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An Efficient Ray-Based Modeling Approach for
Scattering from Reconfigurable Intelligent Surfaces

Enrico M. Vitucci, Senior Member, IEEE, Matteo Albani, Fellow, IEEE, Silvi Kodra, Marina Barbiroli and
Vittorio Degli-Esposti, Senior Member, IEEE

Abstract—Reconfigurable Intelligent Surfaces (RISs), which
can be implemented using metasurface technology or re-
flect/transmit antenna array technology, have garnered significant
attention in research studies focused on both their technological
aspects and potential applications. While various modeling ap-
proaches have been proposed - ranging from electromagnetic
simulations and analytical integral formulations to simplified
approaches based on scattering matrix theory - there remains
a great need for efficient and electromagnetically-consistent
macroscopic models that can accurately simulate scattering
from RISs, particularly for realistic simulations of RIS-based
wireless networks. Building on previous work based on the
characterization of the RIS through a surface impedance (or
”spatial modulation”) function and a few parameters, in the
present paper we propose a fully ray-based approach for the
computation of the re-radiated field that can be easily embedded
in efficient, forward ray tracing (also known as ”ray launching”)
models. We validate the proposed model by comparison to well
established methods available in the literature. Results show that,
although the considered method is based on a completely different
formulation and is much more efficient than integral formulation
methods, results are almost indistinguishable in some benchmark
cases.

Index Terms—macroscopic modeling, ray tracing, ray launch-
ing, reconfigurable intelligent surface (RIS), metasurface

I. INTRODUCTION

Until recently, the design of wireless systems has been based
on a probabilistic approach where the propagation channel was
considered a largely unknown, random process that engineers
had to cope with during the design of transmitter and receiver
chains or network architecture. In the last years, Reconfig-
urable Intelligent Surface (RIS) technology has been proposed
as an opportunity to broaden the design approach, allowing
for the first time to engineer the wireless propagation channel.
Interesting applications for 6G networks are envisioned to ease
coverage limitations at mm-wave and THz frequencies and
to perform basic operations on the signal ”at the speed of
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light”, limiting therefore the use of active repeaters and digital
signal processing, with a reduction in latency and energy
consumption [1].

A RIS is an electrically thin slab that can be realized either
as a metasurface using electrically small, printed scattering
elements, or as a reflect-array or a transmit-array with half-
wavelength spaced printed antenna elements. Using control
networks employing PIN diodes, varactors or other methods, a
RIS can dynamically tailor its local reflection or transmission
properties and therefore can manipulate the reradiated field
characteristics and wavefront shape [1], [2].

The scattering behaviour of a RIS can be accurately simu-
lated using microscopic modeling approaches (e.g. using Elec-
tromagnetic simulation or microwave network theory), that
are based on a detailed description of the RIS microstructure.
Unfortunately, microscopic models are complicated to use and
require considerable computational resources. Therefore, they
cannot be used for efficient, large-scale simulation of wireless
links or systems employing RIS technology [3], [4].

Thus, path-loss models or channel models for RIS-assisted
links have been developed and used for performance evalua-
tions in recent years, see for example [5]–[7]. Such models
however, being based on a discrete periodic approach that
assumes independent scattering elements (unit cells) charac-
terized by a given scattering coefficient and pattern, either
overlook or only approximately take into account coupling,
parasitic modes and other non-idealities [3].

Several other approaches have been proposed in the lit-
erature to try to solve the above-mentioned limitations and
to achieve a good trade-off between good electromagnetic
consistency and low computational complexity. Some Authors
propose hybrid approaches where electromagnetic simulation
is used to derive a far-field radar cross section of the RIS
to be inserted in ray tracing simulation [8]. Such approaches,
although efficient, cannot be used to model near-field effects
such as focusing, which represents one of the most important
RIS applications. Very promising are macroscopic modeling
approaches that overlook the microscopic structure of the RIS
in order to directly address the specific wave transformation it
realizes [9]–[13]. These approaches assume that the metasur-
face can be homogenized and described in terms of an effective
surface function - e.g. a surface impedance or a surface (or
spatial) modulation function - that determines such a wave
transformation based on Maxwell’s equations. The function
can be derived from theory, i.e. from the wave transformation
the RIS is intended to realize, or from experiment, i.e. from
measurements on the wave transformation that an existing RIS
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actually realizes.
In particular, in [13], a realistic macroscopic model for

evaluating multi-mode reradiation from generic, finite-size RIS
is introduced. The model is based on a hybrid approach com-
bining a Huygens-based method to model anomalously reradi-
ated modes with well-established ray-based methods to model
specular reflection and diffuse scattering that are inevitably
present in real-world non-ideal metasurfaces. In particular,
diffuse scattering can model the noise-like reradiation effect of
mechanical and electrical non-idealities such as deviation of
the RIS from a flat surface, phase-tuning errors or even phase-
discretization effects due to the use of a limited number of bits
in the control circuit. Specifically, the Huygens-based and the
ray-based methods are combined through a parametric power-
balance constraint that ensures energy conservation between
the incident field, scattered field and dissipation inside the slab.

In the present work we build on the foregoing macroscopic
and parametric approach to develop a ray-based, efficient
approach also for anomalous reradiation, therefore achieving
a fully-ray based macroscopic RIS model that can be easily
integrated into efficient Ray-Launching (RL) algorithms for
large-scale simulation such as the one proposed in [14].
In particular, we suitably extend Geometrical Optics (GO)
theory [15] to the case of a reflective RIS illuminated with
an astigmatic wavefront. Diffraction is modeled through the
Uniform Geometrical Theory of Diffraction (UTD) [16], [17],
and a new formulation of the UTD diffraction coefficients is
proposed that can be applied to any reradiation mode of a
RIS and easily implemented in RL tools, following the same
approach of [17].

Differently from the study in [18], where a ray-based
description of reradiation from locally-periodic, finite meta-
surfaces was first proposed, we assume to model reradiation
with a forward ray tracing approach, therefore avoiding the
complex and time-consuming critical point search step.

In the next section of this paper we describe our approach
more in detail, briefly addressing the model’s parametric
foundation, which is shared with the model described in [13],
some basic concepts of Geometrical Optics that we have
used, and then describing how the ray reradiated from a
generic surface location (anomalously reflected ray) or from
the surface edge (anomalously diffracted ray) are computed
in terms of direction and field. The model is then validated
in section III by comparison with some reference models
available in the literature.

II. THE PROPOSED APPROACH

We propose a macroscopic, ray-based approach that uses
the spatial modulation function introduced in [3], [13], to
model RIS reradiation. In the following, we make use of
Geometrical Optics (GO) concepts such as ray, locally plane
wave, local wavefront curvature, spreading factor etc. [15]. In
[12], [18], an image-ray tracing approach for locally periodic
metasurfaces is proposed, where “critical points” are identified
using an iterative procedure, in order to trace reflected or
transmitted rays for specific transmitter and receiver positions.
In the present work, we propose a discrete RL approach where

the RIS is discretized into surface elements, rays are launched
toward each one of them, reflected/diffracted according to the
spatial modulation function at the considered position, and re-
launched in space without any need for a critical-point search
phase. Therefore, the method can be inserted into a discrete,
parallelized RL algorithm as the one presented in [14] for
efficient field-prediction over an area or volume: in this case
the sub-set of RIS-reradiated rays hitting the desired target area
or volume will have to be determined and their field can be
mapped onto the target domain using some efficient computer
graphics method. Surface discretization resolution, i.e. the size
of each surface element (or ”tile”), determines the spacing of
the rays and therefore the resolution of the computed field,
similarly to what shown in [19], Fig. 4, for the traditional
discrete ray launching model therein described, and should be
therefore chosen according to a trade-off between accuracy and
computation speed. However, discrete RL computation time
can be drastically reduced using parallelization techniques
[14], [19]. In this work, we leverage the macroscopic approach
presented in [13], section II, but we propose a more efficient,
fully ray-based reradiated-field computation method in place
of the Huygens-based methods there described. The basic
assumptions, as in [13], are the following:

1) the homogenized surface properties vary slowly at the
wavelength scale (slowly modulated RIS)

2) because of 1), we use the concept of Spatial Modulation
Coefficient often called also ”reflection coefficient”

3) the reradiated field can be described as a discrete set
of reradiation modes (e.g. Floquet’s modes of a locally
periodic metasurface)

4) we address the computation of radiative near field and
far field, but we neglect for the time being the effect
of evanescent modes (i.e. surface waves) and vertex
diffraction.

On the base of the foregoing assumptions, we describe each
reradiating mode field as a set of rays reflected or diffracted at
each surface element. In the rest of this section, after recalling
basic GO concepts, the computation of:

(i) Reradiation angle
(ii) Field

(iii) Spreading factor
is described for a reflected or edge-diffracted ray of a single
re-radiation mode. For a complete field computation, the pro-
cedure will have to be iterated for all the propagating modes.
For the sake of brevity, only reflecting RISs are considered:
although extension to transmissive RISs, that reradiate mainly
in the forward half-space, is quite straightforward, it will be
addressed in future work.

A. Relevant Geometrical Optics background
According to GO theory, a propagating wave in free space

can be described in terms of rays, i.e. lines that are everywhere
orthogonal to the wavefront and therefore represent wave
paths. In the high-frequency regime, the Electromagnetic field
of a propagating wave can be approximated as [15]:

E (r) ≃ E0 (r) e
−jk0 ψ(r)

H (r) ≃ H0 (r) e
−jk0 ψ(r)

(1)
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where r is the position vector of the generic observation point
P, k0 = 2πc0/f is the free space wavenumber, E0 (r), H0 (r)
are slowly varying complex vectors, representing the local
amplitude and polarization of the wave, and ψ (r), also called
eikonal function, is an optical-length function that depends on
the actual shape of the wavefront. In particular, the gradient of
the eikonal function ∇ψ, is normal to the wavefront and then
defines the local ray direction, while the Hessian matrix of ψ,
indicated as ∇∇ψ, takes into account the local curvature of
the wavefront. The Hessian matrix of the eikonal function is
often indicated with the symbol Q and called the curvature
matrix of the local wavefront [20], [21]. By substituting (1)
in Maxwell’s equations, the following relations are obtained
(locally plane TEM wave) [15]:

∇ψ ·E = 0 ∇ψ ·H = 0 ηH = ∇ψ ×E (2)

where η =
√
µ0/ϵ0 is the free-space impedance, and the

symbols ′′·′′ and ′′×′′ stand for the dot scalar product and
the cross vector product, respectively. Moreover, it can be
proved that in a homogeneous medium, the ray trajectories
are rectilinear. In particular, in free space the generic ray has
constant direction ŝ = ∇ψ, whereas the wavefront has an
astigmatic shape so that the E-field propagating along a single
ray can be written as [20]:

E (s) = E (0)A (s) e−jk0s =

= E (0)

√
pdet {Q(s)}
pdet {Q(0)}

e−jk0s
(3)

where s is the local coordinate along the ray, i.e. the dis-
tance between the current point and the reference point
s = 0, E (0) is the field at the reference point, and A(s) =√

pdet {Q(s)}/pdet {Q(0)} is the so-called spreading (or
divergence) factor, that derives from power conservation on a
ray tube and depends on the actual wavefront’s shape. In (3),
the notation pdet{−} stands for the pseudo-determinant of
the square matrix, i.e. the product of its non-zero eigenvalues.

The curvature matrix of an astigmatic wave can be expressed
in the following way [17], [20]:

Q
−
(s) =

1

ρ1 + s
X̂1X̂1 +

1

ρ2 + s
X̂2X̂2 (4)

with ρ1 and ρ2 being the principal curvature radii at the
reference point, corresponding to the two principal curvature
directions X̂1, X̂2. In (4) and in the following, the dyadic
product is used for ease of notation, which is equivalent in
linear algebra to the multiplication of a column vector by a
row vector, i.e.

ab ≡ abT

where the superscript ()T stands for the transpose operator.
According to (4), in free space the wavefront diverges as

it propagates without changing shape, i.e., the two principal
directions remain the same while the curvature radii linearly
increase with s as ρ1 + s and ρ2 + s.

By definition (4), Q(s) is a rank-2 symmetric matrix,
and the wave principal curvatures κ1 = (ρ1 + s)−1, κ2 =
(ρ2 + s)−2 are its non-zero eigenvalues, while the principal

directions X̂1, X̂2 are the corresponding eigenvectors. This
means that, by adopting the local ray-fixed reference system
(X̂1, X̂2, ŝ), Q(s) is diagonalized in the form:

Q
−
(s) =


1

ρ1 + s
0 0

0
1

ρ2 + s
0

0 0 0

 (5)

As a consequence of (4), (5) the following property holds,
as the principal directions X̂1, X̂2 lay on the transverse plane
with respect to the ray direction ŝ:

Q
−
ŝ = ŝTQ

−
= 0 (6)

Finally, according to (3) and (5), the spreading factor for an
astigmatic wave can be expressed as a function of the principal
curvature radii in the form:

A (s) =

√
ρ1ρ2

(ρ1 + s) (ρ2 + s)
(7)

As it can be seen from (7), the GO field has singularities on the
wave caustics, i.e. for those points along rays so that s = −ρ1
or s = −ρ2. GO theory cannot be applied to compute the field
in the vicinity of a caustic: in such a case, different methods
based on asymptotic evaluation need to be applied [22].

In the following, according to the GO approach, we leverage
the locally plane wave assumption to model reflection and
diffraction at each surface element of a RIS, while we account
for the wavefront’s actual shape through the spreading factor,
that gives the actual attenuation-trend of field’s intensity with
distance. In practice, we linearize both the incident wavefront
- with a local plane - and the effect of the RIS on it – with
the local phase gradient – in order to simplify computation
steps (i) and (ii) above, whereas the actual curvatures of the
wavefront are considered for step (iii).

B. Anomalous ray reflection

Anomalous ray reflection is modeled according to a 3D
version of the generalized law of reflection [23], which takes
into account that, in general, incidence plane and reflection
plane can be different. For the sake of simplicity, we limit
the analysis to flat surfaces, but the extension to the case of a
curved RIS is possible.

Let us then consider a flat RIS of normal n̂, and let be
r′ the position of the generic surface element. The position
vector can be expressed as a function of 2 local coordinates
on the RIS plane (see Figure 1), i.e. r′ = r′ (u, v). When a
ray impinges on the surface with propagation direction ŝi so
that −ŝi · n̂ = cos θi, where θi is the incidence angle, the field
acquires an incidence phase gradient on the surface due to
the inclination of the locally-plane wavefront of the ray with
respect to the RIS. This phase gradient is:

∇χi = −k0 sin θi ŝiτ (8)

where the unit vector ŝiτ defines the orientation of the inci-
dence plane with respect to the RIS surface (see Fig. 1).
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Fig. 1. Total phase gradient and anomalous ray reflection at the generic
surface element

Eq. (8) can be rewritten in the equivalent form:

P− τ ŝ
i = ŝi − n̂(n̂ · ŝi) = sin θi ŝ

i
τ = −∇χ

i

k0
(9)

where P− τ is the tangent projection operator, defined as:
P− τ = 1− − n̂n̂ (10)

and 1− is the identity matrix.
Then, according to a macroscopic approach, the RIS applies

the additional phase gradient ∇χm of the considered reradia-
tion mode so that the total phase gradient at the considered
surface location becomes:

∇χ = ∇χi +∇χm (11)

Anomalous reflection direction takes place according to
that total phase gradient. The reflection plane is parallel to
the phase gradient direction (see Fig. 1); however, as surface
points with a greater phase will reradiate before those with
a phase lag, the resulting locally-plane wavefront will have
opposite orientation with respect to the total phase gradient
∇χ. It can be easily shown (see Appendix A) that the
projection of the reflected ray direction on RIS plane is given
by:

P− τ ŝ
r = sin θr ŝ

r
τ = P− τ ŝ

i − ∇χ
m

k0
= −∇χ

k0
(12)

where θr is the reradiation angle, and ŝrτ defines the
reflection (or reradiation) plane, that generally for a RIS is
different from the incidence plane, as shown in Fig. 1.

Observing that |ŝr| = 1, the reflection unit vector can be
written using a single compact equation:

ŝr =P− τ ŝ
i − ∇χ

m (r′)

k0
+

√
1−

∣∣∣∣P− τ ŝi − ∇χm (r′)

k0

∣∣∣∣2 n̂ =

= −∇χ (r′)

k0
+

√
1−

∣∣∣∣∇χ (r′)

k0

∣∣∣∣2 n̂

(13)

which expresses the generalized law of reflection.
As in [3], [13], the reradiated field can be computed

using the Spatial Modulation Coefficient (SMC), that takes

into account the overall reradiation properties of the RIS.
According to this macroscopic approach, we assume that the
following boundary condition holds for every point of the RIS
surface:

Er (r′) = Γ− (r′)Ei (r′) (14)

In (14), instead of a scalar coefficient we make use of the
Spatial Modulation Dyadic (SMD) coefficient Γ−, in order to
take into account the polarimetric effect of the RIS. Such
coefficient is defined as:

Γ (r′) = Γ0 (r
′) ejχ

m(r′) = Am (r′) ejχ
m(r′) ·Rm =

= Am (r′) ejχ
m(r′) ·

(
Rm∥ êi∥ê

r
∥ +Rm⊥ êi⊥ê

r
⊥

) (15)

where Am and χm are the amplitude and phase modulation
of the considered reradiation mode, while the matrix Rm =
Rm∥ êi∥ê

r
∥ + Rm⊥ êi⊥ê

r
⊥ is used to account for the polarization

transformation realized by the RIS [17], [24]. The unit vectors
êi,r⊥ and êi,r∥ are used to decompose the incident/reflected
field into perpendicular (TE) and parallel (TM) components
with respect to the incidence/reflection plane on a ray-fixed
reference system (see Fig. 1), and are easily computed as:

êi,r⊥ = ŝi,rτ × n̂ êi,r∥ = êi,r⊥ × ŝi,r (16)

Usually, the phase modulation coefficient χm varies on the
wavelength scale, while the amplitude modulation coefficient
Am varies on a larger scale and may take into account
non-local effects along the RIS surface. In general, Am and
χm cannot be arbitrarily chosen, but must satisfy proper
constraints in order to be representative of a realistic RIS
design, as discussed in detail in [3]. A RIS able to control
the polarization, here modeled through the dyadic Rm, can be
alternatively represented as a tensor impedance sheet (see for
example [25, pp. 57-59]). Additional terms may be introduced
in (15) to take into account additional losses caused by
parasitic effects and diffuse scattering, as discussed in [13].
In the following, we assume that the SMD coefficient Γ is
known, either from the design stage, or estimated through
measurements.

After defining the local reflection direction ŝr and applying
the SMD coefficient to the incident field, the last step consists
in the computation of the field along the reflected ray, in-
cluding the spreading factor. This can be derived through the
curvature matrix by applying a local phase matching procedure
on the RIS surface, following a method similar to the one
presented in [20], and also used in [17] to derive the spreading
factor of the reflected wave from a curved PEC surface.
Differently from [20], here we express wave curvatures using
3x3 non-diagonal curvature matrices, avoiding the use of a
ray-fixed local reference system on the incident and reflected
wave to diagonalize them, that would need multiple matrix
transformations. As a starting point, by substituting (1) and
(15) in (14), we get:

Er0 (r
′)e−jk0ψ

r(r′) =

= Γ−0 (r
′)Ei0 (r

′) ej[χ
m(r′)−k0ψi(r′)] (17)

and then:
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Er0 (r
′) = Γ−0 (r

′)Ei0 (r
′) (18a)

k0ψ
r (r′) = k0ψ

i (r′)− χm (r′) (18b)

Eq. (18b) is a phase-matching relation that involves the
phase of incident and reflected fields, and the phase χm

imposed by the RIS. By expressing each phase term through
its Taylor series expansion about a reference point r′0 on the
RIS, a simple relation between the local curvature matrices of
the incident and reflected fields can be derived, as shown in
Appendix A:

t ·Q
−

rt = t ·
{[

Q
−

i − 1

k0
∇∇χm (r′0)

]
t

}
(19)

where t = r′ − r′0 is any vector tangent to the RIS surface
at r′0, and ∇∇χm is the Hessian matrix of the phase profile
χm imposed by the RIS, computed in r′0.

In order for (19) to be satisfied, the tangent projection of
the incident curvature matrix, plus the curvature imposed by
the RIS, must equate the tangent projection of the reflected
curvature matrix, i.e.:

P− τQ−
rP− τ = P− τ

[
Q
−

i − 1

k0
∇∇χm

]
P− τ (20)

Eq. (20) only provides the tangential component of Q
−

r.

The normal component is determined by imposing (6) for the
reflected ray, i.e.

Q
−

r ŝr = 0

In particular, by combining (6) and (20), through simple
algebraic manipulations the final expression of Q

−

r can be

found:

Q
−

r = L−
T

[
Q
−

i − 1

k0
∇∇χm

]
L− (21)

where L− is a linear transformation operator, having the
following form:

L− =

(
1− −

ŝr n̂

ŝr · n̂

)
(22)

According to GO rules, after reflecting on the RIS the wave
continues to propagate along a rectilinear trajectory and the
curvature radii increase proportionally to the path length, as
the medium above the RIS surface is homogeneous. If the
incident ray hits the RIS in the point r′, the GO field on a
observation point r = r′ + s ŝr along the reflected ray is then
expressed by:

Er (r) = Γ− (r′)Ei (r′)Ar(s) e−jk0|r−r′| =

= Γ− (r′)Ei (r′)

√
ρr1ρ

r
2

(ρr1 + s)(ρr2 + s)
e−jk0s

(23)

with ρr1, ρr2 being the principal curvature radii of the reflected
wave at r′, i.e. the reciprocals of the non-zero eigenvalues of
the reflection curvature matrix Qr, computed through (21),
and s the local coordinate along the reflected ray.

It is worth noting that generally, according to (21), RIS
reflection changes the wavefront shape into an astigmatic wave
even in simple cases, like with a spherical wave incident
on a constant phase gradient RIS, i.e. with ∇∇χm = 0.

For instance, let us consider the case of an anomalous re-
flector configured with constant anomalous angle θr, and
reradiation plane coincident with the incidence plane (i.e.
∆ϕ = 0 in Fig. 1). If such a RIS is illuminated by a
spherical wave, i.e. with ρi1 = ρi2 = s′, using (21) it can be
easily shown that the reflected wave has curvatures ρr1 = s′

and ρr2 = s′ cos2 θr/ cos
2 θi : the curvature perpendicular

to the incidence plane is unchanged, while the one laying
in the incidence plane is modified by anomalous reflection.
Therefore, the spherical wavefront shape is unchanged only in
the case of specular reflection.

C. Anomalous ray diffraction

Beside the GO contributions for the RIS scattered field,
edge diffracted ray-fields are also included in the model. This
type of contribution is important to smooth out the abrupt
field discontinuity predicted by GO when crossing the shadow
boundaries, and to predict a nonzero field in the GO shadow
region. Since an exact solution for the truncated RIS canonical
problem is not available, the edge diffracted field has to be
evaluated by resorting to an approximate solution. Similarly
to the approach adopted for the diffraction from arbitrary
impedance wedges, two methods are possible; one can ei-
ther resort to a PO approximate formulation and derive ray
contributions from its asymptotic evaluation [26], or develop
heuristic solutions [27], [28] by modifying the UTD coefficient
[17]. While in [18] the former methodology was pursued, here
we follow the latter which is more popular and effective for the
application to ray-tracing and propagation prediction because
of its simplicity. Since the total phase progression along the
RIS edges results from the combination of both the incident
wave illumination and the surface impedance modulation,
edge diffracted rays are launched toward anomalous directions,
similarly to what happens for GO reflected rays.

Namely, according to a generalized law of diffraction, the
diffracted ray direction ŝd must obey to (see Appendix B for
the proof):

cosβ = ŝd · ê = ŝr · ê =

=

(
ŝi − ∇χ

m

k0

)
· ê = cosβ′ − 1

k0

∂χm

∂e

(24)

where β is the aperture angle of the Keller-Rubinowicz diffrac-
tion cone, β′ is the incidence angle with respect to the edge
and ê is the unit vector along the edge, as shown in Fig. 2.

Looking at (24), it is evident that the additional term
corresponding to the spatial modulation modifies the cone
aperture with respect to the standard case, thus leading to an
anomalous diffraction. Moreover, the transverse component of
the reflection direction ŝr with respect to the edge direction
ê gives rise to an Anomalous Reflection Shadow Boundary
(ARSB). This applies of course to any reradiation mode of
the RIS.

Therefore, one can proceed similarly to the standard UTD
case, by recalling that the diffracted wave is astigmatic with
one caustic on the edge, and that the diffracted field is
computed as [17]:
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Fig. 2. Anomalous Keller’s cone and edge-fixed reference system for incident
and diffracted ray.

Ed (s) = D− ·E
i (QE)

√
ρd

s (ρd + s)
e−jk0s (25)

In (25), D− is the dyadic diffraction coefficient, and ρd is
the edge-caustic distance, i.e. the distance between the caustic
at the edge and the second caustic of the diffracted ray.

For a straight edge, ρd is related to the incident wave
curvature radius on the edge-fixed incidence plane, i.e. ρie,
through the following equation (see Appendix B for the proof):

1

ρd
=

1

ρie

sin2β′

sin2β
− 1

k0sin
2β

∂2χm

∂e2
(26)

Looking at (26), it is evident that the curvature of the
incident wave on the edge-fixed diffraction plane is modi-
fied by anomalous diffraction, similarly to what happens for
anomalous reflection. If the RIS has a constant phase gradient
along the edge, such curvature ρd is also constant along the
edge.

Fig. 3. Ordinary and anomalous Keller’s cones for a given point along the
edge.

Diffraction must also compensate for the incident field that
vanishes at the Incidence Shadow Boundary (ISB). However,
the incident ray boundary is not modified by the surface
impedance modulation of the RIS across the edge. This means
that, in addition to the anomalous Keller’s cone, also an
ordinary Keller’s cone of diffracted rays originates at the
diffraction point QE (see figure 3), i.e.

cosβ′ = ŝi · ê = ŝdO · ê (27)

with ŝdO direction of the diffracted ray laying on the ordinary
Keller’s cone. For those diffracted rays, the incident field

curvature is not modified by diffraction on a straight edge,
i.e. ρd = ρie [17].

Regarding the dyadic diffraction coefficient D− in (25),
it is expressed as a combination of unit vectors parallel
and perpendicular to the incidence and diffraction edge-fixed
planes, as in [17]. However, differently from the standard
UTD, two separate diffraction coefficients are defined for the
anomalous and ordinary diffracted rays. Therefore, we extend
the formulation of the UTD diffraction coefficient to the case
of a RIS in the following way:

D−
i = Di

(
−β̂β̂′ − ϕ̂ϕ̂′

)
(28)

D−
r =

(
−Dr

s
ˆ
βdβ̂′ −Dr

h
ˆ
ϕdϕ̂′

)
Γ− (29)

where Di is the scalar diffraction coefficient that applies to
the diffracted rays on the ordinary Keller’s cone, Dr

s and Dr
h

are the ”soft” and ”hard” scalar diffraction coefficients [17]
for the anomalous diffraction. In (29), Dr

s and Dr
h are also

multiplied by the spatial modulation coefficient Γ− to properly
compensate for anomalous reflection on the ARSB, following
the heuristic approach adopted in [27], [28] for a non-perfectly
conducting wedge.

The unit vectors (ϕ̂′, β̂′) form a right-handed triplet with
the incidence direction ŝi (see Fig. 2) and similarly, (ϕ̂, β̂)

and (
ˆ
ϕd,

ˆ
βd) form a right-handed triplet with the ordinary

and anomalous diffraction directions ŝdO and ŝd, respectively.
Therefore, they are easily computed as:

ϕ̂′ = − ê× ŝi

|ê× ŝi|
ϕ̂ =

ê× ŝdO

|ê× ŝdO |
ˆ
ϕd =

ê× ŝd

|ê× ŝd|

β̂′ = ϕ̂′ × ŝi β̂ = ϕ̂× ŝdO
ˆ
βd =

ˆ
ϕd × ŝd

(30)

In order to express the scalar diffraction coefficients Di,
Dr
s , Dr

h in (28),(29) in a similar form to the one introduced
in [17] for standard UTD, we need to define the ray angular
coordinates with respect to the edge (see Fig.s 2-4). They can
be computed with the following equations [29]:

β = arccos (ŝr · ê) (31)

β′ = arccos
(
ŝi · ê

)
(32)

ϕd = π −
[
π − arccos

(
ŝd · t̂
sinβ

)]
sgn

(
ŝd · n̂
sinβ

)
(33)

ϕ′ r = π −
[
π − arccos

(
−ŝr · t̂
sinβ

)]
sgn

(
ŝr · n̂
sinβ

)
(34)

ϕ = π −
[
π − arccos

(
ŝdO · t̂
sinβ′

)]
sgn

(
ŝdO · n̂
sinβ′

)
(35)

ϕ′ = π −
[
π − arccos

(
−ŝi · t̂
sinβ′

)]
sgn

(
−ŝi · n̂
sinβ′

)
(36)

with n̂ denoting the unit vector normal to the RIS and t̂ =
n̂× ê the unit vector tangent to the RIS and orthogonal to the
edge.

Compared to the standard UTD, in (31)-(36) 3 additional
angles are introduced, namely β, ϕd and ϕ′ r : β is the
angle formed by the anomalous Keller’s cone with the edge

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAP.2024.3359288

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



7

Fig. 4. Diffraction angles for anomalous diffraction. Red: incident ray and one
anomalous diffracted ray with corresponding incidence and diffraction planes;
Green: anomalous reflected ray and its opposite (back-specular) direction.

direction ê, and is different from the incidence angle β′, in
accordance with (24); ϕd defines the observation angle on the
anomalous Keller’s cone, projected on the transverse plane
to the edge, while ϕ′, r is the transverse angle defining the
specular direction of ŝr (see fig. 4) so that the diffraction
coefficient exhibits its transition at the ARSB, i.e. when
ϕd + ϕ′ r = π or ϕd + ϕ′ r = 3π.

The Incidence Shadow Boundary (ISB) condition is
|ϕ− ϕ′| = π and is unchanged w.r.t. the standard UTD.

Of course, if the RIS has a specular radiation mode,
this gives rise to a standard UTD diffraction, where all the
diffracted rays lay on the ordinary Keller’s cone, i.e. β = β′,
and the ARSB becomes the ordinary Reflection Shadow
Boundary (RSB), i.e. ϕd = ϕ and ϕ′ r = ϕ′.

In the standard UTD from a wedge, the diffraction coeffi-
cient is formed by two couples of cotangent terms (one for
each face of the wedge), that maximize the coefficient on the
ISB and on the RSB, respectively. However, since a RIS is a
diffracting half-plane, each couple of cotangents degenerates
into a single secant term [17]. Moreover, in the case of a RIS
these secant terms are not summed together to form a single
coefficient as in standard UTD, as they are applied separately
to diffracted rays that belong to different Keller’s cones.

Therefore, for a RIS properly designed in order to have
a single significant (anomalous) reradiation mode, while the
other propagating modes including the specular one are negli-
gible, the scalar UTD coefficients to be used in (28),(29) are
expressed by:

Di =
−e−jπ/4

2
√
2πk0 sinβ′

F
[
k0L

ia (ϕ− ϕ′)
]

cos [(ϕ− ϕ′) /2]
(37)

Dr
s,h = ∓ −e−jπ/4

2
√
2πk0 sinβ

F
[
k0L

ra
(
ϕd + ϕ′ r

)]
cos [(ϕd + ϕ′ r) /2]

(38)

where

F (X) = 2j
√
X ejX

∫ ∞

√
X

e−ju
2

du (39)

is the UTD Fresnel Transition function, with arguments

a (ϕ± ϕ′) = 2 cos2
(
ϕ± ϕ′

2

)
(40)

and distance parameters

Li =
s
(
ρie + s

)
ρi1ρ

i
2

ρie
(
ρi1 + s

) (
ρi2 + s

) sin2 β′, (41)

Algorithm 1 Computation of the RIS reradiated field
1: Read TX information
2: Define RX grid
3: for k ← 1 to Ntiles do
4: Calculate incident field Ei on tile k
5: for n← 1 to Nmodes do
6: Use (13) to find the reradiation direction
7: Intersect the reradiated beam with the RX grid
8: Compute the SMD Γ on tile k using (15)
9: Calculate curvature matrix using (21)

10: Calculate reflected field Er for mode n using (23)
11: Add ray contribution to total field at RX
12: end for
13: if tile k is a ”border tile” then
14: Calculate incident field on the tile edge
15: for n← 1 to Nmodes do
16: Find the anomalous Keller’s cone with (24)
17: Intersect Keller’s cone with the RX grid
18: Calculate UTD coefficient using (29)
19: Calculate ρd using (26)
20: Calculate diffr. field Ed for mode n using (25)
21: Add ray contribution to total field at RX
22: end for
23: Find the ordinary Keller’s cone with (27)
24: Intersect Keller’s cone with the RX grid
25: Calculate UTD coefficient using (28)
26: Calculate diffracted field Ed using (25)
27: Add ray contribution to total field at RX
28: end if
29: end for

Lr =
s
(
ρd + s

)
ρr1ρ

r
2

ρd (ρr1 + s) (ρr2 + s)
sin2 β. (42)

In (41), ρi1, ρ
i
2 are the principal curvature radii of the

incident wave, while ρie is the curvature radius of the incident
wave on the edge-fixed incidence plane (see Fig. 2).

Instead, in (42) ρr1, ρ
r
2 are the principal curvature radii of the

reflected wave, computed through (21), while ρd is the edge-
caustic distance, computed through (26). In the small argument
limit F (X → 0) ≃

√
jπX , it is easy to verify that the factor√

Li,r transforms the diffracted field spreading factor into the
GO one. As a consequence, the distance parameters in (41),
(42) ensure that, at the relevant SB where the arguments (40)
vanish, the edge diffracted field exhibits a jump discontinuity
compensating the GO abrupt disappearance, thus providing
a continuous total field across the SB. This property of the
standard UTD, is here suitably extended to the ARSB.

As a last remark, it must be noted that the diffraction coeffi-
cients (37),(38) apply to different diffracted rays (ordinary and
anomalous) that originate from the same point QE on the edge,
and the corresponding diffracted fields also have different
spreading factors and propagate in different directions, which
corresponds to a forward ray-tracing perspective. Therefore,
the diffraction coefficients cannot be summed, unlike in stan-
dard UTD. Conversely, by assuming a backward ray-tracing
perspective, a fixed observation point P in the space might be
hit by diffracted rays that originate at two different diffraction
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points (or ”critical points”) on the edge [30], i.e. those points
which satisfy (24) and (27). In such a case, the total diffracted
field in P is expressed by

EdTOT (P ) = D−
i ·Ei (QE1)

√
ρie

s1 (ρie + s1)
e−jk0s1

+D−
r ·Ei (QE2)

√
ρd

s2 (ρd + s2)
e−jk0s2

(43)

where s1, s2 are the distances between the critical points QE1,
QE2 and the observation point P , respectively, and ρd, D−

i,
D−
r are computed using (26), (28) and (29). If the RIS has

multiple reradiation modes, additional critical points arise, and
additional terms of anomalous diffraction are added to (43).

D. Computation of the overall reradiated field

The procedure for the computation of the reradiated field
from a finite-size RIS using the proposed ray approach is
summarized in Algorithm 1. The RIS is first subdivided into
tiles, and the procedure is iterated over the different tiles and
over the different RIS reradiation modes: finally, the reflected
and diffracted fields are coherently summed to get the overall
reradiated field.

III. APPLICATION EXAMPLES

As a first simple benchmark case, we consider a ”perfect”
anomalous reflector [23], [31], illuminated with a plane wave
at normal incidence. The RIS has size 7× 7m2 , is centered
in the origin of an orthogonal reference system Oxyz, and
lays on the xy plane. Furthermore, the RIS is designed for an
anomalous reflection angle θr = 60◦, and a normal incident
wave with perpendicular (TE) polarization with respect to
the xz plane, at the frequency of 3.5 GHz. This can be
accomplished by setting the following expressions in the SMD
coefficient (15):

χm = k0(sin θi − sin θr)x

Am =
√
cos θi/ cos θr

Rm = ŷŷ

This means that the RIS imposes a constant phase gradient
∇χm = k0(sin θi − sin θr)x̂ along the x axis, the wave
polarization is perpendicular to the reradiation plane and is
not altered by the RIS, while the term Am =

√
cos θi/ cos θr

accounts for global power conservation [31]. Such kind of
”perfect” anomalous reflector with a single reradiation mode
and global power conservation requires a non-local design
of the surface impedance through excitation of additional
auxiliary evanescent fields or by carefully engineering the
surface reactance profile, and can be achieved for example with
a nonuniform array of metal patches separated by a dielectric
layer from a ground plane, as described in [23].

In Fig. 5, the distribution of the reradiated E-field computed
with the ray model on the xz plane is shown, assuming a
unitary incident field Ei = (−1 V/m)ŷ at the RIS surface.
Being an high-resolution image, interference fringes caused
by edge diffraction are well visible, both inside and outside

the reflection cone. The result of Fig. 5 is very similar to
the one shown in [13, Fig. 4] except for a small scale factor
in the values of the reradiated field, as this previous result
was obtained using a different model, called ”Antenna Array-
Like” (AAL) model, and applied to the case of an ideal phase-
gradient reflector, by using a ”locally-specular” reflection
assumption, which can cause a small bias error, as mentioned
in [13].

Fig. 5. Field distribution for a perfect anomalous reflector, with θi = 0◦,
θr = 60◦. Frequency: f = 3.5 GHz. TE-polarized incident plane wave,
with

∣∣Ei
∣∣ = 1 V/m at the RIS surface.

In order to show the effectiveness of the proposed approach,
the scattered field computed with the ray model and shown in
Fig. 5 is compared with the one computed using the Physical
Optics approach, which is well-proven and widely used [10].
The PO field is computed through the following radiation
integral:

EsPO(r) = −
jk0
4π

∫
S

e−jk0|r−r′|
|r−r′| [η r̂×JS(r′)×r̂+MS(r

′)×r̂]dS

(44)
where the equivalent surface currents for an impenetrable
metasurface are approximated as [10]:

JS = n̂× (Hi +Hr)

MS = −n̂× (Ei +Er) = −n̂× (Ei + Γ− Ei)
(45)

with
Hi,r =

1

η
ŝi,r ×Ei,r (46)

By comparing the whole predicted field in Fig. 5 with the
one obtained using the PO model on the same Rx grid, one
obtains that the Root Mean Square (RMS) distance between
the two models is about 2.1% of the unit incident field.
The reference PO solution is obtained through numerical
computation of the integral (44) with a discretization of the
RIS into tiles of length λ/2, the minimum resolution to have
a reliable prediction without grating lobes [13]. It is worth
noting that both the ray and the PO solutions are slightly
approximate, albeit in different ways, the first being based on
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an asymptotic approximation of the field for high frequencies,
and the second on the assumption that the total field is zero on
the shadow side of the RIS and the radiating currents are not
perturbed near the edges. However, the ray-based approach is
intrinsically more efficient. Just to have an idea, to produce the
high resolution image of Fig. 5 (1.2 Mpixel) with numerical
solution of the integral (44), using MATLAB on a workstation
with Intel(R) Xeon(R) E5-2620 CPU and parallelization on 8
cores, it takes about 17 hours and 45 minutes. On the contrary,
the same result can be obtained with the ray model in about
200 seconds. Results are summarized in Table I in terms of
mean error, standard deviation of the error and RMS error
with respect to the reference PO model, and computation time.
The errors are expressed as a percentage of the unit incident
field. Table I also reports the AAL model of [13], which has
intermediate performance: the mean error is slightly worse
and the error standard deviation is slightly better than the ray
model, but its computation time is of about 2 hours and 26
minutes, which is 43 times slower than the ray model.

TABLE I
ACCURACY AND COMPUTATION TIME OF RAY MODEL AND AAL MODEL

WITH RESPECT TO THE REFERENCE PO MODEL

Model Mean error Error
std deviation RMS error Computation

time (s)
PO model — — — 63918

AAL model 0.19% 1.33% 1.35% 8767
Ray model 0.16% 2.07% 2.08% 200

In order to provide a visual comparison between the pro-
posed ray model and the PO reference model, the reradiated
field shown in Fig. 5 is sampled along the RX line at
x = 10, y = 0 (green dashed line) and compared with the
one obtained using the PO model in the same Rx locations.
The comparison is shown in Fig. 6 where the reradiated field
obtained through the ray model is represented by the black
curve, while red dotted curve corresponds to the PO model.
The AAL is not plotted in this case for readability reasons,
as the curves are very close each other. It is evident that the
2 curves in Fig. 6 are nearly coincident, thus confirming the
validity of the adopted approach. The only small difference
that can be appreciated, at z = 7, is due to the absence in the
model of vertex diffraction, which would allow for a smoother
transition when edge ray diffraction ceases to exist.

Anomalous reflectors are usually conceived and designed
for the canonical case of an incident plane wave from a
given direction, but in a real environment the incident wave
is spherical (or astigmatic), unless the illuminating source is
very far. This fact causes an impact on RIS performance, as
depicted in Fig. 7, where the same RIS of the previous example
is considered (perfect anomalous reflector) and the field along
the green dashed line in Fig. 5 is computed with the ray model
for an illuminating spherical source located along the z-axis,
at a distance of 50 m from the RIS center. The incident field
is normalized so that its maximum value, at the center of
the RIS, is 1 V/m. Fig. 7 shows a significant widening of
the reflection cone and a reduction in the amplitude of the
reradiated field for a uniform spherical incident wave (red
dashed curve) compared to the reference case of plane wave

Fig. 6. Comparison of the ray model with the PO model along the dashed
green line in Fig.5

Fig. 7. Comparison of the reradiated field predicted with the ray model along
the dashed green line in Fig.5 in 3 different cases: a) incident plane wave
(black line), b) incident uniform spherical wave (red dashed line), c) incident
non-uniform spherical wave with gaussian profile and divergence Ω = 4◦

(blue dotted line) .

illumination (black curve). This is mainly due to the fact that
the incidence phase gradient is not constant along the RIS
surface, and then the phase compensation operated by the RIS
is imperfect. Moreover, the reflected wave is astigmatic, as
discussed in Section II, and therefore attenuates faster with
distance than a spherical wave.

The reradiated field intensity is further reduced if the RIS is
illuminated with a directive antenna. As a reference example,
Fig. 7 depicts the case of illumination with a circular gaussian
beam (blue dotted curve), that can well approximate the main
radiation lobe of a pencil-beam directive antenna [32]. The
considered gaussian beam has beam waist w0 = 0.39 m,
corresponding to a divergence angle Ω = λ

πw0
≈ 4◦ at

f = 3.5 GHz. As the distance from the source (d = 50 m)
is far beyond the Rayleigh distance, the incident wave on
the RIS surface is a non-uniform spherical wave, and about
86% of its power is contained on a circular spot with radius
R = Ωd ≈ 3.5 m [33]. As expected, in this case the
reradiated field intensity further decreases compared to the
case of incident uniform spherical wave (red dashed curve),
especially in the side regions of the reflection cone, where the
reduction is of about 6 dB: in fact, since most of the incident
power is concentrated around the RIS center, the contribution
of edge diffraction becomes less significant in this case.
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Fig. 8. Comparison between ray model and full-wave simulation along a
semicircle on the xz plane centered on the RIS, at a distance r = 1m.

Fig. 8 shows a more realistic case of a periodic phase-
gradient RIS with multiple propagating modes. The ray model
is compared with full-wave simulations performed with the
frequency-domain solver (FEM) of CST microwave studio.
Similarly to the previous cases, we consider the reference
case of a normally incident plane wave, with field amplitude
E0 = 1 V/m on the RIS surface. The RIS is located in the
xy plane, centered at the origin, and consists of a reactive
impedance sheet Zs(x) = jη tan(πxD ) with period D along the
x axis, while the incident field is TE-polarized (i.e. along the
y axis). The period can be found as D = λ/ |sin θi − sin θr|,
in accordance with [10], [23]: therefore, it is chosen as
D = 98.91 mm in order to give a reflection angle θr = 60◦

on the xz plane at f = 3.5 GHz. To limit the computation
time, the size of the RIS in the CST simulation was chosen to
be 7D× 7D, i.e. about 0.7× 0.7m2. The surface impedance
profile was sampled at 20 points in each period, so that the
RIS model consists of 140 strips of length 7D and width D

20 ,
each with a constant surface impedance boundary condition.
The reradiated field is sampled along a semicircle in the xz
plane at a distance r = 1m from the center of the RIS.

In order to compare the full-wave simulation with the ray
model, the amplitude and initial phase for the propagating
modes have been obtained by first simulating in CST a single
periodic cell of the RIS with periodic boundary conditions and
Floquet port excitation. According to the Floquet theory, in the
considered case of a normally incident plane wave, there are
three scattered propagating modes n = −1, 0, 1 [10]: n = 1
corresponds to the desired reradiation mode at θ = 60◦, while
n = 0 and n = −1 correspond to the specular mode (θ = 0◦)
and to the opposite mode at θ = −60◦, respectively. The S-
parameters calculated by CST directly provide the amplitude
Am and phase χm of the scattered modes which are used
in (15) to obtain the spatial modulation coefficient Γ for
each mode. Then, the procedure described in Section II is
iterated to obtain the total reradiated field for each of the 3
propagating modes, and such fields are coherently summed
to obtain the result shown in Fig. 8 (black curve), which is
compared with the reference full-wave simulation (red dashed
curve). In both curves, the 2 lobes at θ = 60◦ and θ = −60◦
are clearly visible, whereas the specular mode appears to be
almost negligible, except for a few grating lobes. It is apparent
that the proposed ray-method can predict the RIS scattering

with good accuracy. Overall, the RMS distance between the
2 curves is equal to 0.019, i.e. 1.9% of the unit incident
field. The direction and level of the main lobes are quite
well estimated except for the underestimation of the lobe
at θ = −60◦ corresponding to the mode n = −1. Such
a difference is due to the fact that the ray-method is based
on the PO currents, i.e., on the equivalent currents in the
infinite periodic problem, which are only an approximation
of the the true currents on the truncated structure calculated
by the full-wave method. As the difference between the two
currents is mainly concentrated at the plate edges, the edge
diffraction as predicted under the PO approximation may
differ from exact edge diffraction. However, such a difference
generally decreases as the electrical size of the RIS increases.
In this moderate-size example it is still noticeable, though not
dramatic.

Fig. 9. Comparison between the ray model and the PO model in the case of
an ideal focalizing reflector. The distance from the focus is normalized with
respect to the wavelength.

As a last example, we consider an ideal focalizing reflector,
illuminated by a TE-polarized plane wave with

∣∣Ei∣∣ = 1V/m
and incidence angle θi = π/3 on the xz plane, at the frequency
f = 3.5GHz: this is achieved by setting Am = 1 and χm =
−χi + k0 |rF − r′| in (15), where χi = −k0 sin θi x is the
phase of the incident wave and rF is the position vector of
the focus point [13]. The RIS has the same size as the one
considered in the example of Fig. 5, and it is centered in the
point (0, 0,−10), while the focus point is located in the origin
of the reference system.

Fig. 9 shows the predicted field along the z-axis, starting
from the RIS surface up to the focus point, and compares the
proposed ray model with the PO model. In the plot, distance
from the focus is normalized to the wavelength, to give a
clear idea of the focal-spot size that must be related to the
wavelength (radius of about 5λ). Recalling that the GO field
has singularities on caustics (or focii), as mentioned in Section
II, it can be observed that the ray model provides reliable
results and in good agreement with the PO model up to a
distance of about 5λ from the focus, then the predicted field
value starts diverging. Proper handling of singularities in focal
points will have to be addressed in future work, together with
the introduction of vertex diffraction and extension of the
model to transmissive surfaces.
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IV. CONCLUSIONS

On the base of the characterization of a finite-size, reflective
RIS through a ”spatial modulation” dyadic function and a
few parameters, in the present work we propose a fully ray-
based approach for the computation of the reradiated field
that can be easily embedded in efficient, forward ray tracing
algorithms. The model is based on the computation of the
anomalous direction of the reflected or diffracted ray based
on the phase gradient of the spatial modulation function, and
on the computation of its spreading factor using the curvature
matrix of the local wavefront. We show that a new Keller’s
cone, the ”anomalous Keller cone”, has to be taken into
account in addition to the ordinary one and a new, original
formulation of the UTD diffraction coefficients is proposed
inspired by the heuristic approach in [27], [28]. We validate the
proposed model by comparison to well established methods
available in the literature: results show that the ray model is far
more efficient in term of computation time, but corresponding
results are very similar in a number of benchmark cases.

APPENDIX A
ANOMALOUS REFLECTION: COMPUTATION OF THE WAVE

CURVATURE MATRIX

Let’s consider a reference point P0 on the RIS surface, and
the corresponding position vector r′0. The phase of the incident
ray in a point P with position vector r′ located in the vicinity
of P0 can be approximated by its Taylor series expansion about
P0, truncated after the 2nd-order term:

ψi (r′) ≃ ψi (r′0) + ŝi (r′0) · [r′ − r′0]

+
1

2
[r′ − r′0] ·

{
Q
−

i (r′0) [r
′ − r′0]

}
(47)

where the identities ∇ψi ≡ ŝi and ∇∇ψi ≡ Qi have been
used, as stated in Section IIA.

Similarly, the phase of the reflected field can be locally
approximated as:

ψr (r′) ≃ ψr (r′0) + ŝr (r′0) · [r′ − r′0]

+
1

2
[r′ − r′0] ·

{
Q
−

r (r′0) [r
′ − r′0]

}
(48)

The same principle also applies to the phase χm imposed
by the RIS:

χm (r′) ≃ χm (r′0) +∇χm (r′0) · [r′ − r′0]

+
1

2
[r′ − r′0] · {∇∇χm (r′0) [r

′ − r′0]}
(49)

For a generic surface, any point P in the vicinity of P0 is
described by the following relation [20]:

r′ = r′0 + t− 1

2

(
t ·C− t

)
n̂ (50)

where t = t1û + t2v̂ is a vector tangent to the surface in r′0
and C = κ1ûû+κ2v̂v̂ is the curvature matrix of the surface.
However, in the present work we are considering only flat
surfaces (C = 0), so r′ − r′0 will be a tangent vector to the
surface, i.e.

r′ − r′0 = t (51)

By imposing the phase matching relation (18b) in the point
P, we have then:

ψr (r′0) + ŝr · t+ 1

2
t ·Q

−

rt = ψi (r′0) + ŝi · t+ 1

2
t ·Q

−

it

− 1

k0

{
χm (r′0) +∇χm (r′0) · t+

1

2
t · [∇∇χm (r′0) t]

}
(52)

and then, the following equations must be separately satisfied:

ψr (r′0) = ψi (r′0)−
1

k0
χm (r′0) (53a)

ŝr · t =
[
ŝi − 1

k0
∇χm (r′0)

]
· t (53b)

t ·Q
−

rt = t ·
{[

Q
−

i − 1

k0
∇∇χm (r′0)

]
t

}
(53c)

Eq. (53a) just provides the phase matching on the reference
position r′0. Eq. (53b) means that the tangent components of
the 1st-order terms of the Taylor’s expansion are equal, as
(53b) must be satisfied for any choice of the vector t. So,
using the projection operator P− τ = 1− − n̂n̂ we get (12):

P− τ ŝ
r = P− τ

[
ŝi − 1

k0
∇χm (r′0)

]
=

= −∇χ
i (r′0) +∇χm (r′0)

k0
= −∇χ (r′0)

k0

which leads to (13) by imposing |ŝr| = 1.
Finally, by pre-multiplying and post-multiplying with the

projection operator the 2nd-order terms (curvature matrices)
in (52), we immediately get (20):

P− τQ−
rP− τ = P− τ

[
Q
−

i − 1

k0
∇∇χm

]
P− τ

which leads to (21) by imposing Q
−

r ŝr = 0.

APPENDIX B
ANOMALOUS DIFFRACTION: COMPUTATION OF THE WAVE

CURVATURE ρd

We proceed in a similar way as for reflection, by writing the
Taylor series expansion of the phase functions of the incident
and diffracted wave, respectively, about a point P0 on the edge:

ψi (r′) ≃ ψi (r′0) + ŝi · (r′ − r′0)

+
1

2
(r′ − r′0) ·

{
Q
−

i (r′0) [r
′ − r′0]

}
(54)

ψd (r′) ≃ ψd (r′0) + ŝd · (r′ − r′0)

+
1

2
(r′ − r′0) ·

{
Q
−

d (r′0) [r
′ − r′0]

}
(55)

and similarly for the phase profile χm imposed by the RIS:

χm (r′) ≃ χm (r′0) +∇χm (r′0) · (r′ − r′0)

+
1

2
(r′ − r′0) · {∇∇χm (r′0) [r

′ − r′0]}
(56)

As we assume that the edge is rectilinear, we have

r′ − r′0 = ds ê (57)
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and then, by imposing the phase matching relation

ψd (r′) = ψi (r′)− 1

k0
χm (r′) (58)

e by substituting (54)-(57) into (58), we get:

ψi (r′0) + ŝi · ê ds− ∇χ
m (r′0)

k0
· ê ds

+
1

2

[
ê ·Q

−

i (r′0) ê

]
ds2 − 1

k0
[ê · ∇∇χm (r′0) ê] ds

2

= ψd (r′0) + ŝd · ê ds+ 1

2

[
ê ·Q

−

d (r′0) ê

]
ds2

(59)

Finally, by equating separately the 0-order, 1st-order and
2nd-order terms, we obtain:

1) the phase matching in r′0:

ψi (r′0) = ψd (r′0) (60)

2) the generalized law of diffraction:

ŝd · ê = cosβ =

(
ŝi − ∇χ

m

k0

)
· ê = cosβ′ − ∇χ

m

k0
· ê

(61)
3) the matching of the wave curvatures:

ê ·Q
−

d (r′0) ê = ê ·Q
−

i (r′0) ê−
1

k0
ê · ∇∇χm (r′0) ê (62)

In (62), we observe that ê ·Q
−

i (r′0) ê gives the ray curvature

of the incident wave on the edge-fixed incidence plane (i.e.
1/ρie), projected along the edge, i.e. multiplied by sin2 β′, as
the component of the edge direction along the ray gives no
contribution, in accordance with (6). Therefore:

ê ·Q
−

i (r′0) ê =
1

ρie
sin2β′ (63)

and a similar relation holds for the diffracted wave:

ê ·Q
−

d (r′0) ê =
1

ρd
sin2β (64)

Finally, recognizing that ê · ∇∇χm (r′0) ê is the 2nd order
derivative of χm along the edge direction, i.e.

ê · ∇∇χm (r′0) ê =̂
∂2χm

∂e2
(65)

and by substituting (63)-(65) into (62) we immediately get
(26):

1

ρd
=

1

ρie

sin2β′

sin2β
− 1

k0sin
2β

∂2χm

∂e2
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