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NAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their po
iptional stage. Evidence of their involvement in breast cancer and the possibility of quantifying the th
ration in the blood has sparked the hope of using them as reliable, inexpensive and non-invasive biomarke
ile differential expression analysis succeeded in identifying groups of disregulated miRNAs among tum
lthy samples, its intrinsic dual nature makes it inadequate for cancer subtype detection. Using artific
nce or machine learning to uncover complex profiles of miRNA expression associated with different brea
subtypes has poorly been investigated and only few recent works have explored this possibility. However, t
he same dataset both for training and testing leaves the issue of the robustness of these results still open.
his paper, we propose a two-stage method that leverages on two ad-hoc classifiers for tumor/healthy cl
n and subtype identification. We assess our results using two completely independent datasets: TGCA
and GSE68085 for testing. Experiments show that our strategy is extraordinarily effective especially for t

althy classification, where we achieved an accuracy of 0.99. Yet, by means of a feature importance mechanis
hod is able to display which miRNAs lead to every single sample classification so as to enable a personaliz
e approach to therapy as well as the algorithm explainability required by the EU GDPR regulation and oth
legislations.

Published by Elsevier Ltd.

ds: miRNA biomarkers, breast cancer subtype, supervised classification, feature importance

roduction

cer statistics collected from the US National Center for Health Statistics [1] show that, althou
ly, the incidence of new cancer cases in women is still increasing. Conversely, mortality is seamless
ing since the beginning of the nineties. The discordance of these two trends is in part due to t
hing improvements in the surgical and pharmaceutical treatment of cancer, but also to increasing
te screening techniques. Nevertheless, breast cancer still remains the most common tumor ty
nting for about 30% of the cases) in women and the second in terms of number of fatal even
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e of a fairly consolidated therapeutic protocol, at least for the early stages, screening techniques st
limited because breast cancer subtypes are not yet well characterized. The main classification f
thology consists in four intrinsic (or molecular) subtypes based on combinations of the expressi
f three receptors: estrogen-receptor (ER), progesterone-receptor (PR), and HER2. An alternati
cation system (PAM50 [2]), instead, uses a panel of 50 genes to discriminate among breast canc
es. Although partially overlapping [3], the differences in the subtype classification induced by the
ssification systems, reveals a large subtype heterogeneity [4] or suggests the presence of other (rar
es not well-represented in the classification system [5], [6].
mmography, a test that produces images of the breast by exposing it to low-energy X-rays, is t
main screening technique for this type of cancer. Since it has been introduced, this test has shown
ic advantage in terms of survival [7], even if it is not yet accurate enough in discriminating the canc
e [8]. Using expression-based profiling tests as an adjuvant to mammography would provide mu
details endowing screenings with subtype information as well as reducing the risk of overdiagnos
er, a more detailed test output cannot be obtained with invasive procedures, such as biopsy, sin
ould be daunting, limiting the population coverage.
to a relatively simple procedure to quantify them in serum [9], using inexpensive RT-qPCR [1
NAs (short non-coding RNAs sequences), have been extensively investigated in recent years as p
biomarkers for cancer [11]. The established role of miRNAs in gene regulation [12] (in particul
ssion) as well as the proved relationship between the expression of circulating miRNAs and cellul
s [13] has confirmed the potential of these small RNAs as non-invasive biomarkers [14]. Yet, miRNA
ion profiles of breast cancer subtypes have been shown to be different among each other [15, 16].
vious differential expression studies have identified several miRNAs involved in specific cellular a
(e.g. cell proliferation) that are disregulated among healthy and tumor samples (see [17, 18

er, the dual nature of differential expression fails to capture complex patterns of expression due
/miRNA or miRNA/mRNA interactions. Computational approaches based on machine learning a
is problem modelling the identification of effective panels of biomarkers as the classic feature selecti
as to improve binary classification [19, 20]. The training process is made possible by the genero
nce of tumor and healthy samples in The Cancer Genome Atlas [21]. Results like that reported
ve shown that miRNAs have the potential to be adopted as reliable biomarkers as well as they can
identify the primary cancer site. This latter fact is important in view of the possibility of exploiti
llular miRNAs, extracted from the serum, instead of tissue miRNAs, extracted by means of biops
rowing to breast cancer, although classification methods like that in [20, 22] have shown an ou
g power in discriminating healthy from tumor samples, subtype identification still remains an op
.

y few recent works extend machine learning approaches to multi-class classification in the attempt
subtypes. In [23], e a tree based approach is proposed that identifies a very small set of miRNAs f

cation. In spite of its desirable interpretability, the proposed method is unable to distinguish amo
l A and luminal B subtypes. In [24], a set of 5 miRNAs able to separate triple negative breast cance
ther subtypes is found. A pool of classifiers and feature selection methods is employed to ident
nimal set of miRNAs that maximize the validation accuracy in a k-fold validation process. With
t similar approach, [25] identifies 27 miRNAs associated to Luminal A, HER-enriched and basal-li
es.
his paper, we face the problem of subtype identification in addition to breast cancer classification. W
his goal by means of two independent classifiers: a Support Vector Machine (SVM) [26] for the bina
/cancer classification and a specialized multi-class Random Forest (RF) [27] for subtypes. As oppos
ious results [19, 20, 23, 25], an important novelty of our work is that for training/validation a
we used two completely independent datasets, sequenced with different technologies and process
ifferent bioinformatic pipelines. In particular, the raw counts of the BRCA dataset from The Canc
e Atlas (TCGA) were used for training and validation, while we performed tests by pre-processi
les from a cohort of 114 samples downloaded from the Gene Expression Omnibus (accession numb
085). This result is particularly important since it proves that our method is robust to changes
uencing machines, library preparation and reads pre-processing. A further important novelty of o
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is that we introduce a feature importance mechanism that scores each miRNA of a tested samp
ing to its contribution in the final classification decision. In addition to the utility of identifyi
l panels of miRNAs involved in a specific cancer subtype, this method is compliant to the ”right f
lanation” principle introduced in the UE General Data Protection Regulation (GDPR). Moreov
-sample nature of our feature importance mechanism, not only provides the subtype indication b
plains on the basis of the expression of which miRNAs the sample belongs to that subtype. This,
facilitates a personalized medicine approach to therapy.

terials and Methods

r approach aims to use miRNA fragments as possible biomarkers for breast cancer detection. W
sed this problem in two distinct phases. In the first phase, two machine learning models were train
inguish healthy from cancer samples and the cancer subtype (see Section 2.1). Secondly, a featu
ance approach has been employed to identify the most relevant features used by the machine learni
to make its predictions (Section 2.2). The overall pipeline of the proposed method is shown in Figu

Figure 1: Overall pipeline of the proposed classification approach.

lassification

r classification procedure consists of training two distinct classifiers which are subsequently used
e. In the first step, we employed a Support Vector Machine (SVM) classifier to recognize healthy fro
samples. SVMs are a commonly used class of machine learning algorithms particularly indicated in t
here the number of available training samples is rather limited. Moreover, they have been report
k well when data are represented as vectors of continuous variables. Due to these characteristi
ethod has largely been used in bioinformatics classification problems and, in particular, for canc
ic classification or subtyping [28]. The SVM is based on the idea of classifying the data by findi
erplane that divides the samples with the maximum margin. Indeed, to improve data separabili
ap the features into a higher dimensional space employing specific kernel functions. In the seco
he predicted cancer samples are classified into their specific sub-type using a Random Forest (R
er.
s are a class of machine learning models consisting of a set of decision trees that are independent
(bagging). The RF classifier determines the consensus outcome combining the predictions of t

ual decision trees. Similarly to SVMs, this class of algorithms is suitable for small datasets with
number of labelled samples. In addition, RFs can easily handle high-dimensional feature spaces a
mple, that constituted by human genes [29].
rationale behind our two-stage classification approach is that the two phases serve different purpos

n be optimized independently. The distinction between healthy and cancer samples can be consider
ning step, in which it is essential to avoid false negatives. Therefore, the classification model should
considering not only its accuracy but also the model recall. For the classification of tumor sub-typ
r, this requirement is less stringent, so that a different model with a different set of hyperparamete

3
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chosen. In this work, to select the best set of hyperparameters for both the models, a grid-sear
ch using a predefined grid of values has been employed. Furthermore, an oversample strategy has be
n the training set to alleviate the dataset class imbalance during training. Moreover, we evaluat
formance of the models using the balanced class accuracy. The best model in both stages was fina
d by evaluating the performance with a 4-fold cross-validation. For the healthy/cancer classifier t
n takes into account not only the balanced accuracy but also the recall, in order to obtain a mod
e of minimizing false negatives.

ature Importance

ng able to understand and interpret the results of machine learning tools is essential for developi
s that are reliable and usable in practice. There are many different ways to increase the understandi
achine learning model decision, and the feature importance is one of the most useful. Indeed, t
importance allows to estimate how much each feature contributes to the prediction of the model.
ords, a feature importance method provides a better understanding on which features are having t
t impact on the decisions made by the model. In this work, we used the SHAP approach [30] th
s to explain the prediction of a single example by computing the contribution of each feature to t
output. In particular, the SHAP method computes the Shapley values from coalitional game theo
operative multiplayer game, Shapley values aim to quantify each player’s contribution to the gam
ur case, to indicate how to fairly distribute the “payout” (which correspond to the prediction) amo
tures. In SHAP the key idea is, given a specific sample, to calculate the Shapley values associat
ch feature. Each Shapley value provides an estimate of the impact of the corresponding feature
diction. SHAP uses the kernel Shap method to efficiently calculate the Shapley values. The meth
used to estimate the importance of each feature for each individual example. To give an over
ion of the importance of the different features, we averaged the values obtained for each sample
t set.

periments

aining dataset

a-driven machine learning approaches for biomarker identification require the availability of a lar
on of annotated samples for training. As most of the other studies (see e.g. [19, 20, 23, 25, 31]),
ed on the generous collection of breast cancer samples available in The Cancer Genome Atlas.
used the Firebrowse service (http://firebrowse.org/) from the Broad Institute to download the brea
data while we derived clinical information from supplementary data of [32]. The Firebrowse reposito
s of all 1098 cases from TCGA at the date of 2016/01/28, including 20 samples for which the miRN
a is not available. Each sample is provided as the count of reads aligned to the primary transcript
RNAs.
e of the benefits of downloading datasets from Firebrowse is that this service makes a big effort
e undesired effects due to systematic biases. Consequently, we did not need to apply any bat
ion, but we simply converted raw counts into counts per millions by means of the cpm() function
eR [33] R package. As for filtering, we removed miRNAs that are marked as dead in the curre
of miRBase (http://www.mirbase.org/) version 22 (namely: hsa-mir-1254, hsa-mir-3653, hsa-m
sa-mir-3607, hsa-mir-3647, hsa-mir-3676, hsa-mir-1274b) and miRNAs with expression count equa
at least the 60% of the samples.
order to limit possible biases due to variability or sample management, we filtered-out males (
s) and FFPE (Formalin-Fixed Paraffin-Embedded) samples (12 cases). A consistent fraction of t
ing samples, however, is not provided with enough clinical information to unambiguously derive t
e and, thus, we could not include it in our study (492 cases).
labelled the HER2-enriched and basal-like subtypes in accordance to Table 1 of [34] while, in t
e of information on the KI67 index and tumor grade, we extracted the luminal A and luminal

4
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es from the PAM50 classification, as provided in the supplementary data of [35]. We also remov
ples where the molecular subtype classification conflicted with the PAM50 one.
ddition to cancerous samples (431 cases), the dataset includes 104 healthy samples. The subdivisi
samples by subtype is reported in Table 1.

Table 1: Training and test dataset description

Cancer subtype TGCA-BRCA GSE68085
Luminal A (LA) 215 62
Luminal B (LB) 96 -
HER2-Enriched (HER2) 56 -
Basal-Like (BL) 64 29
Healthy 104 11

st dataset

order to measure the degree of dependence of the classification outcome from the sequencing a
ing protocols used for data collection, we could not use the k-fold cross validation on the TCG
ut we needed a different source of testing samples. We thus thoroughly scan the Sequence Re
e (SRA) and the Gene Expression Omnibus (GEO) database to find suitable datasets of miRN
of breast cancer samples with available raw reads and annotated subtypes.
identified only one collection (see Table 1 for details) consisting in a cohort of 114 samples (GE
085), 11 of which belonging to apparently healthy woman subjected to reduction mammoplas
ced with Illumina Genome Analyzer IIx and described in details in [36]. We downloaded raw da
CBI SRA and used EZcount [37] for pre-processing and miRNA counting. As for annotations,
iRBase version 22 [38], remapping the nomenclature to make it consistent with that of the TCG
to exclude the 23 samples belonging to HER2+ and Luminal B since the samples of these types a

in the original classification.
for the training set, we normalized raw counts applying the count per million cpm() function fro
package.

lassification accuracy

lowing the procedure described in Section 2.1, we performed classification in two independent step
t to separate healthy from tumor samples and the second to identify the cancer sub-type. For ea
e selected the most accurate model, either SVM or RF, and the corresponding set of hyperparamete
g a 4-fold cross-validation with a grid search approach. For the perfomance evaluation, in ord
d misinterpretation of the classification results, we used balanced accuracy [39]. Indeed balanc
cy — defined as the average of the recall value obtained on each class — is especially useful when t
are imbalanced, for instance in anomaly detection problems. Table 2 shows the best results obtain
s-validation from the SVM and RF models trained on the TCGA-BRCA dataset, comparing differe
hyperparameters, to recognize healthy from tumor samples.

: Cross-validation results on the TCGA-BRCA dataset for the healthy vs cancer classification. Average balanc
and standard deviation are calculated based on the 4 validation folds

Model Mean Balanced Accuracy Standard Deviation
SVM 0.9926 ± 0.017
RF 0.9886 ± 0.035

hyperparameter selection procedure led to the choice of the SVM model2. The model was th
ed on the test set (GSE68085) and the results are reported in Table 3, while the confusion matrix
in Table 4.

5



Journal Pre-proof

/ Journal of Computational Mathematics and Data Science 00 (2022) 1–13 6

Table 3: est
set (GSE

Table 4: 5)

As ed
also to on
proced

Table 5 ed
accuracy

In t ng
that ou us
providi F
for the he
first m w
the acc ly,
in Tab

The u-
racy an les
predict ch
is part he
describ U
and 12 e
needed a
single s

3.4. B

As of
miRNA as
belong les
and diff it
is poss ly,
to deri

In t of
sample un

2Wit
3Wit ity

as the s
 Jo
ur

na
l P

re
-p

ro
of

Balanced Accuracy and Accuracy obtained by the SVM for the classification of healthy and tumor samples in the t
68085)

Model Balanced Accuracy Accuracy
SVM 0.9545 0.9901

Confusion matrix obtained by the SVM for the classification of healthy and tumor samples in the test set (GSE6808

Healthy Tumor
Pred Healthy 10 0
Pred Tumor 1 91

for the tumor/healthy classifier, a grid search approach with 4-fold cross-validation was perform
select the best model for tumor subtype identification. The results of the hyperparameter selecti
ure for this second classifier are shown in Table 5.

: Cross-validation results on the TCGA-BRCA dataset for the classification of tumor subtypes. Average balanc
and standard deviation are calculated based on the 4 validation folds

Model Mean Balanced Accuracy Standard Deviation
SVM 0.7442 ± 0.119
RF 0.7800 ± 0.093

his case, the best model selected for the cancer subtype classification is a RF3. It is worth noti
r two-stage classification approach allowed to specialize a different model for each of the stages, th
ng a great flexibility. The selected models, the SVM for the healthy-tumor classification and the R
tumor subtypes identification, were used in cascade on the test set (GSE68085). In particular, t
odel identifies cancer samples while the second classifier identifies their subtype. In Table 6, we sho
uracy and the balanced accuracy obtained at the end of this combined classification pipeline. Final
le 7, the overall confusion matrix is reported.
results indicate that the proposed approach allows to recognize cancer samples with excellent acc
d to perform a precise classification of the subtypes. Furthermore, false negatives (i.e. tumor samp
ed as healthy) are completely avoided in the test set (see the confusion matrix in Table 4), whi
icularly important to avoid delayed diagnoses with consequent health injury for the patient. All t
ed experiments were carried out on a computer with a 3.50GHz Intel(R) Core(TM) i9-10920X CP
8 GB of RAM, using the Python library scikit-learn [40]. In Table 8 we reported the execution tim
to train the SVM and RF models, and to predict the class and extract the feature importance for
ample.

iological significance

a direct consequence of the training phase, our classifier learned several co-expression patterns
s representative of each category. In contrast to differential expression, where a sample is labelled
ing to a given class only if certain known miRNAs follow a precise pattern, in our case, different profi
erent miRNAs can lead to the same classification. Thanks to the feature importance mechanism,

ible to identify a posteriori the miRNAs involved in a specific classification process and, consequent
ve their expression pattern.
his section, we show the interaction network of miRNAs more often involved in the assignment
s to their corresponding class. For each sample of the test set that was correctly classified, we r

h the following hyperparameters: linear kernel and C = 0.001.
h the following hyperparameters: 50 trees, max features 30, min sample leaf 1, mean sample split 8 and gini impur
plit criterion.
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e 6: Balanced Accuracy and Accuracy obtained by the combined classifier (SVM+RF) on the test set (GSE68085)

Model Balanced Accuracy Accuracy
Combined (SVM+RF) 0.8108 0.7450

Table 7: Confusion matrix obtained by the combined classifier (SVM+RF) on the test set (GSE68085)

Basal-like HER2-Enriched Luminal B Luminal A Healthy
ed Basal-like 25 0 0 4 0
ed HER2-Enriched 2 0 0 1 0
ed Luminal B 0 0 0 16 0
ed Luminal A 2 0 0 41 1
ed Healthy 0 0 0 0 10

ture importance mechanism and extracted the list of the 10 miRNAs with the highest score. The
lt a graph where each node corresponds to a miRNA and edges represent the relationship of c
ance in the list of relevant miRNAs of the same tested sample. We score the relationship streng
he probability of co-appearance among all samples.
thin out the graph and narrow the network to the most important miRNA/miRNA relationships,
three filters in cascade. Firstly, we removed edges where none of the involved miRNAs appeared
of relevant miRNAs for at least half of the tested samples. Then, we trimmed edges with probabili
wer than 0.3. Finally, unconnected nodes were withdrawn from the graph.

hsa-mir-145 hsa-mir-21
0.45

hsa-let-7c
0.54

0.72

hsa-mir-125b-2

0.90

hsa-mir-139

0.72

sa-mir-28

0.54

0.63 0.81

0.810.54

0.54 0.72

(a) Healthy samples

hsa-mir-100 hsa-mir-99a
0.37

hsa-mir-125b-2

0.38

hsa-mir-139

0.34

hsa-mir-10b

0.32

hsa-let-7c
0.31

0.36

hsa-mir-21

0.31

0.34

0.31

0.310.32

0.43

(b) Tumor samples

: Network of co-occurrence of highly important miRNAs for at least half of the classified samples. In red, miRN
important both for the healthy and tumor classes.

igure 2 the networks of miRNAs for healthy (a) and tumor (b) samples are depicted. As the figu
, the two networks share a fraction of the nodes (highlighted in red) but each of them has speci
ommon nodes tend to correspond to dysregulated miRNAs. In fact, analyzing them using edge

e found that they are all remarkably differentially expressed with very low p-values and absolu
change higher than 2. The other nodes, instead, do not show the same tendency. In particular, t
e log-fold change in some cases is lower than one. This derives from the fact that the expression
w constant within a class but fluctuates within the other.
loser inspection of the relevant miRNAs reported in Figure 2 reveals that they belong to know
pathways. The function of hsa-mir-125b-2, for example, has repeatedly been investigated in relati
er. As reported in a recent review [41], it can either acts as an oncogene or a suppressor according
cific cancer type. In the case of breast cancer, in [42], its molecular behaviour in conjunction with

7
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Table 8: Execution time of each phase of the proposed multistage classification approach

Step Seconds
SVM training: Healthy VS Tumor ∼ 0.0656
RF training: Tumor subtypes ∼ 0.3438
SVM prediction: Healthy VS Tumor ∼ 0.0002 per sample
RF prediction: Tumor subtypes ∼ 0.0027 per sample
SVM SHAP Feature Importance: Healthy VS Tumor ∼ 32.022 per sample
RF SHAP Feature Importance: Tumor subtypes ∼ 22.993 per sample

the binding site of BMPR1B is described, which miR-125b exploits to alter the transcription lev
ing levels of BMPR1B (thus low levels of hsa-mir-125b-2) are associated to higher risk. Counts
E68085 dataset confirms this hypothesis showing higher concentration of hsa-mir-125b-2 in healt
s. Hsa-let-7c has attracted the attention as a therapeutic target, due to its tumor suppressi
ties for several cancer types. In [43], a preliminary analysis of its regulation in breast cancer w
d, even if its role at the pathway level still needs to be investigated. Hsa-mir-21 is known to
ted to advanced clinical stages of breast cancer [44], being associated to the insurgence of lym
etastasis [45]. The potential of hsa-mir-139 as a diagnostic biomarker for several types of cancer
d in [46]. In breast cancer, [47] and others describe its suppression function of the proliferation a
ion of tumor cells by targeting RAB1A.
hough tumor specific miRNAs (hsa-mir-100, hsa-mir-99a and hsa-mir-10b) have already been inves
n cancer, their involvement is not as ubiquitous as that of miRNAs in common with the healthy cla
icular, recurrent co-expression patterns of hsa-mir-100 with hsa-mir-99b-3p have been found in or
ma [48] and in the resistance mechanisms of colorectal cancer [49]. Similarly, when in combinati
sa-mir-491, hsa-mir-99a modulates drug-resistance in gastric cancer [50]. For both miRNAs, ho
ttle is known about the interaction with breast cancer. The literature on hsa-mir-10b role in canc
only on gastric cancer [51], even if its role in breast cancer has been proved with in-silico analys
Claiming a causal relationship of hsa-mir-100, hsa-mir-99a and hsa-mir-10b with breast cancer

tanding the molecular mechanisms that connect patterns of them with this pathology is beyond t
f this paper. However, we can hypothesize that their central role in healthy/tumor classification is
their role in breast cancer even if their missing differential expression is responsible for the limit
t in the scientific literature.
the other hand, although the property of being differentially expressed of the miRNAs in comm
n healthy and tumor classes would appear appealing, relegating specific miRNAs to a marginal ro
ice that these miRNAs activate general cancer pathways and are not specific for breast cancer (
lar hsa-mir-125b-2, Hsa-let-7c, and hsa-mir-139). Consequently, their quantification in blood c
determining the presence of a tumor but is unable to discriminate its type.
ure 3 shows the interaction networks emerging from the identification of Luminal A (a) and basal-li
types. The absence of Luminal B and HER2-enriched types in the GSE68085 dataset prevented
owing similar networks for these two cancer types.
rst observation about miRNAs involved in the subtype identification is that, according to different
s made using edgeR, they are all dysregulated among healthy and tumor samples with very sm
s and, except for hsa-mir-584, with absolute log-fold change higher (or much higher) than 1. Inte
y, all but hsa-mir-378a and hsa-mir-584 have already been reported in tumor pathways of other form
er (in particular cell proliferation), even if limited information of their role in BRCA is available t
re. The two not cancer-specific miRNAs, namely hsa-mir-378a and hsa-mir-584, are both involv
ogenesis (see [53] and [54]). Even if understanding their role is beyond the scope of this paper, th
e in the networks of Figure 3 would suggest that their role could be in support of the growth of t
lesions. In particular, belonging them to two different networks shown in Figure 3, we could al
esize that Luminal A and basal-like subtypes use different pathways for vascularization. Effective
hsa-miR-584 was found to be down-regulating TGF-β in BC cells. PHACTR1, an actin-bindi
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important for both the tested cancer subtypes.

, is also regulated by hsa-miR-584. Overexpression of hsa-miR-584 and knockdown of PHACTR
d in a drastic rearrangement of the actin cytoskeleton and in a loss of TGF-β-induced cell migratio
astic reorganization of the actin cytoskeleton is important in axonal guidance signalling, playing
tumour cell migration, tumour cell survival and tumour angiogenesis.
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Figure 4: Comparison of the distributions of the expression levels for Luminal A and basal-like tumors.

irect comparison of the distributions of the expression level among Luminal A and basal-like tumo
gure 4) shows that common miRNAs (in particular hsa-mir-18a and hsa-mir-190b) tend to ha
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tial patterns, while subtype specific patterns for the other miRNAs are not evident. This result
with our hypothesis that the mutual influence of miRNAs in the cellular regulation cannot be fu
ed with differential expression but requires the inspection of more complex patterns.

cussion

his paper, we addressed the problem of using complex miRNA signatures as a tool to discrimina
cancer samples from healthy ones. In addition, we investigated the possibility of deriving intrin
es as well.
ast literature on this subject has identified several miRNAs whose differential concentration interfer
cogenes and/or suppressors and, thus, correlates with breast cancer. In several cases, however, t
iRNA is not specific but promotes/suppresses general pathways in common among different canc
As a result, although using these miRNAs as biomarkers could be useful to determine the presen
mor, they leave open the problem of identifying its type.
ent studies have argued that, despite useful, differential expression analysis is not enough power
or classification since it does not take co-regulation into consideration. Machine learning approach
[19, 20, 22] (and many others) have shown how the ability of supervised classifiers to learn compl
s can improve the classification accuracy. On the basis of these results, few authors have faced t
ge of extending classification to cancer subtype. Partial results (where not all breast cancer subtyp
sidered) have been described in [23, 24, 25].
main limit we impute to these works is that, due to the reduced availability of training sampl

ssification accuracy was evaluated on the same dataset used for training by means of the k-fo
alidation technique. However, as we know that miRNA quantification suffers from several bias
sequencing and raw data processing, using the same dataset for training and testing could fail
he robustness of the method. What we believe to be one of the major merits of our work is t
two completely independent datasets for training and test. The datasets have been produced wi
t sequencing machines and also pre-processing of raw data has been done with different bioinforma
es. In the healthy/tumor classification, we achieve an accuracy in line with the best published resul
tingly, no tumor samples have been classified as healthy. In our view, this is particularly importa
ring the negative implications of false negatives that could cause delayed diagnoses.
ther important aspect of our work is that the explanation of the classification results is not based
al model but it is tailored on the specific sample under consideration. Methods like that describ
which are also explainable, define general rules that do not take peculiarities of the individual in
ration. Despite defining general rules fulfills the goal of inferring relationships among miRNAs a
ex-ante explanation is not suitable for personalized medicine. Our approach, instead, pursues bo
Results depicted in Figure 2 and 3 prove that running our classifier on a large cohort of samp
to derive general knowledge, while the per-sample feature importance mechanism can be used f
alized medicine purposes.

nclusions

NAs are short fragments of non-coding RNA that influence cellular activity by means of a suppressi
ism. Due to their ubiquitous involvement in almost all molecular functions, miRNAs dysregulati
een investigated in conjunction with several diseases including cancer. Current research in bioinfo
is devoted to extend the standard differential expression model thanks to machine learning approach
e able to infer complex expression patterns forecasting a disease. In this paper, we followed a simil
ch with reference to breast cancer. Unlike the majority of other approaches, however, we do not lim
es to just recognizing the two health/disease classes, but, through a two-step classification, we al
the molecular subtype of the cancer. In addition, we employ a feature importance method th
personalized identification of the miRNAs responsible for a particular classification.
NA quantification is known to be greatly influenced by sequencing protocols and bioinforma
e for aligning reads and perform counting. In this regard, the current practice (driven by the la
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