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Abstract

MicroRNAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their post-
transcriptional stage. Evidence of their involvement in breast cancer and the possibility of quantifying the their
concentration in the blood has sparked the hope of using them as reliable, inexpensive and non-invasive biomarkers.

While differential expression analysis succeeded in identifying groups of disregulated miRNAs among tumor
and healthy samples, its intrinsic dual nature makes it inadequate for cancer subtype detection. Using artificial
intelligence or machine learning to uncover complex profiles of miRNA expression associated with different breast
cancer subtypes has poorly been investigated and only few recent works have explored this possibility. However, the
use of the same dataset both for training and testing leaves the issue of the robustness of these results still open.

In this paper, we propose a two-stage method that leverages on two ad-hoc classifiers for tumor/healthy clas-
sification and subtype identification. We assess our results using two completely independent datasets: TGCA for
training and GSE68085 for testing. Experiments show that our strategy is extraordinarily effective especially for tu-
mor /healthy classification, where we achieved an accuracy of 0.99. Yet, by means of a feature importance mechanism,
our method is able to display which miRNAs lead to every single sample classification so as to enable a personalized
medicine approach to therapy as well as the algorithm explainability required by the EU GDPR regulation and other
similar legislations.

(©) 2011 Published by Elsevier Ltd.

Keywords: miRNA biomarkers, breast cancer subtype, supervised classification, feature importance

1. Introduction

Cancer statistics collected from the US National Center for Health Statistics [1] show that, although
smoothly, the incidence of new cancer cases in women is still increasing. Conversely, mortality is seamlessly
decreasing since the beginning of the nineties. The discordance of these two trends is in part due to the
astonishing improvements in the surgical and pharmaceutical treatment of cancer, but also to increasingly
accurate screening techniques. Nevertheless, breast cancer still remains the most common tumor type
(accounting for about 30% of the cases) in women and the second in terms of number of fatal events.

*Corresponding author
Email address: filippo.geraci@iit.cnr.it (Filippo Geraci)
1Equal contribution ordered alphabetically
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Despite of a fairly consolidated therapeutic protocol, at least for the early stages, screening techniques still
remain limited because breast cancer subtypes are not yet well characterized. The main classification for
this pathology consists in four intrinsic (or molecular) subtypes based on combinations of the expression
levels of three receptors: estrogen-receptor (ER), progesterone-receptor (PR), and HER2. An alternative
classification system (PAMS50 [2]), instead, uses a panel of 50 genes to discriminate among breast cancer
subtypes. Although partially overlapping [3], the differences in the subtype classification induced by these
two classification systems, reveals a large subtype heterogeneity [4] or suggests the presence of other (rare)
subtypes not well-represented in the classification system [5], [6].

Mammography, a test that produces images of the breast by exposing it to low-energy X-rays, is the
current main screening technique for this type of cancer. Since it has been introduced, this test has shown a
dramatic advantage in terms of survival [7], even if it is not yet accurate enough in discriminating the cancer
subtype [8]. Using expression-based profiling tests as an adjuvant to mammography would provide much
richer details endowing screenings with subtype information as well as reducing the risk of overdiagnosis.
However, a more detailed test output cannot be obtained with invasive procedures, such as biopsy, since
they would be daunting, limiting the population coverage.

Due to a relatively simple procedure to quantify them in serum [9], using inexpensive RT-qPCR [10],
microRNAs (short non-coding RNAs sequences), have been extensively investigated in recent years as po-
tential biomarkers for cancer [11]. The established role of miRNAs in gene regulation [12] (in particular
suppression) as well as the proved relationship between the expression of circulating miRNAs and cellular
miRNAs [13] has confirmed the potential of these small RNAs as non-invasive biomarkers [14]. Yet, miRNAs’
expression profiles of breast cancer subtypes have been shown to be different among each other [15, 16].

Previous differential expression studies have identified several miRNAs involved in specific cellular ac-
tivities (e.g. cell proliferation) that are disregulated among healthy and tumor samples (see [17, 18]).
However, the dual nature of differential expression fails to capture complex patterns of expression due to
miRNA/miRNA or miRNA/mRNA interactions. Computational approaches based on machine learning ad-
dress this problem modelling the identification of effective panels of biomarkers as the classic feature selection
task so as to improve binary classification [19, 20]. The training process is made possible by the generous
abundance of tumor and healthy samples in The Cancer Genome Atlas [21]. Results like that reported in
[19] have shown that miRNAs have the potential to be adopted as reliable biomarkers as well as they can be
used to identify the primary cancer site. This latter fact is important in view of the possibility of exploiting
extracellular miRNAs, extracted from the serum, instead of tissue miRNAs, extracted by means of biopsy.

Narrowing to breast cancer, although classification methods like that in [20, 22] have shown an out-
standing power in discriminating healthy from tumor samples, subtype identification still remains an open
problem.

Very few recent works extend machine learning approaches to multi-class classification in the attempt to
identify subtypes. In [23], e a tree based approach is proposed that identifies a very small set of miRNAs for
classification. In spite of its desirable interpretability, the proposed method is unable to distinguish among
luminal A and luminal B subtypes. In [24], a set of 5 miRNAs able to separate triple negative breast cancers
from other subtypes is found. A pool of classifiers and feature selection methods is employed to identify
the minimal set of miRNAs that maximize the validation accuracy in a k-fold validation process. With an
in spirit similar approach, [25] identifies 27 miRNAs associated to Luminal A, HER-enriched and basal-like
subtypes.

In this paper, we face the problem of subtype identification in addition to breast cancer classification. We
fulfill this goal by means of two independent classifiers: a Support Vector Machine (SVM) [26] for the binary
healthy/cancer classification and a specialized multi-class Random Forest (RF) [27] for subtypes. As opposed
to previous results [19, 20, 23, 25|, an important novelty of our work is that for training/validation and
testing we used two completely independent datasets, sequenced with different technologies and processed
with different bioinformatic pipelines. In particular, the raw counts of the BRCA dataset from The Cancer
Genome Atlas (TCGA) were used for training and validation, while we performed tests by pre-processing
fastq files from a cohort of 114 samples downloaded from the Gene Expression Omnibus (accession number
GSE68085). This result is particularly important since it proves that our method is robust to changes in
the sequencing machines, library preparation and reads pre-processing. A further important novelty of our
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method is that we introduce a feature importance mechanism that scores each miRNA of a tested sample
according to its contribution in the final classification decision. In addition to the utility of identifying
general panels of miRNAs involved in a specific cancer subtype, this method is compliant to the "right for
an explanation” principle introduced in the UE General Data Protection Regulation (GDPR). Moreover,
the per-sample nature of our feature importance mechanism, not only provides the subtype indication but
also explains on the basis of the expression of which miRNAs the sample belongs to that subtype. This, in
turns, facilitates a personalized medicine approach to therapy.

2. Materials and Methods

Our approach aims to use miRNA fragments as possible biomarkers for breast cancer detection. We
addressed this problem in two distinct phases. In the first phase, two machine learning models were trained
to distinguish healthy from cancer samples and the cancer subtype (see Section 2.1). Secondly, a feature
importance approach has been employed to identify the most relevant features used by the machine learning
model to make its predictions (Section 2.2). The overall pipeline of the proposed method is shown in Figure
1.

( Basal-like )

- HER2-Enriched
Random Forest T

( Tumor »—> . -
Classifier - ) ~
(_ Luminal A

miRNA —| Normalization —> B - Ef;:i‘r':\’er

~TN Classifier P Lu . B .

Healthy

Figure 1: Overall pipeline of the proposed classification approach.

2.1. Classification

Our classification procedure consists of training two distinct classifiers which are subsequently used in
cascade. In the first step, we employed a Support Vector Machine (SVM) classifier to recognize healthy from
tumor samples. SVMs are a commonly used class of machine learning algorithms particularly indicated in the
cases where the number of available training samples is rather limited. Moreover, they have been reported
to work well when data are represented as vectors of continuous variables. Due to these characteristics,
this method has largely been used in bioinformatics classification problems and, in particular, for cancer
genomic classification or subtyping [28]. The SVM is based on the idea of classifying the data by finding
the hyperplane that divides the samples with the maximum margin. Indeed, to improve data separability,
they map the features into a higher dimensional space employing specific kernel functions. In the second
step, the predicted cancer samples are classified into their specific sub-type using a Random Forest (RF)
classifier.

RFs are a class of machine learning models consisting of a set of decision trees that are independently
learned (bagging). The RF classifier determines the consensus outcome combining the predictions of the
individual decision trees. Similarly to SVMs, this class of algorithms is suitable for small datasets with a
limited number of labelled samples. In addition, RFs can easily handle high-dimensional feature spaces as,
for example, that constituted by human genes [29].

The rationale behind our two-stage classification approach is that the two phases serve different purposes
and can be optimized independently. The distinction between healthy and cancer samples can be considered
a screening step, in which it is essential to avoid false negatives. Therefore, the classification model should be
chosen considering not only its accuracy but also the model recall. For the classification of tumor sub-types,
however, this requirement is less stringent, so that a different model with a different set of hyperparameters
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can be chosen. In this work, to select the best set of hyperparameters for both the models, a grid-search
approach using a predefined grid of values has been employed. Furthermore, an oversample strategy has been
used on the training set to alleviate the dataset class imbalance during training. Moreover, we evaluated
the performance of the models using the balanced class accuracy. The best model in both stages was finally
selected by evaluating the performance with a 4-fold cross-validation. For the healthy/cancer classifier the
selection takes into account not only the balanced accuracy but also the recall, in order to obtain a model
capable of minimizing false negatives.

2.2. Feature Importance

Being able to understand and interpret the results of machine learning tools is essential for developing
systems that are reliable and usable in practice. There are many different ways to increase the understanding
of a machine learning model decision, and the feature importance is one of the most useful. Indeed, the
feature importance allows to estimate how much each feature contributes to the prediction of the model. In
other words, a feature importance method provides a better understanding on which features are having the
greatest impact on the decisions made by the model. In this work, we used the SHAP approach [30] that
permits to explain the prediction of a single example by computing the contribution of each feature to the
model output. In particular, the SHAP method computes the Shapley values from coalitional game theory.
In a cooperative multiplayer game, Shapley values aim to quantify each player’s contribution to the game
or, in our case, to indicate how to fairly distribute the “payout” (which correspond to the prediction) among
the features. In SHAP the key idea is, given a specific sample, to calculate the Shapley values associated
with each feature. Each Shapley value provides an estimate of the impact of the corresponding feature to
the prediction. SHAP uses the kernel Shap method to efficiently calculate the Shapley values. The method
can be used to estimate the importance of each feature for each individual example. To give an overall
evaluation of the importance of the different features, we averaged the values obtained for each sample in
the test set.

3. Experiments

3.1. Training dataset

Data-driven machine learning approaches for biomarker identification require the availability of a large
collection of annotated samples for training. As most of the other studies (see e.g. [19, 20, 23, 25, 31]), we
leveraged on the generous collection of breast cancer samples available in The Cancer Genome Atlas.

We used the Firebrowse service (http://firebrowse.org/) from the Broad Institute to download the breast
cancer data while we derived clinical information from supplementary data of [32]. The Firebrowse repository
consists of all 1098 cases from TCGA at the date of 2016/01/28, including 20 samples for which the miRNA-
seq data is not available. Each sample is provided as the count of reads aligned to the primary transcript of
503 miRNAs.

One of the benefits of downloading datasets from Firebrowse is that this service makes a big effort to
mitigate undesired effects due to systematic biases. Consequently, we did not need to apply any batch
correction, but we simply converted raw counts into counts per millions by means of the cpm() function of
the edgeR [33] R package. As for filtering, we removed miRNAs that are marked as dead in the current
version of miRBase (http://www.mirbase.org/) version 22 (namely: hsa-mir-1254, hsa-mir-3653, hsa-mir-
3687, hsa-mir-3607, hsa-mir-3647, hsa-mir-3676, hsa-mir-1274b) and miRNAs with expression count equals
to 0 in at least the 60% of the samples.

In order to limit possible biases due to variability or sample management, we filtered-out males (13
samples) and FFPE (Formalin-Fixed Paraffin-Embedded) samples (12 cases). A consistent fraction of the
remaining samples, however, is not provided with enough clinical information to unambiguously derive the
subtype and, thus, we could not include it in our study (492 cases).

We labelled the HER2-enriched and basal-like subtypes in accordance to Table 1 of [34] while, in the
absence of information on the KI67 index and tumor grade, we extracted the luminal A and luminal B
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subtypes from the PAMS50 classification, as provided in the supplementary data of [35]. We also removed
26 samples where the molecular subtype classification conflicted with the PAM50 one.

In addition to cancerous samples (431 cases), the dataset includes 104 healthy samples. The subdivision
of the samples by subtype is reported in Table 1.

Table 1: Training and test dataset description

Cancer subtype TGCA-BRCA | GSE68085
Luminal A (LA) 215 62
Luminal B (LB) 96 -
HER2-Enriched (HER2) 56 -
Basal-Like (BL) 64 29
Healthy 104 11

3.2. Test dataset

In order to measure the degree of dependence of the classification outcome from the sequencing and
processing protocols used for data collection, we could not use the k-fold cross validation on the TCGA
data, but we needed a different source of testing samples. We thus thoroughly scan the Sequence Read
Archive (SRA) and the Gene Expression Omnibus (GEO) database to find suitable datasets of miRNA
profiles of breast cancer samples with available raw reads and annotated subtypes.

We identified only one collection (see Table 1 for details) consisting in a cohort of 114 samples (GEO
GSE68085), 11 of which belonging to apparently healthy woman subjected to reduction mammoplasty,
sequenced with Illumina Genome Analyzer IIx and described in details in [36]. We downloaded raw data
from NCBI SRA and used EZcount [37] for pre-processing and miRNA counting. As for annotations, we
used miRBase version 22 [38], remapping the nomenclature to make it consistent with that of the TCGA.
We had to exclude the 23 samples belonging to HER2+ and Luminal B since the samples of these types are
mixed in the original classification.

As for the training set, we normalized raw counts applying the count per million cpm() function from
EdgeR package.

3.8. Classification accuracy

Following the procedure described in Section 2.1, we performed classification in two independent steps:
the first to separate healthy from tumor samples and the second to identify the cancer sub-type. For each
step, we selected the most accurate model, either SVM or RF, and the corresponding set of hyperparameters
by using a 4-fold cross-validation with a grid search approach. For the perfomance evaluation, in order
to avoid misinterpretation of the classification results, we used balanced accuracy [39]. Indeed balanced
accuracy — defined as the average of the recall value obtained on each class — is especially useful when the
classes are imbalanced, for instance in anomaly detection problems. Table 2 shows the best results obtained
in cross-validation from the SVM and RF models trained on the TCGA-BRCA dataset, comparing different
sets of hyperparameters, to recognize healthy from tumor samples.

Table 2: Cross-validation results on the TCGA-BRCA dataset for the healthy vs cancer classification. Average balanced
accuracy and standard deviation are calculated based on the 4 validation folds

Model || Mean Balanced Accuracy | Standard Deviation
SVM 0.9926 + 0.017
RF 0.9886 =+ 0.035

The hyperparameter selection procedure led to the choice of the SVM model?. The model was then
evaluated on the test set (GSE68085) and the results are reported in Table 3, while the confusion matrix is
shown in Table 4.
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Table 3: Balanced Accuracy and Accuracy obtained by the SVM for the classification of healthy and tumor samples in the test
set (GSE68085)

Model || Balanced Accuracy | Accuracy
SVM 0.9545 0.9901

Table 4: Confusion matrix obtained by the SVM for the classification of healthy and tumor samples in the test set (GSE68085)

Healthy Tumor
Pred Healthy 10 0
Pred Tumor 1 91

As for the tumor/healthy classifier, a grid search approach with 4-fold cross-validation was performed
also to select the best model for tumor subtype identification. The results of the hyperparameter selection
procedure for this second classifier are shown in Table 5.

Table 5: Cross-validation results on the TCGA-BRCA dataset for the classification of tumor subtypes. Average balanced
accuracy and standard deviation are calculated based on the 4 validation folds

Model || Mean Balanced Accuracy | Standard Deviation
SVM 0.7442 + 0.119
RF 0.7800 + 0.093

In this case, the best model selected for the cancer subtype classification is a RF2. It is worth noting
that our two-stage classification approach allowed to specialize a different model for each of the stages, thus
providing a great flexibility. The selected models, the SVM for the healthy-tumor classification and the RF
for the tumor subtypes identification, were used in cascade on the test set (GSE68085). In particular, the
first model identifies cancer samples while the second classifier identifies their subtype. In Table 6, we show
the accuracy and the balanced accuracy obtained at the end of this combined classification pipeline. Finally,
in Table 7, the overall confusion matrix is reported.

The results indicate that the proposed approach allows to recognize cancer samples with excellent accu-
racy and to perform a precise classification of the subtypes. Furthermore, false negatives (i.e. tumor samples
predicted as healthy) are completely avoided in the test set (see the confusion matrix in Table 4), which
is particularly important to avoid delayed diagnoses with consequent health injury for the patient. All the
described experiments were carried out on a computer with a 3.50GHz Intel(R) Core(TM) 19-10920X CPU
and 128 GB of RAM, using the Python library scikit-learn [40]. In Table 8 we reported the execution time
needed to train the SVM and RF models, and to predict the class and extract the feature importance for a
single sample.

3.4. Biological significance

As a direct consequence of the training phase, our classifier learned several co-expression patterns of
miRNAs representative of each category. In contrast to differential expression, where a sample is labelled as
belonging to a given class only if certain known miRNAs follow a precise pattern, in our case, different profiles
and different miRNAs can lead to the same classification. Thanks to the feature importance mechanism, it
is possible to identify a posteriori the miRNAs involved in a specific classification process and, consequently,
to derive their expression pattern.

In this section, we show the interaction network of miRNAs more often involved in the assignment of
samples to their corresponding class. For each sample of the test set that was correctly classified, we run

2With the following hyperparameters: linear kernel and C = 0.001.
3With the following hyperparameters: 50 trees, max features 30, min sample leaf 1, mean sample split 8 and gini impurity
as the split criterion.
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Table 6: Balanced Accuracy and Accuracy obtained by the combined classifier (SVM+RF) on the test set (GSE68085)

Model Balanced Accuracy | Accuracy
Combined (SVM+RF) 0.8108 0.7450

Table 7: Confusion matrix obtained by the combined classifier (SVM+RF) on the test set (GSE68085)

Basal-like HER2-Enriched Luminal B Luminal A Healthy
Pred Basal-like 25 0 0 4 0

Pred HER2-Enriched 2 0 0 1 0
Pred Luminal B 0 0 0 16 0
Pred Luminal A 2 0 0 41 1
Pred Healthy 0 0 0 0 10

the feature importance mechanism and extracted the list of the 10 miRNAs with the highest score. Then,
we built a graph where each node corresponds to a miRNA and edges represent the relationship of co-
appearance in the list of relevant miRNAs of the same tested sample. We score the relationship strength
using the probability of co-appearance among all samples.

To thin out the graph and narrow the network to the most important miRNA /miRNA relationships, we
applied three filters in cascade. Firstly, we removed edges where none of the involved miRNAs appeared in
the list of relevant miRNAs for at least half of the tested samples. Then, we trimmed edges with probability
score lower than 0.3. Finally, unconnected nodes were withdrawn from the graph.

(a) Healthy samples (b) Tumor samples

Figure 2: Network of co-occurrence of highly important miRNAs for at least half of the classified samples. In red, miRNAs
equally important both for the healthy and tumor classes.

In Figure 2 the networks of miRNAs for healthy (a) and tumor (b) samples are depicted. As the figure
reveals, the two networks share a fraction of the nodes (highlighted in red) but each of them has specific
ones. Common nodes tend to correspond to dysregulated miRNAs. In fact, analyzing them using edgeR
[33], we found that they are all remarkably differentially expressed with very low p-values and absolute
log-fold change higher than 2. The other nodes, instead, do not show the same tendency. In particular, the
absolute log-fold change in some cases is lower than one. This derives from the fact that the expression is
somehow constant within a class but fluctuates within the other.

A closer inspection of the relevant miRNAs reported in Figure 2 reveals that they belong to known
tumor pathways. The function of hsa-mir-125b-2, for example, has repeatedly been investigated in relation
to cancer. As reported in a recent review [41], it can either acts as an oncogene or a suppressor according to
the specific cancer type. In the case of breast cancer, in [42], its molecular behaviour in conjunction with a
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Table 8: Execution time of each phase of the proposed multistage classification approach

Step Seconds
SVM training: Healthy VS Tumor ~ 0.0656
RF training: Tumor subtypes ~ 0.3438
SVM prediction: Healthy VS Tumor ~ 0.0002 per sample
RF prediction: Tumor subtypes ~ 0.0027 per sample
SVM SHAP Feature Importance: Healthy VS Tumor || ~ 32.022 per sample
RF SHAP Feature Importance: Tumor subtypes ~ 22.993 per sample

SNP in the binding site of BMPR1B is described, which miR-125b exploits to alter the transcription level.
Increasing levels of BMPR1B (thus low levels of hsa-mir-125b-2) are associated to higher risk. Counts in
the GSE68085 dataset confirms this hypothesis showing higher concentration of hsa-mir-125b-2 in healthy
samples. Hsa-let-7c has attracted the attention as a therapeutic target, due to its tumor suppression
properties for several cancer types. In [43], a preliminary analysis of its regulation in breast cancer was
reported, even if its role at the pathway level still needs to be investigated. Hsa-mir-21 is known to be
correlated to advanced clinical stages of breast cancer [44], being associated to the insurgence of lymph
node metastasis [45]. The potential of hsa-mir-139 as a diagnostic biomarker for several types of cancer is
reviewed in [46]. In breast cancer, [47] and others describe its suppression function of the proliferation and
migration of tumor cells by targeting RABIA.

Although tumor specific miRNAs (hsa-mir-100, hsa-mir-99a and hsa-mir-10b) have already been investi-
gated in cancer, their involvement is not as ubiquitous as that of miRNAs in common with the healthy class.
In particular, recurrent co-expression patterns of hsa-mir-100 with hsa-mir-99b-3p have been found in oral
carcinoma [48] and in the resistance mechanisms of colorectal cancer [49]. Similarly, when in combination
with hsa-mir-491, hsa-mir-99a modulates drug-resistance in gastric cancer [50]. For both miRNAs, how-
ever, little is known about the interaction with breast cancer. The literature on hsa-mir-10b role in cancer
focuses only on gastric cancer [51], even if its role in breast cancer has been proved with in-silico analyses
n [52]. Claiming a causal relationship of hsa-mir-100, hsa-mir-99a and hsa-mir-10b with breast cancer or
understanding the molecular mechanisms that connect patterns of them with this pathology is beyond the
scope of this paper. However, we can hypothesize that their central role in healthy/tumor classification is a
clue of their role in breast cancer even if their missing differential expression is responsible for the limited
support in the scientific literature.

On the other hand, although the property of being differentially expressed of the miRNAs in common
between healthy and tumor classes would appear appealing, relegating specific miRNAs to a marginal role,
we notice that these miRNAs activate general cancer pathways and are not specific for breast cancer (in
particular hsa-mir-125b-2, Hsa-let-7c, and hsa-mir-139). Consequently, their quantification in blood can
help in determining the presence of a tumor but is unable to discriminate its type.

Figure 3 shows the interaction networks emerging from the identification of Luminal A (a) and basal-like
(b) subtypes. The absence of Luminal B and HER2-enriched types in the GSE68085 dataset prevented us
from showing similar networks for these two cancer types.

A first observation about miRNAs involved in the subtype identification is that, according to differential
analysis made using edgeR, they are all dysregulated among healthy and tumor samples with very small
p-values and, except for hsa-mir-584, with absolute log-fold change higher (or much higher) than 1. Inter-
estingly, all but hsa-mir-378a and hsa-mir-584 have already been reported in tumor pathways of other forms
of cancer (in particular cell proliferation), even if limited information of their role in BRCA is available the
literature. The two not cancer-specific miRNAs, namely hsa-mir-378a and hsa-mir-584, are both involved
in angiogenesis (see [53] and [54]). Even if understanding their role is beyond the scope of this paper, their
presence in the networks of Figure 3 would suggest that their role could be in support of the growth of the
tumor lesions. In particular, belonging them to two different networks shown in Figure 3, we could also
hypothesize that Luminal A and basal-like subtypes use different pathways for vascularization. Effectively,
in [55], hsa-miR-584 was found to be down-regulating TGF-3 in BC cells. PHACTRI, an actin-binding
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(a) Luminal A

Figure 3: Network of co-occurrence of miRNAs highly important for at least half of the classified samples. In red, miRNAs

hsa-mir-378a
33

equally important for both the tested cancer subtypes.

protein, is also regulated by hsa-miR-584. Overexpression of hsa-miR-584 and knockdown of PHACTR1
resulted in a drastic rearrangement of the actin cytoskeleton and in a loss of TGF-g-induced cell migration.
The drastic reorganization of the actin cytoskeleton is important in axonal guidance signalling, playing a
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Figure 4: Comparison of the distributions of the expression levels for Luminal A and basal-like tumors.

A direct comparison of the distributions of the expression level among Luminal A and basal-like tumors
(see Figure 4) shows that common miRNAs (in particular hsa-mir-18a and hsa-mir-190b) tend to have
9
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differential patterns, while subtype specific patterns for the other miRNAs are not evident. This result is
in line with our hypothesis that the mutual influence of miRNAs in the cellular regulation cannot be fully
captured with differential expression but requires the inspection of more complex patterns.

4. Discussion

In this paper, we addressed the problem of using complex miRNA signatures as a tool to discriminate
breast cancer samples from healthy ones. In addition, we investigated the possibility of deriving intrinsic
subtypes as well.

A vast literature on this subject has identified several miRNAs whose differential concentration interferes
with oncogenes and/or suppressors and, thus, correlates with breast cancer. In several cases, however, the
same miRNA is not specific but promotes/suppresses general pathways in common among different cancer
types. As a result, although using these miRNAs as biomarkers could be useful to determine the presence
of a tumor, they leave open the problem of identifying its type.

Recent studies have argued that, despite useful, differential expression analysis is not enough powerful
for tumor classification since it does not take co-regulation into consideration. Machine learning approaches
such as [19, 20, 22] (and many others) have shown how the ability of supervised classifiers to learn complex
patterns can improve the classification accuracy. On the basis of these results, few authors have faced the
challenge of extending classification to cancer subtype. Partial results (where not all breast cancer subtypes
are considered) have been described in [23, 24, 25].

The main limit we impute to these works is that, due to the reduced availability of training samples,
the classification accuracy was evaluated on the same dataset used for training by means of the k-fold
cross-validation technique. However, as we know that miRNA quantification suffers from several biases,
due to sequencing and raw data processing, using the same dataset for training and testing could fail to
prove the robustness of the method. What we believe to be one of the major merits of our work is the
use of two completely independent datasets for training and test. The datasets have been produced with
different sequencing machines and also pre-processing of raw data has been done with different bioinformatic
pipelines. In the healthy/tumor classification, we achieve an accuracy in line with the best published results.
Interestingly, no tumor samples have been classified as healthy. In our view, this is particularly important
considering the negative implications of false negatives that could cause delayed diagnoses.

Another important aspect of our work is that the explanation of the classification results is not based on
a general model but it is tailored on the specific sample under consideration. Methods like that described
in [23], which are also explainable, define general rules that do not take peculiarities of the individual into
consideration. Despite defining general rules fulfills the goal of inferring relationships among miRNAs and
cancer, ex-ante explanation is not suitable for personalized medicine. Our approach, instead, pursues both
goals. Results depicted in Figure 2 and 3 prove that running our classifier on a large cohort of samples
allows to derive general knowledge, while the per-sample feature importance mechanism can be used for
personalized medicine purposes.

5. Conclusions

MiRNAs are short fragments of non-coding RNA that influence cellular activity by means of a suppression
mechanism. Due to their ubiquitous involvement in almost all molecular functions, miRNAs dysregulation
have been investigated in conjunction with several diseases including cancer. Current research in bioinfor-
matics is devoted to extend the standard differential expression model thanks to machine learning approaches
that are able to infer complex expression patterns forecasting a disease. In this paper, we followed a similar
approach with reference to breast cancer. Unlike the majority of other approaches, however, we do not limit
ourselves to just recognizing the two health/disease classes, but, through a two-step classification, we also
identify the molecular subtype of the cancer. In addition, we employ a feature importance method that
enables personalized identification of the miRNAs responsible for a particular classification.

MiRNA quantification is known to be greatly influenced by sequencing protocols and bioinformatic
pipeline for aligning reads and perform counting. In this regard, the current practice (driven by the lack
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of labelled examples) of using partitions of the same dataset for training and test leaves some doubts on
the actual robustness of the proposed methods. In the present work, we overcome this limit by using
two independent datasets for training and test. In particular we perform training on the BRCA collection
of TCGA while tests are made on the GSE68085 dataset form Gene Expression Omnibus. Experimental
results have demonstrated the efficacy of our two step classification. The healthy/tumor step is as reliable
as displaying an accuracy of 0.99 with only one healthy sample misclassified as tumor and no errors in the
opposite direction. Overall, classification and subtype detection reach a balanced accuracy of 0.81.
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