
SUPPLEMENTARY MATERIALS

Design-based consistent strategies exploiting
auxiliary information in environmental

mapping

S1. A finite sample result for bounding kNN estimation errors
in the geographic space

Using the notation of Section 3, Qg(1)(p, δ) ⊂ · · · ⊂ Qg(k)(p, δ), in such
a way that I{Qg(1)(p, δ)} ≤ · · · ≤ I{Qg(k)(p, δ)}. Therefore, from (5) it
follows that

|f̂g(p)− f(p)| = |I(Qp)f(p) + I(Qc
p)

∑
i∈Hg,k(p)

wg,i(p)f(Pi)− f(p)|

= |I(Qc
p)

∑
i∈Hg,k(p)

wg,i(p)f(Pi)− I(Qc
p)f(p)|

= I(Qc
p)|

∑
i∈Hg,k(p)

wg,i(p)f(Pi)− f(p)|

≤ |
∑

i∈Hg,k(p)

wg,i(p)f(Pi)− f(p)|

= |
∑

i∈Hg,k(p)

wg,i(p){f (Pi)− f(p)}| ≤
∑

i∈Hg,k(p)

wg,i(p)|f(Pi)− f(p)|

=
∑

i∈Hg,k(p)

[I(Qg,i(p, δ)) + I(Qc
g,i(p, δ))]wg,i(p)|f(Pi)− f(p)|

=
∑

i∈Hg,k(p)

I(Qg,i(p, δ))wg,i(p)|f(Pi)− f(p)|

+
∑

i∈Hg,k(p)

I(Qc
g,i(p, δ))wg,i(p)|f(Pi)− f(p)|

≤ L
∑

i∈Hg,k(p)

I(Qg,i(p, δ))wg,i(p) +
∑

i∈Hg,k(p)

wg,i(p)∆g(p, δ)

= L

k∑
l=1

I(Qg(l)(p, δ))
∑

i∈Hg(l)(p)

wg,i(p) + ∆g(p, δ)
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≤ LI(Qg(k)(p, δ))
k∑

l=1

∑
i∈Hg(l)(p)

wg,i(p) + ∆g(p, δ)

= LI(Qg(k)(p, δ)) + ∆g(p, δ).

(S1.1)

Taking the expectations of both sides of (S1.1), result (8) follows.

S2. Pointwise kNN consistency in geographic space under URS,
TSS, and SGS (continuous populations), and OPSS and SYS
(finite populations of areas)

The event Qc
g(k)(p, δm) can be rewritten as

Qc
g(k)(p, δm) =

{
n∑

i=1

I(dg (Pi,p) ≤ δm) ≥ k

}
.

Therefore, if k groups of [n/k] locations, say H1,n, . . . , Hk,n, are considered
among the n sample locations, then one way in which the event Qc

g(k)(p, δ)
can occur is

k⋂
l=1

 ∑
i∈Hl,n

I(dg(Pi,p) ≤ δm) ≥ 1

 ⊂ Qc
g(k)(p, δm). (S2.1)

Because under URS the Pis are independent and equally distributed, the
k events of the intersection in the left side of (S2.1) are independent and
have the same probability. Accordingly, from (S2.1) it follows that

Pr
{
Qc

g(k)(p, δm)
}
≥ Pr

 k⋂
l=1

 ∑
i∈Hl,n

I(dg (Pi,p) ≤ δm) ≥ 1




=

Pr
 ∑

i∈H1,n

I(dg (Pi,p) ≤ δm) ≥ 1


k
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from which

Pr
{
Qg(k)(p, δm)

}
≤ 1−

Pr
 ∑

i∈H1,n

I(dg(Pi,p) ≤ δm) ≥ 1


k

≤ k

1− Pr

 ∑
i∈H1,n

I(dg (Pi,p) ≤ δm) ≥ 1




= kPr

 ∑
i∈H1,n

I(dg (Pi,p) ≤ δm) = 0

 .

(S2.2)

As proven in the Appendix C by Fattorini et al. (2022), under URS the
probability of the event in the right side of (S2.2) approaches 0 with δm.
Therefore (S2.2) proves condition (11).

Under TSS and SGS, any point p ∈ A identifies the polygon that
contains p and k − 1 surrounding polygons. Each of these k polygons
contains a sample location selected at random within them, so that the k
sample locations constitute the locations involved in the kNN interpolation.
Usually, it is supposed that polygons do not have stretched shapes, so that,
as m increases, the diameters of the m polygons partitioning A approach
0 (Barabesi et al., 2012). Therefore, because polygons become smaller and
smaller, there exist a real δ > 0 and an integer m0 such that for m > m0

the ball of radius δ contains the k neighboring polygons, i.e.,

Pr
{
Qg(k) (p, δ)

}
= 0, m > m0. (S2.3)

Obviously, condition (S2.3) joined with the continuity condition (10) en-
sures (9).

Similarly, in the case of finite populations of areas, under SYS and
OPSS for each m there is a population of Nm areas partitioned into nm

blocks of contiguous areas. Areas and blocks must be of equal shape and
each block must contain an equal number bm = Nm/nm of areas in the case
of SYS (Figure 1a), while areas and blocks can be of different shapes and
blocks can contain a different number of areas bm,1, . . . , bm,nm , whose sum
gives Nm, in the case of OPSS (Figure 1b). Then, in the case of SYS an area
is randomly selected within one block and repeated in the remaining blocks,
while under OPSS an area is randomly and independently selected within
each block. In this framework, any area j identifies the block that contains
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Figure 1: Graphical representation of a sample of areas (in red) selected by means
of SYS (a) and OPSS (b).

Figure 2: Graphical representation of area j and surrounding blocks (highlighted
in green) for k = 4 under SYS (a) and OPSS (b).

j and a set of surrounding (neighboring) blocks whose number may be equal
or greater than k, especially in regular grids of areas (Figures 2a and 2b).
If j is not a selected area (in the opposite case interpolation is without
error), each of these blocks contains a sample area involved in the kNN
interpolation. Therefore, because the diameters of the areas partitioning
A approach 0 as m increases (see Section 2), areas become smaller and
smaller and also blocks become smaller and smaller if it is supposed that
the number of areas in each block is bounded by b0 for each m. Then, for
any δ > 0 there exists an integer m0 such that for any m > m0 the ball of
radius δ contains at least k blocks, i.e., condition (S2.3) holds, and joined
with the continuity condition (10), it ensures (9).
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S3. Considerations on the one-to-one nature of auxiliary vari-
ables in the geographic space

Let x1, . . . , xG be G bounded functions defined on the study region A cor-
responding to G auxiliary variables. For each location p ∈ A, let EG(p) be
the Borelian set of points q ̸= p ∈ A such that x(p) = x(q) and let IG(p)
be the indicator of EG(p). Therefore, the set of G auxiliary variables failed
to be a one-to-one function on A if

IG(A) = max
p∈A

IG(p) = 1 (S3.1)

Now, consider an additional auxiliary variable xG+1, so that the Borelian
set EG+1(p) can be expressed as

EG+1(p) = EG(p) ∩ {q ̸= p ∈ A : xG+1(q) = xG+1(p)} ⊂ EG(p)

in such a way that IG+1(p) ≤ IG(p). Accordingly, from (S3.1) it follows that
IG+1(A) ≤ IG(A). In conclusion, as the number G of auxiliary variables
increases the sequence {IG(A)} is decreasing, i.e. as the number of auxiliary
variable increases it is more difficult that the corresponding function fail to
be one-to-one onto A, even if no sufficiency condition can be claimed.

S4. Equivalence of euclidean distances in geographic and auxil-
iary spaces

Let the survey region A be a bounded set of R2, and for simplicity, suppose
that it coincides with the closure of its interior int(A). The following result
holds.

Proposition 1. Let p ∈ int(A). If for each l = 1, . . . , G the auxiliary vari-
able xl is differentiable at p and the vector space generated by the gradients
∇xl(p) is bidimensional, then there exist two real numbers γ, δ > 0 such
that for any q ∈ Bg(p, δ) it holds that

dg(p,q) ≤ γ max
l=1,...,G

|xl(p)− xl(q)|. (S4.1)

Proof. Denoting by ∇xl1(p) and ∇xl2(p) two linearly independent gradi-
ents, for each q ̸= p it holds that

max
l=1,...,G

|∇txl(p)(p− q)|
dg(p,q)

≥ max
l=l1,l2

|∇txl(p)(p− q)|
dg(p,q)

≥ min
v∈∂Bg(0,1)

max
l=l1,l2

|∇txl(p)v| = λ > 0
(S4.2)
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where ∂Bg(0, 1) is the boundary of the Bg(0, 1) ball. Because the xls are
differentiable at p, it holds that

max
l=1,...,G

|xl(q)− xl(p)|
dg(p,q)

= max
l=1,...,G

∣∣∣∣∇txl(p)(p− q)

dg(p− q)
+ ol(1)

∣∣∣∣
≥ max

l=l1,l2

∣∣∣∣∇txl(p)(p− q)

dg(p− q)
+ ol(1)

∣∣∣∣ . (S4.3)

Therefore, if δ > 0 is such that |ol1(1)|+|ol2(1)| ≤ λ/2 for each q ∈ Bg(p, δ),
it holds that

max
l=l1,l2

∣∣∣∣∇txl(p)(p− q)

dg(p,q)
+ ol(1)

∣∣∣∣ ≥ λ

2
, q ∈ Bg(p, δ),q ̸= p. (S4.4)

From the relationships (S4.2), (S4.3), and (S4.4), (S4.1) holds for γ =
2/λ.

Now suppose that x(p) is one-to-one on A, a situation likely to occur
for G sufficiently large (see Section S3). In this case, dx(p,q) is a distance.
Moreover, because

max
l=1,...,G

|xl(p)− xl(q))| ≤ dx(p,q)

then for each q ∈ Bg(p, δ), (S4.1) implies that

dg(p,q) ≤ γdx(p,q).

Then, owing the continuity of x(p) at p, for each sequence {qm} ∈ A
converging to p, it holds that

lim
m→∞

dg(p,qm) = 0 ⇐⇒ lim
m→∞

dg(p,qm) = 0

i.e., the Euclidean distances dg and dx are equivalent.

S5. Details on asymptotic scenarios

To achieve design consistency of the considered interpolators, the following
asymptotic scenarios are needed.

In particular, in the context of continuous populations, the surface to
be interpolated is fixed and a sequence of designs {Dm} is considered for
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Figure 3: Surface to be interpolated.

Figure 4: Example of 3 samples of the sequence, selected according to TSS

selecting a sample of nm locations Pm,1, . . . ,Pm,n on the study area, with
nm → ∞ as m increases.

As an example, in Figure 3 a fixed surface to be interpolated is depicted.
Considering a sequence of TSS designs, Figure 4 depicts an example of 3
possible selected samples of locations when considering m = 1 and the
corresponding sample size n1 = 9, m = 2 and the corresponding sample
size n2 = 36 and m = 3 and the corresponding sample size n3 = 144.

When dealing with finite populations of areas, the study region is fixed
but it is partitioned into an increasing number of Nm areas am,1, . . . , am,Nm ,
with Nm → ∞ as m increases and a sequence of designs {Dm} is considered
for selecting a sample of nm < Nm areas with nm → ∞ as m increases.

As an example, considering a sequence of OPSS designs, Figure 5 de-
picts an example of 3 possible partitions of the study region into the in-
creasing number of N1 = 64 (m = 1), N2 = 144 (m = 2) and N3 = 256
(m = 3) areas. The areas outlined in red represent the realization of a
possible sequence of selected samples of areas of increasing size n1 = 16
(m = 1), n2 = 36 (m = 2) and n3 = 64 (m = 3).
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Figure 5: Example of 3 samples of the sequence, selected according to OPSS
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Table 1: Correlations between AGB and Landsat spectral bands values for the
30mx30m pixels covering the 27ha portion of Harvard forest.

Landsat spectral band Correlation coefficient
Band 4 -0.67
Band 3 -0.63
Band 7 -0.57
Band 2 -0.45
Band 6 -0.38
Band 1 -0.28
Band 5 -0.11

Figure 6: AGB and spectral bands values in the continuum of the 27ha portion
of Harvard Forest.
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Figure 7: AGB and spectral bands values for the finite population of N = 432
areas.
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