

〉
µc

〈
κ−1
N

〉2
µc

+

− 6
(

1
2 − 3

2N

)4 〈
κ−1
N

〉4
µc

]
.

(3.27)

The microcanonical temperature (2.13) takes the form

T =
[(1

2 − 3
2N
) 〈
κ−1〉

µc

]−1
. (3.28)

while the specific heat defined in (2.14) reads

cv = 1
N

1 −

(
1 − 5

N

)
⟨κ−2
N ⟩µc(

1 − 3
N

)〈
κ−1
N

〉2
µc


−1

. (3.29)

3.3 Simulation of the Hamiltonian dynamics

Presentation of the bilateral symplectic algorithm

Generally, the integration algorithms used for a long time to resolve numerically
differential equations create problems on coordinates transformations due to the
fact that the Jacobian of these transformations can be different from 1. They
are called a non-symplectic coordinate transformation. The time evolution of
Hamilton’s equations is a symplectomorphism, meaning that it conserves the
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symplectic two-form dq ∧ dp, where q denotes the position coordinates and p
the momentum coordinates. Let us consider Hamiltonians of the form

H(q,p) =
N∑
i=1

p2
i

2 + V (q) . (3.30)

In the first order, the evolution equations are

q(t+ ∆t) = q(t) + ∆tp(t)
p(t+ ∆t) = p(t) + ∆t ∇̄V [q(t+ ∆t)] ,

(3.31)

where ∇̄V =
(

∂

∂q1
· · · ∂

∂qN

)
and choosing

F (Q,p,∆t) = −Q · P + ∆tH(Q,p) (3.32)

as a generating function, one obtains these symplectic (canonical) transforma-
tions

qi = −∂F

∂pi
= Qi − ∆t∂H

∂pi

Pi = − ∂F

∂Qi
= pi − ∆t ∂H

∂Qi
,

(3.33)

which coincide with the evolution equations (3.31).
At ∆t → 0 and Q → q, keeping p fixed, the generating function becomes
exactly the generating function of the natural motion of the system. However,
at finite ∆t, it would be better to have the symmetric limit e.g. ∆t → 0 and
P → p, keeping q fixed, which can be generated considering this generating
function

f(Q,p,∆t) = q · P + ∆tH(Q,p) . (3.34)

In the bilateral symplectic algorithm, developed in [35], these two limits
are done together by performing one after the other the two symplectic
transformations (3.32) and (3.34). It has then (at the first order) two steps
instead of one

q(t+ ∆t) = q(t) + ∆tp(t)
p(t+ ∆t) = p(t) − ∆t ∆̄V [q(t+ ∆t)]
p(t+ 2∆t) = p(t+ ∆t) − ∆t ∆̄V [q(t+ ∆t)]
q(t+ 2∆t) = q(t+ ∆t) + ∆tp(t+ ∆t) .

(3.35)

The first two equations are (3.31) and the others are obtained from

pi = − ∂f

∂qi
= Pi − ∆t∂H

∂qi

Qi = − ∂f

∂Pi
= qi − ∆t ∂H

∂Pi
,

(3.36)

which are generated by (3.34).
In order to work with a more precise integration scheme we used a second-order
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bilateral symplectic algorithm, i.e.

q(1) = q(t)

p(1) = p(t) − 1
2∆t ∆̄V

[
q(1)
]

q(2) = q(1) + ∆tp(1)

p(2) = p(2) − 1
2∆t ∆̄V

[
q(2)
]

p(3) = p(2)

q(3) = q(2) + 1
2∆tp(3)

p(4) = p(3) − ∆t ∆̄V
[
q(3)
]

p(4) = q(4) + ∆tp(3) .

(3.37)

Initialization of the system

The initialization of the system had to be done considering the Hamiltonian
dynamics with H = E and the fact that the total momentum has to be equal
to zero P = 0.

To do so, we considered first the initial value of spin θij as a random variable
uniformly distributed in the interval [0, 2πα] where 0 < α < 1. We computed
then the potential energy V (θ) with these initial conditions. If this value was
larger than the value of the total energy E, then the variable θij is initialized
considering a new variable αnew, where αnew = α/2. If the new configuration
was again not compatible with E − V = K > 0, where K is the kinetic energy,
we choose the smallest variable α until we found the consistent configuration.
Then we initialized the moment. To do so, we divided the set of the spins into
two equal subsets Λ1 and Λ2; then we considered momenta only on one of these
two sets, so we had that

∑
ij∈Λ1

P 2
ij = K. To realize this condition we choose a

unit vector v on the S(N/2−1) sphere, and we considered pij =
√

2K vij ( where
vij are the components of the unit vector v ). To impose finally the condition
on total momentum P = 0, we choose pi,j+N/2 = −pi,j , where i ∈ [1, N ]
and j ∈ [1, N/2]. In order to guarantee that the dynamical system uniformly
explores the energy level sets at P = 0, the averages have been calculated as
averages of different trajectories.

3.4 Numerical results

We performed Hamiltonian dynamic simulations of the system described by
(3.2), with J = 1. The numerical integration has been performed setting the
total number of time steps ∆t = 10−3 for 250 trajectories and 105 steps to let
the system thermalize, and total number of steps for each trajectory is equal to
2 × 106.
The microcanonical averages are calculated considering the arithmetic average
of the time averages along all the trajectories, i.e. if Aj(i) is the value of the
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observable A at i-th step along the j-th trajectory

⟨A⟩µc = 1
Ntrj

Ntrj∑
j=1

(∑Nstep

i=1 Aj(i)
Nsteps

)
(3.38)

In Figure 3.1, the results for the specific heat and the temperature as a function
of specific energy have been reported. According to [37] the transition point
in the XY 2D model is signaled by a peak in the specific heat. Such a peak
becomes narrower and its height converges to a finite value for increasing N .
The results of our simulations are in agreement with such a qualitative behavior:
at εc the specific heat shows a peak that becomes sharper and higher for an
increasing number of N and seems to converge to maximal height. In our case,
the smallest interval in specific energy we choose for our simulations allowed us
to observe a slight drift of the peak for an increasing N . This is probably due
to the finite size effect already present in the system we considered.
The results of our simulation evidence an inflection point in the temperature
curve, in correspondence with the transition-specific energy εc(N). In Figure
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Figure 3.1: (a) Specific heat vs. specific energy and (b) Temperature vs. specific
energy for N = 6 × 6 (red circles), N = 10 × 10 (blue triangles), N = 20 × 20
(purple diamonds), N = 40 × 40 (green squares).

3.2 both the first and the second-order derivative of the specific entropy have
been reported. We observe that also the first-order derivative of the specific
entropy shows an inflection point in correspondence of εc for all the studied
cases. This is expected as the ∂εS is the inverse of microcanonical temperature.
The second derivative of SN shows a negative maximum at the transition point
εc(N), seeming to become an angular point at larger N with

lim
N→+∞

lim
ε→ε+

c

∂3
εSN = 0 lim

N→+∞
lim
ε→ε−

c

∂3
εSN > 0 .

Within the limit of numerical simulation, the observed behavior suggests the
emergence of a discontinuity for large N at the transition point in the third-
order derivative. The presence of a maximum of the second order derivative for
N ≲ 20 × 20 is consistent with the presence of an inflection point on the first
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derivative of S(E). The results on the second order derivative of SN reinforce the
claim that the peak in specific heat can not diverge for large N . In fact, the first
derivative of entropy (the inverse of the temperature) is expected to converge
to a finite strictly positive value for large N , so the only possibility for the
specific heat to diverge comes from ∂2

εSN (εc) converging to zero for large N (see
equation 2.14). In our case, we observe that |∂2

εSN (εc(N))| > |∂2
εSN ′(εc(N ′))|

when N > N ′, so the divergence of the specific heat is not expected. Despite the
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Figure 3.2: (a) First derivative of specific entropy vs. specific energy and
(b) second derivative of sepcific entropy vs. specific energy for N = 6 × 6
(red circles), N = 10 × 10 (blue triangles), N = 20 × 20 (purple diamonds),
N = 40 × 40 (green squares).

relevance of entropy from the thermodynamic point of view, we would be more
interested in studying the the behavior of the microcanonical partition function
ΩN (Nε) and its derivative with respect to ε, as it has a close relationship with
geometry of energy level sets (see Chapter 4). However, the microcanonical
partition function ΩN is not easy to compare for different values of N due to the
fact that it is expected to have an exponential dependence on N . The expression
of specific entropy (3.15) suggests the introduction of a specific volume ρN (ε)
defined as

ρN (ε) ≡
[

ΩN (Nε)
Ω(Nεmin)

]1/N
, (3.39)

where Ω(Nεmin) is the microcanonical volume at the lowest value of the
specific energy ε so that ρ(εmin) = 1. Introducing the specific volume ρN
the microcanonical specific entropy reads

SN (ε) = log ρN (ε) , (3.40)
from what follows we have

∂SN
∂ε

=
∂ρN
∂ε
ρN

. (3.41)

The last expression allows to derive ρN by the numerical integration of the
function ∂ϵSN , i.e.

ρN (ϵ) = ρN (ϵmin) exp
[∫ ϵ

ϵmin

∂SN
∂ε

(ϵ)
]

dε ; . (3.42)
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The derivatives of ρN with respect to specific energy ε can be obtained deriving
equation (3.40), yielding to

∂ρN (ε)
∂ε

= ρN (ε)∂SN
∂ε

∂2ρN (ε)
∂ε2 = ρN (ε)

[
∂2SN
∂ε2 +

(
∂SN
∂ε

)2
]

∂3ρN (ε)
∂ε3 = ρN (ε)

[
∂3SN
∂ε3 + 3∂SN

∂ε

∂2SN
∂ε2 +

(
∂SN
∂ε

)3
]

∂4ρN (ε)
∂ε4 = ρN (ε)

[
∂4SN
∂ε4 + 4∂

3SN
∂ε3

∂SN
∂ε

+ 3
(
∂2SN
∂ε2

)2

+ 6
(
∂SN
∂ε

)2
∂2SN
∂ε2 +

(
∂SN
∂ε

)4
]
.

(3.43)

In Figure 3.3, the first order derivative of ∂ερ(ε) shows a very marked inflection
point at the transition energy εc. The second order derivative in ρN shows a
behavior analogous to the specific heat: a peak that becomes sharper at the
transition point in the thermodynamic limit. In Figure 3.4 the third-order
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Figure 3.3: (a) : First derivative of the specific volume vs. specific energy for
N = 6 × 6 (red circles), N = 10 × 10 (blue triangles), N = 20 × 20 (purple
diamonds), N = 40 × 40 (green squares). (b): second derivative of the specific
volume vs. specific energy

derivatives of the microcanonical entropy and specific volume have been reported.
We notice that the third derivative of the entropy tends to develop a jump for
an increasing N in the interval [1.25, 1.4] around the transition point. Within
the limit of numerical simulations, this suggests a loss of analyticity in the
thermodynamic limit: in fact, this would correspond to a divergence of the
4th order derivative of the entropy at the transition point. One can also note
the fact that ∂3

εSN is zero at the transition point: this is consistent with the
presence of a maximum at the critical point on ∂2

εSN .
The third order derivative of ρN has a stronger signature of the same kind:
the slope of the tangent line at the inflection point becomes steeper with an
increasing N . Also in that case the inflection point has zero value which is
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consistent with the presence of a maximum on the second derivative of ρN (ε)
and a divergence in ∂4

ερN in the thermodynamic limit. In Figure 3.5, we observe
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Figure 3.4: Third order derivative of the specific entropy SN vs. specific energy
(a) and third derivative of the specific volume ρN vs. specific energy (b) for
N = 6 × 6 (red circles), N = 10 × 10 (blue triangles), N = 20 × 20 (purple
diamonds), N = 40 × 40 (green squares).

that the signal of both the 4th order derivative of SN and ρN is quite noisy,
this is probably due to the lack of precision in the numerical estimations of
the observables. A longer sampling would probably be required to increase
the precision of the simulation. Nevertheless, we observe in both cases a weak
signature of a divergence appearing at the transition point for an increasing N .
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Figure 3.5: (a) : Fourth derivative of the specific entropy vs. specific energy
for N = 6 × 6 (red circles), N = 10 × 10 (blue triangles), N = 20 × 20 (purple
diamonds). (b): fourth derivative of the specific volume vs. specific energy
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3.5 Chapter Conclusions

We have seen an inflection point on the first derivative of the entropy at the
transition point which corresponds to a negative maximum in the second
derivative of the specific entropy for small N . According to Bachman
classification (Table ??) the XY 2D model undergoes a second-order phase
transition in the microcanonical ensemble. Moreover, within the limit of
numerical simulation, we have observed a signal that suggests an asymptotic
loss of analyticity of ∂3

εS at the transition point in the thermodynamic limit.
This signature is even more clear in the specific volume ρN where both a
negative maximum in the second-order derivative and a loss of analyticity of
the third-order derivative have been observed at the transition point.
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4

Differential geometry and topology
of submanifolds

This Chapter is a review of extrinsic differential geometry. A very good
introductory course can be found in [96]. We have seen in Chapter 2, the
role that the geometry and the topology of phase space have to understand the
deep origin of phase transitions. In this Chapter, we present an overview of the
geometry and topology of submanifolds Σf1,...,fm

. The differential geometry
of such level sets is discussed in Section 4.1, while the topology is discussed
through the Pinkall theorem in Section 4.2, which connects the geometry of
Σf1,...,fm and its topology.

4.1 Review of differential extrinsic geometry of
codimension m submanifolds

The phase space can be regarded as a 2N dimensional manifold where a set of
coordinate {xµ}µ=1,...,2N can be chosen such that{

x2ν−1 = pν̃ ν = 1, ..., N
x2ν = qν̂ ν = 1, ..., N

(4.1)

Definition 4.1. Given a set of smooth real functions {F i}i=1,...,m on the phase
space Λ, with m < 2N , we define the level sets Σf1,...,fm as follows [96]

Σf1,...,fm =
{
x ∈ Λ | F k = fk , ∀ k = 1, ...,m

}
. (4.2)

If the following condition

dF 1 ∧ ... ∧ dFm ̸= 0 (4.3)

holds for every point on Σf1,...,fm then this is a regular submanifold of
codimension m.

In order to give a Riemannian geometrical characterization of such a submanifold,
a metric structure (metric tensor) g has to be assigned over the phase space
lambda Λ. In general, this assignment can be quite arbitrary. Nevertheless, for
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the sake of consistency with the symplectic structure, we should require that
the Riemannian volume form

ω =
√

detg dx1 ∧ ... ∧ dx2N =
√

detg dp1 ∧ dq1... ∧ dpN ∧ dqN (4.4)

is the invariant volume form for the Hamiltonian system, i.e. LXH
ω = 0. The

simplest metric satisfying this condition is the Euclidean one g = δµν dxµ⊗dxν ,
i.e. the phase space is endowed with the structure of a Euclidean space E2N .
Thanks to the metric structure, it is possible to define the gradient ∇H of a
function as a vector field such that

g(∇H,X) = ıX dH (4.5)

that in components reads

ı∇H dxµ = (∇H)µ = gµν
∂H

∂xν
= ∂µH , (4.6)

A critical point of the function H is a point where the gradient is null ∇H = 0.
Thanks to this definition, the condition (4.3) can be reformulated as the absence
of critical points for any function F k and the linear independence of the m
gradient vector fields {∇F k}k=1,...,m for any points of Σf1,...,fM .

Theorem 4.1. The invariant measure of the set Σf1,...,fm , defined in Eq.4.2,
is [123, 96]

ΩN (f1, ..., fm) =
∫

Σf1,...,fm

σf1,...,fm , (4.7)

where
σf1,...,fm =

σΣf1,...,fm√
G(∇F 1, ..,∇Fm)

, (4.8)

with G(∇F 1, ..,∇Fm) being the Grammian.

Proof. In each point of the regular submanifold of codimension m, the tangent
bundle of the phase space splits into a tangent bundle to the submanifold
TΣf1,...,fm and a normal bundle NΣf1,...,fm

TΛ|Σf1,...,fm = TΣf1,...,fm ⊕ NΣf1,...,fm , (4.9)

where the normal bundle is defined by NΣf1,...,fm = Span{∇F 1, ...,∇Fm}.
We define also an induced metric (or first fundamental form) on such regular
submanifold of codimension m, which is the assignment to each point of the
inner product

⟨ , ⟩ : TΣf1,...,fm × TΣf1,...,fm −→ R .

From the preceding discussion, it follows that it is convenient to introduce an
adapted orthonormal frame {ea}a=1,...,2N that allows making explicit the split of
the tangent bundle, i.e. eĀ ∈ NΣf1,...,fm with Ā = 1, ...,m and eA ∈ TΣf1,...,fm

with A = m+ 1, ..., 2N .
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This is equivalent to defining for each point a set of rotation matrix eνa that
allows passing from the coordinate natural frame {∂1, ..., ∂2N} = {∂ν}ν=1,...,2N
to the adapted coordinate orthonormal frame {e1, e2, ..., e2N} = {ea}a=1,2,...,2N ,
i.e. ea = eνa∂ν . In analogous way, the inverse matrix ebν are defined allowing
to pass from coordinates covectors {dx1, ...dx2N} to adapted covector frame
{θ1, θ2, ..., θ2N} (with ıea

θb = δba), i.e. θb = ebµ dxµ.
In order to characterize the extrinsic geometry of the regular submanifold
Σf1,...,fm , for any normal vector field n ∈ NΣf1,...,fm , we introduce the shape
operator Wn (called also the Weingarten operator) giving by the variation
of n along the directions tangent to the submanifold at any fixed point, i.e.
Wn : TΣf1,...,fm −→ TΣf1,...,fm s.t.

Wn(V ) = −DV n V ∈ TΛ|Σf1,...,fm , (4.10)

where D is the Levi Civita connection on (Λ, g). Let us see first of all that the
image of W is ⊆ TΣf1,...,fm , in fact

g(Wn(V ), n) = −g(DV n, n) = −1
2DV [g(n, n)] = 0 . (4.11)

so the Weingarten map can be rewritten in terms of the orthonormal vector
basis

W(eB) = WA
BeA = −DeB

n ⇒ WA
B = −θA(DeB

n) . (4.12)

with A,B = m+ 1, ..., 2N . Using the matrices eAµ and eνB the shape operator
can be expressed in terms of natural coordinates xµ as(

WA
B

)
n

= −θA(DeB
n) = −eAµ eνB dxµ(Dνn)

= −eAµ eνB dxµ
[(
∂νn

ρ + Γρνλn
λ
)
∂ρ
]

= −eAµ eνB Dνn
µ .

(4.13)

The eigenvalues k1, ..., k2N−m of the matrix Wn are called principal curvatures.
The average of the principal curvatures at a fixed point is called mean curvature
Mn

Mn = 1
2N −m

2N−m∑
i=1

ki = 1
2N −m

TrWn

= − 1
2N −m

2N−m∑
A=1

g(DeA
n, eA) .

(4.14)

Let us introduce the Coarea formula (a generalization of the Fubini theorem)
which allows expressing the integral of a function over the phase space Λ in terms
of integrals over the regular submanifolds of Λ. Let us introduce a coordinate
system {ua}a=1,...,2N such that uĀ = ∇F Ā with Ā = 1, ...,m on a region

M[f0,f1] =
{
x ∈ Λ | fk0 ≤ F k ≤ fk1

}
, (4.15)

free of critical points of function fk. It follows that the metric g reads

g = gµν dxµ⊗dxν = gab dua⊗ub = gĀB̄ duĀ⊗duB̄+gAB duA⊗duB , (4.16)
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where, if we consider the inverse matrices of the metric in the two-coordinate
system we have

gĀB̄ = gµν
∂uĀ

∂xµ
∂uB̄

∂xν
= g(∇F Ā,∇F B̄) . (4.17)

The Riemannian volume element ω in the two coordinates systems reads

ω = |detgµν |1/2 dx1 ∧ ... ∧ dx2N = |detgab|1/2 du1 ∧ ... ∧ du2N

= |detgĀB̄ |1/2du1 ∧ ... ∧ dum |detgAB |1/2dum+1 ∧ ... ∧ du2N︸ ︷︷ ︸
σΣ

f1,...,fm

, (4.18)

where σΣf1,...,fm is the induced Riemannian area form on the submanifold
Σf1,...,fm . Thus, any integral of a function ψ(uĀ, uA) on M[f0,f1] (defined in
Eq.(4.15)) can be expressed as∫

M[f0,f1]

ψ(uĀ, uA)ω , (4.19)

which is equal to∫ f1

f0

(∫
Σu1···um

ψ(uĀ, uA)
√

|detgĀB̄ |σΣu1···um

)
du1 ∧ · · · ∧ dum . (4.20)

Finally, it remains to evaluate |detgĀB̄ |1/2. For any non-zero determinant
matrix, we have detA−1 = (detA)−1, so it follows that

|detgĀB̄ |1/2 = |detgĀB̄ |−1/2 =
[
G(∇F 1, ..,∇Fm)

]−1/2 (4.21)

where G(X1, ..., Xm) := det
[
g(Xi, Xj)i,j=1,...,m

]
is the so-called Grammian (or

Gram matrix), so that the expression (4.20) takes the final form∫ f1

f0

(∫
Σu1,...,um

ψ(uA, uĀ)
σΣu1,...,um√

G(∇F 1, ..,∇Fm)

)
du1 ∧ ... ∧ dum , (4.22)

that is usually referred to as Co-area formula. When ψ(uĀ, uA) =
∏m
Ā=1 δ(uĀ−

f Ā), then the Eq.(4.22) can be interpreted as the microcanonical partition func-
tion ΩN (f1, ..., fm) where m independent first integral of motion

{
F Ā
}
A=1,...,m

has been fixed, i.e.

ΩN (f1, ..., fm) =
∫

Σf1,...,fm

σΣf1,...,fm√
G(∇F 1, ..,∇Fm)

=
∫

Σf1,...,fm

σf1,...,fm .

(4.23)

■
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4.2 A review of the Pinkall inequality: a bridge between
topology and extrinsic geometry

In Section 2.3 we have briefly reviewed the Topological Hypothesis on the origin
of phase transitions in the microcanonical ensemble, relying on the topological
changes of energy level sets with the appearance of phase transitions. However,
it is not possible in general to calculate the topological invariants of a regular
m-dimensional level set Σf1,...,fm . This problem is, in general, a tough task,
as the cohomology groups of a submanifold can be directly computed only in
very few cases through algebraic topological techniques. However, it is possible
in some cases to calculate or, at least, estimate the topological invariants of
submanifolds using the few results existing linking the global geometry with
topology. One result of this kind is the well-known Gauss-Bonnet theorem for
any two-dimensional surface M (without boundary)∫

M
KG ds = 2πχeul(M) , (4.24)

where χeul is the Euler characteristic (which is a topological invariant) of M,
and KG is the so-called Gauss curvature, which is an intrinsic curvature that,
in the case of immersion, can be expressed as the product of the principal
curvatures, i.e. KG = k1k2. ds is an element of the area of the surface of M.
Although the Gauss-Bonnet theorem admits a generalization to higher even-
dimensional manifolds, it is in general not easy to compute the Gauss curvature
from the immersion properties: this is why we will look for an extrinsic geometric
quantity that can be more easily computed for immersed sub-mediums, such
as the regular level sets of first integrals of motions. For this reason, we have
considered the so-called Pinkall’s inequality.

Definition 4.2. For any submanifold Mm of codimension m immersed in a
Euclidean space En, the dispersion of the principal curvatures {ki}i=1,...n−m is
defined as

σ2(ki) = 1
(n−m)2

∑
i<j

(ki − kj)2 = 1
n−m

n−m∑
i=1

(
ki − k̄

)2
, (4.25)

where

k̄ = 1
n−m

n−m∑
i=1

ki . (4.26)

Definition 4.3. Pinkall’s inequality [126] reads

1
Vol (Sn)

∫
M(n−m)

[
σ2
ξ (ki)

](n−m) dµ ≥

(n−m)−1∑
i=1

(
i

n−m− i

)(n−m)/2−i

bi

(
M(n−m)

)
,

(4.27)
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where bi
(
M(n−m)) are the Betti numbers of the manifold M(n−m), immersed

in the Euclidean space Rn (a Betti number is the diffeomorphism-invariant
dimension of the ith cohomology group of the submanifold Mm 1). Sn is an
n-dimensional sphere of unit radius, and dµ is the measure on M(n−m).

We notice that on the right-hand side of Eq.(4.27) there is a weighted sum of Betti
numbers: the weights wi = [i/(n− i)]n/2−i emphasize the contributions coming
from the (co)homology groups Hi(Mm) with i ≃ n/2, as can be seen in Figure
4.1 In [122], Pinkall theorem was applied in the case of a system undergoing a

1 5 10 50 100

0.0
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0.6

0.8

1.0

Figure 4.1: Weights wi = [i/(n−m− i)](n−m)/2−i appearing in right hand
side of Pinkall inequality for m = 2 and n = 2(6 × 6) = 72 (red circles) and
n = 2(10 × 10) = 200 (blue triangles).

thermodynamic phase transition in the absence of a global symmetry-breaking,
where it has been shown that the phase transition is marked by an abrupt
change in the geometry and so on the topology of ΣV , i.e. the level sets of
potential. The geometrical quantity in the left-hand side of Eq.(4.27) is hard
to be calculated through numerical simulation of large dynamical systems for
two main reasons. The first one concerns the fact that the quantities that can
be directly estimated through Hamiltonian dynamic simulations are generally
microcanonical averages while in Eq.(4.27) the calculation of the integral on
Mm of the dispersion of principal curvatures is required. The second one is
related to the (n−m)/2-th power of σ2

ξ (ki) that for large values of n (n ≳ 100)
become practically untreatable. Such difficulties can be managed thanks to
Hölder inequality[135], that allows to consider the 2/(n−m) of the integral in
Eq.(4.27) for codimension one manifold Σ∫

Σ
[σ(ki)]2 dµ ≤

[∫
Σ

{
[σ(ki)]2

}(n−1)/2
dµ
]2/(n−1) [∫

Σ
dµ
]1/[1−2/(n−1)]

,

(4.28)
1It is worth to note that Pinkall’s inequality becomes an equality if the Betti numbers

{bi(Mm)}i=0,...,n−m are replaced by Morse numbers {µi(Mm)}i=0,...,n−m, i.e. the number
of critical points of a Morse function on Mm with index i. Therefore, the Pinkall’s inequality
is a consequence of the so-called weak Morse inequality, i.e. µi(Mm) ≥ bi(Mm)
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that for large n becomes[∫
Σ

dµ
]−1 ∫

Σ
[σ(ki)]2 dµ ≤

[∫
Σ

{
[σ(ki)]2

}n/2
dµ
]2/n

(4.29)

Moreover, Hölder inequality becomes an equality when [σ(ki)]n equals its average
value almost everywhere on Σ. So we can introduce a reminder r(Σ), the last
equation is rewritten as[∫

Σ
dµ
]−1 ∫

Σ
[σ(ki)]2 dµ =

[∫
Σ

{
[σ(ki)]2

}n/2
dµ
]2/n

− r(Σ) (4.30)

where we recognize on the left-hand side the average with respect to the measure
dµ of the dispersion of principal curvatures. In the case where the dispersion of
the principal curvatures of Σ displays a limited variability from point to point,
the remainder r(Σ) appears to be a small correction and, consequently, the
Hölder inequality is tight

⟨[σ(ki)]2⟩µ ∼
[∫

Σ

{
[σ(ki)]2

}n/2
dµ
]2/n

− r(Σ)

=
[

Vol (Sn)
n∑
i=1

(
i

n− i

)n/2−i

bi (Σ)
]2/n

− r(Σ)
(4.31)

under the hypothesis that dµ is the induced Riemmanian manifold over Σ.
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5

Differential geometry and topology
of submanifolds in XY 2D model

This Chapter presents our original work that has been published in Ref.[10].
Here, we will use the mathematical framework explored in the last Chapter
for codimension m submanifolds Σf1,...,fm to adapt it to the case of XY 2D
model. We have seen in Chapter 3 that the two conserved quantities in the
XY 2D model are the Hamiltonian H = E and the total momentum P = p.
We will then present in this Chapter the bridge between thermodynamics and
geometry of Σp,E = {x ∈ Λ |H(x) = E ∧ P (x) = p}. Then, we will present
the calculations of some geometrical observables of Σp,E . Finally, we present
and discuss the numerical results of Hamiltonian dynamics simulations allowing
to estimate the averages and variances of the geometrical quantities investigated
on Σ0,Nε have been reported as functions of specific energy ε for different values
of N .

5.1 Link between thermodynamics and geometry of the
submanifolds Σp,E

In the present Section, we investigate the relationship between the thermo-
dynamics of a (generalized) microcanonical ensemble where both the total
energy

H = 1
2

N∑
µ̃=1

pµ̃pµ̃ + VN (q) (5.1)

and the total momentum

P =
N∑
µ̃=1

pµ̃ (5.2)

are fixed quantities and the geometry of the regular submanifolds Σp,E in phase
space.
The first step to study the extrinsic geometry in this particular case consists in
defining the normal bundle on Σp,E . This requires calculating both the gradient
of the total momentum

∇P =
∑
µ̃

∂µ̃ =⇒ ∥∇P∥ = N1/2 , (5.3)
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and the gradient of the Hamiltonian H

∇H =
∑
µ̃

pµ̃∂µ̃ +
∑
µ̂

∂µ̂V ∂µ̂ =⇒ ∥∇H∥ =
[∑

µ̃

pµ̃pµ̃ + ∥∇̂V ∥2

]1/2

, (5.4)

where ∇̂f = ∂µ̂f∂µ̂ is the gradient referred only to set of generalized coordinates
qµ̂.
Two normal vector fields can be associated with the two gradient fields in
absence of critical points

nP = ∇P
∥∇P∥

=
∑
µ̃ ∂µ̃

N1/2

nH = ∇H
∥∇H∥

=
∑
µ̃ p

µ̃∂µ̃ +
∑
µ̂ ∂

µ̂V ∂µ̂[∑
µ̃ p

µ̃pµ̃ + ∥∇̂V ∥2
]1/2

(5.5)

Following the definition given for the microcanonical volume ΩN based on the
Co-area formula given in Chapter 4, Eq.(4.23) reads in this case

ΩN (E, p) =
∫

Λ
δ(H(p, q) − E) δ(P − p) ω =

∫
Σp,E

(
σΣp,E√

G (∇H,∇P )

)
σE,p

=
∫

Σp,E

χσΣp,E
=
∫

Σp,E

σp,E ,

(5.6)

where χ =
(√

G (∇H,∇P )
)−1

and

√
G (∇H,∇P ) =

√
det
[
g(∇H,∇H) g(∇H,∇P )
g(∇P,∇H) g(∇P,∇P )

]
=
√

∥∇H∥2∥∇P∥2 − (g(∇H,∇P ))2.

(5.7)

Since the microcanonical thermodynamic observables defined in Chapter 3
are expressed as the derivatives of the microcanonical partition function with
respect to the specific energy, it is useful to provide a derivation formula for
the integral of functions over Σp,E with respect to the energy at fixed p.
Let us define the two functions f ∈ C∞(Λ) and F : (E1, E2) → R

F (E, p) =
∫

Σp,E

f σp,E (5.8)

We will derive in what follows the explicit form of the operator AE(·) acting
over functions f , s.t.

∂F

∂E
(E, p) =

∫
Σp,E

AE(f) σp,E (5.9)

To derive such an operator with respect to the energy, let us consider the
definition of the derivative of a function with respect to E. In what follows we
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adopt this notation: F ′(E, p) = ∂EF (E, p) and Ω′(E) = ∂EΩ(E, p)

F ′(E, p) = lim
∆E→0

∫
Σp,E+∆E

f σp,E −
∫

Σp,E
f σp,E

∆E

= lim
∆E→0

∫
ϕ(Σp,E ,∆E) f σp,E −

∫
Σp,E

f σp,E

∆E

= lim
∆E→0

∫
Σp,E

ϕ∗
∆E(f σp,E) −

∫
Σp,E

f σp,E

∆E

=
∫

Σp,E

[
lim

∆E→0

ϕ∗
∆E(f σp,E) − f σp,E

∆E

]
=
∫

Σp,E

Lξ(f σp,E)

(5.10)

In the second equality, the pullback of the one-parameter diffeomorphism
ϕ(·,∆E) among energy level sets generated by the vector field ξ, has been
applied on the argument of the integral in order to evaluate it on Σp,E . In the
last term, we recognize that the argument of the integral is the Lie derivative
along the vector field ξ of the (2N−2)-form α = fσp,E = fχσΣp,E

, so we obtain

Lξ(fσp,E) = ξ(fχ)σΣp,E
+ fχLξ

(
σΣp,E

)
. (5.11)

As we are interested in a derivation with respect to E at fixed p, the vector
field ξ has to fulfill the two following conditions:

dH (ξ) = 1
dP (ξ) = 0

(5.12)

and using the gradient definition (4.5), we obtain
g (∇H, ξ) = 1
g (∇P, ξ) = 0.

(5.13)

After further calculations, we obtain

ξ = c

(
∇H − g (∇H, ∇P ) ∇P

∥∇P∥2

)
, (5.14)

with c =
(

∥∇H∥2 − g (∇H,∇P )2

∥∇P∥2

)−1

.

We are interested in studying the extrinsic geometry of submanifolds of
codimension two Σp,E when p is fixed while E can change. So, we simplify the
problem by considering Σp,E as a codimension one submanifold, immersed on
Σp, on which the level sets H = E can evolve. We introduce then the projector
operator PΣp,E

for vectors on the tangent bundle TΣp, i.e.
PΣp,E

(X) = X − g(X,nP )nP . (5.15)
Let us redefine the two normal vector fields on Σp,E (see Figure 5.1 for a
visualization of the following vectors)

n1 = ∇P
∥∇P∥

n2 =
PΣp,E

(nH)
∥PΣp,E

(nH)∥ =
PΣp,E

(∇H)
∥PΣp,E

(∇H)∥ ,
(5.16)
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𝑃= 𝑝

𝐸1 𝐸2 𝐸3

Λ

𝑛1

𝑛2

𝑒𝐴

Figure 5.1: Level sets H = E over the submanifolds P = p immersed on Λ

where n2 is the normal vector field to energy level sets over Σp. We notice that

PΣp,E
(∇H) = ∇H − g

(
∇H, ∇P

∥∇P∥

)
∇P

∥∇P∥
= ∇H − 1

N
g(∇H,∇P ) ∇P

= ∇H − 1
N
P ∇P = ∇H − 1

N
∇
(
P 2

2

)
= ∇fHp ,

where we have introduced the function fHp. With the definition of such new
function fHp, the vector field ξ we introduced in equation (5.14) can be more
easily expressed as follows

ξ = ∇fHp
∥∇fHp∥2 . (5.17)

It is natural to introduce the differential forms θ1 = e1
µ dxµ and θ2 = e2

µ dxµ,
that in terms of derivatives of fHp and P , i.e.

ın1θ
1 = e1

µn
µ
1 = e1

µ

∂µP

∥∇P∥
= 1 ⇒ e1

µ = ∂µP

∥∇P∥

ın2θ
2 = e2

µn
µ
2 = e2

µ

∂µfHp
∥∇fHp∥

= 1 ⇒ e2
µ = ∂µfHp

∥∇fHp∥

(5.18)

yielding to

θ1 = ∂µP dxµ
∥∇P∥

= dP
∥∇P∥

θ2 = ∂µfHp dxµ
∥∇fHp∥

= dfHp
∥∇fHp∥

.

(5.19)
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With this notation, the volume form on phase space can be rewritten as follows

ω = dx1 ∧ ... ∧ dx2N = det(eµb ) θ1 ∧ θ2 ∧ ... ∧ θ2N

= θ1 ∧ θ2 ∧ θ2+1 ∧ ... ∧ θ2N︸ ︷︷ ︸
σΣp,E

= θ1 ∧ θ2 ∧ σΣp,E
.

(5.20)

where ıξσΣp,E
= ∥∇fHp∥−1ın2

(
θ2+1 ∧ ... ∧ θ2N) = 0 and LV ω = (divV )ω.

We have also used the fact that a Riemannian volume is a maximal form, i.e.
dω = 0. Finally, we obtain

Lξ
(
σΣp,E

)
= ∥∇fHp∥−1 div (n2)σΣp,E

, (5.21)

that substituted in Eq.(5.11), yields

Lξ(fσp,E) =
(

Lξ (f χ)
χ

+ f ∥∇fHp∥−1 div (n2)
)
χσΣp,E

= AE(f)σp,E .

(5.22)

So we obtain
∂F (E, p)
∂E

=
∫

Σp,E

AE(f) σp,E (5.23)

that generalizes to higher derivatives

F (k)(E, p) =
∫

Σp,E

Ak
E(f) σp,E =

∫
Σp,E

AE(AE(...(AE︸ ︷︷ ︸
k−times

(f)))) σp,E . (5.24)

By simply putting f = 1, one obtains

Ω′(E) =
∫

Σp,E

(
Lξ (χ)
χ

+ div (n2)
∥∇fHp∥

)
χσΣp,E

, (5.25)

with

Lξ (χ) = ∇ξ (χ) = 1
∥∇fHp∥2 ∇∇fHp

(
1

∥∇fHp∥N1/2

)

=
(

− 1
2N1/2

)
1

∥∇fHp∥2

2 g
(

∇fHp, ∇∇fHp
∇fHp

)
∥∇fHp∥3

= −
HessfHp

(
∇fHp

,∇fHp

)
∥∇fHp∥5 N1/2 ,

(5.26)

where we have used the definition of the Hessian two-covector

Hessf(X,Y ) ≡ g(∇X∇f, Y ) = Xdf(Y ) − df(∇XY ) . (5.27)

Finally, we obtain

Ω′(E) =
∫

Σp,E

(
−

HessfHp
(
∇fHp

,∇fHp

)
∥∇fHp∥4 + div (n2)

∥∇fHp∥

)
σp,E . (5.28)
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So the inverse of the microcanonical geometrical temperature is given by

T−1
geo(E, p) =

∫
Σp,E

div ξ σp,E∫
Σp,E

σp,E
=
∫

Σp,E

div ξ µ = ⟨div ξ⟩µc (p,E) , (5.29)

where ⟨·⟩µc(p,E) indicates the averages over the energy level sets σp,E with the
probability measure µ.

5.2 Geometrical and topological observables in XY 2D
model

As we are interested on the extrinsic geometry of Σp,E , we introduce the mean
curvature along the vector n2 and according to the equation (4.14), we have

Mn2 = − 1
2N − 2

2N−2∑
A=1

g(∇eA
n2, eA)

= − 1
2N − 2

[ 2∑
i=1

g(∇ni
n2, ni) +

2N−2∑
A=1

g(∇eA
n2, eA) −

2∑
i=1

g(∇ni
n2, ni)

]

= − 1
2N − 2

[∑
µ̃

g(∇∂µ̃
n2, ∂µ̃) +

∑
µ̂

g(∇∂µ̂
n2, ∂µ̂)+

− g(∇n1n2, n1) − g(∇n2n2, n2)
]

= − 1
2N − 2 [div(n2) − g(∇n1n2, n1)] .

(5.30)

The second term of the last equation in (5.30) is null. In fact, from
∇∇P∇fHp = 0 (for more details see Appendix A) it follows

∇n1n2 = 1
∥∇P∥

∇∇P

(
∇fHp

∥∇fHp∥

)
= ∇∇P∇fHp

∥∇P∥∥∇fHp∥
− (∇∇P∇fHp, ∇fHp) ∇fHp

∥∇P∥∥∇fHp∥3 = 0 .
(5.31)

Finally the mean curvature Mn2 of Σp,E reads

Mn2 = 1
2N − 2

[
HessfHp(∇fHp,∇fHp)

∥∇fHp∥3 − ∆fHp
∥∇fHp∥

]
. (5.32)

To explore the topology of Σp,E we consider them as co-dimension one manifold
immersed in the Euclidean space Σp and we compute the dispersion of the
principle curvatures σ2

n2
(ki) (that according to Pinkall theorem presented in

Chapter 4 is strictly related with topology).

σ2
n2

(ki) = ⟨k2
i ⟩ − ⟨ki⟩2 =

Tr(W2
n2

)
2N − 2 − (TrWn2)2

(2N − 2)2 , (5.33)
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where

Tr(W2
n2

) =
2N−2∑
A=1

g(−∇(−∇eA
n2)n2, eA) = −

2N−2∑
A=1

g(n2,∇∇eA
n2eA)

= −

[ 2N−2∑
A=1

g (n2,∇eA
∇eA

n2) + g(n2, [∇eA
n2, eA])

]

=
2N−2∑
A=1

[g (∇eA
n2,∇eA

n2) + g(n2, [eA,∇eA
n2])]

=
2N∑
µ=1

g (∇µn2,∇µn2) +
2N−2∑
A=1

g(n2, [eA,∇eA
n2]) − g (∇n2n2,∇n2n2)

=
2N∑
µ=1

∥∇µn2∥2 − ∥∇n2n2∥2 +
2N−2∑
A=1

g(n2, [eA,∇eA
n2])

(5.34)

The first term of equation (5.34) is giving by

2N∑
µ=1

∥∇µn2∥2 =
2N∑
µ=1

[
∂µ∂

ρfHp ∂ρ∂γfHp
∥∇fHp∥2 + ∂ρfHp∂ρfHp

∥∇fHp∥6

(
∂µ∂νfHp ∂

νfHp
)(
∂γ∂σfHp ∂

σfHp
)
+

− 2
(
∂µ∂

ρfHp ∂ρfHp
)(
∂γ∂νfHp ∂

νfHp

∥∇fHp∥4

]
δγµ

=
2N∑
µ=1

[
∂µ∂

ρfHp ∂ρ∂γfHp
∥∇fHp∥2 −

(
∂µ∂

ρfHp ∂ρfHp
)(
∂γ∂νfHp ∂

νfHp
)

∥∇fHp∥4

]
δγµ

= Tr
[(

HessfHp
)2

∥∇fHp∥2

]
−
(
HessfHp ∇fHp

)2

∥∇fHp∥4 .

(5.35)

Knowing that

∇n2n2 = ∂µfHp
∥∇fHp∥

∇µn2 ,

the second term then reads

∥∇n2n2∥2 = 1
∥∇fHp∥2 g

(
∂µfHp ∇µn2, ∂

σfHp ∇σn2
)

= 1
∥∇fHp∥2

[(∥HessfHp
)(

∇fHp
)
∥2

∥∇fHp∥2 +

−
∥
(
HessfHp

) (
∇fHp

)2∥2

∥∇fHp∥4

]
. (5.36)

The last term of equation (5.34) is a measure of the integrability of the vector
field distribution {n1, eĀ}Ā=2+1,...,2N in the sense of the Froebenius’ Theorem .
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In particular, if these fields form a closed algebra

[n1, eĀ] ∈ Span{n1, e2+1, ..., e2N} (5.37)

then
∑2N
Ā=3 g(n2,

[
∇eĀ

n2, eĀ
]
) = 0.

It is convenient to rephrase this condition in the language of differential forms.
Let us introduce the annihilator 1-form η defined as

η =
[
∂µ̃H − (∂ν̃H∂ν̃P )∂µ̃P

]
dqµ̃ +

[
∂µ̂H − (∂ν̂H∂ν̂P )∂µ̂P

]
dpµ̂

= [∂µ̃H − (∂ν̃H∂ν̃P )∂µ̃P ]dqµ̃ + ∂µ̂Hdpµ̂
(5.38)

such that
η(n1) = η(eA) = 0 . (5.39)

So if dη is an annihilator 2-form on the space Span{n1, e2+1, ..., eN} then the
fields {n1, eA}A=2+1,...,N are in involution, i.e.

0 = dη(X,Y ) = Xη(Y ) − Y η(X) − η([X,Y ]) = −η([X,Y ])
∀X,Y ∈ Span{n1, e1, ..., e2N−2} .

(5.40)

For the 1-form η defined in (5.38) we can evaluate explicitly dη,

dη =[∂ρ̃∂µ̃H − (∂ρ̃∂ν̃H∂ν̃P + ∂ν̃H∂ρ̃∂
ν̃P )∂µ̃P − (∂ν̃H∂ν̃P )∂ρ̃∂µ̃P ] dqρ̃ ∧ dqµ̃+

+ ∂ρ̂∂µ̂H dpρ̂ ∧ dpµ̂ .
(5.41)

The terms of the form ∂ρ̃∂µ̃f and ∂ρ̂∂µ̂f are symmetric in the permutation
of the indexes and so are null. The derivative of order k ⩾ 2 of the function
P are null as it is a linear function in pµ̃. So the only non trivial term is(
∂ρ̃∂ν̃H∂

ν̃P
)
∂µ̃P dpρ̃∧ dpµ̃: as

(
∂ρ̃∂ν̃H∂

ν̃P
)
∂µ̃P = N it is not antisymmetric

with respect to the indexes ρ̃, µ̃ and the term is zero. So it follows that dη = 0.
Finally

Tr(W2
n2

) = Tr
[(

HessfHp
)2

∥∇fHp∥2

]
−
(
HessfHp ∇fHp

)2

∥∇fHp∥4 +

− 1
∥∇fHp∥2

[(∥HessfHp
)(

∇fHp
)
∥2

∥∇fHp∥2 −
∥
(
HessfHp

) (
∇fHp

)2∥2

∥∇fHp∥4

]
(5.42)

5.3 Numerical Results

All the details of the calculations of the geometrical observables seen in the last
section are in Appendix A. In the case of geometrical observables, we are also
interested on the computation of the averages with respect to the Riemannian
induced measure σΣ0,E

, i.e.

⟨A⟩geo =
∫

Σ0,E
A σΣ0,E∫

Σ0,E
σΣ0,E

. (5.43)

As the Hamiltonian dynamics simulations allow to sample the submanifold Σ0,E
according to the microcanonical measure, we have to express the geometric
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averages (5.43) as a function of the microcanonical averages calculated according
to Eq.(3.38). As shown in [61], the geometrical averages can be estimated as
follows

⟨A⟩geo =
〈
Aχ−1〉

µc

⟨χ−1⟩µc
(5.44)
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Figure 5.2: Microcanonical average of the inverse of the density of states χ−1 for
the XY 2D model as a function of specific energy ε for N = 6 × 6 (red circles),
N = 10 × 10 (blue triangles), N = 20 × 20 (purple diamonds), N = 40 × 40
(green squares).

In principle χ−1 is not an intensive observable: so it is expected to depend on N〈
χ−1〉

µc
= N1/2

〈√
2K + ∥∇VN∥2

〉
≈ N1/2

〈√
N [2κ+ (∂µ̂VN )2]

〉
µc

≈ N
√

2⟨κ⟩µc + ⟨(∂µ̂VN )2⟩µc ,
(5.45)

where in the second equality we considered ∥∇VN∥2 ≈ N (∂µ̂VN )2, because
the system has nearest neighbors interactions and the transnational invariance
holds for any spin (due to the periodic boundary conditions). We can consider
both the microcanonical average of the specific kinetic energy ⟨κ⟩µc and the
derivative of the potential (∂µ̂VN )2

µc as intensive quantities so that we can argue
that χ−1 ≈ N .
In Figure 5.2, we observe that at the transition point, the maximum of χ−1

tends to disappear in favor of a point of non-differentiability preceding an
inflection point with an increasing N . Despite the fact that this observable has
no geometrical interpretation, we observe a signature of the transition.

In Figure 5.3, we observe an agreement with a precision ≲ 10−3 between
the new thermodynamic method that has been developed in this work and the
geometrical method. We notice also an important deviation of the Pearson
Halicioglu method [120] (where the constraint on total momenta has not been
considered. See Chapter 3) with respect to the other two methods (≈ 5 × 10−2

for N = 6 × 6). This effect is stronger for smaller systems.
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Figure 5.3: First order derivative with respect to specific energy at fixed total
momentum P = 0 of microcanonical entropy SN for N = 6 × 6 (a) and for
N = 10 × 10 (b). The different markers correspond to different calculation
methods: the method we have used in this work (red circles), the geometrical
method (blue triangles), and the original Pearson Halicioglu formula where the
constraint on total momenta has not been considered (purple diamonds).
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Figure 5.4: Micorcanonical average of divξ (a) and microcanonical variance of
divξ (b) for N = 6 × 6 (red circles), N = 10 × 10 (blue triangles), N = 20 × 20
(purple diamonds), N = 40 × 40 (green squares).

In Figure 5.4, we notice a strong qualitative and quantitative agreement
between ⟨divξ⟩µc = T−1

geo and the first derivative of the specific thermodynamic
entropy observed in Chapter 3 (Figure 3.2).
We notice also an asymptotic loss of differentiability of the variance of divξ as a
function of the specific energy ε. In fact σ2

µc (divξ) shows a horizontal inflection
point preceding the formation of a "knee" at the transition point, which becomes
sharper with an increasing N .

In Figure 5.5, we observe a remarkable accordance between the average of
the mean curvature calculated using microcanonical and geometrical measures.
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Figure 5.5: Microcanonical average of mean curvature (a) and the geometrical
average of mean curvature (b) for N = 40 × 40 (green squares) and N = 6 × 6
(red circles).

We observe also a weak change on the slop of
√
N ⟨Mn2⟩ at the transition point.

Since the average of the mean curvature is not an intensive observable, we add
empirically the factor

√
N that allows to compare the curves at different N .

However, for the variance of the mean curvature in Figure 5.6, we observe an
abrupt change on the concavity of the curve in both cases (Geometrical and
microcanonical measures), which is more marked with an increasing N . This is
interesting because it is directly related to the geometry of Σ0,E .
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Figure 5.6: Geometrical variance of the mean curvature (a) and microcanonical
variance of the mean curvature (b) for N = 6×6 (red circles), N = 10×10 (blue
triangles), N = 20 × 20 (purple diamonds) and N = 40 × 40 (green squares).

We recognize also in Figure 5.7 that there is an important agreement between
the geometrical and microcanonical averages of the dispersion of the principal
curvatures. This is the main observable we are interested in because this makes
the link between geometry and topology according to Pinkall’s theorem as

61



5.3. NUMERICAL RESULTS

1.0 1.2 1.4 1.6 1.8 2.0

0.55

0.60

0.65

0.70

0.75

0.80

(a)

1.0 1.2 1.4 1.6 1.8 2.0

0.55

0.60

0.65

0.70

0.75

0.80

(b)

Figure 5.7: Geometrical average of the dispersion of the principal curvatures
(a) and the microcanonical average of the dispersion of the principal curvatures
(b) for N = 6 × 6 (red circles), N = 10 × 10 (blue triangles), N = 20 × 20
(purple diamonds) and N = 40 × 40 (green squares).
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Figure 5.8: First order derivative with respect to the specific energy of the
geometrical average of the dispersion of the principal curvatures (a) and second
order derivative with respect to the specific energy of the geometrical average of
the dispersion of the principal curvatures (b) for N = 6 × 6 (red), N = 10 × 10
(blue), N = 20 × 20 (purple) and N = 40 × 40 (green).

explained in Chapter 4. We notice a sudden change in the concavity of
〈
σ2(ki)

〉
at the transition point which becomes sharper with an increasing N . We observe
that such an estimator of median topology behaves linearly above the transition
point and like a branch of parabola below the transition point. In order to
put in evidence this point we performed an eighth-order polynomial fitting
of ⟨σ2(ki)⟩geo as a function of the specific energy and we considered then the
derivatives with respect to the specific energy of the fitted function up to the
second order, presented in Figure 5.8. ∂ε⟨σ2(ki)⟩geo shows an asymptotic loss of
differentiability at the transition point and the corresponding loss of continuity
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is marked on ∂2
ε ⟨σ2(ki)⟩geo which is due to the presence of a steeper jump at

the transition point with an increasing N .

5.4 Chapter conclusions

We have seen that T−1
geo and the thermodynamic inverse temperature are in

remarkable accordance. We have also seen that for ∂εS, we observe a good
agreement between the thermodynamic method developed in this work and the
geometric method. Moreover, we have observed a change, either on the slope or
on the concavity, of the geometrical observable curves, at the transition point.
We have also observed an abrupt change in the concavity of ⟨σ2(ki)⟩. This
suggests that the KT phase transition is a mild phase transition in the sense
that we have to consider derivatives up the second order to observe a clear
signal of the transition. Moreover, ⟨σ2(ki)⟩ is a geometrical quantity estimating
topological invariants of the level sets as we have seen in Chapter 4. So, this
suggests that the 2D KT phase transition has a deep and very origin in the way
the topology changes with respect to the energy. In particular, as ⟨σ2(ki)⟩ is
a geometrical estimator of the median topology, we argue that we observe a
change in the rate of appearance of high dimensional holes on Σ0,E with energy.
We have also seen the loss of differentiability of σ2

µc (divξ) in the thermodynamic
limit, which is probably related to the loss of differentiability of the second
order derivative of the microcanonical specific entropy. In fact, we notice that
according to [123] the second order derivative of microcanonical entropy can be
expressed using our notations, as follows

∂2SN
∂ε2 = N

[
σ2
µc(divξ) + ⟨Lξdivξ⟩µc

]
. (5.46)

We can argue that the asymptotic loss of differentiability observed in Figure
3.2(b) has a geometrical origin in the loss of differentiability of Nσ2

µc(divξ).
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6

Another example of application:
the ϕ4 model

The work depicted here is one of our original works and can be found in Ref.[9].
Here, we will discuss two ϕ4 models, one with nearest neighbors and the other
with mean-field interactions. The models can undergo a second-order phase
transition. We will see, as done for the KT phase transitions, that the signature
of the phase transition can be detected from an abrupt change in geometrical
quantities defined on the energy level sets.

6.1 The model

In what follows two different versions of a ϕ4 model are considered. These
are defined through nearest-neighbor interactions and through long-range
interactions, respectively. These models are in some sense “paradigmatic”
in that they both undergo a second-order phase transition due to the Z2
symmetry-breaking, the same of the 2D Ising model. The ϕ4 models are defined
by the Hamiltonian

H =
∑

j

1
2π

2
j + V (ϕ) (6.1)

where

V (ϕ) =
∑

j

 λ
4!ϕ

4
j − µ2

2 ϕ2
j + J

D

∑
k∈I(j)

(ϕj − ϕk)2

 , (6.2)

πj is the conjugate momentum of the variable ϕj that defines the position of the
jth particle. In the case of the two-dimensional model, j = (j1, j2) denotes a site
of a two dimensional lattice, the number of nearest neighbors is D = 4 and I(j)
are the nearest neighbour lattice sites of the jth site. The coordinates of the
sites are integer numbers jk = 1, . . . , Nk, k = 1, 2, so that the total number of
sites in the lattice is N = N1 N2. Furthermore periodic boundary conditions are
assumed. In the case of the mean-field model j = 1, . . . , N denotes the indices
of the 2N canonical coordinates of the system, D = N − 1 and I(j) = 1, . . . , N .
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The Hamiltonian equations of motion read

ϕ̇j = πj ,

π̇j = − ∂V

∂ϕj

. (6.3)

The local potential displays a double-well shape whose minima are located at
±
√

3!µ2/λ and to which it corresponds the ground-state energy per particle
e0 = −3!µ4/(2λ). At low energies, the system is dominated by an ordered phase
where the time averages of the local fields are not vanishing. By increasing the
system energy the local Z2 symmetry is restored and the averages of the local
fields are zero.

2-d ϕ4 model.

In the case of the two-dimensional model, we have1

∆H = N(1 + 4J − µ2) + λ

2!∥ϕ∥2 , (6.4)

where ∥ϕ∥ =
√∑

j ϕ
2
j . In addition, it results

∥∇H∥ =
√

2K + ∥∇V ∥2 , (6.5)

where K stands for the total kinetic energy K =
∑

j π
2
j /2 and

∇kV = λ

3!ϕ
3
k + (4J − µ2)ϕk − J

∑
j∈I(k)

ϕj . (6.6)

The Hessian matrix of the Hamiltonian function is

H =
(
1 0
0 HV

)
, (6.7)

where the entries of the Hessian matrix HV of the potential function V result

(HV )ij = ∂2
ijV =

(
λ

2!ϕ
2
j + 4J − µ2

)
δi,j − Jδj,I(i) .

Finally, it is
∂3

ijkV = λδi,jδj,kϕj .

1From Eq.(6.1), we have

∂πkH =
∑

j

πjδjk = πk ⇒ ∂2
πkπkH = 1 .

Thus, we have
∂H

∂ϕk
=

∂V

∂ϕk
,

and
∂2H

∂ϕ2
k

= 4J − µ2 +
λ

2!
ϕ2

k ⇒ ∆H = N(1 + 4J − µ2) +
λ

2!
∥ϕ∥2 .
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Mean-field ϕ4 model.

The analogous quantities for the case of the mean-field model are the following.
∆H has the same form of (6.4), whereas

∇kV = λ

3!ϕ
3
k +

[
4J N

N − 1 − µ2
]
ϕk − 4J

N − 1M , (6.8)

where we have introduced the total magnetization

M = |
∑

j
ϕj| . (6.9)

In this case the Hessian matrix HV of the potential function V is

(HV )ij = ∂2
ijV =

[
λ

2!ϕ
2
j + 4J N

N − 1 − µ2
]
δi,j − 4J

N − 1 ,

and ∂3
ijkV has the same form of the 2−d case.

6.2 Numerical results

As we did for the KT phase transition, we have derived the caloric curve T (E)
and the specific heat Cv(E) of the two models. In addition to the thermodynamic
quantities, we have measured geometric quantities as the average of the Ricci
curvature KR(q, q̇) (see Appenix B for details). The main outcome of our
analysis is the better effectiveness of the geometric indicators as phase-transitions
detectors with respect to the traditional thermodynamic indicators, with the
exception of the order parameter. In a recent paper [122], by resorting to
geometric indicators, it has been possible to unambiguously characterize and
explain the phenomenology of a system that undergoes a thermodynamic phase
transition in the absence of a global symmetry-breaking and thus in the absence
of an order parameter.

2-d ϕ4 model

In this section, we report the results of the simulations performed for the 2d ϕ4

model (with nearest-neighbor interactions). The order parameter M = ⟨M⟩/N
- an average of the total magnetization M defined in (6.9) - is reported as a
function of the energy density ϵ = E/N in Fig.6.1: the bifurcation pattern of
M(E/N) is typical of a second-order phase transition.

Figure 6.1 allows one to determine the critical energy density ϵc of the phase-
transition, which is found to be ϵc ≈ 11.1.

As seen for the KT phase transition, a typical signature of a phase transition
is provided by the shape of the caloric curve T (E), i.e. the temperature as
a function of the energy. The caloric curve of the 2d ϕ4 model is reported in
Fig.6.2. We clearly see that it displays an inflection point just at the critical
energy density value identified by the bifurcation point of the order parameter
- highlighted with the vertical dashed line in Fig. 6.2 - and this is in perfect
agreement with the proposition proposed by Bachmann [133]
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Figure 6.1: The figure shows the plot of the quantity order parameter M vs the
energy density E/N for 128 × 128 particles (blue circles) and 48 × 48 particles
(red circles).
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Figure 6.2: The figure reports the temperature, as a function of E/N for the
2 − d ϕ4 model for 128 × 128 particles.

In Fig.6.3, the curve of the inverse temperature β as a function of E/N shows
an inflection point, located by the dashed vertical line.

The expected growth with the system size, of the peak of the specific heat in
correspondence with the phase-transition is shown in Fig. 6.4. The curve of the
specific heat CV vs the energy-density E/N has been computed for different
lattice sizes, that is, 24 × 24 sites (open circles), 48 × 48 sites (open squares)
and 128 × 128 sites (crosses).

Fig. 6.5 reports the second derivative of the entropy with respect to the energy
E. As mentioned above, the divergence of the specific heat stems from the
vanishing of this derivative. This figure displays the outcomes of a numerical
derivation of the curve β(E) obtained for systems of different sizes: 24 × 24
lattice sites (open circles), and 48 × 48 lattice sites (crosses). In addition, Fig.
6.5 reports the values of N∂2S/∂E2 vs E/N in the case of a system with 24×24
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Figure 6.3: β vs E/N in the case of the 2d-ϕ4 model with 128 × 128 particles.
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Figure 6.4: Cv/N vs E/N . The lattice sizes are: 24 × 24 (open circles), 48 × 48
(open squares) and 128 × 128 (crosses).

(open squares), 48 × 48 (full circles) and 128 × 128 (stars) lattice sizes. The
figure shows distinctly the transition point, corresponding to a discontinuity of
the fourth order of the derivative of S.

In Figure 6.6 the curve ⟨△H⟩/N vs E/N is reported, that is the time average of
the Laplacian of the Hamiltonian function per degree of freedom, and again it
clearly shows an inflection point at the transition energy density. The quantity
⟨△H⟩/N has a geometric meaning but of a different kind with respect to those
related to the extrinsic curvature of the energy level sets. In fact, as shown in
Appendix B, it turns out that the Laplacian of the Hamiltonian [in Eq.(B.15)]
coincides, apart from a constant, with the Ricci-curvature of a Riemannian
manifold, an enlarged configurational space-time endowed with a metric due to
Eisenhart [123, 52]. The geodesics of this manifold are just the natural motions
of the Newton equations associated with the Hamiltonian of the system.
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Figure 6.5: N∂2S/∂E2 vs E/N derived with a numeric derivative of the curve
β(E/N). Symbols refer to 24 × 24 (open squares), 48 × 48 (full circles) and
128 × 128 (stars) lattice sizes, respectively.
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Figure 6.6: Figure reports the time average of ∆H/N as a function of E/N in
the case of a system with 24 × 24 lattice sites.

Mean-field ϕ4 model

In the present section, we report the results of the numerical simulations
performed for the mean-field ϕ4 model. Also, this model undergoes a second-
order phase transition which is clearly displayed by the bifurcation of the order
parameter M = ⟨M⟩/N , the magnetization, versus the energy density ϵ = E/N ,
as is shown in Figure 6.7 where the critical energy density of the phase transition
point is found to be ϵc ≈ 25.

With respect to the 2d model, the long-range interactions make this system
harder to simulate. In fact, considerable difficulties have been encountered in
computing stabilized time averages of the same quantities computed for the ϕ4

model with short-range interactions. These difficulties depend on the worsening
of the properties of self-averaging of this model for energy values close to the
transition point, clearly due to the long-range interactions. Besides that, and
again except for the order parameter, the mean-field model undergoes a phase
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Figure 6.7: The order parameter M for the mean-field ϕ4 model is reported vs
E/N for 1024 particles (green circles) and 2048 particles (blue circles).

transition that appears much "softer" than the one undergone by the 2d model.
This fact is put in evidence by the basic thermodynamic functions T (E/N)
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Figure 6.8: T vs E/N for the mean-field ϕ4 model. N = 4096 red circles,
N = 2048 blue circles, N = 1024 green circles.

and β(E/N), reported in Figures 6.8 and 6.9, respectively. In particular the
curve β(E/N) does not display at all any feature to identify the presence of
a transition. All in all, these functions are not very helpful neither to clearly
identify the presence of a phase transition nor, possibly, its transition point.

In Figure 6.10 we report the derivative N∂2S/∂E2 as a function of E/N worked
out in the same way as previously done for the short-range model. The energy
density pattern of this derivative is found to be very noisy, even after many
millions of integration time steps, and this goes together with a very bad
outcome for the specific heat, which, on purpose, is not reported here.

To the contrary, and together with the order parameter, Figure 6.11 shows an
interesting pattern of the time average of the Ricci curvature of the mechanical
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Figure 6.9: The figure shows the curve β vs E/N for the mean-field ϕ4 model.
N = 4096 red circles, N = 2048 blue circles, N = 1024 green circles.
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Figure 6.10: The figure shows the plot of the quantity N∂2S/∂E2 vs E/N
derived with a numeric derivative of the curve β(E) for 1025 particles.

manifold (M × R2, ge) (see Appendix B) as a function of the energy density.
The pattern of ⟨∆H⟩(E/N)/N displays a "cuspy" point in correspondence with
the vertical red dashed line locating the phase transition point. Of course,
within the obvious limits of numerical outcomes, such a "cuspy" point appears
as an abrupt change of the second derivative of the Ricci curvature - with
respect to the energy - because above the transition point, its pattern appears
convex (of positive second derivative), whereas just below the transition point
the values of the Ricci curvature appear to align along a straight segment, thus
with a vanishing second derivative. Loosely speaking, this is reminiscent of
similar jumps of the second derivative with respect to the energy of an average
curvature function which has been found for a gauge model [122].

6.3 Chapter conclusions

We have considered the second-order phase transitions stemming from the
same kind of Z2 symmetry-breaking phenomenon occurring in two ϕ4 models.
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Figure 6.11: The figure shows the plot of the quantity ⟨∆H⟩/N vs E/N for
1024 particles (green circles) and 2048 particles (blue circles).

Besides the standard detection of the presence of a phase transition through
the bifurcation of an order parameter, we have focused on basic geometric
properties of different manifolds, highlighting that the values of thermodynamic
observables, like temperature and specific heat, and their functional dependence
on the energy are the consequences of more fundamental changes with the energy
of curvature properties of the energy level sets in phase space. The conceptual
interest of this fact is that a phase transition phenomenon can be seen as just
depending on the interaction potential of the forces acting among the degrees of
freedom of a system, that is, the possibility for a system of undergoing a phase
transition is already "encoded" in its Hamiltonian function and thus can be
read in the variation of some extrinsic curvature properties of the hypersurfaces
H(p, q) = E foliating the phase space. When the variations with energy in
the geometry of these level-set manifolds are too "mild", as is the case of the
mean-field ϕ4 model, one can again recover a rather sharp geometric signature
of the transition by considering the energy variation of the Ricci curvature
of a manifold the geodesics of which are the motions of the system. In other
words, in both cases, a phase transition phenomenon can be seen as stemming
from a deeper level than the usual one which consists of attributing them to a
loss of analyticity of the statistical measures in the thermodynamic limit. The
statistical measures represent an "epistemic" description of the occurrence of
phase transitions, in which statistical measures do not correspond to physically
measurable entities, whereas the forces acting among the degrees of freedom
of a system belong to an "ontic" level because forces are real physical entities,
velocities of the kinetic energy and potentials can be in principle measured so
that for energy conserving closed system the quantities entering the relation
H(p, q) = E are real physical ones.

Finally, since geometric indicators, like the Ricci curvature, are independent
of the order parameter among the other thermodynamic quantities, the proposed
geometric analysis can be applied also in the case of systems that undergo phase
transitions in absence of a global symmetry breaking and thus in the absence
of an order parameter.
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7

Conclusion of part I

In this part, different aspects of the 2D KT phase transition are studied.
On the one side, the study of the microcanonical thermodynamics of the
XY 2D model is granted to detect and classify the KT phase transition at
finite N , and to generalize it to the thermodynamic limit. On the other
side, the topological and geometrical characterization of the submanifolds
Σp,E = {x ∈ Λ | P (x) = 0 ∧ H(x) = E} allowed to predict the KT phase
transition and at any finite N. Moreover, We studied the phase transition
occurring in the ϕ4 model, using the geometrical and topological scheme.

At the end of this investigation, we have obtained the following results:

• The development of the Laplace transform technique to calculate the
derivatives of the microcanonical specific entropy with respect to the
specific energy up to the fourth order and in presence of the constraint
P = 0 for the total momentum of the system.

• Through the study of the microcanonical thermodynamics of the KT
phase transition in 2D model, we conclude that it is a second order
phase transition, both according to a classification recently proposed by
Bachmann[133] and extended microcanonical classification à la Ehrenfest,
discussed in Chapter 3.

• We rephrase the microcanonical thermodynamics for systems with
conserved total momentum in terms of the Riemannian geometry of
energy-total momentum level sets ΣE,p in phase space Λ endowed with
Euclidian metric.

• We numerically verified that the first order derivative of the microcanonical
entropy calculated both with our Laplace transform technique and with
the geometrical method are in full agreement.

• We showed how to calculate a geometrical estimator of the median topology
of ΣE,p thanks to the Pinkall inequality, i.e. the geometrical average of
the dispersion of the principal curvatures ⟨σ2(ki)⟩ of Σ0,E .

• We found the geometrical origin of KT phase transition in the change,
either on the slope or on the concavity, of the geometrical observable
curves (the average and the variance of the extrinsic mean curvature, the
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divergence of the vector field ξ generating the diffeomorphism among the
level sets Σ0,E , etc.), at the transition point.

• We found convincing evidence that the 2D KT phase transition has the
deep and very origin in a topological change of the submanifolds Σ0,E
signaled by the abrupt change of the concavity of ⟨σ2(ki)⟩. In fact, what
we observed might be interpreted as a change in the rate of appearance
of high dimensional holes of Σ0,E with energy at the transition point.

• The proposed geometrical analysis has been also fruitful in the study of
the ϕ4 model example since all the studied geometrical quantities were
found to have an abrupt change at the phase transition.
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PART II

Geometrical characterization of
quantum entanglement
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1

Introduction of part II

In this part of the thesis, we will characterize quantum entanglement through
the study of projective Hilbert spaces. Quantum entanglement is one of the
most subtle and intriguing phenomena in nature. It is a quantum mechanical
phenomenon in which quantum states shared between two or more parties cannot
be described as separated states, even if the parties are spatially separated.
This leads to correlations between observable physical properties of the systems.
The potential usefulness of quantum entanglement has been demonstrated in
various applications such as quantum teleportation, quantum cryptography,
and quantum dense coding. Despite its key role, entanglement remains elusive
and the problem of its characterization and quantification is still open [147, 69].

Quantum mechanics is grounded in a formalism in which the states of a
quantum system are vectors in a complex Hilbert space H. Nonetheless, it is
well-known that such a formulation is redundant since vectors differing only in
normalization and global phase are physically equivalent [11]. The use of this
equivalence relation leads to the space where quantum states live in complex
projective Hilbert spaces P (H). A famous example of a projective Hilbert space
is the Bloch sphere, which is actually a natural way of introducing the notion of
a qubit [114], that is at the same time also a standard tool in the study of the
polarization of photons [143]. The concept of distance in this space was first
introduced via the Fubini Study metric by Provost and Vallee in [132], where
they have shown that the distance between nearby states is related to quantum
fluctuations.

The goal of this part of the thesis is to show that despite the fact that
quantum states live in a strange and abstract projective Hilbert space, it is
possible to speak of its geometry and extract valuable information from it
through the Fubini Study metric. In fact, we will construct an entanglement
measure for pure and mixed states from an adapted application of the Fubini
Study metric. This part will depict our original work on quantum entanglement
and quantum correlation done in Ref.[41] and Ref.[154]. In Chapter 2, we
will tackle some important concepts of projective Hilbert spaces. In Chapter
3 we will review some basic concepts of quantum entanglement. Then, in
Chapter 4, we will illustrate the procedure that led us to the construction of
an entanglement measure for multipartite pure states. We named the proposed
entanglement measure entanglement distance. Next, in Chapter 5, we will
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talk about the physical interpretation of the entanglement distance. This will
be important for the analysis that will be done in Chapter 6 of the examples
of application of the proposed measure. In Chapter 7, we extend the proposed
entanglement measure to mixed multipartite states. We will illustrate how we
have constructed a quantum correlation measure for multipartite mixed states,
which led us to the construction of an entanglement measure for mixed states.
And finally, in Chapter 8, we will apply these both measures to some examples
of mixed states, to show the validity of the proposed measures.
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2

Review of projective Hilbert spaces

In this Chapter, we review some notions of projective geometry. We will first
start by giving a general definition of projective spaces in section 2.1. Then, in
Section 2.2, we will give an example of a projective space, that is the projective
Hilbert space. At the end of this chapter, we will briefly discuss the Fubini
study metric, which is a metric that can be endowed in the projective Hilbert
space

2.1 What is a projective space?

In Euclidean Geometry two distinct lines intersect unless they are parallel. In
the setup of projective geometry, one enlarges the geometric setup by claiming
that two distinct lines will always intersect. Even if they are parallel they have
an intersection. One of the easiest examples to illustrate a projective space is
the road (see Figure 2.1) that becomes narrower as it moves away from the
observer’s eye. Euclidean geometry alone will not be able to describe this. In

Figure 2.1: Parallel lines seem to intersect at infinity at a vanishing point.

fact, the two parallel lines forming the road intersect at a vanishing point at
infinity. Euclidean geometry is thus not sufficient to describe the geometry
in projective space. Actually, Euclidean geometry is a subset of projective
geometry.
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Projective geometry was invented shortly after Renaissance painters invented
perspective geometry to project and paint the world as it is in a realistic way.
To create a faithful image of the three-dimensional world, perspective geometry
provided a theoretical explanation of a basic empirical fact about vision; namely,
when we see parallel lines it generally looks as if they meet at some point very
far away on the horizon. This led to the establishment of some fundamental
rules for perspective drawing by Renaissance artists

(1) The image of a straight line is a straight line.

(2) Each family of parallel lines converges towards a vanishing point.

z = 1z = 0

B

A

B’

A’

Figure 2.2: One point perspective

An example of the first rule is applied in Figure 2.2. The straight line (AB)
is projected into a straight line (A′B′) to the z = 1 plane which symbolizes the
painter’s canvas. Another way to consider the first rule is the following: the
projected line (A′B′) is merely the result of the intersection of the plane z = 1
and the plane passing from the observer’s eye and containing (AB). Another
thing to note is that points lying on the plane z = 0 do not have images, since
they are invisible to the observer’s eye. The line that crosses the points A and
A′ (or B and B′) is actually a light ray that enters the eye’s observer.

The second rule can be understood by taking the following example: suppose
we want to represent in perspective a square tiling, for instance of a floor (see
Figure 2.3). Suppose a painter is standing straight in front of a square tile. The
floor is underneath him and he wants to paint what he sees. To include depth in
his image, he cannot merely paint the square tiling with parallel lines in figure
2.3. Instead, he must first draw the horizon line as in Figure 2.4, which will
depend on the tilt of his head then he has to find the vanishing points to which
families of parallel lines converge. For example in Figure 2.4, the parallel lines
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Figure 2.3: Euclidean vision of a square tiling

on the floor that are facing the painter converge into a single vanishing point (in
black) at the Horizon. Whereas, the diagonals of the squares (in red) converge
towards another vanishing point. The horizon added by the artist is a line that
he seems to see very far from him. This means that the squares in front of
him are not very distorted, unlike the ones far away from him. Without the
horizon, the parallel lines would not be converging. It is as if, the artist added
a line at infinity to his canvas to which each family of parallel lines converges.
Thus, we say that the painter’s canvas is no longer a Euclidean plane. It is
a projective space because the line at infinity added completes the Euclidean
flat plane on which the painter was painting. The space is now richer than
an ordinary Euclidean space, because, every two parallel lines intersect at a
point. More precisely, the Canvas is said to be a projective real plane, generally
denoted as follows P

(
R2) ≡ RP 2.

Horizon

Vanishing point

Figure 2.4: Projective vision of a square tiling
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We can thus represent a projective real plane as in Figure 2.5, where we
have added a line at infinity and where each family of parallel lines converges
towards a point belonging to that line. We can think of the line at infinity as
the horizon line added to the Canvas by a painter. However, in the early 1800,

R2

RP 2

Line at infinity

Figure 2.5: Real projective plane

a completely new way of thinking about the projective plane was introduced,
which completely changed the direction of the subject and introduced new kinds
of ideas and techniques. It was the idea of describing the projective spaces with
homogeneous coordinates that was introduced by August Ferdinand Möbius in
1827 [115, 145]. In this version of the projective plane, points are lines through
the origin in R3 \ {0} for reasons that will become clear in a while. To see
that this representation of the projective plane is equivalent to the one given in
Figure 2.5, let us use the embedding of R2 in R3, see Figure 2.6. One point in
R2 is given by the intersection of a line through the origin in R3. The ad-hoc
points at infinity added to R2 in Figure 2.5 are now given by the lines in the
xy plane, in Figure 2.6, that are parallel to R2, since a parallel line meets R2

at infinity. Each line is actually extended to infinity in both directions so, to
avoid confusion, we use the word ray, rather than line through the origin. The
ray is not an object composed of a large number of points, we have to think
of it as a single object, representing a single projective point. The projective
space in this representation is parameterized by lines through the origin. A
line is determined by two points, so a line through the origin is determined by
any nonzero vector. For this reason, we say that the projective plane is the
set of rays in R3 \ {(0, 0, 0)}, which is written in a shortened form as R3 \ {0}.
Since all rays that are not parallel to R2 intersect it, we conclude that there is
a one-to-one correspondence between points in R2 and the rays that are not
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x

y

z

R2

O

Figure 2.6: Embedding of R2 in R3

parallel to R2. And, rays at the origin are in one-to-one correspondence with
the directions of parallel lines in R2. To see this, we must remember that a ray
is the result of the intersection of two planes. Thus, a ray in the xy plane (at
the origin) is the intersection of the xy plane and a plane passing through it.
As a result, a ray in the xy plane is in a one-to-one correspondence with a line
in Euclidean space, see Figure 2.7.

We can organize all these lines defined in all directions by introducing
homogeneous coordinates (also called projective coordinates). Suppose a plane,

x

y

z

line of
intersection

R2

Figure 2.7: Rays in the xy plane are in one-to-one correspondence with directions
in the Euclidean space.
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z = 0

z = 1

Figure 2.8: Homogeneous coordinates

for example, the z = 1 plane (Figure 2.8). Then, most of the rays will meet this
plane at a point. The only rays which are not going to intersect with the z = 1
plane are the ones that are lying in the z = 0 plane. In this representation, we
are actually using a vector space construction of the projective plane, since we
can represent a ray by a vector through the origin in R3. Thus, any ray can
be described by a vector v⃗ = (x, y, z), and any multiple of this vector is given
by λv⃗. It is especially interesting to choose λ such that the z coordinate of the
new vector is equal to 1, that is v⃗′ = λv⃗ = (x′, y′, 1), and this means that λ
has to be equal to 1/z. Therefore, the new vector must be v⃗′ = (x/z, y/z, 1).
We can conclude that the line trough v⃗ = (x, y, z) has Euclidean coordinates
(X = x/z, Y = y/z). So, this is a way of transferring from a 3-dimensional scale-
invariant, using homogeneous coordinates, to the 2-dimensional description,
using the ordinary Cartesian coordinates, i.e.xy

z


︸ ︷︷ ︸

Homogeneous coordinates

−→

X = x/z

Y = y/z


︸ ︷︷ ︸

Affine coordinates

. (2.1)

Rays from the origin which are not horizontal can intersect a given plane at a
point (x, y, z) and intersect another plane at another point that can be obtained
by scaling (x, y, z). Meaning that rays are exactly in one-to-one correspondence
with points in the Cartesian plane. On the other hand, the horizontal rays at
z = 0 correspond to points at infinity in the Cartesian plane (since a given
horizontal ray intersects a Cartesian plane in an ideal point at infinity). This
can be seen as follows: a point in Cartesian coordinates (1, 2), becomes (1, 2, 1)
in homogeneous coordinates. If a point (1, 2) moves towards infinity it becomes
(∞,∞) in Cartesian coordinates and (1, 2, 0) in homogeneous coordinates.
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More formally, a projective space in any dimension can be defined as follows
[168, 45]

Definition 2.1. Let F be a field and let V be a finite-dimensional F-vector
space. The projective space of V denoted P (V) is the set of one-dimensional
vector subspaces of V

P (V) = {V \ {0}/ (v ∼ λv) , λ ∈ F∗} , (2.2)

where v ∈ V.

If dim V = n+ 1, then dimP (V) = n. If we fix a basis {e0, · · · , en} of V,
then V ∼= Fn+1, we denote P

(
Fn+1) = PnF = FPn. Fixing a basis {e0, · · · , en}

yields a unique decomposition

v =
n∑
i=0

xiei .

Thus
v ∼ λv ⇒ (x0, · · · , xn) = (λx0, · · · , λxn) .

We get
FPn = Fn+1 \ ({0}/ (v ∼ λv) , λ ∈ F∗) .

In general, we note the equivalence class of v

[v] = [x0 : · · · : xn] .

The rules to construct a projective space using a coordinate system are

(1) A point in projective space FPn is p = [v] and it has
(

dim [P (V)] + 1
)

coordinates (x0, · · · , xn).

(2) xi ∈ F.

(3) Not all xi are zero.

(4) (x0, · · · , xn) = (λx0, · · · , λxn) for λ ∈ F∗

2.2 Projective Hilbert spaces

In quantum mechanics, an arbitrary quantum state in Hilbert space H of a
quantum system is described as follows

|ψ⟩ =
∑
i

ai |ei⟩ , (2.3)

where {|ei⟩} is a set of orthonormal basis vectors for H . The ai are complex
numbers. This means that the state |ψ⟩ is a vector in H with coordinates
(a1, a2, · · · , ai, · · · ). We know that, if any state |ψ⟩ is multiplied by a complex
factor c, the resulting state must be equivalent to the original one, apart from
the special case where c = 0. Thus, we can define an equivalence relation

(a1, a2, · · · , an+1) ∼ (ca1, ca2, · · · , can+1) , ∀ c ∈ C \ {0} . (2.4)
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We can write this equivalence relation as

[a] = [a1 : · · · : an+1] (2.5)

If we look back at definition 2.1 of projective spaces, we will realize that we
actually defined the homogeneous coordinates of a point in P

(
Cn+1) = CPn.

We can thus define projective Hilbert spaces as follows [169]

Definition 2.2. A finite projective Hilbert space P
(
Hn+1) ≡ PHn is defined

as a complex projective space P
(
Cn+1) = CPn. Thus, the projective Hilbert

space is the space consisting of all complex lines in Cn+1

CPn =
{

z = [z0, · · · , zn] ∈ Cn+1 \ {0}
}
/
{

z ∼ λz , λ ∈ C∗} , (2.6)

where z is a vector in Cn+1, expressed in terms of the homogeneous coordinates
(or projective coordinates), and the equivalence relation z ∼ λz means that any
vector λz , λ ∈ C∗ represents the same ray as z, provided that the coefficient λ
is not zero.

In the projective Hilbert space HPn, we can define a metric, called the
Fubini–Study metric, which is a Kähler metric (see Appendix D for an
introduction to Khäler manifolds). This metric was actually described first in
1904 and 1905 by Guido Fubini and Eduard Study [63, 148]. Given two rays
|ψ⟩ and |ϕ⟩ on PHn, we can define a transition probability as follows

cos (θ)2 = | ⟨ϕ|ψ⟩ |2

⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩
, (2.7)

where θ is the angle between the two rays. However, a ray in a projective space
is considered as a point in the projective space. Thus, the angle θ between two
rays in PHn can be thought of as a distance between two points |ψ⟩ and |ϕ⟩. If
we Taylor expand Eq.(2.7) up to the second order and if we set dθ equal to ds,
where ds denotes an infinitesimal distance, and take ϕ = ψ + dψ, we get

ds2 = ⟨ψ|ψ⟩ ⟨dψ| dψ⟩ − ⟨dψ|ψ⟩ ⟨ψ| dψ⟩
⟨ψ|ψ⟩2 . (2.8)

This is the Fubini Study metric defined in projective Hilbert spaces. In the case
where |ψ⟩ is normalized, Eq.(2.8) can also be written in the following way [68]

ds2 = ⟨dψ|dψ⟩ − 1
4 |⟨ψ|dψ⟩ − ⟨dψ|ψ⟩|2 . (2.9)

For a more detailed description of the Fubini Study metric, see Appendices D
and C.
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Entanglement: general discussion

In this Chapter, we briefly discuss basic notions of quantum entanglement.
Quantification of entanglement is an important task in quantum information
theory. As we will see, the quantification of entanglement in a system
can be achieved in two different approaches: an axiomatic approach and
an operational approach. We will be interested in the axiomatic approach.
Entanglement measures in the axiomatic approach have to fulfill certain
axioms. In particular, they have to be non-increasing under Local Operations
and Classical Communications (LOCC). For this reason, we will first define
entanglement in multipartite states in Section 3.1. Then, we will review the
notion of quantum operations in Section 3.2 and LOCC in Section 3.3. Next,
in Section 3.4, we will introduce the notion of entanglement measures. And,
finally, in Sections 3.5 and 3.6, we will briefly talk about the notion of the
classification of entangled states and why it is important.

3.1 Quantum entanglement

The total projective Hilbert space PH of a system composed of two subsystems
is the tensor product of the subsystems projective Hilbert spaces PH, i.e.
PH = P (H1 ⊗ H2). A pure quantum state |ψ12⟩ is described by rays in PH,
and it is said to be separable if it can be expressed as a tensor product

|ψ12⟩ = |ψ1⟩ ⊗ |ψ2⟩ . (3.1)

In other words, a pure state is separable if and only if there are no correlations
between the subsystems. If |ψ12⟩ is not separable, it is called entangled.

There is a more general way to define entanglement in a bipartite system, and
it is via the so called-Schmidt decomposition. Suppose that the above bipartite
state is now expressed in a more general form, i.e. as a superposition of states

|ψ12⟩ =
n∑
i=0

m∑
j=0

cij |ψ1
i ⟩ ⊗ |ψ2

j ⟩ , (3.2)

where n and m are the dimensions of H1 and H2 respectively. We clearly
see from equations (3.1) and (3.2), that: the state |ψ12⟩ is separable if and
only if the rank of the matrix C with coefficients cij is equal to 1. To detect
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entanglement in a bipartite state, we can express the state in Eq.(3.2) in a
particular way, called the Schmidt decomposition

|ψ12⟩ =
p∑
i=0

χi |ϕ1
i ⟩ ⊗ |ϕ2

i ⟩ , (3.3)

where ({|ϕ1
i ⟩}, {|ϕ2

i ⟩}) are sets of orthonormal vectors in PH1, and PH2,
respectively, and p is called the Schmidt rank. The coefficient χi are the
unique values of the matrix C, satisfying

∑
i χi = 1. Thus, in terms of the

Schmidt decomposition, we have: a state |ψ12⟩ ∈ P (H1 ⊗ H2) is entangled iff
its Schmidt rank c is strictly larger than 1.

Unfortunately, there is no such expansion of general vectors when three or
more subsystems are combined. In the case of more than two systems, the
notion of entanglement becomes more complicated. It is interesting to use the
example of pure three-qubit systems first, as it already shows the increasing
richness of entanglement features compared to bipartite pure states. We will
then generalize the concepts encountered in three-qubit systems to multipartite
states.

A pure three-partite state is called fully separable if and only if it can be written
in the form

|ψfs⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ |ψ3⟩ . (3.4)

Another possible situation, which arises when we go beyond the bipartite
framework, is that two of the three parties share some entanglement, while they
share no entanglement with the other parties.

A pure three-partite state is called bi-separable with respect to partition 12|3, if
and only if it can be written in the form

|ψbs⟩ = |ψ12⟩ ⊗ |ψ3⟩ , (3.5)

where |ψ12⟩ is an entangled state defined in P (H1 ⊗ H2).

The last class of pure tripartite entanglement is what is called genuine (of fully)
tripartite entangled states. A pure three-partite state is a genuine tripartite
entangled if and only if it is neither fully separable nor bi-separable with respect
to any bipartition.

In the case of a quantum system consisting of n subsystems, entangled states
show further structure. Indeed, in the multipartite case, apart from fully
separable and fully entangled states, there also exists the notion of partial
separability. The starting point of entanglement theory in a multipartite pure
state |ψ⟩ ∈ P

(
H⊗M) is to define the set of unentangled states. This corresponds

to product states, i.e. to vectors of the type

|ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψM ⟩ . (3.6)

A state vector is entangled if it is not of this form. Entangled vectors are
themselves grouped into different classes of “equivalent” entanglement.
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3.2 Quantum operations

A quantum operation (also known as a quantum process) is a mathematical
formalism used to describe a general class of transformations that a quantum
system can undergo. For example, the dynamics of a closed quantum system
are characterized by a unitary transformation. However, the formalism of
quantum operations describes not only the unitary time evolution or symmetry
transformations of isolated systems but also the effects of measurement and
interaction with the environment, thus the dynamic of open quantum systems.

A very elegant explanation of quantum operations is provided in Nielson and
Chuang book [116], in Chapter 8. A simple way to describe the dynamics of an
open quantum system is to consider it as the result of an interaction between
the quantum system we are interested in and a given environment. And both,
form a closed quantum system. Figure 3.1 shows a schematic representation of

Figure 3.1: Schematic representation of the interaction of a system, represented
by ρ and an environment. After interaction with an environment, the final state
is denoted by E(ρ). The figure was taken from [116]

the process. The system, described by the state ρ, enters a box, in which it is
coupled with the environment through a unitary operation U . The final state,
after the transformation, is E(ρ). The mathematical expression of the process is

E(ρ) = Trenv

(
U (ρ⊗ ρenv)U†

)
, (3.7)

where the interaction system-environment is considered to be represented -for
the sake of simplicity to understand the concept now- with ρ⊗ ρenv, i.e. with a
product state. In the case where the unitary operation does not involve any
interaction with an environment, the final state reads E(ρ) = ŨρŨ†, where Ũ is
the part of U that acts only on ρ.

A more elegant way to describe quantum operations [116] is the Operator-sum
representation. In this representation, as we will see, the dynamics of the
principle system can be described without having to explicitly consider the
properties of the environment. We assume in this representation that the initial
state of the environment is of the form |e0⟩ ⟨e0|1, and its final state is represented
by a set of states {|en⟩}, forming an orthonormal basis. A general mathematical

1We assumed that the initial state of the environment is pure. This is not a restriction,
since even in the case where the initial state of the environment is mixed, we still can purify
the system. See [116] for a more detailed explanation.
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description of the process depicted in Figure 3.1 can thus be rewritten as follows

E(ρ) =
∑
n

⟨en|U
[
ρ⊗ |0⟩ ⟨e0|

]
U† |en⟩

=
∑
n

EnρE
†
n , (3.8)

where

En = ⟨en|U |e0⟩ (3.9)
are operators on the projective Hilbert space of the principal system. Equation
(3.8) is known as the operator-sum representation of E . The operators {En}
are known as the operation operators or as Kraus operators.

Another way to express quantum operations is as follows: suppose we measure
the environment in the basis |en⟩. From Eq.(3.8) and (3.9), we see that
projecting the state of the environment into |en⟩ ⟨en|, yields an intermediate
state ρn = EnρE

†
n, which if we normalize it, we get

ρn = EnρE
†
n

Tr
(
EnρE

†
n

) . (3.10)

And on the other hand, if we compute the probability of getting the outcome n,
we will find (the proof is done in [116])

p(n) = EnρE
†
n . (3.11)

Equations 3.10 and 3.11, yield

EnρE
†
n = pnρn . (3.12)

Thus, a quantum operation can be written in terms of the intermediate states
ρn as

E(ρ) =
∑
n

p(n)ρn =
∑
n

EnρE
†
n . (3.13)

Properties of quantum operations

(1) A quantum operator E is a linear map between spaces of trace class2

operators defined on Hilbert spaces.

(2) If we demand conservation of the probability, we need to set Tr (E(ρ)) = 1,
and this yields

1 = Tr (E(ρ))

= Tr
(∑

n

E†
nEnρ

)
, ∀ ρ

⇒
∑
n

E†
nEn = 1 .

(3.14)

2A trace-class operator is a linear operator for which a trace can be defined and it is a
finite number independent of the choice of the basis used to compute the trace.
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In this case, the quantum operations are called trace preserving, and in
the case where

∑
nE

†
nEn ≤ 1, they are called non-trace-preserving.

(3) E is completely positive.

Examples of quantum operations

(1) Local Unitary operations: One of the most important classes of quantum
operations that can act on quantum states is that of the unitary operators
U [108]. They are bounded linear operators U : PH → PH, that satisfy
U†U = UU† = 1.

(2) Measurement: Another important type of quantum operation is quantum
measurements. There are two types of measures

a) Projective measurement: it is also called von Neumann measure
and it is described by a Hermitian operator O, such that

O =
∑
m

mΠm , (3.15)

where Πm is the projector onto the eigenspace of O with eigenvalue
m and they satisfy

∑
m Πm = 1 and ΠmΠm′ = δmm′ .

b) Generalised measurement: also called Positive Operator Valued
Measure (POVM). It is described by a collection of measurement
operators Mi, that satisfy

∑
iM

†
iMi = 1. They can be projectors,

but not necessarily.
Example: assume a single qubit in a state ρ = |0⟩ ⟨0| interacts with
an environment through

U = |0⟩ ⟨0| ⊗ 1+ |1⟩ ⟨1| ⊗ σx , (3.16)

where |0⟩ ⟨0| and |1⟩ ⟨1| act on the system and 1 and σx act on the
environment. In this case, Kraus operators defined in Eq.(3.9), are
E0 = |0⟩ ⟨0| and E1 = |1⟩ ⟨1|.

3.3 Local operations and classical communication (LOCC)

With the recent explosion of interest in quantum computing, new questions
have arisen, particularly about measurements performed by multiple parties
on spatially separated quantum systems. If the parties lack the ability to
communicate quantum information, then they are restricted from performing
quantum operations on their individual local subsystems and then commu-
nicating classical information about the results of their actions to the other
parties.
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Definition

Imagine a bipartite system, shared by Alice and Bob spatially separated from
each other, and suppose that Alice performs an operation on her side. Such
operations, performed exclusively within Alice’s (or Bob’s) laboratory are called
local operations. Alice then communicates the outcome to Bob. Depending
on the result, he performs his operation, obtains the result, communicates it
to Alice, and so on. This complicated procedure is called LOCC. They are
thus a way to operate locally on part of the system and communicate the
result of this operation classically to another part, where usually another local
operation is performed conditioned on the information received. LOCC can
be used to transform entangled states into other entangled states, but they
cannot generate entangled states out of product states. Thus, the possible
transformations between states are strictly limited by using LOCC.

Let us give an example: suppose Alice and Bob share an entangled quantum
state |ψ⟩ = (1/

√
2) (|00⟩ + |11⟩). Knowing that they only have access to

arbitrary operations on their local systems (including measurement) and classical
communication, they wonder into what other states |φ⟩ the initial state |ψ⟩ can
be transformed. Suppose they choose the following protocol:

(1) Alice chooses to perform two outcomes measurements, described by
measurement operators

M1 =
(

cos θ 0
0 sin θ

)
M2 =

(
sin θ 0

0 cos θ

)
. (3.17)

Thus, after the measurement, the initial state |ψ⟩ is either

|ψ1⟩ = cos θ |00⟩ + sin θ |11⟩ , (3.18)

or
|ψ2⟩ = cos θ |11⟩ + sin θ |00⟩ . (3.19)

(2) If Alice finds the state in Eq.(3.18), she does nothing. If she find the state
in Eq.(3.19), she applies a NOT gate (the Pauli matrix σx), and gets

|ψ2⟩′ = cos θ |01⟩ + sin θ |10⟩ . (3.20)

(3) She then communicates classically the results saying to Bob, if she got
the state in Eq.(3.18) or the one in Eq.(3.20).

(4) Bob does nothing if the state is the one in Eq.(3.18) and applies a NOT
gate if the state is the one in Eq.(3.19).

This means that regardless of the measurement outcomes obtained by Alice,
they get the state

|φ⟩ = cos θ |00⟩ + sin θ |11⟩ . (3.21)

Thus, Alice and Bob have transformed their initial entangled |ψ⟩ =
(1/

√
2) (|00⟩ + |11⟩) into the state |φ⟩ = cos θ |00⟩ + sin θ |11⟩ using only local

operations on their individual systems, and classical communication.
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Remark: Alice and Bob can convert an entangled state to another, but can
never increase the amount of entanglement in a state.

LOCC can be generalized to many parties spatially separated from each other.
For example, M parties can share a composite system in an entangled state.
As we saw in the above example, even if restricted to local operations assisted
with communication through a classical channel, the parties can still modify the
entanglement properties of the system, and in particular, they can try to convert
one entangled state into another, but can never increase the entanglement. This
possibility leads to natural ways of defining equivalence relations in the set of
entangled states, where equivalent states are then said to contain the same
kind of entanglement. This classification of entanglement is interesting in
quantum information theory because the parties can use two states -that differ
from each other by LOCC- for exactly the same tasks3. It has been shown
in [14], that if we have many copies of a given bipartite state |ψ⟩, applying
LOCC leads to identifying all bipartite pure-state entanglement with that of
the Einstein-Podolsky-Rosen state 1/

√
2 (|00⟩ + |11⟩) [54].

Thus, LOCCs are important for two reasons

(1) They play a major role in defining good entanglement measures.

(2) They allow for a classification of entangled states.

However, LOCC protocols have proven to be extremely challenging. Indeed,
they involve a sequence of measurements for each of which the outcome must
be known in order to determine the next step in the protocol, and in addition,
the way in which the state of the system is transformed by that outcome plays
an important role in determining what will happen at that next step. In fact, a
number of studies have considered the significance of the number of rounds of
communication used by the parties. In the bipartite case, it has been shown that
for the task of transforming a system from one pure state to another, multiple
rounds are not necessary [107]. However, for mixed-state purification scenarios
(see Chapter 7 for the characterization of entanglement in mixed states), it has
been shown [17] that two rounds of communication are needed. The question
of whether or not it can be helpful to use an infinite number of rounds has also
been studied. And it was shown for example in [39] that infinite rounds are
required. Thus, it is still not clear how many series are needed to represent
LOCC.

Mathematical formulation

In the previous section, we gave a mathematical structure of general local
operations applied to a given system. However, in addition to local operations,
LOCC protocols contain also classical communication. How can we describe this

3Another classification of entangled states has been proposed [19, 50] using SLOCC:
Stochastic local operations and classical communications In this classification, the equivalence
between two states is not necessarily deterministic. We will not develop this concept as it
will not be useful in what follows.
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mathematically? Even considering only two rounds (i.e. classical communication
from Alice to Bob and then from Bob to Alice), this turns out to be a difficult
problem to define mathematically. However, fortunately, it has been shown that
LOCCs are contained within the set of separable operations. We will define them
in while, let us first summarize the different existing classes of operations in
the literature. They have been summarized by the Horodecki family in Ref.[92]

C1 - Class of local operations: No classical communications between Alice
and Bob in this case. The mathematical formulation is quite trivial:
EAB(ρ) = (EA ⊗ EB) (ρ), where EA and EB are locals quantum operations.

C2a- Class of “one-way” forward LOCC operations: in this case, the classical
communications are only from Alice to Bob. The example of the shared
entangled state by Alice and Bob, given above, belongs to this class.
The mathematical structure of this operation is: E−−→

AB
(ρ) =

∑
i V

i
A ⊗

1B

([
1A ⊗ E iB

]
ρ

)(
V iA
)† ⊗1B , where V iA and E iB are the local operations

applied by Alice, and Bob respectively, with E iB being deterministic.

C2b- Class of “one-way” backward LOCC operations: it has the same
mathematical structure then C2a, but with the roles of Alice and Bob
interchanged.

C3 - Class of “two-way” classical communication: Both, Alice and Bob are
allowed to communicate with each other. The mathematical structure
of this class is complicated. It has been done in Ref.[48]. We will not
develop it here. It’s the next class that interests us.

C4 - Class of separable operations: These are operations with product Kraus
operators:

EsepAB(ρ) =
∑
i

Ai ⊗Bi ρA
†
i ⊗B†

i , (3.22)

where
∑
iA

†
iAi ⊗ B†

iBi = 1 ⊗ 1. This class of operations have been
considered in [134, 151].

C5 - Positive partial transpose (PPT) operations4: The simplest example of
such operations is ρ → ρ⊗ ρPPT. That is a process of adding some PPT
state.

There is an order of inclusions [92], between these different classes: C1 ⊂
C2a,C2b ⊂ C3 ⊂ C4 ⊂ C5. Thus, the set of all LOCC is contained in the set
C4 of all separable operations. It has been shown in [18] that any LOCC is
separable, but the opposite is not true. Therefore, for a given M -partite state

4A general pure or mixed multipartite state (see Chapter 7 for the study of mixed states)
ρA1,A2,··· ,AN is called fully separable if it can be expressed as a convex combination of
product states with respect to the partition A1, A2, · · · , AN . And ρA1,A2,··· ,AN is said to
have positive partial transpose if the operator obtained by taking a partial transpose with
respect to any subset of parties is positive semi-definite.
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ρ, we can define a completely positive trace-preserving map (CPTP), described
by separable Kraus operators of the form

Aα =
M−1⊗
k=0

Aαk

k = Aα0
0 ⊗Aα1

1 · · · ⊗A
αM−1
M−1 , (3.23)

that can describe a LOCC protocol on ρ, i.e.

ELOCC(ρ) =
∑
α

AαρA
†
α . (3.24)

3.4 Entanglement quantification

There are two approaches to quantifying entanglement: the axiomatic approach
and the operational one. In the last one, the entanglement is linked to the
operational tasks. For example, the system is more entangled if it allows for
better performance of some tasks, such as teleportation. In other words, the
operational approach quantifies the usefulness of a state for a certain protocol
that requires entanglement. The first approach is also called the abstract
approach [87], in which one writes down a list of properties one demands from
a measure.

Operational approach

Entanglement cost and entanglement of distillation

The entanglement cost Ec(ρ) is defined as follows: suppose nin input singlets5

and a protocol, i.e. a family of LOCC transforming the nin input singlets onto
nout output copies of the state ρ. The minimal rate of singlets that have to be
used to create many copies of ρ via LOCC is defined as the entanglement cost

EC(ρ) = inf
LOCC

lim
nout→∞

nin

nout
(3.25)

The entanglement of distillation ED(ρ) is defined as the dual way of Ec(ρ), that
is

ED(ρ) = sup
LOCC

lim
nin→∞

nout

nin
, (3.26)

which is basically the optimal singlet distillation rate from many copies of ρ.

Axiomatic approach

Since abstract quantification is based on a list of some properties that need to
be fulfilled, let us begin by lying them out. We will then give some examples of
entanglement measures

Axioms for a bona fide measure of quantum entanglement
5In Dirac notation, a singlet state |ψ⟩ is usually represented as follows: |ψ⟩ = (|01⟩ + |10⟩).
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As a tool for entanglement quantification, an entanglement measure (also called
entanglement monotone) has to quantify the amount of entanglement in a given
state. The conditions that any entanglement measure E(ρ) has to satisfy, were
first introduced in Ref.[153]. Here we list these properties without any deep
discussion and suggest Refs.[48, 92, 77]

(1) If the state ρ is separable, then E(ρ) = 0.

(2) The function E(ρ) should not change under local unitary transformations

E(ρ) = E

[(M−1∏
µ=0

Uµ

)
ρ

(M−1∏
µ=0

Uµ

)† ]
, (3.27)

where Uµ is an abbreviation for 10 ⊗ · · ·Uµ · · · ⊗ 1M−1.

(3) Since entanglement cannot be produced by LOCC, an entanglement
measure cannot increase under LOCC operations

E(ELOCC(ρ)) ≤ E(ρ) , (3.28)

where ELOCC(ρ) is a CPTP map.

(4) Convexity of E(ρ)

E

(∑
i

piρi

)
≤
∑
i

piE(ρi) . (3.29)

(5) Additivity of E(ρ)

E(ρ1 ⊗ ρ2) = E(ρ1) + E(ρ2) . (3.30)

Remarks: properties (1), (2) and (3) are required for a good entanglement
measure. In fact, requirement (1) is quite a trivial one. The second one,
says that any good entanglement measure is supposed to give the same result
for states that differ only by local unitary operations. Indeed, a unitary
transformation does not change the physical content of a state, but only our
way of representing it. In the case of an M composite system, we can distinguish
between local and global unitary operations. Local unitary operations have a
form U = U1 ⊗ U2 ⊗ · · · ⊗ UM , where Ui are arbitrary unitary operations that
act independently on each subsystem. These operations cannot change relations
between subsystems. Global unitary operations do not have this form and, as
a result, they can make the subsystems interact. The third requirement says
that any good measure of entanglement is not supposed to increase with LOCC,
since the parties can never create entanglement by only using local operations
and classical communications. Note that, requirement (3) implies requirement
(2). It is usually preferable to show that an entanglement measure fulfills a
stronger version of requirement (3), which is the non-increase on average under
LOCC [156], i.e. ∑

α

pαE(ρα) ≤ E (ρ) , (3.31)
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where (see Section 3.2)

ρα = AαρA
†
α

Tr
[
AαρA

†
α

] , (3.32)

are the Kraus operators describing some LOCC protocol and

pα = Tr
[
AαρA

†
α

]
(3.33)

is the probability of obtaining outcome α. However, it is not necessary for an
entanglement measure to fulfill properties (4) and (5). The convexity property
is often demanded, but not all measures fulfill it. The logarithmic negativity
constitutes a good example of being a strong entanglement measure that is not
convex [128]. The additivity property is difficult to prove for many measures
[129].

Examples of entanglement measures

• von Neumann entropy: It is a measure for bipartite pure states.
Although the Schmidt rank p defined in Eq.(3.3), detects entanglement in
pure bipartite states. It does not quantify entanglement. A quantification
of entanglement is possible with the Schmidt coefficients χi. In fact, a
natural measure called entropy of entanglement or von Neumann entropy,
consists in taking the entropy of the distribution specified by the squares
of the coefficients

S1(2) = − Tr
(
ρ1(2) log ρ1(2)

)
. (3.34)

If the entropy is 0 then there is only a single coefficient equal to 1, and
the state is not entangled. But as soon as the entropy is positive the state
is entangled. To see why entropy is finer than the Schmidt rank, let us
take an example. Suppose the following bipartite pure states

|ψ⟩ = 1√
2

|00⟩ + 1√
2

|11⟩ and |ϕ⟩ =
√

1 − ϵ |00⟩ +
√
ϵ |11⟩ .

For 0 < ϵ < 1/2, both states have the same Schmidt rank, but the first
one has entanglement entropy 1, whereas the second has entanglement
entropy going to 0 as ϵ → 0.

• Entanglement of formation: The first measure of entanglement that
has been proposed for mixed states (entanglement in mixed states will be
studied in Chapter 7) is the entanglement of formation [17]. It is defined
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3.4. ENTANGLEMENT QUANTIFICATION

as the convex roof6of the von Neumann entropy.

EF (ρ) = inf
ρ=
∑

i
pi|ψi⟩⟨ψi|

∑
i

piS (|ψi⟩ ⟨ψi|) . (3.35)

If ρ is pure, Ef (ρ) boils down to von Neumann entropy. The question of
whether the entropy of formation is fully additive is not yet solved

• Concurrence: A very popular measure for the quantification of bipartite
quantum entanglement is the concurrence [166, 138]. For a bipartite pure
state |ψ⟩, it is defined as follows

C (|ψ⟩) =
√

2 [1 − Tr(ρ2
i )] , (3.36)

where i = 1, 2 denotes the ith subsystem. The Concurrence has been
generalized for multiparticle pure states in arbitrary dimensions [138, 21]

C (|ψ⟩M ) =
√

2 [1 − Tr(ρ2
A)] , (3.37)

where ρA is the reduced density matrix across the bipartition A of the
pure state |ψ⟩M . For mixed states, this definition is extended via the
convex roof construction.

• Distance measures: These measures are based on a natural intuition,
that the closer the state is to the separable set S, the less entangled it is.

ED(ρ) = inf
σ∈ S

D(ρ||σ) (3.38)

where D(ρ||σ) is a measure of distance between ρ and σ, and where
the infimum is taken over all separable states. It has been shown that
such a function is monotonic under CPTP. Monotonicity turned out to
be a condition for the distance to be a measure of distinguishability of
quantum states [152, 64]. One of the first distance measures that have
been constructed is the relative entropy of entanglement [151]

ER(ρ) = inf
σ∈ S

S(ρ||σ) , (3.39)

where the distance S(ρ||σ) is the relative entropy S(ρ||σ) =
Tr [ρ (log ρ− log σ)]. It is actually the quantum mechanical analog
of relative entropy.

• The geometrical measure of entanglement: An often-used entan-
glement measure for multiparticle systems is the geometric measure of

6The so-called convex roof construction is a strategy for defining entanglement measures
for mixed states. We start by defining a measure of entanglement for pure states E(|ψ⟩ ⟨ψ|),
then we define

E(ρ) = inf
ρ=
∑

i
pi|ψi⟩⟨ψi|

∑
i

pi E(|ψi⟩ ⟨ψi|) ,

as a measure of quantum correlation/entanglement on the set of mixed states. The infimum
is taken over all possible decompositions of the state ρ =

∑
i

pi |ψi⟩ ⟨ψi| into pure states

|ψi⟩ ⟨ψi|.
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entanglement [162, 161, 5]. It is quite similar to the Distance measure
since it also quantifies the distance to the separable states. For a given
multiparticle state |ψ⟩, one can define the following quantity

Λ(ψ) = sup
ϕ∈ S

| ⟨ϕ|ψ⟩ | , (3.40)

where the supremum is taken over all separable states. Then, one can
define the geometrical measures as follows

EG(|ψ⟩) = 1 − Λ(ψ)2 , (3.41)

The geometric measure is a multipartite entanglement measure, and its
generalization to mixed states through the convex roof construction has
been done and used in [78, 162]

3.5 Entanglement as a resource

Local operations and classical communications cannot generate entangled states
out of product states, they can be used to transform entangled states into other
entangled states, as seen in Section 3.3. This captures the intuitive notion that
quantum entanglement is something precious and its value cannot be freely
increased. This suggests that entanglement can be elevated from being just an
interesting fundamental phenomenon to being useful in performing practical
tasks. In fact, since local operations and classical communications are the most
physical and concrete operations we can perform in laboratories, it is thus very
reasonable to consider what information processing tasks can be performed
when restricted to LOCC. The study of entanglement as a valuable and precious
feature, when only restricted operations such as LOCC are available, is called
resource theory [88]. Here, the main idea is that one defines some subset of all
possible quantum operations as the set of free operations. For instance, the
free operations can represent all available quantum operations implementable
in a specific experimental setup. All states that can be generated using free
operations from some fixed initial state are called free states. A state that is
not part of the free states is thus called resourceful, i.e. an entangled state
is a resource. However, resource theory is more general, for example, an
experimentalist may only be able to maintain coherence in a quantum system
for a short amount of time because of limited ability to mitigate environmental
noise. In this case, coherence is the resource.

The following example depicts very well the meaning behind the resource theory
of quantum entanglement. It was first given by Rob Spekkens and then taken
up by Chitambar et al. in [40]:

" The set of all shapes that can be generated by a compass and a ruler could
represent “free states” of a resource theory, with the action of the compass and
ruler being the free operations. Therefore, in this resource theory, all the shapes
that cannot be generated by a compass and ruler are considered as resources."

Entanglement is the most useful resource for various quantum communication
protocols like quantum teleportation [13, 139, 51, 98, 93], dense coding
[12, 28, 29] and secret sharing [85, 72] which gives the quantum advantage
over the classical communication protocols
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3.6 Entanglement classification

We can distinguish several types of entanglement, depending on which particle
is entangled with the others, and at which amount. Being able to classify and
detect the entanglement type of a state is a key competence in many areas of
quantum information, such as quantum computing. In fact, some entangled
states appear in quantum algorithms to be more efficient than other entangled
states. In this context, we may want to partition entangled states into different
classes [67].

The finest distinction is the one based on local unitary (LU) operations. Two M -
partite state vectors |ψ⟩, |ϕ⟩ defined in P

(
H⊗M
ψ

)
and P

(
H⊗M
ϕ

)
of dimension∏M

µ=1 dµ, are considered equivalently entangled if they differ only by a local
unitary basis change [160]:

|ψ⟩ ∼LU |ϕ⟩ ⇐⇒ |ψ⟩ = (U1 ⊗ · · · ⊗ UM ) |ϕ⟩ , (3.42)

where Uµ, µ = 1, · · · ,M is an LU operator of dimension dµ × dµ. In the case
of bipartite systems, i.e. M = 2, we have

(U1 ⊗ U2) |ψ⟩ =
p∑
i=0

χi (U1 |αi⟩) ⊗ (U2 |βi⟩) , (3.43)

where we have used the Schmidt decomposition, defined in Eq.(3.3). Because any
orthonormal basis can be mapped onto any other basis by a unitary operation,
we see that two bipartite state vectors are LU equivalent if and only if their
Schmidt coefficients coincide.
LU equivalence is physically meaningful and feasible in the case of bipartite
systems. In fact, the Schmidt coefficients χi are merely the set of eigenvalues
of each of the reduced density matrices. Thus, a LU equivalence of two
bipartite states can be seen experimentally by using for example quantum
state tomography. Thus, from an operational point of view, LU equivalence is
justified because we cannot create entangled states from separable states by
local unitary basis changes only.

However, as seen in the previous section 3.5, resource theories provide a natural
and more concrete way to rigorously compare the resources held in different
quantum states. Two states possess the same resource if it is possible to
transform one into the other using the free operations of the resource theory
(meaning the only available operations). Thus, from an operational point
of view, it is better to classify entangled states through LOCC, which is a
coarser notion of “equivalent entanglement” through the addition of classical
communications. Two states which are LOCC–equivalent are equally useful for
any kind of application.

However, although physically and operationally well-defined, no clear mathemat-
ical description of LOCC equivalence has been identified so far. In fact, we have
seen in Section 3.3, that already for two rounds, the mathematical structure
of LOCC is complex. A more general classification has been proposed, whose
physical interpretation is less satisfactory, but whose mathematical description

99



3.6. ENTANGLEMENT CLASSIFICATION

is easier to implement, is the notion of stochastic LOCC equivalence (SLOCC)
[50]. Two pure states are said to be equivalent if they can be transformed into
each other by LOCC with some nonzero probability. As in Section 3.3, a SLOCC
consists of several rounds in each of which the parties perform operations on
their respective systems, depending on previous measurement results. However,
in a SLOCC protocol, one does not need all the rounds to be done perfectly.
Meaning that a transformation of |ψ⟩ into |ϕ⟩ is possible, if there is a LOCC
protocol enabling the transformation, but without imposing that it has to be
achieved with certainty. One can think of the protocol as splitting into different
branches with each measurement, that is done by each party. Each branch can
be represented by a local operator Ai that is applied locally on the state being
shared among the parties. And two M -partite states |ψ⟩ and |ϕ⟩ are said to be
SLOCC equivalent if

(A1 ⊗A2 ⊗ · · · ⊗AM ) |ψ⟩ = λ |ϕ⟩ λ C . (3.44)

This is possible only if the transformation is realized with matrices that have
unit determinant 1, i.e. detAi = 1. In other words, two states |ψ⟩ and |ϕ⟩
are said to be SLOCC equivalent if and only if they can be transformed into
each other by means of local invertible operators. It has been shown [50] that
there are two inequivalent kinds of genuine tripartite entanglement via SLOCC,
namely the

|GHZ⟩ = 1√
2

(|000⟩ + |111⟩) (3.45)

and
|W⟩ = 1√

3
(|001⟩ + |010⟩ + |100⟩) (3.46)

states.
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4

Entanglement measure in pure
states

This Chapter depicts an original work that we published in Ref.[41]. As
seen in the previous Chapter, entanglement is an essential resource for
progressing in the field of quantum-based technologies. It is the most useful
resource for various quantum communication protocols. Therefore, it is
of practical interest to quantify this resource to estimate the efficiency of
such protocols. Although many aspects of quantum entanglement have been
studied extensively [92], entanglement remains elusive and the problem of its
classification [6, 137, 105, 73, 66] and quantification is still not well understood
in higher dimensional systems [146, 70]. So far, several different approaches
have been developed to quantify the variety of states available in the quantum
regime [92]. Entropy of entanglement is uniquely accepted as a measure of
entanglement for pure states of bi-partite systems [130], while for the same
class of mixed states, entanglement of formation [166], entanglement distillation
[17, 15, 90] and relative entropy of entanglement [153] are largely acknowledged
as faithful measures. The development of quantum information theory and
the increasing experimental demand for quantum states manipulation led to
develop measures enfolding more general states. For multi-partite systems, a
broad range of measures has covered pure states [50, 25] and mixed states [43]
among which, a Schmidt measure [57] and a generalisation of concurrence [33]
have been proposed. In the last years, the variety of paths adopted to tackle the
problem led to estimation-oriented approaches based on the quantum Fisher
information [125, 95, 141]. Due to the deep connection between the quantum
Fisher information and a statistical distance [23], the geometry of entanglement
has been studied in the case of two qubits [104]. While the mentioned measures
address mainly qubits systems, the necessity for noise tolerance and reliability
in quantum tasks opened the way to study higher dimensional states, the qudits
[99]. In noise-tolerant schemes, magic-state-distillation protocols outperform
their qubits counterparts [32] while a proof of enhanced security for quantum
key distribution tasks is derived in [144]. In addition, a recent experimental
realization confirmed the superiority of qudits in certifying entanglement in
noisy environments [53]. At the same time, a different measure of entanglement
for such systems appeared, such as a measure for highly symmetric mixed
qudit states [4] and the concurrence in arbitrary Hilbert space dimensions [138].
Finally, a geometric measure for M -qudit pure states has been proposed in [83].
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In this chapter, we propose a geometrical entanglement measure, called
Entanglement distance, that can be computed for either pure or mixed states of
M-qudit hybrid systems1. Our work has been done in Ref.[41]. We will derive
our measure from the Fubini Study metric defined in projective Hilbert spaces.
We will prove that it fulfills all the requirements for a good measure of quantum
entanglement [156, 79, 153].

4.1 Entanglement distance

A qudit, is a state in a (d−1)-dimensional projective Hilbert space and a hybrid
M -qudit is a state in PH⊗M := P

(
Hd0 ⊗ Hd1 ⊗ · · · ⊗ HdM−1

)
. The dimension

of the projective Hilbert space PH⊗M is
[(∏

µ dµ

)
− 1
]
. We saw in Chapter

2, that a projective Hilbert space carries the Fubini-Study metric, that can be
expressed in quantum mechanics in the following way [68]

ds2 = ⟨dψ|dψ⟩ − 1
4 |⟨ψ|dψ⟩ − ⟨dψ|ψ⟩|2 , (4.1)

where |ψ⟩ is a generic normalised state and |dψ⟩ is an infinitesimal variation of
such a state.

We want to use the Fubini Study metric to construct an entanglement measure.
For this reason, we will start by imposing the invariance of the Fubini Study
metric under local unitary operations [151, 128]. As a matter of fact, the action
of M arbitrary SU(dµ) local unitary operators Uµ (µ = 0, . . . ,M −1) on a given
state |s⟩, generates a class of states

|U, s⟩ =
M−1∏
µ=0

Uµ|s⟩ , (4.2)

that share the same degree of entanglement. In the above equation, Uµ is an
abbreviation for 10 ⊗ · · ·Uµ · · · ⊗ 1M−1, i.e. for each µ, Uµ operates on the µth
qudit. Thus we define an infinitesimal variation of the state (4.2) as

|dU, s⟩ =
M−1∑
µ=0

dŨµ|U, s⟩ , (4.3)

where there is no summation on the index µ and each infinitesimal SU(dµ) trans-
formation dŨµ operates on the µ-th qudit. Such infinitesimal transformation
can be written as

dŨµ = −i(n · T)µ dξµ (4.4)

where (n · T)µ := nµ · Tµ, nµ is a unit vector in Rd
2
µ−1, ξµ are real parameters,

and where we denote by Tµa, a = 1, . . . , d2
µ− 1, the generators of su(dµ) algebra

(see Appendix E). From Eq. (4.1), with this choice, we obtain the following
1A hybrid system is a system formed by subsystems with different Hilbert space dimensions.

For example, a system formed with a qubit and a qutrit is a hybrid system.
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expression for the Fubini-Study metric g(v),

g(v) =
∑
µν

gµν(v)dξµdξν

=
∑
µν

[
⟨s|(v · T)µ(v · T)ν |s⟩ − ⟨s|(v · T)µ|s⟩⟨s|(v · T)ν |s⟩

]
dξµdξν .

(4.5)

In the latter equation, the real unit vectors vµ are derived by a rotation of the
original ones according to

vν · Tν = U†
νnν · TνUν , (4.6)

where there is no summation on the index ν.

Definition 4.1 (Entanglement distance). The entanglement distance for a
general M-qudit state |s⟩ is defined as

E(|s⟩) = min
{vµ}µ

Tr g(v)

= min
{vµ}µ

M−1∑
µ=0

[
⟨s|(v · T)2

µ|s⟩ − ⟨s|(v · T)µ|s⟩2
]
.

(4.7)

where the min is taken over all the possible orientations of the unit vectors
vµ ∈ Rd2

µ−1, and where we have adopted the following notation

(T · v)µ := 10 ⊗ · · · (T · v)µ · · · ⊗ 1(M−1) (4.8)

Definition 4.2. In the case of an M-qubit state |s⟩, the entanglement distance
simplifies to

E(|s⟩) = min
{vµ}µ

[
M −

M−1∑
µ=0

⟨s| (σ · v)µ |s⟩2
]
, (4.9)

where σ is the Pauli vector and vµ ∈ R3, with ||vµ|| = 1.

Lemma 4.1. In the case of a multipartite qubits system, the entanglement
distance is

E(|s⟩) = 2
M−1∑
µ=0

SνL =
∑
µ

(
1 − Tr

[
(ρµ)2

])
, (4.10)

where SνL is the Linear entropy [113, 24] of the reduced state ρµ, and Tr
[
(ρµ)2

]
is the purity computed for subsystem µ.

Proof. Lemma 4.1 will be proven in Chapter 5. ■

Proposition 4.1. The entanglement distance for a general M-qudit state |s⟩
defined in Eq.(4.7) can be expressed in two other different forms, in which there
is no dependence on the orientations vµ and thus, no minimization procedure.
The first is the following

E(|s⟩) =
M−1∑
µ=0

[Tr(Aµ) − 2(dµ − 1)] , (4.11)
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where
Aµ =

∑
ij

[
⟨s|TµiTµj |s⟩ − ⟨s|Tµi|s⟩⟨s|Tµj |s⟩

]
. (4.12)

This is done by expressing the trace of the Fubini Study metric in the following
way

gµµ(vµ) =
∑
ij

vµivµjAµij . (4.13)

The second way of expressing the entanglement distance is the following

E(|s⟩) =
M−1∑
µ=0

2(dµ − 1)
dµ

−
d2

µ−1∑
k=1

⟨s|Tµk|s⟩2

 , (4.14)

where we have used the fact that (see Appendix E)

Tr(Aµ) =
2(d2

µ − 1)
dµ

−
d2

µ−1∑
k=1

⟨s|Tµk|s⟩2 , (4.15)

with Tµk, k = 1, . . . , d2
µ − 1 are the generators of su(dµ) algebra.

Definition 4.3. We name entanglement metric (EM) g̃ the Fubini-Study metric
associated to {ṽµ}µ

g̃ = g({ṽµ}µ) , (4.16)
where {ṽµ}µ denotes the set of M-directions that minimize the trace of the
Fubini Study metric (i.e. the set of directions minimizing Eq.(4.7)).

Proposition 4.2. States that differ from one another by local unitary
transformations have the same form of g̃. Thus, a classification of multipartite
entangled states is possible through the EM.

4.2 Properties of the entanglement distance

In what follows, we will show some important properties that the proposed
measure fulfills. We will mostly use Eq.(4.9), to illustrate all the proofs, i.e. the
entanglement distance for multipartite qubit states. However, all the following
proofs can be trivially generalized to eq.(4.7), i.e. to the entanglement distance
for general hybrid multipartite states.

Proposition 4.3. The entanglement distance for a general hybrid M-qudit
system is positive semi-definite

E(|s⟩) ≥ 0 . (4.17)

Proof. We can show that (see App. E)

Tr(Aµ) ≥
2(d2

µ − 1)
dµ

− 2(dµ − 1)
dµ

, (4.18)

which induces,
Tr(Aµ) − 2(dµ − 1) ≥ 0 . (4.19)
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Thus,
E(|s⟩) ≥ 0 . (4.20)

■

Lemma 4.2. For a maximally entangled state |s⟩, the expectation value of the
generators is equal to zero, i.e.

⟨s|Tµk|s⟩ = 0 (4.21)

for each µ = 0, . . . ,M − 1 and k = 1, . . . , d2
µ − 1.

As a result of Lemma 4.2, the entanglement measure for a maximally entangled
state is thus

E(|s⟩) =
M−1∑
µ=0

2(dµ − 1)
dµ

, (4.22)

We will use Lemma 4.1 to show that the entanglement distance does not increase
under LOCC. Since LOCC are a subset of separable operations (see Chapter 3),
We will first proceed by showing in Lemmas 4.3 and 4.4 that the local purities
Tr
[
(ρµ)2

]
cannot decrease, on average, under separable operations. This has

been proved in Ref.[7]. We will adopt their proof to our work and notation.
The following proofs can be easily generalized to the entanglement distance for
multipartite qudits systems, i.e. Eq.(4.7).

Lemma 4.3. Local purities cannot decrease, on average, under local operations.

Proof. Let HP⊗M = P
(⊗M−1

µ=0 Hµ

)
be the projective space of the joint Hilbert

spaces of M -partite system. Then, let ϕµ be a CPTP map acting only on the
µth subsystem via the set of Kraus operators {Aαµ

µ }, where
∑
αµ

A
αµ†
µ A

αµ
µ = 1µ.

The action of the Kraus operators on the µth subsystem is (see Eq.(3.10)) is

ραµ
= 1
pαµ

Aαµ
µ ρAαµ†

µ , (4.23)

where ραµ
is the state of the system after the local operation on subsystem µ

has given αµ as a result, and pαµ
is the probability of getting the state ραµ

.
Suppose ρν = Trνc(ρ) is the reduced state of the νth subsystem associated to ρ
and (ρν)αµ

= Trνc(ραµ
) is the reduced state of the νth subsystem associated to

ραµ . Two situations arise

1. If ν = µ, then the reduced state after outcome α is obtained reads

(ρν)αµ
= 1
pαµ

Aαµ
µ ρνA

αµ†
µ . (4.24)
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From the polar decomposition of Aαµ
µ

√
ρν (see Nielson and Chuang book

[116], in Chapter 12), it follows that there exists Vαµ
unitary such that

√
ρνA

αµ†
µ Aαµ

µ

√
ρν = Vαµ

Aαµ
µ ρν A

αµ†
µ V †

αµ
. (4.25)

Taking the sum over αµ of the above equation, we get

ρν =
∑
αµ

Vαµ
Aαµ
µ ρν A

αµ†
µ V †

αµ

=
∑
αµ

pαµ
Vαµ

(ρν)αµ
V †
αµ

.
(4.26)

This leads to the majorization relation (see Theorem 11 in Ref.[117] or
Chapter 12 in [116])

λ (ρν) ≺
∑
αµ

pαµ
λ
[
(ρν)αµ

]
, (4.27)

where λ (σ) is the vector of eigenvalues of σ arranged in decreasing order.

2. If ν ̸= µ, then (ρν)αµ
is the state of the νth subsystem after an operation

has been applied on the µth subsystem, and in this case, we have

ρν =
∑
αµ

pαµ
(ρν)αµ

. (4.28)

We get again the majorization relation

λ (ρν) ≺
∑
αµ

pαµ λ
[
(ρν)αµ

]
. (4.29)

Purity is a Schur-convex function, i.e.

x ≺ y =⇒ f (x) ≤ f (y) . (4.30)

Equations (4.27) and (4.30) yield

Tr
[

(ρν)2
]

≤ Tr
[(∑

αµ

pαµ (ρν)αµ

)2]
. (4.31)

Knowing that purity is a convex function, we have finally

Tr
[

(ρν)2
]

≤
∑
αµ

pαµ
Tr
[(

(ρν)αµ

)2]
. (4.32)

Thus we have shown that the action of ϕµ on ρ will not decrease, on average,
the local purity of any reduced state ρν . ■

Lemma 4.3 can be generalized as follows to separable operations.
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Lemma 4.4. local purities cannot decrease, on average, under separable
operations.

Proof. Let HP⊗M = P
(⊗M−1

µ=0 Hµ

)
be the projective space of the joint Hilbert

spaces of M -partite system, and let ϕ be a separable CPTP map described by
Kraus operators Aα. Because ϕ is separable, it can be represented with Kraus
operators of the form (see Eq.(3.22))

Aα =
M−1⊗
µ=0

Aαµ
µ = Aα0

0 ⊗Aα1
1 ⊗ · · · ⊗A

αM−1
M−1 , (4.33)

where α = {α0, α1, · · · , αM−1} and {Aαµ
µ } operators acting on the µth

subsystem via the CPTC map ϕµ.

In Lemma 4.3, we have shown that the action of each local operation ϕµ does
not decrease, on average, the local purities. Now, knowing that the majorization
relation forms a partial order (see [117, 7]), we have transitivity. Meaning that
if

λ(ρν) ≺
∑
αµ

pαµ
λ((ρν)αµ

)

and
λ((ρν)αµ

) ≺
∑
α′

µ′

pα′
µ′
λ((ρν)αµ α′

µ′
) ,

then by transitivity, we have

λ(ρν) ≺
∑
αµ α′

µ′

pαµpα′
µ′
λ

[
(ρν)αµ α′

µ′

]
, (4.34)

where (ρν)αµ α′
µ′

is the density matrix ρν after local operations are performed
on µth and the µ′th subsystems.

Using the fact that the purity is a Schur-convex function, we have

Tr
[

(ρν)2
]

≤
∑
α

pα Tr
(

(ρν)α
)
, (4.35)

where pα =
M−1∏
µ=0

pαµ
, such that

∑
α
pα = 1 and (ρν)α ≡ (ρν)α1 α2···αM

.

Therefore, we have shown that local purities cannot decrease, on average, under
separable operations ϕ. ■

Theorem 4.1. The proposed entanglement measure has the following properties:

(1) E(|s⟩) = 0 for a fully separable state.
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(2) E is invariant under unitary local operations.

(3) E(|s⟩) is non-increasing, on average, under LOCC.

(4) E(|s⟩) is additive.

Remark: The convexity of an entanglement measure requirement is important
only in the case where the measure can be extended to mixed states. This is
not our purpose in this chapter. We will extend the proposed entanglement
measure to mixed stated in Chapter 7.

Proof.

(1) From Eqs. (E.5) and (4.15) we get E(|s⟩) = 0 for a separable state |s⟩.

(2) This follows trivially from the construction of the proposed entanglement
measure (see Eq.4.2).

(3) From Lemma 4.1, we have that

E(|s⟩) =
∑
µ

(
1 − Tr

[
(ρµ)2

])
. (4.36)

And from Lemma 4.4, we have shown

Tr
[

(ρµ)2
]

≤
∑
α

pα Tr
(

(ρµ)α
)
, (4.37)

where pα =
M−1∏
µ=0

pαµ , such that
∑
α
pα = 1 and (ρµ)α ≡ (ρµ)α1 α2···αM

. We

have thus,

1 − Tr
[

(ρµ)2
]

≥ 1 −
∑
α

pα Tr
(

(ρµ)α
)

≡
∑
α

pα

(
1 − Tr

[
(ρµ)α

])
.

Summing over all the subsystems, we get

M−1∑
µ=0

[
1 − Tr

(
(ρµ)2 )] ≥

M−1∑
µ=0

[∑
α

pα

(
1 − Tr

[
(ρµ)α

])]

≡
∑
α

pα

[M−1∑
µ=0

(
1 − Tr

[
(ρµ)α

])]
Thus, we have

E(ρ) ≥
∑
α

pαE(ρα) . (4.38)
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Meaning that the proposed entanglement measure cannot increase, on
average, under separable operation. Thus, we immediately have that
the proposed Entanglement is non-increasing, on average, under LOCC,
because LOCC operations are a subset of separable operations (see Section
3.3).

(4) Let us suppose a pure state ρ, expressed as a tensor product of two
subsystems, i.e. ρ = ρ0 ⊗ ρ1 = |s0⟩ ⟨s0| ⊗ |s1⟩ ⟨s1|. Let us assume, for the
sake of simplicity, that the subsystems are qubits. From Eq.(4.9), we get
the entanglement measure for the state ρ, that is

E(ρ) = min
{vµ}µ

1∑
µ=0

[
1 −

[
Tr
(
ρ0 ⊗ ρ1 (σ · v)µ

)]2]

= 2 − max
{vµ}µ

1∑
µ=0

[
Tr
(
ρ0 ⊗ ρ1 (σ · v)µ

)]2

︸ ︷︷ ︸
A

,
(4.39)

where
1∑

µ=0
(σ · v)µ is shortened notation for

(
(σ · v)0 ⊗1+1⊗ (σ · v)1

)
.

Thus, we have

A =
1∑

µ=0

[
Tr
(
ρ0 ⊗ ρ1 (σ · v)µ

)]2
(4.40)

=
[

Tr
(
ρ0 ⊗ ρ1 ((σ · v)0 ⊗ 1)

)]2

︸ ︷︷ ︸
B1

+
[

Tr
(
ρ0 ⊗ ρ1 (1⊗ (σ · v)1)

)]2

︸ ︷︷ ︸
B2

And now, let us compute one of the parts, for example, B1

B1 =
(∑
i0i1

⟨i0| ⊗ ⟨i1|
[

|s0⟩ ⟨s0| ⊗ |s1⟩ ⟨s1|
(

(σ · v)0 ⊗ 1
)]

|i0⟩ ⊗ |i1⟩

)2

=
(∑
i0i1

⟨i0|s0⟩ ⟨i1|s1⟩ ⟨s0| (σ · v)0 |i0⟩ ⟨s1|i1⟩

)2

= ⟨s0| (σ · v)0 |s0⟩2
.

The computation of B2 is similar, and we get

B2 = ⟨s1| (σ · v)1 |s1⟩2
.

Thus, A reads

A = ⟨s0| (σ · v)0 |s0⟩2 + ⟨s1| (σ · v)1 |s1⟩2
. (4.41)

Finally, replacing A in eq.(4.39), we get

E(ρ0 ⊗ ρ1) = 2 − max
v0

⟨s0| (σ · v)0 |s0⟩2 − max
v1

⟨s1| (σ · v)1 |s1⟩2
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This is equivalent to

min
v0

(
1 − ⟨s0| (σ · v)0 |s0⟩2

)
+ min

v1

(
1 − ⟨s1| (σ · v)1 |s1⟩2

)
Thus,

E(ρ0 ⊗ ρ1) = E(ρ1) + E(ρ2) (4.42)

This can be generalized to any M-qubits system, and also to any M-
qudit system, since the entanglement measures for qubits and qudits in
Equations (4.14) and (4.9) have the same structure, i.e. based on the
trace of the product of the state system ρ and the operators (σ · v)µ for
qubits or (T · v)µ for qudits.

■

4.3 Chapter conclusions

So far, many successful measures of entanglement for bipartite systems have
been proposed [166, 158, 128, 155]. And various entanglement measures for
multipartite systems have been proposed [57, 164, 113, 159, 24, 33] too. However,
there is currently no such measure that is both analytically simple to calculate
and applicable to hybrid multipartite systems. In this chapter (the work has been
done in Ref.[41]), we have proposed an entanglement measure, that we named
entanglement distance, for hybrid multipartite pure states. It is analytically
easy to compute. In fact, this will be the task of the next Chapter, i.e. we
will compute the entanglement distance for a variety of examples. We have
shown in this Chapter that it fulfills all the requirements for a good measure of
entanglement. That is: i) the entanglement distance is zero for a fully separable
state, ii) it is invariant under unitary local operations, iii) it is non-increasing
on average, under LOCC, and iv) it is additive.
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5

Physical interpretation of the
entanglement distance

This chapter is based on a personal work. In Chapter 4, we have presented
the calculations that led to the construction of the entanglement distance.
In this Chapter, we want to dive a little bit deeper than presenting only
complex calculus, we want to give a simple physical interpretation and the
intuition behind such a measure. We will show that the proposed entanglement
distance has the physical interpretation of a lack of knowledge of the spin of
the subsystems. If the spin of all the subsystems can be known, then the
entanglement distance is equal to zero. However, if the spin of one of the
subsystems cannot be known, the measure is different from zero. During an
experiment, the spin is a random variable. And a way to measure the lack
of knowledge of a random variable is the variance. We will show that the
entanglement distance is actually the sum of the spin variances computed for
each subsystem. We will prove this for qubit systems. However, this can be
trivially generalized to qudit systems. First, in Section 5.1, we will briefly review
the variance of a random variable in classical physics. Then, in Section 5.2, we
will see how we define the spin variance for quantum systems. We will show
in Section 5.3 that the variance of the spin of the µth qubit in a multipartite
state is actually the distance squared defined in the Bloch ball. Next, Section
5.4 will be about expressing the µth spin variance in terms of the µth spin
probability distribution, because, this will be helpful to express in Section 5.5
the spin variance in terms of the Linear entropy.

5.1 The variance of a random variable in classical physics

In probability theory, the expectation value of a random variable X with a finite
list of possible outcomes x1, . . . , xn, is defined as E[X] = p1x1+p2x2+· · ·+pnxn,
where pi is the probability of obtaining the value xi. In general, randomness
prevents the outcome of a single random experiment from being predicted.
However, the strong law of large numbers makes it possible to better predict
the result if a large number of experiments of the same type are performed.
Let us take a basic example of an expectation value calculation in classical
probability theory, which will be useful thereafter for a comparison with the spin
expectation value in quantum mechanics. Suppose we roll 4 times an unbiased
die and record the number of one. After rolling the die 4 times, we may for
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example not get the number 1, thus X = 0. Or, we may get 4 times the number
1, so X = 4, etc. And each of these different outcomes has a probability of
occurrence. This is summarized in the following table. The expectation value

X 0 1 2 3 4
p(x) 0.48 0.39 0.11 0.015 0.0007

Table 5.1: X can take five different values with different probabilities p(x).

is thus equal to E (X) = 0.66 and it predicts the average value obtained for X
if the experiment is repeated a very large number of times. The uncertainty on
the random variable is measured with the variance, defined as follows

Var [X] = E
[
X2]− E [X]2 ,

or with its square root, which is the standard deviation.

5.2 The variance of the spin in quantum mechanics

𝒛

|𝟏 >

|𝟎 >

|𝝋 > =
𝟏

𝟐
(|𝟎 > +|𝟏 >)

Figure 5.1: Schematic setup of a quantum measurement through a Stern-Gerlach
apparatus. The experiment allows computing the expectation value of the spin
along the direction z of a system prepared in the state |ψ⟩ = (|0⟩ + |1⟩) /

√
2.

Experimentally, a large number of systems (red spheres) are prepared in the
state |ψ⟩, and each system is projected either on |0⟩ or on |1⟩ with equal
probabilities.

In quantum mechanics, an experimental setup is described by the state ψ of
the system that is defined as a ray in a projective Hilbert space PH and the
observable Ô to be measured. The expectation value of Ô in a normalized state
ψ is denoted as

⟨Ô⟩ψ = ⟨ψ|Ô|ψ⟩

=
∑
i

ai| ⟨ai|ψ⟩ |2 , (5.1)

where |ai⟩ are eigenvectors of Ô with eigenvalues ai and | ⟨ai|ψ⟩ |2 is the
probability of obtaining the eigenvalue ai. The spin S⃗ of a quantum system
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is a vector observable, i.e. S⃗ = Sxe⃗x + Sy e⃗y + Sz e⃗z, if expressed in Cartesian
coordinates. The hat is omitted here since there is no classical variable we can
confuse the spin with. Systems having spin 1/2 can have their spin described
by the Pauli matrices (σx, σy, σz), that span the space of observables of the
complex 2-dimensional Hilbert space

Sx = h

2

(
0 1
1 0

)
, Sy = h

2

(
0 −i
i 0

)
, Sz = h

2

(
1 0
0 −1

)
,

where h is the Planck constant. In what follows, the study of the spin 1/2
will be done only through the Pauli matrices, i.e. h/2 will be omitted. The
difference between the die example is that in quantum mechanics, measuring
the spin of a quantum system collapses its wave function. Thus, the expected
value in quantum mechanics does not refer to the average value of the results
that one would obtain after many trials on the same system as for the die. In
fact, if we observe the system’s spin many times, we will get the same result,
because of the collapse of the wave function that would have occurred during
the first trial. Instead, we prepare several quantum systems in the same state
and observe the spin of each of them, then average the results obtained for each
system (see Figure 5.1).

As for any random variable, the expectation value of the spin along a given
direction indicates the lack of knowledge one has on the spin along that direction.
Let us give some examples to illustrate this better.

Example 5.1. Suppose the following separable state |ψ1⟩ = |0⟩ ⊗ |0⟩, where
both systems are prepared in the spin up along the direction z. And, suppose
that two local observers 1 and 2 measure through a Stern-Gerlach apparatus
the spins of the two subsystems along the direction z. The expectation
value of the spin along z of each system in this state is equal to one, i.e.
⟨ψ1|σz ⊗ 1 |ψ1⟩ = ⟨ψ1|1⊗ σz |ψ1⟩ = 1, where σz has {|0⟩ , |1⟩} as eigenvectors.
This means that each observer knows perfectly the state of the subsystem he is
measuring. They do not have any lack of knowledge about the subsystems spin
they are measuring.

Example 5.2. Suppose now that the state of the second system in the
previous example is rotated along the y direction, for example, |ψ2⟩ =
|0⟩ ⊗ (|0⟩ + |1⟩) (1/

√
2). In this case, the expectation values of the two spin

systems along z are ⟨ψ2|σz ⊗ 1 |ψ2⟩ = 1 and ⟨ψ2|1⊗ σz |ψ2⟩ = 0. The second
system is in an equal superposition of states |0⟩ and |1⟩, which implies that
when the second observer measures along z, the spin measure will be in one of
the two states with equal probabilities. Thus, the second observer completely
lacks knowledge about the state of the subsystem along the z direction. However,
|+⟩ = (|0⟩ + |1⟩) (1/

√
2) is an eigenstate of σx, giving ⟨ψ2|1⊗σx |ψ2⟩ = 1. This

means that there is no lack of knowledge along the x direction. The state of the
second subsystem is completely determined along the x direction.

Importantly, the lack of knowledge about a subsystem’s spin cannot be
canceled if the subsystem is entangled. Let us take again some examples.
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Example 5.3. Suppose that the spin of the qubits in the GHZ state, i.e.

|GHZ⟩ = 1√
2

(|000⟩ + |111⟩) , (5.2)

is measured locally. A local observer will notice that whatever the direction
of observation v, the expectation values of the spin are invariably zero, i.e.
⟨GHZ|σv⊗1⊗1 |GHZ⟩ = ⟨GHZ|1⊗σv⊗1 |GHZ⟩ = ⟨GHZ|1⊗1⊗σv |GHZ⟩ =
0 , ∀ v ∈ R3.

Example 5.4. On the other hand, if a local observer measures locally the spin
of the W state, i.e.

|W ⟩ = 1√
3

(|001⟩ + |010⟩ + |100⟩) , (5.3)

he will find that along z, he gets the biggest spin expectation value, i.e.
the less lack of knowledge: ⟨W |σz ⊗ 1 ⊗ 1 |W ⟩ = ⟨W |1 ⊗ σz ⊗ 1 |W ⟩ =
⟨W |1 ⊗ 1 ⊗ σz |W ⟩ = 1/3. Thus, along the z direction, a local observer can
decrease the lack of knowledge he has about the spin of the measured subsystem.
This is impossible for the GHZ state. This is due to the fact that the W state
can be partially expressed as a superposition of states, whereas the GHZ state
cannot. The expectation values calculated for the W state are different from
zero along z simply because the state is expressed in terms of the eigenvectors of
σz. We would have had obviously the same result if W was expressed in terms
of the eigenvectors of σv and observed along v.

The take-home message here is that, in the case of separable qubits, the lack
of spin knowledge can always be eliminated by finding the appropriate direction
in which the system’s state is not in a superposition of states. This is not the
case for a maximally entangled qubit. Entangled systems are by definition
systems whose states cannot be fully separated into tensor product states. Thus,
the superposition of states is not merely a feature of the measurement, as for
separable states. The lack of knowledge does not depend only on the observer
and the direction from which he observes the system. Thus, the expectation
value calculated locally in different states informs one on the lack of knowledge
one has on a qubit, and thus on the degree of entanglement of the subsystem
to the rest of the system.

For fully separable states, the expectation value yields 1 along the right direction,
which means that the state of the qubit can be fully determined in that direction.
However, in the case of entangled states, such as the W-state, there exists a
direction in which one can decrease the lack of knowledge one has on each qubit,
but can never completely eliminate it, i.e. the expectation value of the spin will
always be less than 1. For maximally entangled states such as the GHZ-state,
such direction does not exist, the lack of knowledge is completely out of the
observer’s hand. More generally, the expectation value of the µth spin along
a given direction can be positive or negative. To define a clear quantity that
is equal to zero for a maximum lack of knowledge and 1 when the µth spin is
fully known, we can take the square of the expectation value. That is, for a
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generic M -qubits state |ψ⟩ ∈ HP = P
(⊗M−1

µ=0 Hµ

)
, the µth spin expectation

value squared

⟨(σ · v)µM ⟩2
ψ

=
(
⟨ψ|10 ⊗ . . . (σ · v)µ · · · ⊗ 1M−1|ψ⟩

)2 ∈ [0, 1] ,

where vµ ∈ R3 with ||vµ|| = 1 and σµ is the Pauli vector applied on the µth
qubit, is a good quantity for quantifying the lack of knowledge an observer has
on the µth qubit. In fact, we have

i) If ∃ wµ ∈ R3 s.t ⟨(σ · w)µ⟩2
ψ = max

vµ

⟨(σ · v)µM ⟩2
ψ

= 1

=⇒ The µth qubit is fully separable from the rest
of the system.

ii) If ∃ wµ ∈ R3 s.t 0 < ⟨(σ · w)µ⟩2
ψ = max

vµ

⟨(σ · v)µM ⟩2
ψ
< 1

=⇒ The µth qubit is entangled to the system.

iii) If ⟨(σ · v)µM ⟩2
ψ

= 0 , ∀ vµ

=⇒ The µth qubit is maximally entangled to the
system.

To define a quantity that vanishes for separable qubits and gives 1 for maximally
entangled qubits, we may resort to the spin variance. The µth spin variance is
a good measure of entanglement of the µth subsystem

min
vµ

Var [(σ · v)µ] = min
vµ

[
1 − ⟨(σ · v)µM ⟩2

ψ

]
, (5.4)

where ⟨((σ · v)µM )2⟩
ψ

= 1. It vanishes for separable qubits and gives 1 for
maximally entangled qubits.

The entanglement distance proposed in Eq.(4.9) in Chapter 4 is exactly the sum
of minvµ Var [(σ · v)µ], defined Eq.(5.4)

E(|ψ⟩) =
M−1∑
µ=0

min
vµ

Var [(σ · v)µ] . (5.5)

The entanglement distance measures thus the sum of the lack of knowledge
computed for each subsystem.

5.3 The variance of a spin 1/2 and the Bloch sphere

The general form of a single pure state along a given direction n ∈ R3 is

|ψn⟩ = cos
(
θ1

2

)
|0⟩ + eiφ1 sin

(
θ1

2

)
|1⟩ , (5.6)
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and its density matrix reads

ρ = |ψn⟩ ⟨nψ| = 1
2 (1+ σ · n) , (5.7)

where n is its Bloch vector

n =

r sin θ1 cosφ1
r sin θ1 sinφ1
r cos θ1

 . (5.8)

and where the radius r is equal to 1 for pure states. An experimenter can
observe this state along a given direction

v =

sin θ2 cosφ2
sin θ2 sinφ2

cos θ2

 , (5.9)

where ||v|| = 1. And since he has access to the angles θ2 and φ2, he can
choose the direction he wants. The spin expectation value of |ψn⟩ along a given
direction v reads

Tr
(

|ψn⟩ ⟨nψ| (σ · v)
)

= ⟨ψn| (σ · v) |ψn⟩ = n · v (5.10)

Lemma 5.1. Given a pure M-partite state ρ = |ψ⟩ ⟨ψ| ∈ HP⊗M =
P
(⊗M−1

µ=0 Hµ

)
, we have the following equality

Tr
[
(ρ
(
10 ⊗ · · ·σµ · · · ⊗ 1M−1) ] = Tr (ρ µσµ) = nµ , (5.11)

where
ρµ = 1

2 (1+ (n · σ)µ) , (5.12)

is the density matrix of the µth subsystem, and nµ is the Bloch vector of the
µth subsystem, with ||nµ|| ≤ 1.

Proof. For a generic M -qubit state ρ = |ψ⟩ ⟨ψ| ∈ HP⊗M = P
(⊗M−1

µ=0 Hµ

)
, we

have
|ψ⟩ =

∑
i0...iM−1

Ci0...iM−1 |i0⟩ ⊗ · · · ⊗ |iM−1⟩ . (5.13)

Thus, the density matrix of the above pure state is

ρ =
∑

i0...iM−1
j0...jM−1

C∗
j0...jM−1

Ci0...iM−1 |i0⟩ ⊗ · · · ⊗ |iM−1⟩ ⟨j0| ⊗ · · · ⊗ ⟨jM−1| .

The density matrix of the first qubit for example reads

ρ0 =
∑

k1...kM−1

∑
i0...iM−1
j0...jM−1

C∗
j0...jM−1

Ci0...iM−1 ⟨k1| ⊗ · · · ⊗ ⟨kM − 1| ×
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×
(

|i0⟩ ⊗ · · · ⊗ |iM−1⟩ ⟨j0| ⊗ · · · ⊗ ⟨jM−1|
)

|k1⟩ ⊗ · · · ⊗ |kM−1⟩ ,

which gives

ρ0 =
∑

i0...iM−1
j0...jM−1

C∗
j0...jM−1

Ci0...iM−1 |i0⟩ ⟨j0| δi1 j1 . . . δiM−1 jM−1

=
∑

i0...iM−1
j0

C∗
j0,i1...iM−1

Ci0...iM−1 |i0⟩ ⟨j0| .

The expectation value of the spin of the first qubit in the above M -qubits state
is

Tr
(
ρ0σ0) =

∑
k0

∑
i0...iM−1

j0

C∗
j0...iM−1

Ci0...iM−1 ⟨k0|i0⟩ ⟨j0|σ0 |k0⟩

=
∑

i0...iM−1
j0

C∗
j0...iM−1

Ci0...iM−1 ⟨j0|σ0|i0⟩ . (5.14)

On the other hand, using Eq.(5.13), we have

Tr
[
ρσ 0

M

]
=

∑
k0...kM−1

⟨k0 . . . kM−1|
(

|ψ⟩ ⟨ψ| σ 0
M

)
|k0 . . . kM−1⟩

=
∑

k0...kM−1

∑
i0...iM−1
j0...jM−1

C∗
j0...jM−1

Ci0...iM−1 ⟨k0 . . . kM−1| × (5.15)

×
(

|i0 . . . iM−1⟩ ⟨j0 . . . jM−1|σ 0
M

)
|k0 . . . kM−1⟩

=
∑

k0...kM−1

∑
i0...iM−1
j0...jM−1

C∗
j0...jM−1

Ci0...iM−1

(
δk0i0δk1i1 . . . δkM−1iM−1

)
×

×
(
δj1k1 . . . δjM−1kM−1

)
⟨j0|σ 0

M |k0⟩

=
∑

i0...iM−1
j0...jM−1

C∗
j0...jM−1

Ci0...iM−1

(
δj1i1δjM−1iM−1

)
⟨j0|σ0

M |i0⟩

=
∑

i0...iM−1
j0

C∗
j0...iM−1

Ci0...iM−1 ⟨j0|σ0
M |i0⟩ , (5.16)

where σ 0
M := σ0 ⊗ 11 ⊗ · · · ⊗ 1M−1. Thus, by equations (5.14) and (5.16), we

have shown equation (5.11) for i = 0. ■

The expectation value of the µth spin measured along a direction v ∈ R3 in a
given M -qubits system ψ ∈ PH can thus be written in a vector form as follows

Tr
[
(ρ
(
10 ⊗ · · · (σ · v)µ · · · ⊗ 1M−1) ] = nµ · vµ = ||nµ|| cosα , (5.17)
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where ρ = |ψ⟩ ⟨ψ| and

nµ =

⟨ψ|10 ⊗ . . . σx
µ · · · ⊗ 1M−1|ψ⟩

⟨ψ|10 ⊗ . . . σy
µ · · · ⊗ 1M−1|ψ⟩

⟨ψ|10 ⊗ . . . σz
µ · · · ⊗ 1M−1|ψ⟩

.

 (5.18)

is the Bloch vector of the µth qubit. vµ is the vector chosen by the local
observable to measure the µth spin and it is always chosen to be of norm 1.
The angle α in Eq.(5.17) is the angle that the local observer can modify in
order to maximize the expectation value, and it is defined in [0, π].

The spin expectation value of the µth qubit depends thus on two parameters,
the norm of the µth Bloch vector and the angle α between it and the direction
of observation. Since α depends on the observer, we will denote it by the
extrinsic parameter. It represents the lack of knowledge the observer introduces
by measuring the spin in a given direction. For α = 0, π, the observer introduces
the minimum lack of knowledge on the qubit considered. Whereas, for α = π/2,
he increases the lack of knowledge to its maximum. However, the Bloch
vector adds another condition to the expectation value for it to characterize
the lack of knowledge one has on a given qubit. Let us take some examples
seen above. The calculation of nµ for both qubits in the following state
|ψ2⟩ = |0⟩ ⊗ (1/

√
2) (|0⟩ + |1⟩) reads

n1 =

0
0
1

 n2 =

1
0
0

 , (5.19)

where 1 and 2 refer to the first and second qubits respectively. Whereas for the
W and GHZ states, we obtain

nµW =

0
0
1
3


(5.20)

nµGHZ =

0
0
0

 ,

where µ = 1, 2, 3 refers to each of the three qubits.

The degree by which a qubit is entangled to the system is seen by the norm
of its Bloch vector. The more the qubit is entangled to the rest of the system,
the smaller the norm of its spin representation in the Bloch sphere is, until
reaching zero for maximally entangled qubits (see Figure 5.2). Thus, putting
the expectation value in a vector form allows us to visualize geometrically the
lack of knowledge a local observer has on a given qubit. That is, for spins on
the surface of the sphere, if a lack of knowledge is present, then it would only
be due to the extrinsic parameter. Whereas for those belonging to the ball of
the sphere, entanglement also contributes to the lack of knowledge an observer
has when measuring the spin of the qubit.
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x

y

z

v⃗ i

v⃗ i

Figure 5.2: The Bloch sphere representation of the spin of a qubit that belongs
to a generic state ψ ∈ PH of an M -qubits system. The black arrow, whose norm
is less than 1, represents a qubit which is entangled to the system. Whereas
the blue arrow, which norm is equal to 1, represents a separable qubit. The
vector vanishes for a maximally entangled qubit.

The variance of the µth spin in a given M -qubits system ρ = |ψ⟩ ⟨ψ| ∈ PH⊗M

is
Var
[

(σ · v)µ
]

= 1 − || ⟨(σ · v) µM ⟩ψ ||2 , (5.21)

where

|| ⟨(σ · v) µM ⟩ψ ||2 = || ⟨ψ|10 ⊗ . . . (σ · v) µ · · · ⊗ 1M−1|ψ⟩ ||2 .

In terms of the density matrix, the µth spin variance reads

Var
[

(σ · v)µ
]

= 1 − [Tr (ρ (σ · v)µM )]2

= 1 − [Tr (ρµ (σ · v)µ)]2

= 1 − ||nµ||2 cosα2 ,

(5.22)

where ρ µ is defined in Eq.(5.12), and nµ is the Bloch vector of ρ µ. The angle α
is defined in Eq.(5.17) and it is the angle between v and nµ. The minimization
of the variance coincides with the local observer choosing α = 0. Thus, we have

min
vµ

Var
[

(σ · v)µ
]

= 1 − ||nµ||2 , (5.23)

which shows that the minimized spin variance is actually a distance squared in
R3. Therefore, the minimized spin variance can be expressed as follows

min
vµ

Var
[

(σ · v)µ
]

= ||ñµ||2 − ||n µ||2 , (5.24)

where ||ñµ|| = 1. Physically, this would mean that the minimized spin variance
of a given qubit indicates how mixed the qubit is since it is equal to the difference
between the squared norm of a qubit’s Bloch vector nµ and the squared norm
of its Bloch vector ñµ if it was completely separable. In Figure 5.3, we have
plotted the variance of the µth spin as a function of the extrinsic parameter

119



5.4. THE SPIN VARIANCE IN TERMS OF THE SPIN PROBABILITY
DISTRIBUTION

0.2 0.4 0.6 0.8 1.0
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Figure 5.3: The figure depicts the spin variance in the case where i) the µth
subsystem is maximally entangled to the rest of the system (curve in red). ii)
The µth subsystem is entangled to the rest of the system (curve in black). iii)
And the µth subsystem is fully separable from the rest of the system (curve in
blue)

in the case of a fully separable subsystem, an entangled subsystem, and a
maximally entangled subsystem. If the µth subsystem is fully separable, then
the lack of knowledge can be canceled completely by the observer. That is, if
α = 0, π, the spin variance is equal to zero. If the µth subsystem is maximally
entangled, then the lack of knowledge an observer has does not depend on him.
It is completely intrinsic to the subsystem. This is shown in Figure 5.3, where
the red curve does not depend on α. However, if the subsystem is entangled,
but not maximally entangled, the observer can still introduce and remove a
small amount of a lack of knowledge.

5.4 The spin variance in terms of the spin probability
distribution

A binary discrete distribution is characterized by a random variable x which
can only take two values, e.g. x ∈ {1,−1} (Bernoulli process), the probability
distribution function of x can be parameterized as follows

p (x = 1|Θ) = Θ
p (x = −1|Θ) = 1 − Θ , (5.25)

where 0 ≤ Θ ≤ 1 and ∑
x∈{1,−1}

p (x|Θ) = 1 . (5.26)

This means that x takes the value 1 with probability Θ and the value 0 with
probability 1 − Θ. The expectation value of x is

E [x] =
∑

x∈{1,−1}

p (x|Θ)
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5.4. THE SPIN VARIANCE IN TERMS OF THE SPIN PROBABILITY
DISTRIBUTION

= 1 · Θ + (−1) · (1 − Θ)
= 2Θ − 1 , (5.27)

and its variance is

Var [x] = E
[
(x− E [x])2

]
= E

[
(x+ 1 − 2Θ)2

]
=

∑
x∈{1,−1}

(x+ 1 − 2Θ)2
p (x|Θ)

= (2 − 2Θ)2 Θ + 4Θ2 (1 − Θ)
= 4Θ (1 − Θ) . (5.28)

We can now relate these calculations to the variance and expectation value of
the spin of a given µth qubit in ψ ∈ PH⊗M . In fact, since the spin of a qubit
during a measurement behaves as a random variable that can take only two
values; up or down (1 or −1), it can thus be represented by a binary distribution.

A projective-valued measure along a given direction v of the spin of the µth
qubit in ψ ∈ PH⊗M is described by a set of projectors{

Πµ
+v, Πµ

−v

}
,

where
Πµ

±v = 10 ⊗ · · · ⊗
(

1
2 (1 ± σ · v)

)µ
⊗ · · · ⊗ 1M−1 .

The probability of getting spin up (or down) along v (denoted p (+v)µ and
p (−v)µ respectively) for a given qubit µ in ψ ∈ PH⊗M is1

p (±v)µ = ⟨ψ|Πµ
±v|ψ⟩

= 1
2 (1 ± ⟨(σ · v)µ⟩M ) , (5.29)

where
⟨(σ · v) µ⟩M = ⟨ψ|10 ⊗ . . . (σ · v) µ · · · ⊗ 1M−1|ψ⟩ ,

Now, as we did above in Eq.(5.25), we can parameterize the probability
distribution {p (+v)µ , p (−v)µ} as follows

p (+v|Θ)µ = Θµ

p (−v|Θ)µ = 1 − Θµ , (5.30)

1In the case of one qubit for example, the expectation value of σx in the state |0⟩ is
given by ⟨0|σx|0⟩ = ⟨0|

(
|+⟩ ⟨+| − |−⟩ ⟨−|

)
|0⟩ = ⟨0|Π+x|0⟩ − ⟨0|Π−x|0⟩ = p (+x) − p (−x),

where {|0⟩ , |1⟩} and {|+⟩ , |−⟩} are the set of eigenstates of σz and σx respectively. Thus, the
probability of getting spin up (or down) along x for a given state |ψ⟩ is

p (±x) = ⟨ψ|Π±x|ψ⟩ ,

where Π± =
1
2

(1+ σx).
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5.5. THE SPIN VARIANCE AND THE LINEAR ENTROPY

where µ denotes the µth qubit. Thus, from equations (5.29) and (5.30), we get
the spin expectation value of the µth qubit in terms of Θµ

⟨(σ · v) µ⟩M = 2Θµ − 1 , (5.31)

which is similar to Eq.(5.27). And finally, the spin variance of the ith qubit in
terms of Θµ reads

Var
[

(σ · v)µ
]

= 4Θµ (1 − Θµ) . (5.32)
Note that, the maximum lack of knowledge we can get on the spin of the µth
subsystem is when Θµ = 1/2, which gives Var

[
(σ · v)µ

]
= 1. If Θµ is equal to

1 or 0, Var
[

(σ · v)µ
]

= 0.

5.5 The spin variance and the linear entropy

The von Neumann entropy of the µth qubit is

Sµv = − Tr ρµ log ρµ

= − Tr
[∑

i

pi |ψi⟩ ⟨ψi| log

∑
j

pi |ψj⟩ ⟨ψj |

] , (5.33)

where ρµ is expressed in a diagonal form with respect to an orthonormal basis
{|ψi⟩}. Linear entropy is an approximation of von Neumann entropy and it is
defined as follows [113, 24]

SµL ≃ − Tr ρµ (ρµ − 1)
= 1 − Tr

[
(ρµ)2 ]

.
(5.34)

An important thing to note here is that Linear entropy informs on the intrinsic
lack of knowledge since it is expressed solely in terms of the density matrix of the
considered subsystem. It is not expressed in terms of the vector v, which is the
direction of the local observer that can introduce more lack of knowledge. For
a qubit subsystem, we have {|ψi⟩} = {|+n⟩ , |−n⟩}, such that (see Eq.(5.30))∑

i

pi |ψi⟩ ⟨ψi| = Θ̃ |+n⟩ ⟨+n| +
(
1 − Θ̃

)
|−n⟩ ⟨−n| , (5.35)

where the tilde denotes the probability distribution that minimizes the local
lack of knowledge (since there is no influence of a local observer here). Putting
the above expression of the µth density matrix in the Linear entropy defined in
Eq.(5.34), we get

SµL = 2Θ̃
(
1 − Θ̃

)
. (5.36)

We thus have
min
{vµ}

Var
[

(σ · v)µ
]

= 2SµL (5.37)

The proposed entanglement measure for a multipartite qubit system |s⟩ ∈ PH
is thus

E(|s⟩) = 2
M−1∑
µ=0

SµL . (5.38)
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5.6. CHAPTER CONCLUSIONS

5.6 Chapter conclusions

In this Chapter, we have shown that if the lack of knowledge an observer has
about a given subsystem depends completely on him, then the subsystem is fully
separable from the rest of the system. Whereas, for an entangled subsystem,
there is an amount of lack of knowledge that the local observer has, which
does not depend on him, and for a maximally entangled subsystem, the lack
of knowledge a local observer has does not depend at all on him. This lack
of knowledge can be measured through the spin variance of the subsystems.
We have shown that the entanglement distance is actually the sum of the spin
variances computed upon all the subsystems. We have also shown that the
entanglement distance is equal to the sum of the local linear entropies. This
means that, the physical interpretation of the proposed measure is the sum of
the local mixedness.
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6

Applications of the entanglement
distance

In this Chapter, we verify the efficacy of the proposed entanglement measure.
We have published this work in Ref.[41]. We have first considered three
different families of states: Briegel Raussendorf states |r, ϕ⟩M , Greenberger-
Horne-Zeilinger–like states (GHLS), |GHZ, θ⟩M and the W-like states (WLS),
|W, θ, φ⟩M . The three families of states depend on parameters that adjust their
degree of entanglement. The first family of states we considered, has been
introduced by Briegel and Raussendorf in Ref.[75]. For this reason, we named
the elements in this family Briegel-Raussendorf states. The second family of
states, in 6, is related to the Greenberger-Horne-Zeilinger states [74], since it
contains one of these states. The third family of states is related to the W state,
which was named after Wolfgang Dür [30] who first reported the state together
with Guifré Vidal, and Ignacio Cirac in 2002 [43].

In Ref.[26], Briegel and Raussendorf introduced two interesting notions: Max.
connectedness and persistency. The first notion can be understood as follows:
Suppose an M qudits state |ψ⟩ =

∑d
i=0 χi |ϕ0

i ⟩⊗ |ϕ1
i ⟩⊗ · · ·⊗ |ϕM−1

i ⟩. |ψ⟩ is said
to be maximally connected if any two qubits can be projected, with certainty,
into a pure Bell state, by measuring the rest of the qubits. For example: if we
take the three-qubits |GHZ⟩3 = (1/

√
2) (|000⟩ + |111⟩) state, any two qubits

can be projected with certainty to a pure Bell state. Whereas for example, this
is not the case of the three-qubits |W⟩3 = (1/

√
3) (|001⟩ + |010⟩ + |100⟩) state.

So max. connectedness is simply the degree of entanglement of a given state.
The second notion, i.e. persistency, is defined by the authors as the minimum
number of local measurements such that, for all measurement outcomes, the
state is completely disentangled. Roughly speaking, persistency defined by
Briegel and Raussendorf in [26] is in a sense, the robustness defined by Vidal et
al. in [157], which quantifies the endurance of entanglement against noise. Or
in other words, it is the property that quantifies the operational effort that is
needed to destroy all entanglement in a system.
Thus, Briegel and Raussendorf have shown that |r, ϕ⟩M and |GHZ, θ⟩M are both
maximally connected and |W, θ, φ⟩M is not. However, |r, ϕ⟩M is more persistent
than |GHZ, θ⟩M when M ≥ 4. Below M = 4, they have the same persistency
(robustness). They have also shown, that |W, θ, φ⟩M is more persistent than
both of them ∀ M .
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Therefore, the first test about the efficiency of the proposed measure, we will be
doing is to verify if and how the measure depicts the difference between |r, ϕ⟩M
and |GHZ, θ⟩M when M ≥ 4. Then, to see if the differences between |W, θ, φ⟩M
and the two former families of states are detected in the entanglement distance.
We also took three other examples, to further test the entanglement distance.
We have also considered a family of three-qubit states depending on two real
parameters. With a suitable choice of these parameters, the state can be fully
separable or bi-separable, whereas in the generic case, it is a genuine tripartite
entangled state. The second example is a hybrid two-qudit system. In this
example, we will compare the proposed entanglement measure to von Neumann’s
entropy. And the last example we will be seeing is a state of two qutrits in
Section 6.
We will show that the entanglement distance provides an accurate description of
all these cases. In the examples taken below, we will compute the entanglement
distance given in Eq.(4.11) in the case of hybrid qudit systems. For the qubit
states, we will compute the entanglement distance defined in Eq(4.9) and the
entanglement metric (EM) defined in Eq.(4.16). We will see that the association
of the entanglement measure with the information contained in the entanglement
metric allows the classification of entangled qubit-states. We have published
the work presented in this Chapter in Ref.[41].

Greenberger-Horne-Zeilinger–like states

Let us consider the first family of M -qubit states, the GHZLS, defined according
to

|GHZ, θ⟩M = cos(θ)|0⟩ + sin(θ)eiφ|2M − 1⟩ . (6.1)
For θ = kπ/2 and ∀φ, where k ∈ Z, these states are fully separable, whereas
θ = kπ/2 + π/4 (∀φ) selects the maximally entangled states. In this case, the
trace for the Fubini-Study metric,

Tr(g) = M − cos2(2θ)
M−1∑
ν=0

(vν3 )2 , (6.2)

is minimised by the values vν3 = 1. The entanglement metric (EM) reads thus,

g̃ = sin2(2θ)JM (6.3)

where JM is the M ×M matrix of ones. And, the entanglement measure for
the GHZLS is

E(|GHZ, θ⟩M ) = Tr g̃ = M sin2(2θ) . (6.4)

Remarks:

1. If the state in Eq(6.1) is maximally entangled, the EM reads

g̃ = JM , (6.5)

and the entanglement measure

E(|GHZ, θ⟩max
M ) = M . (6.6)
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2. The family of maximally two-qubit entangled states obtained from Eq.(6.1)
is the one containing all Bell-states.

We will now show that in the case of M = 2, 3, the maximally-entangled BRS
and the maximally entangled GHZLS are equivalent. In fact, we will show that
they only differ by local unitary transformations. We will show that in the case
of M = 2, 3, the EMs of the maximally entangled states belonging to these two
families are identical. We will also see that in the case of M ≥ 4, the EMs of
the maximally entangled states of the two families are different. This will be
the first successful test of the validity of the entanglement distance since as said
in the introduction of this Chapter, it has been shown [26], that above M = 3
the GHZ and BR states are not equivalent.

Briegel Raussendorf states

The second family of states we consider is the one that was described by
Briegel and Raussendorf in [26]. They considered three different arrangements
of qubits: the first in a one-dimensional lattice (spin chain), the second, in a
two-dimensional lattice, and the third, in a three-dimensional lattice. In what
follows, we will only consider their first example, i.e. the spin chain case. They
considered M qubits prepared all in the state

|r, 0⟩ =
M−1⊗
µ=0

1√
2

(|0⟩µ + |1⟩µ) . (6.7)

Each M -qubit state of the BRS class is derived by applying to the fully separable
state in Eq.(6.7), the non-local unitary operator

U0(ϕ) = exp(−iϕH0) =
M−1∏
µ=1

(
I+ αΠµ

0 Πµ+1
1

)
, (6.8)

where H0 =
∑M−1
µ=1 Πµ

0 Πµ+1
1 and α = (e−iϕ − 1). We denote with Πµ

0 =
(1+ σµ3 )/2 and Πµ

1 = (1− σµ3 )/2 the projector operators onto the eigenstates
of σµ3, |0⟩µ (with eigenvalue +1) and |1⟩µ (with eigenvalue −1), respectively,
where µ denotes the µth qubit and σµ3 is the third Pauli matrix applied on the
µth qubit.

The full operator (6.8) is diagonal on the states of the standard basis
{|0 · · · 0⟩ , |0 · · · 01⟩, . . . , |1 · · · 1⟩}. In fact, each vector of the latter basis is
identified by M integers n0, . . . , nM−1 = 0, 1 as |{n}⟩ = |nM−1 nM−2 n0⟩ and
we can enumerate such vectors according to the binary integers representation
|k⟩ = |{nk}⟩, with k =

∑M−1
µ=0 nkµ2µ, where nkν is the ν-th digit of the number k

in binary representation and k = 0, . . . , 2M − 1. Then, the eigenvalue λk of the
operator (6.8), corresponding to a given eigenstate |k⟩ of this basis, results

λk =
n(k)∑
j=0

(
n(k)
j

)
αj , (6.9)
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where n(k) is the number of ordered couples 01 inside the sequence of the base
vector |k⟩. For the initial state (6.7) we consistently get

|r, 0⟩M = 2−M/2
2M −1∑
k=0

|k⟩ , (6.10)

and, under the action of U0(ϕ), one obtains

|r, ϕ⟩M = 2−M/2
2M −1∑
k=0

n(k)∑
j=0

(
n(k)
j

)
αj |k⟩ (6.11)

The non-local operator in Eq.(6.8) is periodic in time and generates entanglement
oscillations of the chain. The qubits are fully separable in the case where
ϕ = 2kπ, and they are maximally entanglement for the values ϕ = (2k + 1)π,
k ∈ Z. While for all other values of ϕ, the chain is entangled.

Briegel Raussendorf states with M = 2

In the case of M = 2, i.e. two qubits, the BRS read

|r, ϕ⟩2 = 1
2
(
|0⟩ + e−iϕ |1⟩ + |2⟩ + |3⟩

)
, (6.12)

The trace of the Fubini study metric for the BRS read

Tr g = 2 −
(

cos2 (φ/2)
(
v1

1
)

+ sin (φ/2) cos (φ/2)
(
v1

2
) )2 +

−
(

cos2 (φ/2)
(
v2

1
)

− sin (φ/2) cos (φ/2)
(
v2

2
) )2

. (6.13)

This equation has trivially the minimum for the normalized vectors ṽ1 =
(cos (φ/2), sin (φ/2), 0) and ṽ2 = (cos (φ/2), − sin (φ/2), 0). The entanglement
metric is thus

g̃ =
(

sin2 (φ/2) sin2 (φ/2)
sin2 (φ/2) sin2 (φ/2)

)
.

And the entanglement measure is

E(|r, ϕ⟩2) = Tr g̃ = 2 sin2 (φ/2) . (6.14)

Remark: The state in Eq.(6.12) is a maximally entangled state for ϕ =
(2k + 1)π, k ∈ Z. For this state, the EM reads

g̃max =
(

1 1
1 1

)
and the entanglement measure is

E(|r, ϕ⟩max
2 ) = Tr g̃ = 2 . (6.15)

Both, the EM and the entanglement measure of the two-qubit maximally
entangled BR state are similar to those of the two-qubit maximally entangled
GHZ state (which represents the family of Bell states). From Proposition 4.2,
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we have that the maximally entangled BRS is in the same class of entanglement
as the maximally entangled GHZLS at M = 2.

Briegel Raussendorf states with M = 3

In the case of M = 3, we have

|r, ϕ⟩3 = 1
23/2

(
|0⟩ + e−iϕ |1⟩ + e−iϕ |2⟩ + e−iϕ |3⟩ + |4⟩ + e−iϕ |5⟩ +

+ |6⟩ + |7⟩
) (6.16)

The trace of the metric reads

Tr g = 3 −
(

cos2 (φ/2)
(
v1

1
)

+ sin (φ/2) cos (φ/2)
(
v1

2
) )2 +

− cos4 (φ/2)
(
v2

1
)2 −

(
cos2 (φ/2)

(
v3

1
)

− sin (φ/2) cos (φ/2)
(
v3

2
) )2

,

and it has the minimum for the normalized vectors ṽ1 = (cos (φ/2), sin (φ/2), 0),
ṽ2 = (1, 0, 0) and ṽ3 = (cos (φ/2), − sin (φ/2), 0). It follows that the EM is

g̃ = sin2 (φ/2)

 1 cos (φ/2) 0
cos (φ/2) 1 + cos2 (φ/2) cos (φ/2)

0 cos (φ/2) 1

 , (6.17)

and the entanglement measure is

E(|r, ϕ⟩3) = Tr g̃ = sin2 (φ/2)
(
3 + cos2 (φ/2)

)
. (6.18)

Remark: If the state in Eq.(6.16) is maximally entangled, the EM reads

gmax =

 1
(
v1

1
) (
v2

3
)

−
(
v1

1
) (
v3

1
)(

v1
1
) (
v2

3
)

1 −
(
v2

3
) (
v3

1
)

−
(
v1

1
) (
v3

1
)

−
(
v2

3
) (
v3

1
)

1

 , (6.19)

and the entanglement measure is

E(|r, ϕ⟩max
3 ) = Tr g̃ = 3 . (6.20)

The trace of gmax does not depend on the vectors vi, where i = 1, 2, 3. Thus, to
obtain the same entanglement metric of |GHZ⟩3, one can choose the following
normalized vectors: v1 = (1, 0, 0), v2 = (0, 0, 1) and v3 = (−1, 0, 0). This
suggests that each different metric, resulting from a different combination of
the elements of vi, represents the entanglement metric of a different state
that belongs to a family of states having the same entanglement. It is clear
that the three-qubit maximally entangled BR state represents a family of
states containing the GHZ state. According to Proposition 4.2, the maximally
entangled BRS and GHZLS at M = 3 belong to the same class.

Briegel Raussendorf states with M = 4

For M = 4, we have

|r, ϕ⟩4 = 1
4
((

|0⟩ + e−iϕ |1⟩ + e−iϕ |2⟩ + e−iϕ |3⟩ + e−iϕ |4⟩ + e−2iϕ |5⟩ +

+ e−iϕ |6⟩ + e−iϕ |7⟩ + |8⟩ + e−iϕ |9⟩ + e−iϕ |10⟩ + e−iϕ |11⟩ +
+ |12⟩ + e−iϕ |13⟩ + |14⟩ + |15⟩

)
.

(6.21)
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The trace of the metric reads
Tr g = 4 −

(
cos2 (φ/2)

(
v1

1
)

+ sin (φ/2) cos (φ/2)
(
v1

2
) )2 − cos4 (φ/2)

(
v2

1
)2

− cos4 (φ/2)
(
v3

1
)2 −

(
cos2 (φ/2)

(
v3

1
)

− sin (φ/2) cos (φ/2)
(
v3

2
) )2

−
(

cos2 (φ/2)
(
v4

1
)

− sin (φ/2) cos (φ/2)
(
v4

2
) )2

,

(6.22)

and it is minimized with the normalized vectors ṽ1 = (cos (φ/2), sin (φ/2), 0),
ṽ2 = (1, 0, 0), ṽ3 = (1, 0, 0) and ṽ4 = (cos (φ/2), − sin (φ/2), 0). It follows
that the EM is

g̃ = sin2 (φ/2)


1 cos (φ/2) 0 0

cos (φ/2) 1 + cos2 (φ/2) 1 0
0 1 1 + cos2 (φ/2) cos (φ/2)
0 0 cos (φ/2) 1

 ,

(6.23)
and the entanglement measure is

Tr g̃ = sin2 (φ/2)
(
4 + cos2 (φ/2)

)
, (6.24)

Remark: If the state in Eq.(6.21) is maximally entangled, the EM reads

gmax =


1

(
v1

1
) (
v2

3
)

0 0(
v1

1
) (
v2

3
)

1 0 0
0 0 1 −

(
v3

3
) (
v4

1
)

0 0 −
(
v3

3
) (
v4

1
)

1

 . (6.25)

and the entanglement measure is
E(|r, ϕ⟩max

4 ) = Tr g̃ = 4 . (6.26)
In the case of M = 4, some of the off-diagonal terms are equal to zero. Thus,
whatever the choice of the vectors vi is, the four-qubit maximally entanglement
BRS will not be equivalent to the maximally entangled four-qubit GHZ state.
Thus, according to Proposition 4.2, the maximally entangled BRS and GHLZS
at M = 4 do not belong to the same class.

Briegel Raussendorf states with M > 4

For a general M -qubit state |r, ϕ⟩M , the trace of g results

Tr(g) =
{
M −

M−1∑
ν=0

[
vν3w

ν
3 + vν+w

ν
− + vν−w

ν
+
]2}

, (6.27)

where vν± = vν1 ± i vν2 and

wν− =
2M −1∑
k=0

δnk
ν ,0 c

∗
k+2ν ck ,

wν+ =
2M −1∑
k=0

δnk
ν ,1 c

∗
k−2ν ck ,

wν3 =
2M −1∑
k=0

(−1)nk
ν |ck|2 ,

(6.28)
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with ck = 2−M/2λk. The trace is minimized by setting ṽν+ = wν⋆
− /∥wν∥,

ṽν− = wν⋆
+ /∥wν∥ and ṽν3 = wν3/∥wν∥. From the latter, we get the entanglement

measure for a general M-qubit BRS

E(|r, ϕ⟩M ) =
(
M −

M−1∑
ν=0

∥wν∥2

)
. (6.29)

Remark: We do not depict the EM in the case of M > 4 because we are not
interested in classifying the BRS beyond M = 4.

W-like states

The third family of M -qubit states we consider is the one of the W-like states.
We can define a generalized WLS according to the following induction

|W,α1, α2⟩3 = sinα1 cosα2 |1⟩ + sinα1 sinα2 |2⟩ + cosα1 |4⟩

|W,α1, . . . , αM−1⟩M = sinα1 |W,α2, . . . , αM−1⟩M−1 + cosα1 |2M−1⟩ .
(6.30)

The maximally entangled state reads

|W ⟩max
M = 1√

M

M∑
i=1

|2i−1⟩ . (6.31)

Note that the sum over i is taken from 1 to M in this example (and not from 0
to M − 1) only for the purpose of simplifying the following calculations. We will
return to the old notation in the next example. The above maximally entangled
state is selected by the following angles

αM−1 = π

4
αM−2 = arctan

√
2

αM−3 = arctan 1
cosαM−2

αM−4 = arctan 1
cosαM−3

...
α2 = arctan 1

cosα3

α1 = arccos 1√
M

.

(6.32)

Whereas to obtain a fully separable state, the angles have to respect the following
mathematical induction

α1 = kπ , ∀
M−1∑
i=2

αi

α1 = kπ

2 , P (α2, αM−1) ,
(6.33)
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where the function P is described as follows

P (α1, α2, α3) =


α1 = kπ , ∀ α2, α3

α1 = kπ
2 ,

{
α2 = kπ , ∀ α3

α2 = α3 = kπ
2

.

=
{
α1 = kπ , ∀ α2, α3

α1 = kπ
2 , P (α2, α3) ,

.

for k ∈ Z. The trace of the Fubini-Study metric in this case reads

Tr (g (v)) = M −

(
M−2∑
µ=1

Uµ (αµ)2 (vµ3)2

)
+

− UM−1 (α1, . . . , αM−1)2 (
v(M−1)3

)2 +
− UM (α1, . . . , αM−1)2 (vM3)2

,

(6.34)

where the functions U are constructed with the following induction rule

U0 = −1
U1 (α) = − cos 2α

U2 (α1, α2) = cos2 α1 + sin2 α1 U1 (α2)
U3 (α1, α2, α3) = cos2 α1 + sin2 α1 U2 (α2, U1 (α3))

...
UM−2 (α1, . . . , αM−2) = cos2 α1 + sin2 α1 UM−3 (α2, . . . , U1 (αM−2))
UM−1 (α1, . . . , αM−1) = cos2 α1 + sin2 α1 UM−2 (α2, . . . ,−U1 (αM−2))
UM (α1, . . . , αM−1) = cos2 α1 + sin2 α1 UM−2 (α2, . . . , U1 (αM−2)) .

The tr (g (v)) of the WLS is minimized by the values ṽµ3 = 1, where µ denotes
the qubit and 3 indicates the direction z. It follows that the entanglement
measure in this case is

E (|W,α1, . . . , αM−1⟩M ) = M −
M−2∑
µ=1

Uµ (αµ)2 − UM−1 (α1, . . . , αM−1)2 +

− UM (α1, . . . , αM−1)2
.

(6.35)

If the WLS are maximally entangled (i.e. (6.31)), the Fubini Study metric reads

g̃Max (|W ⟩M ) = 4
M ×M


(M − 1) −1 −1 · · · −1

−1 (M − 1) −1 · · · −1
...

...
... . . . ...

−1 −1 −1 · · · (M − 1)



The W-like states at M = 3
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At M = 3, the WLS read

|W, θ, φ⟩3 = sin θ cosφ |001⟩ + sin θ sinφ |010⟩ + cos θ |100⟩ . (6.36)

These states are fully separable at θ = 0+kπ, ∀φ and at θ = π/2+kπ, φ = kπ/2,
where k ∈ Z. And they are bi-separable at θ = π/2 + kπ and φ = pi/4 + kπ,
and also at θ = kpi/4 and φ = kπ/2. And finally, they are maximally entangled
(see Eq.6.32) at 

φ = π

4

θ = arctan
√

2
(6.37)

The trace of the Fubini Study metric is

Tr g = 3 − cos2 (2θ)
(
v1

3
)2 −

[
cos2 (θ) + sin2 (θ) cos (2φ)

]2 (
v2

3
)2

−
[
cos2 (θ) − sin2 (θ) cos (2φ)

]2 (
v3

3
)2
,

(6.38)

and it is trivially minimized by ṽ1 = ṽ2 = ṽ3 = (0, 0, 1). Thus, the
entanglement distance for the three qubits WLS is

E(|Wθ,φ⟩3) = Tr g̃ = 3 − cos2 (2θ) − 2 cos4 (θ) − 2 sin4 (θ) cos2 (2φ) . (6.39)

Remark: From Eq.(6.31), we get the EM for the maximally entangled WLS at
M = 3

gMax =


1 −

(
v1

3
)2

9 g12 g13

g21 1 −
(
v2

3
)2

9 g23

g31 g32 1 −
(
v3

3
)2

9

 . (6.40)

We notice that the trace still depends on the directions vi, where i = 1, 2, 3 and
to minimize it, we should choose ṽ1 = ṽ2 = ṽ3 = (0, 0, 1). With this choice, the
reduced EM becomes

g̃Max = 4
9

 2 −1 −1
−1 2 −1
−1 −1 2

 (6.41)

This shows that the EM of the maximally entangled WLS cannot be equivalent
to the EM of the maximally BRS in Eq.(6.19) and of the maximally GHLS
in Eq.(6.5) for two reasons: i) on the contrary of gMax(BR) and gMax(GHZ),
the trace of gMax(W) < 3 , ∀

(
v1

3 , v
2
3 , v

3
3
)

\ (0, 0, 0), and ii) the off-diagonal
terms in Eq.(6.40) depend on the choice of

(
v1

3 , v
2
3 , v

3
3
)

that should minimize the
trace. In fact, the off-diagonal terms cannot take any values, they take only the
value −4/9, coming from replacing the values of

(
v1

3 , v
2
3 , v

3
3
)
, which minimize

the trace, in g12, g13, g23. The off-diagonal terms will thus never be equal to
those in gMax(BR) and gMax(GHZ). Therefore, according to Proposition 4.2,
the maximally entangled WLS does not belong to the class of the maximally
entangled BRS and GHLS at M = 3.
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Three-qubit states depending on two parameters

The last family of M-qubit states we consider is

|φ, γ, τ⟩3 = cos(γ)|0⟩[cos(τ)|00⟩ + sin(τ)|11⟩]
+ sin(γ)|1⟩[sin(τ)|00⟩ + cos(τ)|11⟩] .

(6.42)

These states are fully separable for γ = 0, π/2 and τ = 0, π/2 whereas they are
bi-separable for τ = π/4. In this case, the trace of the Fubini-Study metric is

Tr(g) =
{

3 − cos2(2γ) cos2(2τ)[(v0
3)2 + (v1

3)2]
−[sin(2γ) sin(2τ)v2

1 + cos(2γ)v2
3 ]2
} (6.43)

and it is minimised by the values ṽµ3 = (0, 0, 1), ν = 0, 1 and

ṽ0
3 = sin(2γ) sin(2τ)√

sin2(2γ) sin2(2τ) + cos2(2γ)
,

ṽ1
3 = 0 ,

ṽ2
3 = cos(2γ)√

sin2(2γ) sin2(2τ) + cos2(2γ)
.

(6.44)

Consistently, the entanglement measure for these states results to be

E(|φ, γ, τ⟩3) = 2 sin2(2τ) + 3 sin2(2γ) cos2(2τ) . (6.45)

Hybrid two-qudit states depending on one parameter

As an example of application to hybrid qudit systems, we consider the projective
Hilbert space PH = P (H2 ⊗ H3), i.e. the product of qubit and qutrit states.
Let us denote the elements of a basis in such Hilbert space with |α, j⟩, where
α = ± and j = 0, 1, 2 and consider the following family of single-parameter
states

|s, θ⟩ = cos(θ)|+, 0⟩ + sin(θ)|−, 2⟩ . (6.46)

We expect the state with a higher degree of entanglement will correspond to
θ = π/4. Note that this is not a maximally entangled state since the component
|1⟩ of the second Hilbert space is absent. From Eq.(4.12), we have

A0 =

 1 i cos(2θ) 0
−i cos(2θ) 1 0

0 0 1 − cos2(2θ)

 . (6.47)

In the case of qutrits, the generators Tµ can be represented by the Gell-Mann
matrices. By direct calculation, one can verify that the only non-null matrix
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elements for A1 are the following

(A1)11 = cos2(θ) ,
(A1)22 = cos2(θ) ,
(A1)33 = cos2(θ) sin2(θ) ,
(A1)44 = sin2(θ) ,
(A1)55 = sin2(θ) ,
(A1)66 = 3 cos2(θ) sin2(θ) ,
(A1)77 = 1 ,
(A1)88 = 1 .

Thus, from Eq. (4.14) we have

E(|s, θ⟩) = 2 sin2(2θ) . (6.48)

In (6.48), θ = π/4 provides the maximally entangled state.

In Section 6.1, we will compare entanglement measure E(|s, θ⟩)/2 with von
Neumann entropy

E [ρ(θ)] = − cos2(θ) log2[cos2(θ)] − sin2(θ) log2[sin2(θ)] (6.49)

of the density matrix ρ(θ) = |s, θ⟩⟨s, θ| associated to the same state.

M -qudit states depending on two parameters

Let us consider an M -qutrit system, that has a projecive Hilbert space
PH = P (H3 ⊗ · · · ⊗ H3), that is to say, the product of M qutrit states. We
have considered the following generalization of the GHZLS states to qutrits,

|s, θ, ϕ⟩M = sin(θ) cos(ϕ)|0, . . . , 0⟩+
sin(θ) sin(ϕ)|1, . . . , 1⟩ + cos(θ)|2, . . . , 2⟩ ,

(6.50)

which is a family of 2-parameter states. We have,

(Aµ)11 = sin2(θ) ,
(Aµ)22 = sin2(θ) ,

(Aµ)33 = 1
4 sin2(θ)

(
3 + cos(2θ) − 2 sin2(θ) cos(4ϕ)

)
,

(Aµ)44 = sin2(θ) sin2(ϕ) + cos2(θ) ,
(Aµ)55 = sin2(θ) sin2(ϕ) + cos2(θ) ,
(Aµ)66 = 3 sin2(θ) cos2(θ) ,
(Aµ)77 = sin2(θ) cos2(ϕ) + cos2(θ) ,
(Aµ)88 = sin2(θ) cos2(ϕ) + cos2(θ) ,

for µ = 0, . . . ,M − 1. Thus, it results

E(|s, θ, ϕ⟩M ) = M

4 sin2(θ)
[
9 + 7 cos(2θ) − 2 sin2(θ) cos(4ϕ)

]
. (6.51)
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6.1. RESULTS

In Section 6.1, we compare the entanglement measure E(|s, θ, ϕ⟩M )/M of the
states (6.50) with von Neumann entropy

E(ρ(θ, ϕ)) = −a2 log2(a2) − b2 log2(b2) − c2 log2(c2) , (6.52)

where ρ(θ, ϕ) = |s, θ, ϕ⟩22⟨s, θ, ϕ| is the density matrix associated with the
same states in the case M = 2. Here, a = sin(θ) cos(ϕ), b = sin(θ) sin(ϕ) and
c = cos(θ).

6.1 Results

Entanglement measure

In Fig.6.1, we plot the measure E(|r, ϕ⟩M )/M vs ϕ/(2π) according to
Eq.(6.29), for the multi-qubit states (6.11) in the case M = 3, 4, 7, 9. Figure
6.1 shows that the entanglement distance provides a correct estimation of the
degree of entanglement for the BRS in all the cases considered. In particular,
for the fully separable states (ϕ = 0, 2π), it is zero, whereas, for the maximally
entangled states (ϕ = π), it provides the maximum possible value for the trace,
that is E(|r, π⟩M )/M = 1. This implies that the expectation values on the
maximally entangled states of the operators ṽν ·σν (ν = 0, . . . ,M − 1) are zero
(see Lemma 4.2).
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Figure 6.1: The figure reports the entanglement measure E(|r, ϕ⟩M )/M vs
ϕ/(2π) for the states (6.11) in the cases M = 3 (continuous line), M = 4
(dashed line), M = 7 (dot-dashed line) and M = 9 (dotted line).

The entanglement distance successfully passes a second test. When applied
on the GHZLS (Eq.(6.4)), it provides zero in the case of fully separable states
(θ = 0, π), and provides 1 for the maximally entangled states (θ = π/2). In
figure 6.2, we compare the curves E(|r, ϕ⟩M )/M vs ϕ/(2π) in continuous line
and E(|GHZ, θ⟩M )/M vs 2θ/π in dashed line, for the case M = 3. In the case
of the maximally entanglement states, the expectation values of the operators
ṽν · σν (ν = 0, . . . ,M − 1) is zero.

The entanglement distance is also tested on the WLS and it provides
consistent results. The 3D plot in Figure 6.3 depicts E (|W, θ, φ⟩3) /3 as a
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6.1. RESULTS

Figure 6.2: In this figure we compare the entanglement measures E(|r, ϕ⟩M )/M
vs ϕ/(2π) for the states (6.11) in continuous line, and E(|GHZ, θ⟩M )/M vs
2θ/π for the states (6.1) in dashed line, for the case M = 3.

function of θ/π and φ/π, where we clearly see that the measure is zero at
θ = 0 + kπ, ∀φ and also at θ = π/2 + kπ, φ = kπ/2, which are the angles at
which the WLS are fully separable. It displays local maxima at θ = π/2 + kπ
and φ = π/4 + kπ, and at θ = kπ/4 and φ = kπ/2. And finally, the maxium
value of E (|W, θ, φ⟩3) /3 are at θ = π/4 + kπ and φ/π ≈ 0.3 ⇒ φ ≈ arctan

√
2.

In Fig. 6.4, we report in a 3D plot the measure E(|φ, γ, τ⟩3)/3 as a function
of γ/π and τ/π according to Eq. (6.45), for the states (6.42). The measure (4.11)
catches in a surprisingly clear way the entanglement properties of this family of
states. In particular, E(|φ, γ, τ⟩3)/3 is null in the case of fully separable states
(γ = 0, π/2, π and τ = 0, π/2, π) and it is maximum (with value 1) in the case
of maximally entangled states (γ = π/4, 3π/4 and τ = 0, π/2, π). In addition,

Figure 6.3: The figure reports the three-dimensional plot of the entanglement
measure E (|W, θ,ϖ⟩3) /3 in Eq.(6.39) as a function of θ/π and φ/π of the state
in Eq.(6.36)
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6.1. RESULTS

Figure 6.4: The figure reports the three dimensional plot of the entanglement
measure E(|φ, γ, τ⟩3)/3 as a function of γ/π and τ/π for the states (6.42).

the case of bi-separable states (τ = π/4) results in 0 < E(|φ, γ, τ⟩3)/3 < 1.

Figure 6.5 refers to the hybrid two-qudit states (6.46). Here, we compare
the curves of entanglement measure E(|s, θ⟩)/2 vs θ/π of states (6.46) in a
continuous line, and the von Neumann entropy E(|s, θ⟩) vs θ/π in dashed line,
for the same states. This figure clearly shows that although these two curves are
different, they strongly agree in the quantification of the entanglement of the
different states. Note that the highly entangled state associated with θ = π/4
has an entanglement measure of 1, lower than the maximally entangled state of
this Hilbert space which, using (4.22), report a value of 7/6.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1.0

Figure 6.5: The figure compares the entanglement measure E(|r, ϕ⟩M )/M vs
ϕ/(2π) in a continuous line for the hybrid two-qudit states (6.46), and the von
Neumann entropy E [ρ(θ)] vs θ/π in dashed lines for the same states.

In Fig. 6.6, we report the entanglement measure E(|s, θ, ϕ⟩M )/M as a
function of θ/π and ϕ/π given in Eq. (6.51), for the multi-qubit states (6.50).
Even in this example, the measure (4.11) catches in a surprisingly clear way
the entanglement properties of this family of multi-qudit states. In particular,
E(|s, θ, ϕ⟩M )/M is null in the case of fully separable states, i.e. for θ = 0, ∀ϕ
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6.1. RESULTS

Figure 6.6: The plot shows the entanglement measure E(|s, θ, ϕ⟩M )/M in (6.51)
as a function of θ/π and ϕ/π for the states (6.50).

Figure 6.7: The figure shows E [ρ(θ, ϕ)] as a function of θ/π and ϕ/π given
in Eq. (6.52). The density matrix is associated with the states (6.50),
ρ(θ, ϕ) = |s, θ, ϕ⟩22⟨s, θ, ϕ| in the case M = 2.

and θ = π/2, ϕ = 0, π/2, π. In case of ϕ = 0, π, the entanglement measure
changes over θ and shows local maximum for θ = π/4. For θ = π/2, the measure
changes over ϕ displaying local maxima for ϕ = π/4, 3π/4. Furthermore, the
state corresponding to sin(θ) cos(ϕ) = sin(θ) sin(ϕ) = cos(θ) = 1/

√
3 is a

maximally entangled state to which corresponds an entanglement measure
(4.22) of value 4/3.

In Fig. 6.7, we report the 3D plot for the von Neumann entropy E [ρ(θ, ϕ)]
(see Eq. (6.52)) as a function of θ/π and ϕ/π. The entropy is calculated for the
density matrix ρ(θ, ϕ) = |s, θ, ϕ⟩22⟨s, θ, ϕ| associated to the family of two-qudit
states (6.50). The comparison between the figures 6.6 and 6.7 clearly shows
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that, although the functions E(|s, θ, ϕ⟩M )/M and E [ρ(θ, ϕ)] are different, they
fully agree, in the entanglement estimation, for the states |s, θ, ϕ⟩.

Eigenvalues analysis for M -qubit states

In the case of multi-qubit states, further interesting characteristics of the
entanglement come from the analysis of the entanglement metric’s eigenvalues.
In fig. 6.8, we compare the plots of the eigenvalues of g̃ for |r, ϕ⟩M vs ϕ/(2π)
(dotted lines), with the plot of the unique not vanishing eigenvalue of g̃ for
GHZLS vs 2θ/π (continuous line), in the case M = 7. When ϕ ̸= 0, 2π the EM
of the BRS, g̃, has exactly M non-zero eigenvalues. On the other hand, the
GHZLS have only one non-vanishing eigenvalue. Although the value of the latter
is greater than the eigenvalues of the BRS (see Fig. 6.8), the GHZLS appear
weak, in the sense of entanglement, since there exist M − 1 directions with
null minimum distance between states. This fact makes the class of the BRS
robust in the sense of entanglement. In fact, the minimum distance between
states in a random direction is greater than the minimum eigenvalue of the
metric and, therefore, greater than zero. Within the scenario that we have
proposed, the entanglement has the physical interpretation of an obstacle to
the minimum distance squared between infinitesimally close states. In fact, by
defining the distance squared between a given state represented by the vector
|U, s⟩ and an infinitesimally close state associated with the vector |dU, s⟩ as
ds2 = Tr[g(v)]dr2 where

∑
µ(dξµ)2 = dr2, it results

ds2 ≥ E(|s⟩)dr2 . (6.53)

This shows that the minimum distance squared density ds2/dr2, obtained by
varying the vectors v, is bounded from below by the entanglement measure
E(|s⟩). For fully separable states, the minimum distance density is zero whereas,
for maximally entangled states, it results M at the very best. Finally, from the
analysis of the eigenvalues we can investigate the sensitivity of different states
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Figure 6.8: Plot of the g̃ eigenvalues for the state |r, ϕ⟩M vs ϕ/(2π) in dotted
lines and the unique not vanishing eigenvalue of g̃ for the state GHZLS vs 2θ/π
in continuous line, for the case M = 7.
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Figure 6.9: The figure plots the g̃ eigenvalues for the state |r, ϕ⟩M vs ϕ/(2π)
for the case M = 7.

to small variations. Fig. 6.9 shows that at different points in parameter space
corresponds different state sensitivity of |r, ϕ⟩7. For instance, if we move out of
ϕ = π/2, following the eigenvector’s direction corresponding to the maximum
eigenvalue of g̃, we find a greater distance than moving along the eigenvector’s
of the maximally entangled state at ϕ = π. Such analysis can be profitably
used within quantum metrology applications.

6.2 Chapter conclusions

The goal of this Chapter was to verify the validity of the entanglement distance
that we proposed in Ref.[41] and illustrated in Chapter 4. We undertook the
following tests

• We have seen that the entanglement distance catches in a precise way
the entanglement properties of the following examples: the GHZ-like
states (GHZLS), the Briegel-Raussendorf states (BRS), defined in [75],
the W-like states (WLS), a three-qubit state depending on two parameters
and a hybrid two-qudit state depending on one parameter.

• In the case of M = 3, we have observed that the entanglement distance
gives the same result for the GHZLS and BRS, and it is smaller for the
WLS. This means that, at M = 3 , GHZLS and BRS have the same
amount of entanglement and that the WLS is less entangled.

• It has been shown [19, 156] that two pure states |ψ⟩ and |ϕ⟩ can be
obtained with certainty from each other by means of LOCC if and only
if they are related by local unitary operations (LUs). In Chapter 4
(Proposition 4.2), we have seen that if two states have different EMs,
they cannot be transformed into each other by means of local unitary
operations. We observed that, at M = 3, the entanglement metrics of
the GHLZS and the BRS differ only by LUs. Whereas the entanglement
metric of the WLS cannot be transformed into the one of the GHLZS or
the BRS. This means that the BRS and the GHZLS can be transformed
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into each other with certainty via LOCC, while the state W cannot be
transformed into any of them with certainty via LOCC.

• In the case of M = 4, we have shown that the BRS and the GHZLS still
have the same entanglement distance, but that they cannot be transformed
into each other by LUs, since their entanglement metrics are different.
This simply means that at M = 4, the GHLZS and the BRS cannot
be transformed into each other with certainty by LOCC. However, the
question of whether they can be transformed into each other by SLOCC
remains open.

• With the information gathered from both, the entanglement distance
and the entanglement metric, we are able to classify multipartite qubit
states via LOCC. At M = 2, there is only one class of entangled states
(Bell states), because all the entanglement metrics of entangled two-qubit
states can be transformed into each other via LUs. At M = 3, there are
two classes of genuine tripartite entangled states: the BRS (containing
the GHZLS) and the WLS. And, for M > 3, the classification becomes
complicated.

• It remains an open and interesting question as to how to relate the
entanglement metric to SLOCC.

• Briegel-Raussendorf, showed in [26], that at M = 3, the GHZLS and
the BRS have the same persistency and they are both max. connected.
And for M > 3, the BRS are more persistent than the GHZLS, but they
are both max. connected. With the analysis of the eigenvalues of the
entanglement metrics, we have extracted an interesting property from the
entanglement metric, namely its rank informs on the robustness of a state.
we have seen that, although they have the same entanglement distance,
at M > 3, the entanglement metric of the BRS has a bigger rank than
the one of the GHZLS. This suggests that the rank of the entanglement
metric informs on the robustness of the studied state.

• In the case of hybrid qudit states, we have seen that the entanglement
distance and the von Neumann entropy agree on the quantification of
entanglement of different states.
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Entanglement distance for mixed
states

In this Chapter, we present our original work done in Ref.[154]. In this
work, we have been interested in quantifying entanglement in mixed states.
Extensive literature is devoted to the study of entanglement in multipartite
systems. whereas, the study of entanglement in mixed multipartite states has
been addressed, e.g., with a Schmidt measure [56] or with a generalization of
concurrence [42, 34]. In recent years, approaches focusing on entanglement
estimation have been proposed and derived from a statistical distance. [22]
concept, as, for instance, the quantum Fisher information [124, 94, 149, 140].
Although many entanglement measures for mixed systems have been proposed
so far. The topic remains open, as it is by no means an easy problem to
tackle. In the case of pure states, entanglement and correlation are completely
equivalent, therefore an appropriate measure of quantum correlation can provide
also an entanglement measure. On the contrary, in the case of mixed states,
one can observe states that manifest correlations detached from entanglement.
In this Chapter, we construct a quantum correlation measure for multipartite
states and show that the entanglement distance seen in Chapter 4 is a special
case of the one constructed in this Chapter for mixed states. Then, from the
quantum correlation measure, we will construct an entanglement measure for
mixed states. This will be done in Section 7.2. Thus, a review of quantum
correlations is given before in Section 7.1.

7.1 Quantum correlations in multipartite mixed states

A mixed quantum system ρ composed of M subsystems each associated with a
Hilbert space H, is said to be separable or unentangled if it can be prepared by
means of LOCC [2], i.e. if

ρ =
∑
i

piσ
(i)
1 ⊗ σ

(i)
2 ⊗ · · · ⊗ σ

(i)
M , (7.1)

where σi represents the density matrix of subsystem i and it is not necessarily
a projector. Any state that does not have the above form is entangled.

However, the theory of mixed-state entanglement is more complex than it seems
to be. In fact, pure states can be either unentangled or entangled. On the
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other hand, mixed entangled states can display other types of non-classical
correlations such us steering [36] and nonlocality [27]. Moreover, the mystery of
quantum mechanics does not stop here: even unentangled states when mixed
can display a non-classical behavior that can be exemplified by the so-called
quantum discord [119, 84]. In fact, it has been shown [60] that almost all mixed

Figure 7.1: There are several types of non-classical correlations in the case of
mixed quantum states. The figure is taken from [2].

quantum states of two or more subsystems display quantum correlations, even
in the absence of entanglement. The only states which may be regarded as
classically correlated form a negligible corner of the subset of separable states.
Within the set of entangled states, one can distinguish some layers of other
forms of non-classicity. In particular, some, but not all, entangled states are
steerable, and some, but not all, steerable states are non-local (see Figure 7.1).
Steering is the possibility of manipulating the state of one subsystem by making
measurements on the other [36]. And, nonlocality, best known for violating the
EPR local realism [54], represents the most radical description of quantumness.
Thus, the mixing of quantum states gives rise to quantum correlation, which
encompasses all types of quantumness of which entanglement represents only
one layer.

It is thus very hard to construct an entanglement measure for a multipartite
mixed state, as it must have the ability to extract the degree of entanglement
from quantum correlation. One way to overcome the difficulty is to first
build a good measure for quantum correlation, i.e. one that extracts quantum
correlations from the classical ones, and then see how to build a measure for
entanglement, i.e. extracting entanglement from quantum correlation. First,
we need to define the set of all quantum correlated states QC, to be able to
construct a measure of quantum correlation acting on QC. One way to do this
is to define the set of all classical mixed states C since the set of all quantum
correlated states is the complementary of C, i.e. QC ≡ C̄ (see Figure 7.1 ).

However, this is still not easy to do. We will see why shortly. Adesso et al. in
[2] elegantly showed a simple way to define the set of all classical mixed states
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CAB in the case of a system composed of two subsystems A and B

CAB :=
{
ρAB | ρAB =

∑
ij

pij |i⟩ ⟨i|A ⊗ |j⟩ ⟨j|B
}
, (7.2)

where |i⟩ ⟨i|A and |j⟩ ⟨j|B are orthonormal bases for both subsystems A and
B and {pij} is a joint probability distribution. They also defined the sets of
one-sided C

CA :=
{
ρAB | ρAB =

∑
i

pi |i⟩ ⟨i|A ⊗ ρ
(i)
B

}
, (7.3)

and
CB :=

{
ρAB | ρAB =

∑
j

pj ρ
(j)
A ⊗ |j⟩ ⟨j|A

}
, (7.4)

where ρ(i)
B and ρ

(j)
A are quantum states and the classical states are represented

by the orthonormal bases. They then defined a quantum correlated state ρAB
as follows1

Definition 7.1. A state ρAB has quantum correlations if it is not a classical
state, i.e., if ρAB /∈ CA then ρAB has one-sided quantum correlations, and if
ρAB /∈ CAB then ρAB has two-sided quantum correlations.

Having defined the set of all quantum correlated states, they then gave the
requirements for a bona fide one-sided quantum correlations measure CA(ρAB)
on bipartite quantum states.

(1) CA(ρAB) = 0 if ρAB ∈ CA, i.e. if the classicality is on the subsystem A.

(2) CA(ρAB) is invariant under local unitary operations.

(3) CA(ρAB) reduces to a measure of entanglement E(ρAB), if ρAB is pure.

(4) CA(ρAB) is monotonically non-increasing under any LOCC on the party
whose quantumness is not being measured. In this case, we have

CA
((
1A ⊗ ELOCC

B

)
ρAB

)
≤ CA(ρAB) .

We see from Adesso’s work [2], that for a given system composed of only two
subsystems, there are three ways of creating quantum correlations. That is,
the state ρAB is quantum correlated if i) ρAB /∈ CAB or ii) ρAB /∈ CA or iii)
ρAB /∈ CB . We can thus extend the definition to an M -partite mixed state ρ

Definition 7.2. An M-partite state ρ has quantum correlations if it is not
a classical state, i.e., if ρ /∈ Cµ, where µ is a given subsystem, then ρ has
(M −1)-sided quantum correlations, and if ρ /∈ CM then ρ has M -sided quantum
correlations, where CM is the set of all classical correlated M -partite states.

1Actually, this is one of many equivalent definitions they gave of quantum correlated
states in their article. However, it is not necessary to discuss them all in the present work
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In the above definition, Cµ is defined as follows

Cµ :=
{
ρ | ρ =

∑
i

pi |i⟩ ⟨i|µ ⊗ ρ(i)
µc

}
, (7.5)

where µc denotes the complementary of µ (i.e. the part that is not classical).
We also define CM as follows

CM :=
{
ρ | ρ =

∑
i1,···iM

pi1,··· ,iM |i1⟩ ⟨i1| ⊗ |i2⟩ ⟨i2| ⊗ · · · ⊗ |iM ⟩ ⟨iM |
}
, (7.6)

which is a fully classical set. For an M-partite density matrix ρ ∈ HP⊗M =⊗M−1
µ=0 HPµ, we define the set of requirements for a bona fide quantum

correlation measure Cµ(ρ) on the µth subsystem

(1) Cµ(ρ) = 0 if ρ ∈ Cµ, i.e. if the classicality is on the subsystem µ.

(2) Cµ(ρ) is invariant under local unitary operations.

(3) Cµ(ρ) reduces to a measure of entanglement E(ρ), if ρ is pure.

(4) Cµ(ρ) is monotonically non-increasing under any LOCC on the party
whose quantumness is not being measured:

Cµ
((
1⊗ · · · ELOCC

µc · · · ⊗ 1
)
ρ
)

≤ Cµ(ρ) ,

where ELOCC
µc is computed on the complementary of µ.

7.2 Entanglement Distance for Mixed States

Quantum Correlation Distance

We consider the Hilbert space H =
⊗M−1

µ=0 H
µ
. The Hilbert-Schmidt distance

D between two general square matrices, A and B, is given by

D(A,B) =
√

1
2 Tr[(A−B)†(A−B)] . (7.7)

We derive from the latter, the distance between two close density matrices of a
quantum state in HP⊗M , by

d2
dm

(ρ, ρ+ dρ) = 1
2 Tr[(dρ)†(dρ)] . (7.8)

The Hilbert-Schmidt distance is not the only possible choice, e.g. the Bures’
distance represents an appropriate alternative option. The infinitesimal variation
dρ of state ρ is

dρ =
M−1∑
j=0

dŨµρ+ ρ

M−1∑
µ=0

dŨµ†

= −i
M−1∑
µ=0

3∑
j=1

[σµj , ρ]nµj dξµ , (7.9)
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where
dŨµ = −i(σn)µdξµ (7.10)

and with [ , ], we mean the commutator. Here and in the following we use the
notation (σn)µ = (nµ · σµ), and for µ = 0, . . . ,M − 1, we denote by σµ1 , σµ2
and σµ3 the three Pauli matrices operating on the µ-th qubit, where the index
µ labels the spins. We have

d2
dm

(ρ, ρ+ dρ) =
M−1∑
µ,ν=0

gµν(ρ,n)dξµdξν , (7.11)

where

gµν(ρ,n) = 1
2

3∑
i,j=1

Tr[ρ{σµi , σ
ν
j }ρ− 2ρσµi ρσνj ]nµi nνj , (7.12)

with { , } we mean the anticommutator.

Definition 7.3. We define the quantum correlation for the state ρ as

C(ρ) = inf
{nν }ν

Tr(g(ρ,n)) . (7.13)

Since C(ρ) derives from a distance, we name it quantum correlation distance
(QCD).

Proposition 7.1. The quantum correlation is the minimum value of the trace
of g when the unit vectors are varied, therefore its numerical value is invariant
under local unitary transformations. We have

M−1∑
µ=0

gµµ(ρ,n) = M Tr(ρ2) −
M−1∑
µ=0

3∑
i,j=1

Tr[ρσµi ρσ
µ
j ]nµi n

µ
j . (7.14)

Thus, by defining the matrices Aµ(ρ), for µ = 0, . . . ,M − 1, whose entries are

Aµij(ρ) = Tr[ρσµi ρσ
µ
j ] , (7.15)

we obtain the closed-form expression for the QCD of ρ,

C(ρ) =
M−1∑
µ=0

(
Tr(ρ2) − λµmax(ρ)

)
=
M−1∑
µ=0

Cµ(ρ) , (7.16)

where, for µ = 0, . . . ,M − 1, λµmax(ρ) is the maximum of the eigenvalues of
Aµ(ρ), and Cµ(ρ) = Tr(ρ2) − λµmax(ρ) is the QCD of the subsystem µ.

The QCD is a directly computable measure of the degree of correlation of
ρ. Remarkably, Eq. (7.16) contains two competing terms. The first term is
named Purity, which takes account of the degree of statistical mixing of ρ, its
upper bound 1 corresponds to a pure state. The second term ranges between 0
and 1 and derives from the degree of correlation of ρ, with the lower value, 0,
corresponding to the higher correlation.
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The time complexity of the obtained formula for the QCD is that of D × D
matrix multiplications, that is o(D3), where D is the dimension of the full
Hilbert space. In particular, the QCD possesses a closed formula and do not
require any optimization (other than finding the largest eigenvalue of 3 × 3
matrices). This is in contrast with other measures of quantum correlation which,
to our best knowledge, all require time-costly optimization procedures, except
for some specific classes of states [2].

Theorem 7.1. The QCD (7.16) fulfills the following requirements for a bona
fide measure of quantum correlation (see Section 7.1)

1 ) Cµ(ρ) = 0 if ρ ∈ Cµ, where Cµ(ρ) = 0 is defined in (7.5), i.e. if ρ is
classical in the subsystem µ.

2 ) C(UρU†) = C(ρ), i.e. it is invariant under local unitary transformations.

3 ) In the case of a pure state ρ = |ψ⟩ ⟨ψ|, C(|ψ⟩ ⟨ψ|) reduces to the measure
of entanglement for pure states.

Proof.

1 ) Suppose the following states

ρ = ρµc ⊗ |0⟩ ⟨0|µ , (7.17)

where µ denotes the µth subsystem and µc denotes the complementary
subsystem. In the above example, the classicality is on the µth subsystem.
We have

Cµ(ρ) = Tr
(
ρ2)−max

nµ

Tr
[
ρ
(
1µc ⊗(σ · n)µ

)
ρ
(
1µc

⊗(σ · n)µ
)]
. (7.18)

In this example, nµ = zµ = (0, 0, 1) minimizes C (ρ). Thus, we have

Cµ(ρ) = Tr
(
(ρµc)2) ((|0⟩ ⟨0|µ)2

)
︸ ︷︷ ︸

=1

− Tr
[
(ρµc)2

]
Tr
[

|0⟩ ⟨0|µ σz |0⟩ ⟨0|µ σz
]

︸ ︷︷ ︸
=1

= Tr
(
(ρµc)2)− Tr

(
(ρµc)2) = 0 .

(7.19)

Thus, for the above-taken example, where the classicality is taken to
be on the subsystem µ, the measure of correlation on subsystem µ is
equal to zero. The example can be trivially extended to a general case
ρ =

∑
i ρ
µc

i ⊗ |i⟩ ⟨i|µ.

2 ) It is invariant under local unitary operations by construction.

3 ) In the case of a pure state ρ = |ψ⟩ ⟨ψ|, C(|ψ⟩ ⟨ψ|) reduces to the measure
of entanglement valid for pure states that we derived in Chapter 4.

■
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Entanglement Distance

As stated above, for a mixed state, the existence of quantum correlation is not
a sufficient condition to guarantee the presence of entanglement. To extract
from a given state ρ its entanglement essence, we now propose a procedure of
regularization of ρ, repurposing our measure of quantum correlations to catch
the true degree of entanglement owned by ρ. In what follows, the regularization
procedure is done for qubit systems. Given a state ρ, we consider all of its
possible decomposition {pj , ρj}, such that

ρ =
∑
j

pjρj , (7.20)

where
∑
j pj = 1 and Tr[ρj ] = 1. Also, we consider all the possible local partial

transformations on qubit µ:

ρµU ({pj , ρj , Uµj }) =
∑
j

pjU
µ
j ρjU

µ†
j , (7.21)

where, for each j, Uµj is an SU(2) local unitary operator acting on qubit µ.

Definition 7.4. We define the entanglement measure for a mixed state ρ as
follows

E(ρ) = inf
{pj ,ρj}

{M−1∑
µ=1

inf
{Uµ

j
}
Cµ
(
ρµU ({pj , ρj , Uµj })

)}
. (7.22)

Since the definition E(ρ) derives from a distance, we named it entanglement
distance (ED). Note that, similarly to the QCD, one can define Eµ(ρ) as the ED
of subsystem µ, simply discarding the complement in the sum on µ in (7.14).

Lemma 7.1. The ED (7.22) fulfill the following property: Eµ(ρ) = 0 if ρ is
separable in µ.

Proof.

1 ) Eµ(ρ) = 0 if ρ is separable in µ. Indeed, it then admits a decomposition
{pj , ρj}, where, for each j, ρj = (Iµ + σµnj )/2 ⊗ ρµC

j , where. Thus, it
is always possible to determine local partial operators Uµj , such that,
after transformation (7.21), it results ρµU =

∑
j pj |j⟩⟨j|µ ⊗ ρµC

j and, from
property 1 ), it follows our statement. It results E(ρ) = 0 if ρ ∈ S, that is
if ρ is fully separable.

2 ) Reciprocally, if E(ρ) = 0, then ρ is separable. First of all, we note that, for
each µ = 0, . . . ,M − 1, λµmax(ρ) ≤ Tr(ρ2). In fact, for each µ and for each
unit vector nµ it is possible to determine a unitary local operator U , so
that Tr[(ρ(σn)µρ(σn)µ)] = Tr[ρ̃σµ3 ρ̃σ

µ
3 ], where ρ̃ = UρU†. Furthermore

Tr[ρ̃σµ3 ρ̃σ
µ
3 ] =

∑
j ρ̃

2
jj+2

∑
i̸=j ±|ρ̃ij |2 ≤

∑
j ρ̃

2
jj+2

∑
i ̸=j |ρ̃ij |2 = Tr[ρ̃2] =

Tr[ρ2]. Moreover, for each pair i ̸= j, ∃µ such that the term |ρ̃ij |2 appears
in Tr[(ρ̃σµ3 )2] with a negative sign. Yet, E(ρ) = 0 implies that there exist
a decomposition of ρ, let’s say ρ, for which

sup
nµ

Tr[ρ(σn)µ)ρ(σn)µ)] = Tr[ρ2] (7.23)
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for each µ. We hence have |ρij |2 = 0 for each i ̸= j. But this implies that
ρ is diagonal and then ρ separable.

■

For a given density matrix decomposition {pj , ρj}, the minimization on the
local unitary partial transformations, entailed by Eq. (7.22), can be addressed
by studying the local minima of C(ρ({pj , ρj , Uj})) under variation of {Uj}.
Nevertheless, it can be proven that such fixed points do correspond only to cases
where E(ρ) = 0, hence to separable states. Therefore, the minima of (7.22) in
the case of non-separable states, do not correspond to fixed points, but rather to
nonlocal (boundary) minima. Remarkably, these fixed points of the minimization
procedure (7.22) can, at least in some cases, be realized by a decomposition
{pj , ρj} including entangled pure states ρj . In particular, for two-qubits states
diagonal in the Bell basis (the Bell-diagonal (BD) states, see [91, 1]) the fixed
points can always be realized on the eigen-decomposition (hence, where the ρj are
Bell states). This of course greatly simplify the problem, as the full exploration
of the {pj , ρj}-space is avoided. It is worth emphasizing that BD states are
representative of the larger class of two-qubits states of maximally mixed
marginals (that is, for which ∀µ and ∀j, Tr[ρσµj ] = 0, see [91]), hence (7.22) is
tractable in the same manner for this class of states. Leaning on numerical
evidences, we further conjecture that, for a given state ρ(γγγ) depending on
parameters γγγ = (γ1, γ2, ...), the decomposition realizing the minimum (7.22) is
the same in the whole parametric domain of γγγ, and can hence be inferred from the
fixed points found in the domains where this state is separable if such a domain
exists. This suggests that the minimization over all possible decompositions
{pj , ρj} might in fact possess non-trivial general solutions, depending on the
considered class of states. Here, by “non-trivial solutions” of the minimization
procedure, we mean solutions that do not require finding the decomposition
of ρ in terms of pure product-states ρj =

⊗
µ(Iµ + (σnj

)µ)/2. A subsequent
more thorough work on such a classification of the solutions of this procedure
could thus lead to an entanglement measure of relatively low computational
cost, in particular for systems symmetric under qudit permutations, and with
low rank(ρ).

7.3 Chapter conclusions

In this Chapter, we saw that in the case of mixed states, one can observe
states that manifest correlations detached from entanglement [118, 2]. we have
constructed a quantum correlation measure for a multipartite state, that is
boiled down to the entanglement distance in the case of a pure multipartite
state. Then, via a regularization procedure applied to the quantum correlation
measure, we constructed an entanglement measure for mixed multipartite states.
This work is still in progress since we still need to prove that the entanglement
distance fulfills all the requirements for a good entanglement measure, for mixed
states. Also, note that the monotonicity requirement for the correlation measure
is still not done. The work is still in progress, but we will see in the next chapter
that, numerically, the two proposed measures accurately describe the correlation
and entanglement properties of the examples we will take.
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8

Application of the entanglement
measure for mixed states

We have published the work depicted here in Ref.[154]. In this Chapter, we apply
measures defined in the previous Chapter to concrete examples. We report four
examples of the application of quantum correlation and entanglement measures
seen in the previous Chapter. We have considered two well-known classes of
states: a general Bell diagonal (BD) state and Werner states (WS). In addition,
we have applied the quantum correlation and entanglement measures to Werner
state generalization to three qubits, and to a one-parameter three qubits mixed
states interpolating between a bi-separable state and a genuine multipartite
state, passing through a fully separable state.

8.1 Bell diagonal states

As a first and seminal example of applications of this procedure, we consider
general BD states. They can be expressed as:

ρBD({pα}) =
4∑

α=1
pα|ψα⟩⟨ψα|

= 1
4

(
I +

∑
i

ciσ
0
i σ

1
i

)
, (8.1)

where the |ψα⟩ are the four Bell states: |ψ±⟩ = 1√
2 (|00⟩ ± |11⟩) and |ϕ±⟩ =

1√
2 (|01⟩ ± |10⟩). Furthermore, we have ∀i, |ci| ≤ 1, and the ci are such that

the vector (c1, c2, c3), fully characterizing the state, belongs to the tetrahedron
T of vertices (−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1). The separable BD
states belong to the octahedron O of vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1),
corresponding to the condition ∀α, pα ≤ 2, and the classical BD states are
located on the Cartesian axis (c1, 0, 0), (0, c2, 0), (0, 0, c3) [91, 1].

Direct calculation yields the following result for the QCD of general BD
states

C(ρBD({pα}) = 2
4∑

α=1
p2
α − 4 max

P{i,j,k,l}

{
pipj + pkpl

}
, (8.2)

where the maximum is taken on all permutations P{i, j, k, l} of the indices
{1, 2, 3, 4}. Figure 8.1 shows the QCD of BD states on a face of T . We were
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Figure 8.1: Quantum correlations C[ρBD](c1, c2 = c1, c3)/2 for a face of the BD
state tetrahedron T , corresponding to a mixture of three Bell states. The red
dotted line defines the smaller triangle where the state is separable, according
to the PPT criterion [121, 89]. The vertices of the large triangle correspond to
pure Bell states. Those of the red dotted triangle, of vanishing QCD, correspond
to equal-weight mixtures of two Bell states, which are evidently the three only
classical states in the represented domain.

not able to find a simple analytic solution for the minimization procedure for
the most general case of BD states. However, numerical minimization (for these
calculations, we have applied a gradient steepest-descent method) provided us
with empirical evidence that the procedure (22) also leads for these states to
the squared concurrence, as shown in figure 8.2, which represent a face of the
tetrahedral domain of BD states. It is interesting to note that the ED, as the
concurrence and unlike the QCD, is constant on planes parallel to the boundary
faces of the separability region: the ED of any given state indeed equates the
QCD of the closest point located on a hinge of T , hence the closest mixture of
only two Bell states.

8.2 Werner states

Let us now consider the two-qubit Werner states (WS) [163], which stems as a
special case of BD state, for which a simple analytical solution for the proposed
procedure is available. WS are used as a testbed since they illustrate many
features of mixed-states entanglement [16]. Using Eq. (8.1), they can simply
be expressed as

ρW (p) = ρBD
(p

3 ,
p

3 ,
p

3 , (1 − p)
)
. (8.3)

Via direct calculations, one gets for the QCD of the WS

C(ρW (p)) = 2(1 − 4
3p)

2 . (8.4)
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Figure 8.2: Entanglement distance E[ρBD](c1, c2 = c1, c3)/2 for a face of the BD
state tetrahedron T , corresponding to a mixture of three Bell states. The red
dotted line defines the smaller triangle where the state is separable, according
to the PPT criterion [121, 89] and a number of alternative derivations available
in the literature (see e.g. [91]). Values below the threshold of 10−3 have been
represented in black to emphasize that they correspond to a numerical zero,
given the level of precision allowed by such time-costly minimization. The
vertices of the large triangle correspond to pure Bell states, and those of the
smaller black triangle to equal-weight mixtures of two Bell states.

WS yields a relatively simple solution to the minimization procedure. Indeed,
as it can be easily verified, if we set

U|ψ+⟩(θ) = Uµz (θ)Uµx (π),
U|ψ−⟩(θ) = Uµz (π − θ)Uµx (π), and
U|ϕ+⟩ = U|ϕ−⟩ = I, (8.5)

with µ = 0, 1 arbitrarily chosen, the fixed points are found for θ =
arccos ( 3

2p − 2). This last expression has a solution if and only if p ≥ 1/2,
which is the parametric region of separability for ρW (p) (as can be verified by
application of the positive partial trace criterion, see [89]). Hence, E(ρW ) = 0
for p ≥ 1/2. For p < 1/2 numerical minimization yields E(ρW ) = 4p2 − 4p+ 1.
This corresponds to θ = 0 uniformly on this whole domain, which is also the
value previously determined at p = 1/2: hence, the minimum after this point
cease to be a fixed point, but keeps the last position in terms of the parameters
governing the rotations. One can understand this as the fixed point reaching
the boundary of the parametric domain as the geometry of the state is changing
continuously, becoming a simple point on a slope, located at this boundary. All
together, for Werner states, the result of our entanglement measure exactly
equates twice the square of the concurrence [165], that is

E(ρW (p)) = 2Θ(1/2 − p)(1 − 2p)2 , (8.6)

Fig. 8.3 shows C(ρW (p))/2 versus p, there it is clear that the only state
with no quantum correlation, i.e. classical state according to the conventional
terminology [2], is the one corresponding to the value p = 3/4, whereas the
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maximally quantum-correlated state is that of p = 0. On the other hand,
the state is entangled only in the region p < 1/2, and separable otherwise,
a well-known fact that can be easily checked by application of the positive
partial transpose (PPT) criterion [121, 89]. Alternatively, one can find, in the
separable region, the expression of ρW convex combination of (non-orthogonal)
product states, using a more involved calculation resorting to the so-called
Bloch representation.

Figure 8.3: C[ρW ](p)/2 and E[ρW ](p)/2 versus p for state (8.3). It is clear that
the state ρW (p = 0) is, as expected, the maximally-entangled, and that the states
ρW (p > 1/2) are fully-separable, as can be verified using the PPT criterion
[121, 89]. This plot emphasizes that separable states can contain quantum
correlation (i.e. not be classical). Note that, here E[ρW ](p)/2 = C2

2 [ρW ](p),
that is, the ED equates twice the squared concurrence for 2-qubits Werner
states.

8.3 Generalized Werner states

Let us now consider as a multipartite example the following one-parameter
density matrix

ρW3(p) = p|GHZ+⟩⟨GHZ+| + (1 − p)
8 I8 , (8.7)

where |GHZ+⟩ = (|000⟩ + |111⟩)/
√

2, I8 is the identity operator of the three-
qubits Hilbert space and 0 ≤ p ≤ 1. This is a generalization of the Werner
states to three qubits, termed generalized Werner states [127, 49, 59]. The
states ρW3(p) are known to be fully separable for 0 ≤ p ≤ 1/5 [127, 142, 49]
and genuinely multipartite entangled states in the region 3/7 < p ≤ 1 [80]. In
the region 1/5 < p ≤ 3/7 the states ρW3(p) are bi-separable yet inseparable
under any fixed bipartition [80]. Via direct calculations, one gets

C(ρW3(p)) = 3p2 . (8.8)

Numerical minimization provided the values for the ED shown in Fig. 8.4.
There, we report in dotted line the QCD per qubit and continuous line the ED
per qubit for the states ρW3(p). Fig. 8.4 clearly shows that ED(ρW3(p)) > 0
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8.4. THREE QUBIT STATES INTERPOLATING BETWEEN BI-SEPARABLE
AND GENUINE ENTANGLED STATES

only for p > 3/7, that is when the states are generally entangled. As for the
region 1/5 < p ≤ 3/7 where ED should not be zero according to ii), we got
numerical zero which we assume corresponds to very weak, but finite values. We
interpreted this as a consequence of the fact that, in this region, the states ρW3(p)
are not separable under any fixed bipartition, thus assuming the decomposition
of the form

∑
j ρ

1
j ⊗ρ23

j +ρ2
j ⊗ρ13

j +ρ3
j ⊗ρ12

j . Hence the regularization procedure
reaches easily small values for the ED.

Figure 8.4: C[ρW3 ](p)/3 (dotted line) and E[ρW3 ](p)/3 (continuous line) versus
p for state (8.7). It is clear that the state ρW3(p = 1) is, as expected, the
maximally entangled, and that the states ρW3(p > 3/7) are not separable. The
latter are genuinely three-partite entangled states.

8.4 Three qubit states interpolating between bi-separable
and genuine entangled states

Let us consider a further multipartite example, that is the one-parameter density
matrix

ρ3(p) = w+|GHZ+⟩⟨GHZ+| + w2|ψ2⟩⟨ψ2| + w
(1 − p)

8 I8 , (8.9)

where

w+ = p[1 − 4p(1 − p)] ,
w2 = (1 − p)[1 − 4p(1 − p)] ,
w = 4p(1 − p) ,

(8.10)

|ψ2⟩ = |0⟩(|00⟩ + |11⟩)/
√

2 and 0 ≤ p ≤ 1. For p = 0, ρ3(p = 0) is a pure
bi-separable state, for p = 1/2, ρ3(p = 1/2) is a maximally mixed state of three
qubits and for p = 1, ρ3(p = 1) is a pure maximally entangled state. Via direct
calculations, one gets

C(ρ3(p)) = (1 − 2p)4

2

[
5 − 10p+ 11p2 − (1 − p)

√
1 − 2p(1 − p)

]
. (8.11)

Using numerical minimization, we have obtained the results for the ED shown
in Fig. 8.5. In this figure, we report in dotted line the QCD per qubit and
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8.5. CHAPTER CONCLUSIONS

in continuous line the ED per qubit, for the states ρ3(p). Fig. 8.5 shows
that E(ρ3(p)) > 0 for 0 ≤ p ⪅ 0.18 and for 0.81 ⪅ p ≤ 1. Furthermore, the
maximum value for ED per qubit in the region 0 ≤ p ⪅ 0.18 is located at p = 0
and has the value 2/3. 2/3 is the maximum value for ED per qubit, in the
case of bi-separable three qubits states. This confirms that the states of this
region are stably bi-separable and that the state |ψ2⟩⟨ψ2| has the maximum
local degree of entanglement. The maximum value for ED per qubit in the
region 0.81 ⪅ p ≤ 1 is located at p = 1 and has value 1. Therefore, the states of
this region are not separable and, at least close to p = 1, are certainly genuinely
entangled. For 0.18 < p < 0.81 the entanglement is numerically null, thus
suggesting the states of this region are separable or bi-separable yet inseparable
under any fixed bipartition, hence not genuinely three-partite entangled states.
Remarkably, the QCD is null only for the state corresponding to p = 1/2, which
is the maximally mixed one.

Figure 8.5: C[ρ3](p)/3 (dotted line) and E[ρ3](p)/3 (continuous line) versus
p for state (8.9). It is clear that the state ρ3(p = 1) is, as expected, the
maximally entangled one, and that the states ρ3(p > 0.81) or ρ3(p < 0.18) are
not separable.

8.5 Chapter conclusions

To test our quantum correlation and entanglement measures defined in the
previous Chapter, we have applied them to two classes of mixed two-qubit states
which are well-known entanglement properties, the Bell diagonal states and the
Werner states, and we have verified the accordance between our measures and
the expected results. Furthermore, we have applied the quantum correlation
and entanglement measures to Werner state generalization to three qubits, and
to a one-parameter family of three qubits mixed states. These latter interpolate
between a bi-separable state and a genuine multipartite state, passing through
a fully separable state. Also in these cases of multipartite states, then we
have verified a satisfactory agreement between the behaviors deduced by our
measures and the ones expected or already known in the literature.
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Conclusion of part II

The increasing interest in quantum information experimental applications,
and the consequent demand for the development of skills in quantum state
manipulation, has made pressing the development of effective measures of
correlation and entanglement, valid for the general case of mixed multipartite
states. Also, such measures are expected to be easily computable. For
multipartite systems, a broad range of measures has covered pure states
and mixed states, among which a Schmidt measure and a generalization of
concurrence have been proposed. Nevertheless, the application of these measures
to general multipartite mixed states still shows some issues. The work illustrated
in this part can be summarized as follows

• We have constructed an entanglement measure, that we have named
entanglement distance, for a general multipartite hybrid state from an
adapted application of the Fubini Study metric, which is a metric defined
in projective Hilbert spaces

• We have applied the entanglement distance to several examples, to verify
its validity. And, we have seen that it actually gives precise predictions
about the entanglement properties of different general hybrid multipartite
states.

• Using the Hilbert Schmidt distance defined on the projective Hilbert space,
we have also extended the entanglement distance to a measure of quantum
correlation in mixed multipartite states, which we have proved its validity
by applying it to some examples.

• Finally, from the quantum correlation measure, we have applied a
regularization procedure to construct an entanglement measure for mixed
multipartite states. And, it has been successfully applied to some entangled
mixed states.
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Concluding remarks and further
investigations

In this thesis, we have resorted to geometric methods to tackle two fairly distinct
concepts which are: equilibrium phase transitions and quantum entanglement.

We have illustrated in Part I our proposed geometrical and topological
analysis to characterize classical phase transitions. The proposed geometric and
topological analysis is constructed from the microcanonical ensemble, which
is the more fundamental statistical ensemble, as from it, we can generate
the other statistical ensembles, i.e. canonical and grand-canonical. We have
shown that peculiar behaviors of thermodynamic observables describing a given
classical system at the phase transition point are rooted in more fundamental
changes in the geometry of the energy level sets in phase space. In fact,
geometric indicators, such as the Ricci curvature, undergo an abrupt change
at the transition point. These geometric indicators are independent of the
order parameter. Thus, the proposed geometric analysis can be applied also
in the case of systems that undergo phase transitions in absence of a global
symmetry breaking and consequently in the absence of an order parameter. A
famous example of such a system is one that undergoes the Kosterlitz–Thouless
(KT) phase transition, which manifests in several kinds of two-dimensional
systems in condensed matter, such as the two-dimensional superconductors, the
2D liquid crystal or the XY ferromagnet. Our first original work [10, 8], was
aimed at characterizing -from a geometric and topological point of view- the
KT phase transition in the microcanonical ensemble. The KT phase transition
is known to be an infinite-order phase transition in the canonical ensemble.
However, using the proposed geometrical and topological analysis, we observed
an abrupt change in the geometric indicator at a transition point, which led us
to classify it as a second-order phase transition in the microcanonical ensemble.
Our second work [9] consisted in describing the ϕ4 model, which is known to
undergo a second-order phase transition. We have shown that in this model
too, the geometric indicators undergo an abrupt change at the transition point.
This suggests that phase transitions are the consequences of more fundamental
changes in the geometry and topology of the phase space.

In Part II, we have characterized quantum entanglement through the study
of projective Hilbert spaces P (H). Our third original work [41], consisted
in the construction of a measure of entanglement derived from an adapted
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application of the Fubini-Study metric, which is a metric defined on P (H).
The proposed measure, which we named entanglement distance, can be applied
to a multipartite hybrid quantum state. In fact, we have tested it on several
different examples to confirm its validity. We have shown that the entanglement
distance can be computed analytically. Moreover, through its study and the
analysis of the Fubini Study metric, we could classify entangled pure states and
find the same classification found in the literature. The success of the proposed
entanglement measure for multipartite hybrid states led us to our fourth and last
original work. In Ref.[154], we constructed a measure of quantum correlations
in mixed multipartite states from the Hilbert Schmidt distance, defined in P (H).
We have shown that it boils down to the entanglement distance in the case
of pure multipartite states. And, from a regularization procedure applied to
the proposed measure of quantum correlation, we constructed an entanglement
measure for mixed states, that we named entanglement distance for mixed
states. Finally, both measures, i.e. the quantum correlation measure and the
entanglement distance for mixed states have been tested in some examples,
where we have shown that they clearly depict the quantum correlations and
entanglement properties of the taken examples.

Further investigations can be conducted by bringing together the two topics
studied in this work. One idea that might be pursued is the following: with
the measurements of entanglement and quantum correlations of multipartite
states proposed in this work, we can characterize entanglement and its evolution
in quantum phase transitions. Another research line that can be conducted
from this thesis is exporting to quantum phase transitions the geometric and
topological methods used in the study of classical phase transitions. A well-
known way to establish a formal link between classical and quantum systems
stems from the mapping between the two fundamental operators in quantum
physics and statistical physics, respectively, i.e. the unitary evolution operator
e−iĤt and the density matrix e−βĤ , where ℏ = 1, that are formally related
by the Wick rotation t → −itE , that is by means of an analytic continuation.
Hence the Euclidean path integral of a field theory on a lattice is mapped onto
a classical canonical partition function. Another promising mapping between
quantum and classical systems prospectively allowing the use of geometrical-
topological methods to study quantum phase transitions is provided by the Time
Dependent Variational Principle (TDVP) in quantum mechanics. TDVP is a
formulation of the time-dependent Schrödinger equation through the variation
of an action functional which is required to be stationary under free variation
of the time-dependent state. The TDVP, being a variational method, applies
generically to any quantum system and its effectiveness depends on a reasonable
choice of the initial ansatz for the state vector. Moreover, the important fact is
that the dynamical equations worked out by means of the TDVP are formally
classical but give the time evolution of actual quantum expectation values.
Natural candidates to be initially tackled are the quantum optics Dicke model
of the super-radiant phase transition and the Jaynes-Cummings model. These
models can be mapped onto formally classical dynamical equations by means
of the TDVP in order to apply the above-mentioned geometrical-topological
methods, at the same time the Hilbert space geometrical methods developed to
quantify the degree of entanglement could be also applied in parallel to figure
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out if and to what extent the different phases correspond to entangled states of
these systems.
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APPENDIX A

Useful formulas for XY-2D model

A.1 Derivatives and contractions of the potential energy
with respect to generalized coordinates

Indexes in configuration space µ̂ = (i, j)

V = J
∑

(i,j)∈Λ

[
2 − cos(θ(i+1,j) − θ(i,j)) − cos(θ(i,j+1) − θ(i,j))

]
(A.1)

Gradient of the potential energy V

(∇̂V )(i,j) = J
∑

m∈Z,∥m∥=1

sin(θ(i,j) − θ(i,j)+m) (A.2)

Hessian of the potential

(ĤessV )(i,j)(k,l) = J

[
δ(i,j),(k,l)

∑
∥m∥=1,m∈Z2

cos(θ(k,l) − θ(k,l)+m)+

−
∑

∥m∥=1,m∈Z2

δ(i,j),(k,l)+m cos(θ(k,l) − θ(i,j))
] (A.3)

A.2 Derivatives of fHP and its contractions

Definition of fHP

fHP = f̃HP (pµ̃) + f̂HP (qµ̂) =
(
K(pµ̃) − P 2(pµ̃)

2N

)
+ V (qµ̂) (A.4)

Components of the gradient of fHP

∇fHP =
(
pµ̃ − P∂µ̃P

N

)
∂µ̃ + ∂µ̂V ∂µ̂ (A.5)

Module of the gradient of fHP

∥∇fHP ∥2 = 2
(
K − P 2

2N

)
+ ∥∇̂V ∥2 = 2f̃HP + ∥∇̂V ∥2 (A.6)

when evaluated over the space corresponding to P = 0 it reduces to

∥∇fHP ∥2
∣∣∣
ΣP

0

= 2K + ∥∇̂V ∥2 (A.7)
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A.2. DERIVATIVES OF fHP AND ITS CONTRACTIONS

Components of the hessian of fHP

HessfHP = (H̃essf̃HP )µ̃ν̃ dpµ̃ ⊗ dpν̃ + (Ĥessf̂HP )µ̂ν̂ dqµ̂ ⊗ dqν̂

=
(
δµ̃ν̃ − ∂µ̃P∂ν̃P

N

)
dpµ̃ ⊗ dpν̃ + (ĤessV )µ̂ν̂ dqµ̂ ⊗ dqν̂

(A.8)

The Laplacian case is given by g-trace of the Hessian, i.e.

∆fHP = gµνHessµν = gµ̃ν̃H̃essµ̃ν̃fHP + gµ̂ν̂Ĥessµ̂ν̂fHP

= δµ̃ν̃
(
δµ̃ν̃ − ∂µ̃P∂ν̃P

N

)
+ ∆̂V

= (N − 1) + ∆̂V

(A.9)

Components the double contraction of the Hessian of fHP with the gradient of
fHP

HessfHP (∇fHP ,∇fHP ) = (∇fHP )µ(HessfHP )µν(∇fHP )ν

= (∇fHP )µ̃(HessfHP )µ̃ν̃(∇fHP )ν̃ + (∇V )µ̂(HessV )µ̂ν̂(∇V )ν̂

= 2
(
K − P 2

2N

)
+ ĤessV (∇̂V, ∇̂V )

= 2f̃HP + ĤessV (∇̂V, ∇̂V )

(A.10)

Contraction of the Hessian of the function fHP with the gradient of total
momentum P is null

(∇P )♭HessfHP = ı∇PHessfHP = (HessfHP )µν∂µP dxν

=
(
δµ̃ν̃ − ∂µ̃P∂ν̃P

N

)
∂µ̃P dxν̃

=
(
δµ̃ν̃ − ∂µ̃P∂ν̃P

N

)
∂µ̃P dxν̃ = (∂ν̃P − ∂ν̃P ) dxν̃ = 0

(A.11)
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APPENDIX B

Eisenhart Metric on Enlarged
Configuration Space-Time

The natural motions of a standard Hamiltonian system, that is, having a
quadratic kinetic energy term, can be identified with a geodesic flow on a
Riemannian manifold. Among the other possibilities, Eisenhart proposed a
geometric formulation of Hamiltonian/Newtonian dynamics by resorting to
an enlarged configuration space-time M × R2 having the local coordinates
(q0, q1, . . . , qi, . . . , qN , qN+1). This space can be endowed with a nondegenerate
pseudo-Riemannian metric [55] whose arc length is

ds2 = (ge)µν dq
µdqν

= aij dq
idqj − 2V (q)(dq0)2 + 2 dq0dqN+1 (B.1)

where µ and ν run from 0 to N + 1 and i and j run from 1 to N . The following
theorem holds.

Theorem B.1 (Theorem (Eisenhart)). The natural motions of a Hamiltonian
dynamical system are obtained as the canonical projection of the geodesics of
(M × R2, ge) on the configuration space-time, π : M × R2 7→ M × R. Among
the totality of geodesics, only those whose arc lengths are positive definite and
are given by

ds2 = c2
1dt

2 (B.2)

correspond to natural motions; the condition (B.2) can be equivalently cast in
the following integral form as a condition on the extra coordinate qN+1:

qN+1 = c2
1
2 t+ c2

2 −
∫ t

0
Ldτ , (B.3)

where c1 and c2 are given real constants. Conversely, given a point P ∈ M × R
belonging to a trajectory of the system, and given two constants c1 and c2, the
point P ′ = π−1(P ) ∈ M × R2, with qN+1 given by (B.3), describes a geodesic
curve in (M × R2, ge) such that ds2 = c2

1dt
2.
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The explicit table of the entries of the Eisenhart metric is

ge =


−2V (q) 0 · · · 0 1

0 a11 · · · a1N 0
...

... . . . ...
...

0 aN1 · · · aNN 0
1 0 · · · 0 0

 , (B.4)

where aij is the kinetic energy metric. The only non vanishing Christoffel
symbols, for aij = δij , are

Γi00 = −ΓN+1
0i = ∂iV , (B.5)

whence the geodesic equations

d2qi

ds2 + Γijk
dqj

ds

dqk

ds
= 0 ,

reduce to

d2q0

ds2 = 0 (B.6)

d2qi

ds2 + Γi00
dq0

ds

dq0

ds
= 0 , (B.7)

d2qN+1

ds2 + ΓN+1
0i

dq0

ds

dqi

ds
= 0 ; (B.8)

using ds = dt one obtains

d2q0

dt2
= 0 , (B.9)

d2qi

dt2
= −∂V

∂qi
(B.10)

d2qN+1

dt2
= −dL

dt
. (B.11)

Equation (B.9) states only that q0 = t. The N equations (B.10) are Newton’s
equations, and (B.11) is the differential version of (B.3).

The Riemann curvature tensor, associated with Eisenhart metric, has the
following nonvanishing components

R0i0j = ∂i∂jV ; (B.12)

thus the only nonzero component of the Ricci tensor is

R00 = △V , (B.13)

finally, the Ricci curvature is

KR(q, q̇) = R00q̇
0q̇0 ≡ △V , (B.14)

so that △H/N is just
△H

N
= KR(q, q̇)

N
+ 1 . (B.15)
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APPENDIX C

Some examples of projective
spaces

The following Chapter is a summary of a personal work and of some lectures
that can be found on youtube given by Prof.Wildberge.

We have defined a projective space FPn over a field F in Chapter 2 as follows

FPn = Fn+1 \ ({0}/ (v ∼ λv) , λ ∈ F∗) ,

where n can take any value in N. let us first take n = 2 as an example. So,
n = 2 means that we are looking at FP 2 = P

(
F3). Suppose F = R, we have

thus RP 2 = P
(
R3), which is a real projective plane. A point p ∈ RP 2 has

coordinates (x0 : x1 : x2). we distinguish two situations

(1) x2 ̸= 0. Then

p = [x0 : x1 : x2] =
[
x0

x2
: x1

x2
: 1
]

= [α : β : 1] for α, β ∈ R.

(2) x2 = 0. Then
p = [x0 : x1 : 0]. This is a point at infinity in the direction [x0 : x1]

According to the first axiom posed at the beginning, we deduce that the set of
p = [x0 : x1 : 0] forms a line at infinity. Thus, we can think of RP 2 as

RP 2 ≃ R2 ∪ {line at ∞} (C.1)

The projective plane may be identified with the real plane extended by a line
at infinity, which is homeomorphic to the quotient of the sphere S2 by the
antipodal relation.

If n = 1, we are looking at FP 1 = P
(
F2). A point p ∈ FP 1 has thus coordinates

[x0 : x1]. Following the same reasoning as before, we distinguish two situations

(1) x1 ̸= 0. Then

p = [x0 : x1] =
[
x0

x1
: 1
]

= [α : 1] for α ∈ F.

(2) x1 = 0. Then
p = [x0 : 0] = [1 : 0]. This is a fixed point.
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x

y

R

Figure C.1: RP 1 can be seen as an extended line with a point at infinity.

If F = R, we get the real projective line RP 1 = P
(
R2), which is the projection

of R, called also the extended real line. We can think of the projective line as
a line extended by a point at infinity. To see this, we can use the embedding
of R in R2 (see Figure C.1) and consider that a point in R is given by the
intersection of R with a line with equation y = αx, where α ∈ R. The only line
that is not projected onto R is the one parallel to it, i.e y = 0, which intersects
R at infinity. Thus

RP 1 = R ∪ {point at ∞} . (C.2)
Note that in this example, we chose R to be parallel to the x axis, but we could
rotate the basis and choose another axis that will be parallel to R. And, this
will not change the result, i.e. the fact that RP 1 is an extended line with a point
at infinity. There is a second way to visualize the projective plane, which is by
considering that RP 1 = P

(
R2) is the set of one-dimensional vector subspace

in R2 (see Figure C.2). As for the projective plane, one ray is a point in this
representation of the projective line. Thus, if we represent a ray with a vector
v⃗ = (x, y) ∈ R2 \ {0}, then any vector λv⃗, where λ ∈ R∗, will give the same ray,
given by an equivalence class.

If F = C, we get the complex projective line

CP 1 = C ∪ {point at ∞} , (C.3)

which, as for the real projective line, it is the complex plane extended by a
point at infinity.

The addition of the point at infinity {∞} to the complex plane C, is also
called the extended complex plane and denoted by C ∪ {∞} ≡ C∞ [44].

In what follows, we will show that topologically, CP 1 is homeomorphic to
a sphere in R3. More specifically, we will show that there is a one-to-one
correspondence between the points of C∪ {∞} ≡ C∞ and the unit sphere in R3

R = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x3
3 = 1} , (C.4)
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x

y

Figure C.2: RP 1 is the set of all rays through the origin in R2. Topologically
R2 ≃ S1/(x∼−x)

x3 = 0

p(x, y, 0)

ξ(x1, x2, x3)

N = (0, 0, 1)

Figure C.3: Stenographic projection

called the Riemann sphere. This correspondence is what we call the stereographic
projection. The idea is the following: imagine the complex plane that cuts a
sphere in its equator (see Figure C.3). For any point p on that plane, draw a
straight line that connects it to the North Pole of the sphere. That straight
line is going to intersect the sphere at some point ξ. If p is on the exterior of
the sphere it will intersect the northern hemisphere of the sphere. If p is in the
sphere’s interior, the line will intersect the southern hemisphere of the sphere.
And if p lies on the sphere, it will itself be the intersection point. It is easy
to see that the further away the point p is on the plane, the closer its image
projected on the sphere is to the North Pole. However, no point on the plane
projects to the North Pole itself. The North Pole is only available to points at
infinity on the plane because their projection moves toward the North Pole on
the sphere. Thus, infinity is just a point and its projection is the North Pole of
the sphere.

So, more formally suppose N = (0, 0, 1) and S = (0, 0,−1), the north and
the South Poles of R respectively. And suppose also that we identify C with
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{(x1, x2, 0) : x1, x2 ∈ R} so that C cuts R on along the equator. For p ∈ C,
let us consider the straight line in R3 through p and N . This line intersects
the sphere at exactly one point ξ ̸= N . If |p| < 1, then ξ is in the southern
hemisphere and if |p| > 1, then ξ is the northern hemisphere, and finally if
|p| = 1, then p = ξ. The question now is, what happens to ξ if |p| → ∞?

The line in R3 passing trough p and N is given by

{tN + (1 − t) p : t ∈ R} . (C.5)

Let p = x + iy. Knowing that N = (0, 0, 1), we have that tN + (1 − t) p =
((1 − t)x, (1 − t) y, t), so that (C.5) can be written as

{((1 − t)x, (1 − t) y, t) : t ∈ R} . (C.6)

Now, we can find the coordinates of ξ if we can find t at which the line intersects
R. Using equations C.4 and C.6, we get

(1 − t)2
x2 + (1 − t)2

y2 + t2 = 1
(1 − t)2 |p|2 + t2 = 1 ,

which gives a quadratic equation on t(
1 + |p|2

)
t2 − 2|p|2t+

(
|p|2 − 1

)
= 0 . (C.7)

This equation has two solutions

|p|2 − 1
|p|2 + 1 ,

|p|2 + 1
|p|2 + 1 . (C.8)

We will drop the second solution because it gives 1 and thus, using equation
(C.6), gives the coordinates of the North Pole, which is not really interesting.
So, using the first solution with Eq.(C.6), we get

x1 = 2x
|p|2 + 1 , x2 = 2y

|p|2 + 1 , x3 = |p|2 − 1
|p|2 + 1 . (C.9)

We clearly see, using these coordinates, that if |p| → ∞, we get (0, 0, 1) which is
the North Pole coordinate. Thus, the Riemann sphere is a complex projective
space, which is formed by stereographically projecting the complex plane onto
the sphere and including the point at infinity.

The Bloch sphere is a complex projective line. In fact, any quantum state of a
spin 1/2 can be written in the following form

|ψ⟩ = cos θ2 |0⟩ + sin θ2e
iϕ |1⟩ , (C.10)

where θ ∈ [0, π] and ϕ ∈ [0, 2π] (see Figure C.4). As we did for the Riemann
sphere, suppose we identify C with {(x1, x2, 0) : x1, x2 ∈ R} so that C cuts the
Bloch sphere on along the equator. The stereographic projection of a quantum
state |ψ⟩ in the plane passing through the equator is given by the vector

χ =
sin θ2e

iϕ

cos θ2

= tan θ2e
iϕ , (C.11)
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|ψ⟩

x

y

z

ϕ

θ

Figure C.4: Bloch sphere

which is the ratio of the coefficients in the state defined Eq.(C.10). The vector χ
is shown in blue in Figure C.5. This ratio takes value in the (x1, x2) plane plus
a point at infinity, i.e. C ∪ {∞}, corresponding to the stereographic projection
of |1⟩. The other basis state |0⟩ is sent to the origin of the (x1, x2) plane. By
doing the projection of the Bloch sphere onto C ∪ {∞}, we identify it with the
Riemann sphere [102].

|ψ⟩

χ

x

y

z

−z

|0⟩

|1⟩

θ

θ

2

Figure C.5: Stereographic projection of the Bloch sphere

169



APPENDIX D

Differential geometry of Projective
Hilbert spaces

The following Chapter is a summary of a personal work and of some lectures
that can be found on youtube given by Prof.Frederic Schuller, and also other
different small courses found on the internet. A more complete explanation can
be found in [168, 45].

A projective Hilbert space is a complex projective space, and a complex projective
space is a Khäler manifold, which is defined as a manifold with three mutually
compatible structures: a complex structure, a symplectic structure, and a
Riemannian structure. Thus, in this section, we will review the three structures.

D.1 Complex manifolds

Let M be a topological manifold of dimension 2n, that is, X is a Hausdorff
topological space such that each point of M admits an open neighborhood U
which is homeomorphic to an open subset V of R2n. Such a homeomorphism
x : U → V is called coordinate neighborhood.

Definition D.1. A local complex chart (U, z) is an open subset U ⊆ M and an
homeomorphism z : U → V := z(U) ⊂ Cn(≡ R2n). Two local complex charts
(Uα, zα) and (Uβ , zβ) are compatible if the map fβα := zβ ◦z−1

α : zα(Uα∪Uβ) →
zβ(Uα ∪ Uβ) is holomorphic1. The map fβα is called transition function pr
coordinate change.

Definition D.2. A holomorphic atlas (or complex analytical atlas) of X is a
collection A = {(Uα, zα)} of local complex charts, such that X = ∪αUα, and
such that all transition functions fαβ are biholomorphic, for each α and β

Definition D.3. Complex manifolds are differentiable manifolds with a
holomorphic atlas.

The crucial difference between a real manifold of even dimension and a
complex manifold is that for the latter, the transition functions are holomorphic.
We will discuss complex manifolds in more detail in a moment. However, there

1A holomorphic function is infinitely differentiable and locally equal to its own Taylor
series
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D.1. COMPLEX MANIFOLDS

is an intermediate notion that we shall first review as it will be useful for the
study of complex manifolds, which is the notion of almost complex manifolds

Definition D.4. An almost complex manifold is a smooth manifold equipped
with a smooth linear complex structure on each tangent space. More formally, if
a manifold M admits a globally defined tensor J of rank (1, 1) with the property

J2 = −1 , (D.1)

then M is called an almost complex manifold. 1 is the identity operator. A
globally defined (1, 1) tensor satisfying Eq.(D.1) is called an almost complex
structure.

Locally, this implies that at each given point p ∈ M , there is an
endomorphism Jp : TpM → TpM , that satisfies (Jp)2 = −1p, where TpM
denotes the tangent bundle on p. A tensor with rank (1, 1) can be defined by
introducing a basis of real vector fields ∂/∂xµ in the tangent space, and a basis
of dual one-forms dxµ. The coordinates are denotes by xµ, µ = 1, · · · ,m, where
m is the dimension of the almost complex manifold M . The tensor Jp in local
coordinates read

Jp = Jνµ(p) ∂

∂xν
⊗ dxµ , (D.2)

where Jνµ(p) are reals in this real basis. They can be complex if we complexify
the basis, as we will see in a moment. In local coordinates, the condition for an
almost complex structure in any point p reads then

Jρµ(p)Jνρ (p) = −δνµ . (D.3)

Globally, having an almost complex structure means that one can define the
Jp in any patch and glue them together without encountering singularities.
Jp acts It acts on vector fields X = Xµ∂/∂xµ ∈ TpM , according to
J(X) =

(
XµJνµ

)
∂/∂xν .

If M admits an almost complex structure, it must be even-dimensional. This
can be seen as follows: suppose M is m-dimensional, and let J : TM → TM
be an almost complex structure. If J2 = 1 then [Det(J)]2 = Det(J2) = (−1)m.
However, if M is a real manifold, then Det J is a real number. Thus m must
be even 2n if M has an almost complex structure.

We can complexify TpM by introducing linear combinations of vector fields
with complex coefficients

Z = 1
2 (X + iY ) and Z̄ = 1

2 (X − iY ) , (D.4)

where X, Y ∈ TpM . Z and Z̄ belong thus to a complexified tangent space
TpM

C. Jp acts thus on TpM
C as a complex linear map. In this case, the

eigenvalues of Jp are ±i. More concretely, if one chooses a basis of 2n real
vector fields in the tangent space TpM , the almost complex structure takes the
form

Jp =
(

0 1n×n
−1n×n 0

)
, (D.5)

and if one chooses a complexified basis, the almost complex structure is

Jp =
(
i1n×n 0

0 −i1n×n

)
. (D.6)
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D.2. SYMPLECTIC MANIFOLDS

Thus, almost complex manifolds have even dimensional but are not complex,
yet they inherit some of the properties of complex manifolds, as we will see
below.

Theorem D.1. Complex manifolds are almost complex.

Proof. As we saw at the beginning of this section, complex manifolds allow for
a holomorphic atlas, this means there exist local complex coordinates zµ in a
neighborhood U of any given point p ∈ M . J can thus be defined as follows

J = i
∂

∂zµ
⊗ dzµ − i

∂

∂z̄µ
⊗ dz̄µ (D.7)

In contrast to the almost complex manifold, J is defined on the patch U and
not only on a point p. For J to be globally defined on M , we need to show
that it keeps its form on the overlap of two patches (U, z) ∩ (V,w), Since, as we
saw above, for complex manifolds, the transition functions are holomorphic, it
follows that

J = i
∂

∂wµ
⊗ dwµ − i

∂

∂w̄µ
⊗ dw̄µ . (D.8)

■

Example D.1. The unit real sphere S2 defined in Eq.(C.4) in the previous
chapter is a complex manifold. We used stereographic projection from the North
Pole to the real plane R2, to show that C ∪ {∞} ≡ CP 1.

Example D.2. The complex projective space CPn (see Eq.(2.2) in chapter 2
for a formal definition of CPn) is a complex manifold of dimension n. Suppose
a atlas {(Ui, ξaî ) | i = 1, · · ·n+ 1}, where

Ui = {za|zi ̸= 0} and ξa
î

= za

zi
, (D.9)

where za are the homogeneous coordinates, with a = 1, · · · , n+1. On the overlap
of two patches (Ul, ξal̂ ) ∩ (Uk, ξak̂), we have

zazk

zlzk
= za

zl
= ξa

l̂
. (D.10)

There are n+ 1 charts that cover the entire space. The coordinates ξa
î

are well
defined on Ui since zi ̸= 0. There are only n independent coordinates since
ξj
î

= 1. Thus, CPn is a complex manifold of dimension n

D.2 Symplectic manifolds

As we saw in the first part of the thesis, a symplectic manifold arises naturally
as the phase space in classical Hamiltonian mechanics. It is actually a subset in
the space of almost complex manifolds.

Definition D.5. A symplectic manifold (M,ω) is a manifold M equipped with
a nondegenerate closed two-form ω, called symplectic form. In local coordinates,
we have

ω = ωµν(x) dxµ ∧ dxν , dω = 0 . (D.11)
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D.2. SYMPLECTIC MANIFOLDS

The condition of being non-degenerate means that ωµν is invertible, i.e.
ωµνωνρ = δµρ . (D.12)

An invertible antisymmetric matrix has an even number of rows and columns,
so symplectic manifolds with even dimension.

Example D.3. R2n is a symplectic manifold. In fact, using a coordinate
system, the symplectic form reads

ω = dxi ∧ dxy , (D.13)
and as a matrix

ω =
(

0 1n
−1n 0

)
. (D.14)

The two-form is globally defined on R2n, it is closed and non-degenerate.

Example D.4. The complex projective space CPn is symplectic. We will show
this when we show that CPn is a Kähler manifold since we will prove that
Kähler manifolds are symplectic.

Theorem D.2. For (M,ω) a symplectic manifold with Riemannian metric g,
∃ a canonical almost complex structure J compatible with ω.

The proof can be found in [111, 46].

Proof. Assume a globally defined metric
g = gµν dxµ ⊗ dxν . (D.15)

Let A be a matrix defined on M , such that
ω(X,Y ) = g(AX,Y ) , (D.16)

which in local coordinates gives
Aνµ(x) = ωµρ(x)gρν(x) . (D.17)

ω is anti-symmetric, so it is easy to show that A is anti-hermitian with respect
to the metric. From Eq.(D.17), we can deduce that AA† = −A2 is hermitian
and positive definite with respect to g. Thus, we can take the square-root of
this matrix, and its inverse. In this way, we can define a matrix J such that

J =
(√

AA†
)−1

A , (D.18)

where
J2 =

(
AA†)−1

A2 = −1 . (D.19)
The tensor J is globally defined since g and ω are. Hence, J defines an almost
complex structure. ■

Definition D.6. An almost complex structure J is said to be compatible with
the symplectic form ω if for all vector fields X, Y we have

ω(JX, JY ) = ω(X,Y ) , ω(X, JX) > 0 . (D.20)
Corollary D.1. The almost complex structure in (D.18) is compatible with ω.

There is a lot to say about symplectic geometry, but we only need a few
notions for the following. That is why we stop here and now move on to the
next concept: Khäler manifolds.
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D.3 Khäler manifolds

The concept of Khäler manifolds was first studied by Jan Arnoldus Schouten
and David van Dantzig in 1930 and then introduced by Erich Kähler in 1933.
Kähler manifolds are equipped with several compatible structures: complex,
symplectic, and Riemannian, they can thus be described from different points
of view. Let us first start defining the concept of a Hermitian metric

Definition D.7. Let M be a complex manifold, with Riemannian metric g and
complex structure J . If g satisfies

g(JX, JY ) = g(X,Y ) , (D.21)

for any two X and Y belonging to a complex vector bundle, then g is said to be
a Hermitian metric and (M, g) is called a Hermitian manifold. If (M,J) is an
almost complex manifold, with a metric satisfying (D.21), then g is called an
almost Hermitian metric, and (M, g, J) is an almost Hermitian manifold.

Lemma D.1. Complex vector fields Z, W are orthogonal with respect to a
Hermitian metric.

Proof. A complex vector field Z satisfy JZ = iZ2. Thus, with respect to a
Hermitian metric, we have

g(Z,W ) = g(JZ, JW ) = −g(Z,W ) . (D.24)

Therefore, g(Z,W ) = 0. Similarly g(Z̄, W̄ ). It follows that the only nonzero
elements are of the form g(Z, W̄ ). ■

Theorem D.3. A complex manifold (M,J) always admits a Hermitian metric.

Proof. Suppose g is a Riemannian metric on M , we do not know if g(JX, JY ) =
g(X,Y ). However, we can define a metric h such that

h(X,Y ) = 1
2 (g(X,Y ) + g(JX, JY )) . (D.25)

It is clear that h satisfies Eq.(D.21). ■

Definition D.8. Let (M,J, g) be a Hermitian manifold. We can define a
two-form ω as

ω(X,Y ) = g(JX, Y ) . (D.26)
2On a complex tangent bundle TMC of a manifold M , we can define projector operators

P± =
1
2

(1∓ iJ) . (D.22)

Since the eigenvalues of J are ±i (see Eq.(D.6)), the above defined projectors satisfy(
P±
)2

= P±, P+ + P− = 1 and P+ + P− = 0. Now, consider an arbitrary element
W ∈ TMC and define

Z ≡ P+(W ) =
1
2

(W − iJ(W )) and Z̄ ≡ P−(W ) =
1
2

(W + iJ(W )) . (D.23)

It is clear that J(Z) = iZ and J(Z̄) = −iZ̄.
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This is a two-form because it is antisymmetric with respect to X and Y . Indeed

ω(X,Y ) = g(JX, Y ) = g(J2X, JY )︸ ︷︷ ︸
g is a Hermitian metric

= −g(X, JY ) = −g(JY,X) = ω(X,Y ) .

(D.27)
This is called a fundamental form.

In local real coordinates, the components of the fundamental form are

ωµν(x) = Jρµ(x)gρν(x) , (D.28)

where ωµν = −ωνµ.

Corollary D.2. The fundamental form is non-degenerate.

Proof. From Eq.(D.28), we can deduce ωµρωρν = δµν . ■

Corollary D.3. The fundamental form ω is compatible with J , in the sense of
(D.20).

Proof. We have

ω(JX, JY ) = ω(J2X, JY ) = ω(J3X, J2Y ) = ω(JX, Y ) = ω(X,Y ) , (D.29)

and
ω(X, JX) = g(JX, JX) = g(X,X) > 0 , (D.30)

since g is a Riemannian metric. ■

Definition D.9. Let M be a complex manifold with Hermitian metric g and
fundamental two-form ω. If ω is closed i.e. dω = 0, then M is called a Khäler
manifold, g a Khäler metric, and ω a Khäler form.

When (M, g, J) is an almost Hermitian manifold, with closed fundamental
two-form ω, then M is called almost Khäler. All Khäler manifolds are also
symplectic since the Khäler form is closed and non-degenerate. However, the
opposite is not always true.

We will now express the Khäler metric and the Khäler form with local
complex coordinates. In a local holomorphic chart φ = (z1, · · · , zn) : U → Cn
of M , we can distinguish real coordinates (x1, · · · , xn, y1, · · · , yn), defined by
zi = xi + iyi. These give distinguished complex-valued one-forms dzi =
dxi + idyi and dz̄i = dxi − idyi on U . These complex-valued one-forms have
their dual, which are the complex-valued vector fields

∂

∂zi
= 1

2

(
∂

∂xi
− i

∂

∂yi

)
, and ∂

∂z̄i
= 1

2

(
∂

∂xi
+ i

∂

∂yi

)
. (D.31)

They are defined on a complex tangent space TpM
C, where p ∈ M . The

hermitian metric in Eq.(D.21) can be extended by complex linearity to be
defined on TpM

C. Thus, we can write g first as follows

g = gij dzi ⊗ dzj + gī j̄ d̄zi ⊗ ¯dzj + gī j d̄zi ⊗ dzj + gi j̄ dzi ⊗ ¯dzj , (D.32)
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where gij = g

(
∂

∂zi
,
∂

∂zj

)
. The fact that the metric is Hermitian will simply

Eq.(D.32). On one hand, we have

g

(
J
∂

∂zi
, J

∂

∂zj

)
= g

(
i
∂

∂zi
, i

∂

∂zj

)
= −g

(
∂

∂zi
,
∂

∂zj

)
= −gij , (D.33)

and on the other hand

g

(
J
∂

∂zi
, J

∂

∂zj

)
= g

(
∂

∂zi
,
∂

∂zj

)
= gij . (D.34)

Thus, gij = 0. Similarly gī j̄ = 0. Let us now compute gī j and gi j̄ .

gī j = g

(
∂

∂z̄i
,
∂

∂zj

)
= 1

2

[
g

(
∂

∂xi
,
∂

∂xj

)
+ g

(
∂

∂yi
,
∂

∂yj

)
+

i

(
g

(
∂

∂yi
,
∂

∂xj

)
− g

(
∂

∂xi
,
∂

∂yj

))]
.

Using again the fact the g is Hermitian, and using the fact that J
(
∂

∂x

)
= ∂

∂y

and J

(
∂

∂y

)
= − ∂

∂x
(Eq.(D.5)), we get

g

(
∂

∂yi
,
∂

∂xj

)
= g

(
J
∂

∂xi
,−J ∂

∂yj

)
= −g

(
∂

∂xi
,
∂

∂yj

)
. (D.35)

We also have
g

(
∂

∂xi
,
∂

∂xj

)
= g

(
∂

∂yi
,
∂

∂yj

)
. (D.36)

Therefore, we obtain

gī j = g

(
∂

∂xi
,
∂

∂xj

)
− ig

(
∂

∂xi
,
∂

∂yj

)
. (D.37)

Using the same arguments as those applied so far, we also get

gi j̄ = g

(
∂

∂xi
,
∂

∂xj

)
− ig

(
∂

∂xi
,
∂

∂yj

)
= gī j . (D.38)

Finally, the Khäler metric in terms of local complex coordinates reads

g = gī j

(
d̄zi ⊗ dzj + dzi ⊗ ¯dzj

)
. (D.39)

From the above equation and the ones in (D.8) and (D.28), we get the expression
of the fundamental form in local complex coordinates

ω = 2igī j dzi ⊗ ¯dzj . (D.40)

With the above equation, we show that the fundamental form is a type of
complex structure. The fact that the fundamental form is closed has important
consequences. If we compute dω from Eq.(D.40), we have

dω = i (∂agbc̄) dza ∧ zb ∧ ¯dzc + i (∂āgbc̄) ¯dza ∧ zb ∧ ¯dzc = 0 . (D.41)
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From both terms of the equation, we get two parts that must both be equal to
zero

∂agbc̄ − ∂bgac̄ = 0 , and ∂āgbc̄ − ∂c̄gbā = 0 . (D.42)
This implies that, locally in the patch Ui, there must exist a function Ki(z, z̄),
called the Khäler potential, such that

gab̄ = ∂a∂b̄Ki . (D.43)

The Khäler form thus reads
ω = i∂∂̄Ki . (D.44)

Note that, the Khäler potential Ki is only defined in the patch Ui. On the
overlap on two patches Ui ∪ Uj , the functions Ki and Kj do not necessarily
have to be equal to each other but can be related by a Khäler transformation

Ki(z, z̄) = Kj(z, z̄) + fij(z) + f̄ij(z̄) . (D.45)

Example D.5. The complex projective space CPn is a Kähler manifold. If we
define

Ki = log
( n+1∑
a=1

|ξa
î
|2
)

(D.46)

defined in Eq.(D.9). On the overlap Ui ∪ Uk (see Eq.(D.10)), we get

Ki = Kk − log ξi
k̂

− log ξ̄i
k̂
. (D.47)

Thus, the Khäler transformation in Eq.(D.45) is satisfied. This means we can
define a globally defined metric

gab̄ = ∂a∂b̄Ki = ∂a∂b̄Kk , (D.48)

and similarly for the Khäler form. This Khäler metric and the Khäler potential
in (D.46) is called the Fubini study metric.

Finally, we conclude that a finite projective Hilbert space PHn ∼= CPn is
a Khäler manifold, in which a Khäler metric, called Fubini Study metric is
defined.

D.4 Fubini Study metric

We saw that the Khäler metric is well-defined globally on HPn (see Examples
(D.5) and (D.2) in the previous section)

g =
(
∂µ∂ν̄K

)︸ ︷︷ ︸
gµν̄

( ¯dξµ ⊗ dξν + dξµ ⊗ dξ̄ν
)
, (D.49)

where

K = log
( n+1∑
a=1

|ξa|2
)

= log
(
|ξ|2
)

= log
(
ξα ξ̄

α
)
, (D.50)

and
ξα = zα

z
. (D.51)
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z in the denominator can be any homogeneous coordinates, provided that it
is not equal to zero. To obtain the metric, we need to derive twice the Khäler
potential in Eq.(D.50). However, written in this way, the Khäler potential
yields ∂∂̄K = ∂∂̄(ξξ̄) = 0. We can get rid of this issue by expressing the Khäler
potential in the following way

log
( n+1∑

i

zi

z

)
= log

(
1 +

n∑
i=1

zi

z

)
. (D.52)

Let us take an example. Suppose a projective plane RP 2, described with
homogeneous coordinates (x, y, z) defined in R3 \ {0}. We can express, the
homogeneous coordinates in terms of affine coordinates defined on a given plane
X = x/z and Y = y/z, i.e. (x/z, y/z, 1). The Khäler potential reads then

K = log
( 3∑
i=1

(ξi)2
)

= log
(

1 +
(x
z

)2
+
(y
z

)2
)
, (D.53)

where ξi = ui/z, ui = x, y, z. We can thus write Eq.(D.53) as follows

K = log
(

1 +
2∑
i=1

(ξi)2
)

= log
(

1 + |w|2
)
, (D.54)

where |w|2 is the vector norm in R2. The change in the coordinates (from
homogeneous to affine) will not change the derivatives ∂, ∂̄ in the metric, since
ξi = wi, 1. Thus, coming back to the case of complex coordinates, we have

∂µ∂ν̄K = ∂µ∂ν̄ log
(

1 + wαw̄
α

)
= ∂µ∂ν̄ log

(
1 + δαβ̄w

αw̄β
)

=
(
1 + |w|2

)
δµν̄ − wµw̄ν

(1 + |w|2)2 .

(D.55)

Thus, the Fubini-Study metric in terms of the affine complex coordinates reads

ds2 = gµν̄ dwµ dw̄ν

=
(
1 + |w|2

)
| dw|2 − (w̄ dw) (w dw̄)
(1 + |w|2)2 .

(D.56)

We can come back now to the homogeneous coordinates, where
(
1 + |w|2

)
= |ξ|2,

and w dw̄ = ξ dξ̄. Thus, the Fubini Study in terms of the homogeneous complex
coordinates reads

ds2 =
|ξ|2| dξ|2 −

(
ξ̄ dξ

) (
ξ dξ̄

)
|ξ|4

. (D.57)

We have seen in Example D.5, that the complex projective space CPn is a
Khäler manifold. We have also seen in Definition 2.2, that a finite projective
Hilbert space PH is complex projective space CPn. The finite projective Hilbert
space is thus a Käler manifold. Therefore, we expect to have the Fubini Study
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defined also in PH. In fact, a quantum state defined in P
(
Hn+1) = PHn can

be expressed as follows

|ψ⟩ =
n∑
i=0

ai |ei⟩ = [a0 : a1 : · · · : an] . (D.58)

Then, given two rays |ψ⟩ and |ϕ⟩ on PHn, we can define a transition probability
as follows

cos (θ)2 = | ⟨ϕ|ψ⟩ |2

⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩
, (D.59)

where θ is the angle between the two rays. We saw in the previous chapter that
a ray in a projective space is considered as a point in the projective space. Thus,
the angle θ between two rays in PHn can be thought of as a distance between
two points |ψ⟩ and |ϕ⟩. If we Taylor expand Eq.(D.59) up to the second order
and if we set dθ equal to ds, where ds denotes an infinitesimal distance, and
take ϕ = ψ + dψ, we get

ds2 = ⟨ψ|ψ⟩ ⟨dψ| dψ⟩ − ⟨dψ|ψ⟩ ⟨ψ| dψ⟩
⟨ψ|ψ⟩2 . (D.60)

This is the Fubini Study metric defined on projective Hilbert spaces, which is
similar to the one seen in Eq.(D.57).
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APPENDIX E

Generalized Gell-Mann matrices

As fundamental representation for the generators of the algebra of SU(dµ), we
use the generalized Gell-Mann matrices. These are the following d2

µ− 1, dµ×dµ
matrices. Let Ej,k (for j, k = 1, . . . , dµ ) be the matrix with 1 as (j, k)-th entry
and 0 elsewhere. We define

Tµℓ = (Ej,k + Ek,j) , (E.1)

where ℓ = 2(k− j) + (j− 1)(2dµ − j) − 1 for j = 1, . . . , dµ − 1, k = j+ 1, . . . , dµ,

Tµℓ = −i(Ej,k − Ek,j) , (E.2)

where ℓ = 2(k− j) + (j− 1)(2dµ− j) for j = 1, . . . , dµ− 1, k = j+ 1, . . . , dµ and

Tµℓ =

 k∑
j=1

Ej,j − kEk+1,k+1

√ 2
k(k + 1) , (E.3)

where ℓ = dµ(dµ − 1) + k for k = 1, . . . , dµ − 1. In the case of dµ = 2, these
generators are given in terms of the Pauli matrices according to Tµ1 = σµ1,
Tµ2 = σµ2 and Tµ3 = σµ3. In the case dµ = 3, the generators are given by the
standard Gell-Mann matrices. In the general case, the following identity holds
true,

d2
µ−1∑
k=1

TµkTµk =
2(d2

µ − 1)
dµ

1 (E.4)

and, for each normalized state |sµ⟩ ∈ Hdµ
, it results

d2
µ−1∑
k=1

⟨sµ|Tµk|sµ⟩2 = 2(dµ − 1)
dµ

. (E.5)
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For each normalized state |s⟩ ∈ H and unitary local operator Uµ : Hdµ
→ Hdµ

,
it results

d2
µ−1∑
k=1

⟨s|U†
µTµk

Uµ|s⟩2 =

d2
µ−1∑
k=1

d2
µ−1∑
α=1

(nkα)2⟨s|Tµα|s⟩2 =

d2
µ−1∑
α=1

⟨s|Tµα|s⟩2
d2

µ−1∑
k=1

(nkα)2 =

d2
µ−1∑
α=1

⟨s|Tµα|s⟩2 .

(E.6)
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