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Abstract 

This paper proposes and tests a better defined interpretation of the different responses of gasoline 

demand to tax changes and to market-related price changes. Namely, the signaling effect of gasoline 

taxes is one that impacts on long-run consumer decisions in addition to the incentives provided by tax-

inclusive gasoline prices. Our hypothesis is tested using a complete demand system augmented with 

information on gasoline taxes and fitted to household-level data from the 2006 to 2013 rounds of the 

US Consumer Expenditure survey. Information on gasoline taxes is found to be a significant 

determinant of household demand additional to tax-inclusive gasoline prices. The equity implications 

are examined by contrasting the incidence across income distribution of a simulated $0.22/gallon tax 

increase to that of a market-related price increase equal in size. The tax increase is clearly regressive, 

slightly more than the market-related price increase. However, regressivity is by no means a reason to 

give up gasoline taxes as an instrument for reducing gasoline consumption externalities. Their high 

effectiveness in reducing gasoline demand implies that small tax increases can substantially improve 

the environment while minimizing the related distributional effects. Also, gasoline taxes generate 

revenue that can be used to offset their regressivity. 

Keywords 

Gasoline taxation, signalling effect, demand systems, conditional cost functions, distributional 

incidence 

JEL codes: D12, H2, H3, Q4 
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1. Introduction 

In the US, carbon dioxide (CO2) emissions from the use of private vehicles make up over one fifth of 

total greenhouse gas emissions (EPA, 2016). Gasoline taxes can be an effective instrument for curbing 

CO2 emissions from road transportation (Sterner, 2007), but this potential is far from being fully 

exploited in the US (Parry and Small, 2005). While generating more revenue than any other 

commodity tax, both at the federal and State levels, gasoline taxes are very low as compared with 

those levied in many other countries, notably in Europe (OECD, 2015). In recent years, however, 

given the need to raise extra fiscal revenues and growing concerns about climate change, the option of 

raising gasoline taxes has received greater consideration in the American public policy debate. In 

addition, the current phase of low gasoline prices has created favorable conditions for implementing 

gasoline tax hikes. 

Gasoline tax increases remain nevertheless highly unpopular. Public resistance to them is at least 

partly explained by their adverse distributional effects. In developed economies
1
, gasoline is generally 

a necessity good in household consumption. Therefore, gasoline price increases tend to affect the poor 

more than the wealthy in relative terms. That is, they tend to be regressive. Yet, as much as the 

distributional incidence of gasoline price increases is a critical parameter for the policymaker, its 

estimation is to some significant extent dependent on the approach used (Sterner, 2012a, 2012b). At 

least three dimensions of the models used are relevant in this sense: a) the time horizon, which can 

determine the measure of consumers’ ability to pay, typically income or total expenditure as a proxy 

for lifetime income; b) the price elasticities of gasoline demand, which may or may not vary across 

households; and c) the tax elasticities of gasoline demand, which may or may not differ from the price 

elasticities. In this paper, we control for these elements within a single empirical framework. 

In an application to US household data, our analysis allows for distinct price and tax elasticities of 

gasoline demand varying across income distribution, and considers two alternative measures of ability 

to pay, namely annual income and annual total expenditure. Central is the distinction between the 

responses of gasoline demand to tax changes and to market-related price changes (i.e., related to 

market forces). There is indeed growing evidence that the first have much bigger impacts on gasoline 

demand than the second (Davis and Kilian, 2011; Scott, 2012; Baranzini and Weber, 2013; Brockwell, 

2013; Li et al., 2014; Rivers and Schaufele, 2015; Tiezzi and Verde, 2016; Antweiler and Gulati, 

2016; Andersson, 2016). In the literature, two main explanations are provided which hinge on the 

greater persistence and the greater visibility through media coverage of tax changes relative to market-

related price changes. A tax-aversion explanation is also plausible, whereby consumers may react 

more if they know that the price increase they face is due to a tax increase (McCaffery and Baron, 

2006; Kallbekken et al., 2010; Kallbekken et al., 2011; Blaufus and Möhlmann, 2014). These 

explanations are not mutually exclusive and all imply that gasoline taxes are more effective in 

reducing gasoline demand than standard price elasticities (i.e., estimated without distinguishing 

between price changes induced by taxation or by the market) indicate. This means that a given 

reduction in emissions can be achieved through a smaller tax increase, thus one with a less important 

distributional impact too. 

Using microdata from the 2006 to 2013 rounds of the US Consumer Expenditure Survey, we 

estimate a complete system of demand augmented with information on gasoline taxes. As in Tiezzi 

and Verde (2016), gasoline taxes are assumed to have a dual nature and, accordingly, changes in their 

level affect gasoline demand in two different ways. Considering gasoline taxes as a simple component 

of the gasoline price, gasoline tax changes alter relative prices. At the same time, considering gasoline 

taxes as a fiscal policy instrument, changes in their level constitute policy signals. These signals affect 

                                                      
1
 In developed economies, the income elasticity of gasoline demand is typically smaller than 1. The same does not apply to 

developing economies. 

http://www.sciencedirect.com/science/article/pii/S0928765516000208#bib0160
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long-run consumer decisions, such as buying a more fuel-efficient car, changing transportation mode 

or moving closer to work, which have an impact on gasoline demand. Thus, in the long run, the 

effectiveness of gasoline taxes in reducing gasoline demand is the result of the two effects: the price 

effect and the signaling effect, respectively. Just as the price effect, the signaling effect may well vary 

across households, as different households may respond differently to tax policy signals. The signaling 

effect would then contribute to determining the distributional impact of the tax change. As concerns 

the modeling of the tax signal, information on gasoline taxes enters our model as a conditioning 

variable (Pollak, 1969, 1971). 

After model estimation, two counterfactual scenarios are simulated for the years 2006 to 2011. In 

the Tax Scenario, the federal gasoline tax ($0.184/gallon) is raised by $0.22/gallon, which corresponds 

to a $25/tCO2 carbon tax. In the Market Scenario, a market-related price increase of the same size 

($0.22/gallon) is considered. In the Tax Scenario, the impact of the price increase on gasoline demand 

is given by the sum of the price effect and the signaling effect. In the Market Scenario, only the price 

effect is in play. We then assess the distributional impacts of the two price increases, which are equal 

in magnitude but different in nature (policy vs market). Two approaches are used. The welfare effects 

of the market-related price increase are first derived, as measured by the Compensating Variation. The 

same approach cannot be used to evaluate the impact of the tax increase due to gasoline taxes entering 

the model as a conditioning variable. Welfare comparisons across levels of the conditioning variables 

are indeed not viable (Pollak and Wales, 1979; Pollak, 1989). We thus conduct tax incidence analysis 

contrasting the tax payments before and after the tax increase across income distribution. 

This paper contributes to the literature in two main ways. First, within a structural model, it 

proposes and statistically tests a better defined interpretation of the different responses of gasoline 

demand to tax changes and to market-related price changes. Namely, the signaling effect specific to 

gasoline tax changes is one that impact on long-run consumer choices in addition to the incentives 

provided by retail tax-inclusive gasoline prices. Second, it analyzes the distributional incidence of 

gasoline price increases in relation to their nature as tax increases or market-related increases. The 

findings bear policy implications concerning the environmental effectiveness and the regressivity of 

gasoline taxes. 

The rest of the paper is organized as follows. Section 2 illustrates the model, the simulation 

scenarios, and the approaches used to assessing the distributional effects. Section 3 presents the data. 

Section 4 discusses the results. Section 5 concludes. 

2. Methodology 

2.1 The QAIDS model with gasoline taxes as a conditioning variable 

The functional form chosen for our model is the Quadratic Almost Ideal Demand System (QAIDS) of 

Banks et al. (1997), which generalizes the popular AIDS introduced by Deaton and Muellbauer 

(1980a). Compared to the AIDS, the QAIDS adds a quadratic term in (the log of) income, which 

allows for non linear changes in the budget shares following a price or income change. Moreover, the 

QAIDS easily allows for consumer heterogeneity and conditional demand functions (Pollak, 1969). 

In a demand model, conditioning variables usually represent preallocated goods affecting 

consumption choices over the goods of interest (i.e., those whose demand is modeled). Such goods can 

be as diverse as durable goods (Deaton, 1981), public goods (Pollak, 1989) or the time available for 

leisure (Browning and Meghir, 1991). The first to stress the importance of conditional demand 

functions was Pollak (1969), who noted that if some goods are preallocated in given quantities, they 

may affect consumer behavior by preventing instant adjustment to the long-run equilibrium. If so, the 

goods of interest are not statistically separable from the conditioning goods, which then should be 

controlled for in a regression. 
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Though they are not goods, gasoline taxes enter our model as a conditioning variable, in addition to 

being embedded in the gasoline price index. The idea is that the level of gasoline taxes carries 

information which, as the above examples of conditioning variables, both is exogenous to the 

consumers and affects their consumption choices
2
. The same approach is used in other demand system 

studies analysing the effects of different types of information (e.g., Jensen et al., 1992; Chern et al., 

1995; Duffy, 1995; Moro et al., 1996; Brown and Lee, 1997). We expect the level of gasoline taxes to 

influence long-run consumer choices such as purchasing a more fuel-efficient car, changing 

transportation mode or moving closer to work, which have an impact on gasoline demand. We check 

for the validity of our approach by testing whether the goods in the demand system are separable from 

gasoline taxes as a conditioning variable. If gasoline taxes do determine gasoline demand in addition 

to their capacity as a price component, then they are a conditioning variable and, therefore, are not 

separable from the goods in the system. 

In formal terms, a cost function conditional on the quantities of the goods of interest, 𝒒, a set of 

conditioning variables, 𝒛, and a set of the consumer’s demographic characteristics, 𝒅, is defined as: 

 

𝑐(𝒑, 𝒛, 𝒅, 𝑢) = min
𝒒

 (𝒑𝒒|𝑈(𝒒, 𝒛, 𝒅) = 𝑢) 

(1) 

where 𝒑 is the price vector of the goods of interest, U is the utility function and u is the utility level. 

The properties of such function are discussed in Pollak (1969), Browning (1983) and Browning and 

Meghir (1991). The conditional compensated demand functions, 𝑞𝑖(𝒑, 𝒛, 𝒅, 𝑢), are the derivatives of c 

with respect to pi, with 𝑖 = 1, 2, … , 𝑛. Defining y as total expenditure on the n goods 𝒒(𝑞1, … , 𝑞𝑛), the 

identity 𝑐(𝒑, 𝒛, 𝒅, 𝑢) = 𝑦 is inverted to derive the indirect utility function 𝑉(𝒑, 𝒛, 𝒅, 𝑦). We can then 

substitute this indirect utility function into the compensated demand functions to obtain the system of 

uncompensated demands. The QAIDS allows demographic and conditioning variables to affect 

demands in a theoretically consistent way.  

The QAI conditional cost function has the form: 

 

ln(𝑐(𝒑, 𝒛, 𝒅, 𝑢)) = ln(𝑎(𝒑, 𝒛, 𝒅)) + 𝑏(𝒑, 𝒛, 𝒅) (
1

1
𝑢

− 𝜆(𝒑, 𝒛, 𝒅)
) 

(2) 

where 𝑎(𝒑, 𝒛, 𝒅) is a homogenous-of-degree-one price function, and 𝑏(𝒑, 𝒛, 𝒅) and 𝜆(𝒑, 𝒛, 𝒅) are 

homogenous-of-degree-zero price functions. Indicating with the vector 𝒗 = [𝑣1, … , 𝑣ℎ]𝑇 both z and d 

for notational convenience, demographics, a time trend and gasoline taxes as a conditioning variable 

enter as taste-shifters, 𝑣𝑘, in the share equations. To maintain integrability, these shifters are part of the 

𝛼 terms in ln(𝑎(𝒑, 𝒗, )), which is specified as a Translog price aggregator function: 

 

ln(𝑎(𝒑, 𝒗)) = 𝛼0 + ∑ {𝛼𝑖 + ∑ 𝛼𝑖𝑘𝑣𝑘

𝐾

𝑘=1

}

𝑛

𝑖=1

ln(𝑝𝑖) +
1

2
∑ ∑ 𝛾𝑖𝑗 ln(𝑝𝑖) ln(𝑝𝑗)

𝑗𝑖

 

(3) 

                                                      
2
 The conditional demand approach does not require an explicit modeling of the conditioning variables, which are given 

for the consumers. We can thus ignore how gasoline taxes are determined.  
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While 𝑏 and 𝜆 are specified as a Cobb-Douglas price aggregator and as a linear function, respectively: 

 

𝑏(𝒑, 𝒗) = ∏ 𝑝𝑖
𝛽𝑖(𝒗)𝑛

𝑖=1  where 𝛽𝑖(𝒗) = ∑ ∑ [𝛽0𝑗 + 𝛽𝑗𝑘𝑣𝑘]𝐾
𝑘=1

𝑛
𝑗=1  

(4) 

ln 𝜆(𝒑, 𝒗) = ∑ ∑[𝜆0𝑖 + 𝜆𝑖𝑘𝑣𝑘]

𝐾

𝑘=1

𝑛

𝑖=1

ln(𝑝𝑖) 

(5) 

Inverting the cost function (2) to obtain the indirect utility function and, then, applying Roy’s identity, 

we obtain the following uncompensated budget share equation for good i: 

 

𝑤𝑖 = 𝛼𝑖 + ∑ 𝛼𝑖𝑘𝑣𝑘

𝐾

𝑘=1

+  ∑ 𝛾𝑖𝑗 ln(𝑝𝑗)

𝑛

𝑗=1

+ ∑[𝛽0𝑖 + 𝛽𝑖𝑘𝑣𝑘]

𝐾

𝑘=1

ln (
𝑦

𝑎(𝒑, 𝒗)
)

+ ∑[𝜆0𝑖 + 𝜆𝑖𝑘𝑣𝑘]

𝐾

𝑘=1

1

𝑏(𝒑, 𝒗)
(ln (

𝑦

𝑎(𝒑, 𝒗)
))

2

 

 

(6) 

The demand share equation (6) satisfies integrability (i.e., demand is consistent with utility 

maximization) under the following parametric restrictions: 
 

∑ 𝛼𝑖 = 1, ∑ 𝛼𝑖𝑘 = 0, ∑ 𝛽𝑖 = 0, ∑ 𝛾𝑖𝑗 = 0 ∀ 𝑗, ∑ 𝜆𝑖 = 0𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1  (Adding-up) 

∑ 𝛾𝑖𝑗
𝑛
𝑖=1 = 0 ∀ 𝑗 (Homogeneity) 

𝛾𝑖𝑗 = 𝛾𝑗𝑖 (Symmetry) 

(7) 

A simple way to check for the presence of nonlinear income effects is to test the null hypothesis that 

the 𝜆𝑖 parameters are zero
3
. Furthermore, Section 3.3 shows the model specification that is actually 

estimated to deal with censoring (large proportions of zeros in the dataset) for some of the budget 

shares. 

2.2 The signaling effect of gasoline taxes 

Part of the literature dealing with the different responses of gasoline demand to tax changes and to 

market-related price changes uses models that do not rest on a specific theory of how the first affect 

demand differently from the second (e.g., Davis and Kilian, 2011; Li et al., 2014; Rivers and 

Schaufele, 2015; Andersson, 2016). The rest of the literature uses structural demand systems (e.g., 

Ghalwash, 2007; Scott, 2012; Brockwell, 2013; Tiezzi and Verde, 2016). To interpret the greater 

responsiveness of gasoline demand to tax changes, this set of studies makes explicit reference to the 

                                                      
3
 We ran a likelihood ratio test to test the hypothesis that the λi parameters are zero. The test rejected the null hypothesis, 

thus we chose the QAIDS rather than the AIDS specification. 
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signaling effect of tax policy (Barigozzi and Villeneuve, 2006). Still, how the signaling effect exactly 

operates is not explained
4
. Thus, with the demand systems just as with the non-structural models, 

gasoline prices are usually broken down into the tax component and its complement, which is the tax-

exclusive price. The demand responses to equivalent changes in the two price components are then 

computed and contrasted. 

In this respect, we follow Tiezzi and Verde (2016) who estimate a demand system but deviate from 

the literature in specifying that the signaling effect of a tax change is additional to the effects of tax-

inclusive price changes, whether these are caused by market forces or indeed reflect a tax change. 

Accordingly, gasoline taxes enter the model in two fashions: implicitly as a component of the gasoline 

price index and explicitly as a conditioning variable. The economic meaning of this modeling choice is 

that the signaling effect of gasoline tax changes is one that impacts on long-run consumer decisions, 

such as purchasing a more fuel-efficient car, changing transportation mode or moving closer to work, 

over and above the incentives provided by the variation of tax-inclusive gasoline prices. The literature 

related to the signaling effect of tax policy, which is thinner than one would expect, gives no definite 

indications as to whether the signaling effect influences agents’ short- or long-run decisions, or both. 

Li et al. (2014), however, provide empirical evidence supporting the long-run interpretation of the 

signaling effect. Using US data on newly purchased vehicles and miles travelled, the authors find that 

the fuel efficiency of the vehicles purchased responds more strongly to gasoline tax changes than to 

gasoline price changes. By contrast, no differential effect is observed with respect to miles travelled. 

2.3 Simulating the price increases and assessing the distributional incidence 

The first part of this section illustrates the simulation scenarios of an increase in the federal gasoline 

tax and of an equivalent market-related gasoline price increase. The second part illustrates how the 

distributional incidence of the two price increases is assessed.  

2.3.1 Scenarios: tax increase vs market-related price increase 

After estimating the model, two counterfactual scenarios are simulated for each quarter of the years 

2006 to 2011
5
. In the Tax Scenario, the federal gasoline tax, which is $0.184/gallon and has not 

changed since 2006, is raised by $0.22/gallon. This increase corresponds to a $25/tCO2 carbon tax, 

which is representative of the carbon tax rates indicated in recent US legislative proposals to reduce 

national CO2 emissions
6
. In the Market Scenario, a market-related price increase of the same size 

($0.22/gallon) is simulated. In the Tax Scenario, the impact of the price increase on gasoline demand 

is given by the sum of the price effect and the signaling effect. In the Market Scenario, only the price 

effect is in play. 

Let us define the tax-inclusive gasoline price at time 𝑡, 𝑃𝑡
𝐺, as the sum of the tax-exclusive price, 

𝛱𝑡
𝐺, and taxes, 𝛵𝑡

𝐺, i.e., 𝑃𝑡
𝐺 = 𝛱𝑡

𝐺 + 𝛵𝑡
𝐺. The first step to simulate the Tax Scenario is deriving the 

                                                      
4
 In the literature, the signaling effect tends to be vaguely defined. For example, “[…] rational habits sway consumers to 

reduce gasoline consumption more in response to price increases perceived as permanent than to price increases 

perceived as temporary. Credible permanence gives any price increase an extra kick, and this expands the power of 

standard economic instruments to reduce gasoline consumption.” (Scott, 2012); “[…] this article will investigate whether 

the effects of a change in consumer prices differs depending on whether the price change is due to a tax change or a 

change in producer price. If there is a statistically significant difference in the sense that a tax increase leads to a larger 

change in consumption than a producer price change, this is referred to as the signaling effect from taxation.” (Brockwell, 

2013). 
5
 The simulation period ends in 2011 due to a lack of data on gasoline prices (in levels) for more recent years. 

6
 For example, the 2009 Congress bill Raise Wages, Cut Carbon Act (H.R. 2380, 111th Congress) set an initial rate of 

$15/tCO2, in 2010. The 2013 Climate Protection Act (S. 332, 113th Congress) set an initial rate of $20/tCO2. 
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counterfactual level of the gasoline price index, 𝑝𝑡,𝐶
𝐺 , which incorporates the tax change 𝛥𝑇𝑡

𝐺. At 

time 𝑡, omitting the State subscript for notational convenience, 
 

𝑝𝑡,𝐶
𝐺 = 𝑝𝑡,𝐵

𝐺 (1 +
∆𝑇𝑡

𝐺

𝑃𝑡,𝐵
𝐺 ) 

(8) 

where 𝑝𝑡,𝐵
𝐺  (small letter) is the baseline (historical) price index and 𝑃𝑡,𝐵

𝐺  (capital letter) is the baseline 

price. Similarly, the counterfactual level of the gasoline taxes, 𝑇𝑡,𝐶
𝐺 , is computed by adding Δ𝑇𝑡

𝐺 to the 

baseline level, 
 

𝑇𝑡,𝐶
𝐺 = 𝑇𝑡,𝐵

𝐺 + Δ𝑇𝑡
𝐺 

(9) 

Feeding both the counterfactual levels of the gasoline price index and of gasoline taxes to the 

estimated model, the counterfactual predicted budget shares are obtained. Holding total expenditure 

fixed, i.e., 𝑦𝑡,𝐶 = 𝑦𝑡,𝐵, the predicted percentage change in gasoline demand is computed as follows:  

 

�̂�𝑡,𝐶
𝐺 − �̂�𝑡,𝐵

𝐺

�̂�𝑡,𝐵
𝐺 = (�̂�𝑡,𝐶

𝐺
𝑦𝑡,𝐵

𝑝𝑡,𝐶
𝐺 − �̂�𝑡,𝐵

𝐺
𝑦𝑡,𝐵

𝑝𝑡,𝐵
𝐺 ) �̂�𝑡,𝐵

𝐺
𝑦𝑡,𝐵

𝑝𝑡,𝐵
𝐺⁄  

(10) 

where �̂�𝑡,𝐵
𝐺  and �̂�𝑡,𝐶

𝐺  are respectively the predicted baseline and counterfactual gasoline budget shares. 

The same procedure applies for the simulation of the Market Scenario, with the following two 

differences: a) 𝛥𝑇𝑡
𝐺 is replaced by 𝛥𝛱𝑡

𝐺  in (8) (although 𝑝𝑡,𝐶
𝐺  is unchanged since 𝛥𝑇𝑡

𝐺 and 𝛥𝛱𝑡
𝐺 are 

equal in size), and b) 𝛥𝑇𝑡
𝐺 = 0 in (9), as no policy signal is active. 

2.3.2 Distributional incidence: welfare changes vs changes in tax payments 

In the literature, the distributional incidence of price increases – their degree of progressivity or 

regressivity – is measured in different ways. In principle, measures of progressivity (or regressivity) 

based on welfare changes are the most appropriate as welfare changes account for both the higher cost 

of consumption and the lower level of consumption after a price increase. In practice, this approach is 

seldom used because it requires the estimation of a complete demand system, which is data demanding 

and technically nontrivial. For the specific case of tax increases, as opposed to generic price increases, 

the conventional approach to measuring tax progressivity uses the changes in households’ (or 

individuals’) tax payments after the tax increase. With this approach, estimating demand changes is all 

that is needed. The downside of this approach is that potential substitution of other consumption goods 

for the taxed one is ignored (Remler, 2004). In this sense, a measure of tax progressivity based on 

changes in tax payments approximates one that is based on welfare changes.  

With reference to our Tax Scenario, a measure of tax progressivity based on welfare changes 

cannot be derived because gasoline taxes enter the model not only as a price variable but also as a 

conditioning variable. This feature of the model is decisive as welfare comparisons across different 

levels of the conditioning variables are not viable (Pollak and Wales, 1979; Pollak, 1989)
7
. We thus 

                                                      
7
 The conditional approach assumes that the choices over the commodity space depend on the conditioning variables – 

gasoline taxes in our case. The conditional preference ordering does not allow welfare comparisons between alternative 

situations (combinations) of prices and conditioning variables, but only of alternative price situations given the same 

values of the conditioning variables. 
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assess the distributional incidence of the simulated tax increase based on the changes in households’ 

tax payments.  

By contrast, the distributional incidence of the market-related price increase is assessed based on 

the Compensating Variations (CVs). The CV is a precise measure of welfare change following a price 

change, defined as the minimum monetary amount by which a consumer would have to be 

compensated to be as well off as before the price change. Formally, indicating with 𝑢0 the base 

welfare level at time 𝑡 = 0, that is, the welfare level in the base period before any price change, the 

CV is 

 

𝐶𝑉𝑡 = 𝑐(𝑢0, 𝒑𝑡) − 𝑐(𝑢0, 𝒑0) 

(11) 

where 𝑐(𝑢0, 𝒑0) is the minimum cost of reaching 𝑢0 at prices 𝒑0, and 𝑐(𝑢0, 𝒑𝑡) is the minimum cost 

of reaching utility 𝑢0 at the price vector 𝒑𝑡. 

To calculate the CVs, we use the True Cost of Living index numbers (TCOLs) (Deaton and 

Muellbauer, 1980b). A TCOL index number is the ratio between the cost of achieving a given level of 

economic welfare after a price change and the cost of achieving the same level of economic welfare 

before the price change
8
. That is, using the same notation as for the CV above, the TCOL index is 

 

𝑇𝐶𝑂𝐿𝑡 =
𝑐(𝑢0, 𝒑𝑡)

𝑐(𝑢0, 𝒑0)
 

(12) 

The CV and the TCOL index are clearly related to one another
9
. If the cost function in the base period 

is equal to 1, i.e., 𝑐(𝑢0, 𝒑0) = 1, the relationship between the CV and the TCOL simply is 
 

𝐶𝑉𝑡 = 𝑇𝐶𝑂𝐿𝑡 − 1 

(13) 

It follows that ln(𝑇𝐶𝑂𝐿𝑡) = ln(𝐶𝑉𝑡 + 1). We exploit this result to compute the CVs. Using the 

QAIDS conditional cost function in (2), the QAIDS expression for ln(𝑇𝐶𝑂𝐿𝑡) is first derived. Then, 

setting the cost function in the base period equal to 1 by normalizing all prices to unity, the CVs are 

retrieved. In formal terms (Martini, 2009)
10

,  
 

ln 𝑇𝐶𝑂𝐿𝑡 = ln 𝑎(𝒑𝑡) + 𝑏(𝒑𝑡) (
1

1
𝑢0

− 𝜆(𝒑𝑡)
) − ln 𝑎(𝒑0) + 𝑏(𝒑0) (

1

1
𝑢0

− 𝜆(𝒑0)
) 

(14) 

                                                      
8
 TCOLs are a more accurate measure of the welfare change following a price change than Laspeyres index numbers. 

TCOLs allow for substitution possibilities in the bundle of goods consumed holding utility constant, while Laspeyres 

index numbers assume that the same bundle of goods is purchased before and after the price change.  
9
 From the definitions of CV and TCOL, 𝐶𝑉𝑡 = 𝑐(𝑢0, 𝒑

0
) × (𝑇𝐶𝑂𝐿𝑡 − 1). 

10
 The vectors 𝒛 and 𝒅 are dropped from the equations for presentational convenience. 



Silvia Tiezzi and Stefano F. Verde 

8 Robert Schuman Centre for Advanced Studies Working Papers 

For 𝑐(𝑢0, 𝒑0) = 1, (14) becomes
11

  

 

ln 𝑇𝐶𝑂𝐿𝑡 = ln 𝑎(𝒑𝑡) + 𝑏(𝒑𝑡) (
1

1
𝑢0

− 𝜆(𝒑𝑡)
) − 𝑢0 

(14b) 

Setting 𝑢0 = 𝑙𝑛𝑦0, where 𝑦0 is total expenditure in the base period, the CVs are obtained: 

 

𝐶𝑉𝑡 = 𝑒ln 𝑇𝐶𝑂𝐿𝑡 − 1 

(15) 

Finally, the CVs that correctly measure the welfare effects of the simulated gasoline price increase 

($0.22/gallon) over time are the differences between the counterfactual CVs and the baseline CVs. The 

former are the CVs obtained by increasing the historical gasoline prices by $0.22/gallon. The latter are 

the CVs resulting from historical price variations (i.e., observed inflation). Thus, first both the 

counterfactual CVs and baseline CVs are calculated as per above, then the difference between the two 

is taken. 

2.3.3 Distributional incidence: income vs total expenditure as a measure of ability to pay 

When assessing the regressivity of a price increase, annual income is not the only variable that can be 

used to rank agents (here, households) by economic welfare level and to quantify the impacts in 

relative terms. For these two purposes, an important part of the literature estimating the regressivity of 

gasoline price increases uses annual total expenditure as a measure of ability to pay. The stated 

rationale for preferring total expenditure to income is that the former is less volatile from one year to 

another and that, drawing on Friedman’s permanent income theory of consumption (Friedman, 1957), 

annual total expenditure can be taken as a proxy for lifetime income
12

. However, inasmuch as the 

distribution of total expenditure in a given year is more uniform than that of income, as is generally 

the case, the price increase necessarily results less regressive if the first is used instead of the second. 

The difference can be substantial (Sterner, 2012a, 2012b). To control for this aspect, we assess the 

distributional impact of each type of simulated price increase (the tax increase and the market-related 

price increase) twice, using the two alternative measures of ability to pay. 

3. Data and model estimation 

3.1 Households’ economic variables and demographics 

The US Consumer Expenditure Survey (CE) produced by the Bureau of Labour Statistics (BLS) is the 

main data source for our application. We use microdata of the quarterly Interview Survey (IS) from 

eight rounds of the CE: from 2006 to 2013
13

. Each CE round has five IS cross-sections: one per 

                                                      
11

 When all relative prices are set to unity, the price functions 𝑏(𝒑) and 𝜆(𝒑) are equal to one and ln(𝑎(𝒑)) = 𝛼0. This 

parameter, however, is usually set to zero (Banks et al., 1997). 
12

 Chernick and Reschovsky (1992, 1997, 2000) and Teixidó and Verde (2016) provide arguments and evidence that 

question this approach. 
13

 See Chapter 16 of the BLS Handbook of Methods for a description of the CE.  
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calendar quarter, including the first of the following year
14

. We thus draw on 40 cross-sections, though 

not all the observations available (each cross-section has approximately 6,000 observations) are used 

for estimating the model. This is fitted to a subset of over 83,000 observations: those for which 

information on the Primary Sampling Unit (PSU) is available in the public-use microdata files
15

. We 

use this subset because the correspondence between the PSUs and the Metropolitan Statistical Areas 

(MSAs) of the CPI statistics allows us to exploit the variation of MSA-specific price indices
16

. The 

resulting sample spans 93 months, from April 2006 to December 2013, and 20 PSUs/MSAs (see 

Tables A1 and A2, in the Appendix).  

In the IS datasets, each household’s expenditures, which refer to the three months before the 

interview, are classified into 60 consumption categories. Our system of demand only considers current 

expenditures (durables and occasional purchases are ignored), corresponding to 40 of the 60 

categories. Specifically, the model is estimated for the following shares of total current expenditure: 

1. Food at home 

2. Electricity 

3. Natural gas 

4. Other home fuels 

5. Gasoline 

6. Public transportation 

7. Other expenditures 

where: Food at home is the total expenditures for food at grocery stores (or other food stores) and food 

prepared by the consumer unit on trips; Other home fuels is the sum of expenditures on fuel oil, non-

piped gas and other fuels (heating fuels); Gasoline comprises expenditures on gasoline, auto diesel and 

motor oil, but it virtually coincides with gasoline expenditure
17

; Public transportation is the sum of the 

fares paid for all forms of public transportation, including buses, taxis, coaches, trains, ferries and 

airlines. 

Table 1 shows summary statistics of these expenditure shares as they appear in the sample. On 

average, Food at home accounts for 23.1% of total current expenditure, followed by Gasoline and 

Electricity, which represent 9.5% and 5.6%, respectively. The residual expenditure aggregate, namely 

Other expenditures, represents 56.7% of total current expenditure. The coefficients of variation 

indicate that variability is greatest for Other home fuels, Public transportation and Natural gas, in this 

order. Large proportions of households reported zero expenditure for these categories (see the shares 

in the last column of Table 1). Consumption of the respective goods or services is indeed conditional 

on certain prerequisites, such as the possession of specific appliances or high substitutability between 

private and public means of transportation, which may not be there for many households. 

  

                                                      
14

 The IS is a panel rotation survey. Each panel is interviewed for five consecutive quarters and then dropped from the 

survey and replaced with a new one.  
15

 Only “A”-size PSUs are identified in the public-use microdata files. “A” PSUs are Metropolitan Statistical Areas with a 

population greater than 1.5 million.  
16

 State-specific price indices are not available at the required disaggregation level. 
17

 Diesel-fuelled cars are very few in the US. In 2014, diesel-fuelled cars made up 0.5% of the total fleet (EIA, 2015). 
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Table 1 – Summary statistics of the budget shares. 

Variable Obs.(#) Mean 
Standard 

deviation 

Coeff. of 

variation 
Min Max Zeros 

Food at home 83,485 23.1% 13.8% 0.6 0.0% 100.0% 0.8% 

Electricity 83,485 5.6% 5.1% 0.9 0.0% 100.0% 8.5% 

Natural gas 83,485 2.5% 3.9% 1.6 0.0% 63.4% 37.6% 

Other home fuels 83,485 0.5% 2.5% 5.0 0.0% 72.8% 92.9% 

Gasoline 83,485 9.5% 7.9% 0.8 0.0% 100.0% 13.4% 

Public transportation 83,485 2.1% 5.5% 2.6 0.0% 81.4% 72.3% 

Other expenditures 83,485 56.7% 17.6% 0.3 0.0% 100.0% 0.1% 

Different types of demographic characteristics are extracted from the IS dataset. Descriptive statistics 

of demographic variables included in the model, as well as of both total expenditure and income, are 

reported in Table 2. Households are classified by a set of six dummy variables which identify the 

following types: a) Single; b) Husband and wife; c) Husband and wife, with the oldest child under 6 

(years old); d) Husband and wife, with the oldest child between 6 and 17; e) Husband and wife, with 

the oldest child over 17; f) All other households. Households’ location is captured through four 

dummy variables, one for each of the Census-defined regions, i.e. Northeast, Midwest, South and 

West. A dummy variable brings in information on the composition of earners in the household: it takes 

the value 1 if both the reference person and the spouse are income earners; 0, otherwise. A categorical 

variable classifies the education level of the household’s reference person in nine levels. The model 

also controls for the number of vehicles (cars, trucks and vans) owned by the household as well as for 

the age of the reference person. 

Table 2 – Summary statistics of socio-demographics, total expenditure, income. 

Variable Obs.(#) Mean 
Standard 

deviation 
Min Max 

Single 83,485 0.28 0.45 0 1 

H&W 83,485 0.19 0.39 0 1 

H&W, oldest child <6 83,485 0.05 0.22 0 1 

H&W, oldest child 6-17 83,485 0.13 0.33 0 1 

H&W, oldest child >17 83,485 0.08 0.27 0 1 

All other households 83,485 0.27 0.44 0 1 

Age of reference person 83,485 49.3 16.8 16 87 

Northeast 83,485 0.27 0.44 0 1 

Midwest 83,485 0.21 0.41 0 1 

South 83,485 0.24 0.42 0 1 

West 83,485 0.29 0.45 0 1 

Composition income earners 83,485 0.22 0.42 0 1 

Education of reference person* 83,485 5.4 1.82 1 9 

Number of vehicles 83,485 1.51 1.12 0 10 

Total current expenditure, $ 83,485 7,142 6,974 9 324,561 

Total expenditure, $ 83,485 13,553 11,795 17 350,481 

Disposable income, $ 83,485 71,958 68,867 0 802,242 

* 1 “Never attended school”, 2 “1
st
 through 8

th
 grade”, 3 “9

th
 through 12

th
 grade”, 4 “High school graduate”, 5 

“Some college, less than college graduate”, 6 “Associate’s degree”, 7 “Bachelor’s degree”, 8 “Master’s degree”, 

9 “Professional/Doctorate degree". 

3.2 Price indices and gasoline taxes 

Insufficient price variation is a common problem when estimating demand models with cross-sectional 

data and price indices. We avoid this issue by using monthly indices varying by MSA, which taken 
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together exhibit sufficient time and spatial variation
18

. Another potential problem is some degree of 

inaccuracy in the correspondence between demand and price data. This issue does not arise in our 

application because the price indices, also produced by the BLS, follow the same classification as that 

of household expenditure. The BLS uses the CE to periodically revise the expenditure weights of the 

Consumer Price Index (CPI). There is, thus, perfect correspondence between the expenditure 

aggregates of the IS and the respective CPI statistics. Table A3, in the Appendix, shows summary 

statistics of the price indices and of gasoline taxes. Focusing on gasoline prices, Figure 1 pictures the 

swings of the MSA-specific gasoline price indices over the sample period. 

Figure 1 – MSA-specific gasoline CPIs over the sample period. 

 

Note: For the legend of the MSA codes, see Table A2, in the Appendix. 

  

                                                      
18

 As price indices by MSA are not available for Other home fuels nor for Public transportation, the corresponding US 

indices are used in these two cases. 
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Figure 2 – Most variable rates of State gasoline taxes over the sample period. 

 
 

In the US, three layers of taxes apply to consumption of gasoline and auto diesel, namely, federal 

taxes, State taxes and local taxes. The federal tax on gasoline is $0.184/gallon and has not changed 

since 2006. By contrast, State taxes can differ significantly from one State to another and they are 

occasionally subject to revisions. The data used on State gasoline taxes are published by the Federal 

Highway Administration. Local taxes are not considered due to a lack of information, but they are a 

minor component of the final price. Moreover, to estimate the model, gasoline taxes are adjusted for 

inflation using the national CPI. Importantly, Figure 2 shows how infrequent changes in gasoline tax 

rates are
19

 and that these changes are virtually always increases rather than decreases. This 

fundamental difference between the dynamics of gasoline taxes and that of gasoline prices provides a 

compelling explanation for the greater responsiveness of gasoline demand to tax changes relative to 

price changes. 

3.3 Model estimation 

To deal with censoring of the dependent variable (the budget shares), we use the two-step estimator 

introduced by Shonkwiler and Yen (1999)
20

. The procedure involves probit estimation in the first step 

and a selectivity-augmented equation system in the second step. The augmented system of equations, 

which is estimated with Maximum Likelihood, has the following form
21

: 

                                                      
19

 Those in the graph are the rates of State gasoline taxes exhibiting the greatest variation over the sample period. 
20

 Shonkwiler and Yen (1999), Yen, Lin and Smallwood (2003), and Yen and Lin (2006) provide useful literature reviews 

on estimation procedures for censored demand systems. 
21

 A different two-step procedure, developed by Heien and Wessells (1990), has often been used in applied demand analysis 

to address the problem of estimating systems of equations with limited dependent variables. West and Williams (2004, 

2007) are two studies adopting this procedure. However, as stated by Shonkweiler and Yen (1999), “the Heien and 

Wessells procedure is built upon a set of equations which deviate from the unconditional mean expression for the 

conventional censored dependent variable specification”. Instead, Shonkweiler and Yen’s procedure (1999) adopted in 

this study provides a consistent two-step estimator. 
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𝑠𝑖 = Φ(𝑥𝑖
′𝜏𝑖) 𝑤𝑖(𝑝, 𝑦, ℎ) + 𝛿𝑖𝜙(𝑥𝑖

′𝜏𝑖) + 𝜉𝑖 

(16) 

where 𝑠𝑖 is the observed expenditure share for good i; 𝑥𝑖 is a vector of exogenous variables; 𝜏𝑖 is the 

parameter vector; ℎ is the vector containing all parameters in the original demand system (6); 𝜉𝑖 =
𝑠𝑖 − 𝐸(𝑠𝑖) is the heteroscedastic error term; 𝜙 and Φ are the standard normal probability density 

function (pdf) and its cumulative distribution function (cdf), respectively; and 𝛿𝑖  is the unknown 

coefficient of the correction factor of the i-th equation in the second step. 

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in 

each good. The predicted pdf and cdf from the probit equations are included in the second step of the 

procedure (Yen, Lin and Smallwood, 2003). The exogenous variables used in the first-step probits are 

total expenditure, a linear time trend and the set of demographic and geographic variables in the 

original demand system (6), which are defined in the previous section. As for the second-step 

estimates, Homogeneity and Symmetry are imposed through parametric restrictions, while Adding-up 

is accomodated by dropping the equation for the Other expenditures aggregate
22

. 

Economic theory also requires the matrix of Slutzky substitution effects to be negative semi-

definite. This property is satisfied by the data. Second-step estimated coefficients are shown in Table 

A4, in the Appendix. Moreover, since the estimated elements of the second-step conventional 

covariance matrix are inefficient, we empirically calculate the standard errors of the elasticities using 

nonparametric bootstrapping (with 500 replications). 

4. Results 

This section illustrates the results of our analysis in the following order. We first check for the non- 

separability of gasoline taxes from the goods in the demand system, which is the key feature of the 

model’s specification. Estimation results concerning the predicted budget shares and the demand 

elasticities are subsequently presented, with a special focus on the patterns of the price elasticities and 

the tax elasticities of gasoline demand across income levels. Finally, the distributional impacts of the 

two types of simulated gasoline price increases are examined.  

4.1 Test of gasoline taxes’ separability 

If gasoline taxes affect consumer preferences over the goods in the demand system, ignoring this 

dependence would result in biased estimates. Browning and Meghir (1991) demonstrate that the 

conditional cost function approach is most convenient for modeling such dependence. The authors 

point to several of its advantages. One such advantage is that we can test for weak separability without 

specifying the structure of the preferences for the goods that are separable under the null hypothesis. A 

second one is that the conditional cost function approach does not require an explicit structural model 

for the conditioning variable. Thirdly, testing for weak separability of the goods of interest from the 

conditioning variables is simple. It boils down to testing whether the conditioning variables should be 

jointly excluded from the set of explanatory variables. 

                                                      
22

 Though the Adding-up restriction holds for the latent expenditure shares, it does not hold for the observed shares. To 

address this problem we adopt the approach suggested by Pudney (1989). It consists of estimating n – 1 equations using 

the two-step procedure together with an Adding-up identity 𝑠𝑛 = 1 − ∑ 𝑠𝑖
𝑛−1
𝑖=1  defining the residual expenditure category 

as the difference between total expenditure and expenditure on the first n - 1 goods and treating the nth good as a residual 

one with no demand of its own. Elasticities for this residual good, if necessary, can be computed using this Adding-up 

identity. 
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Following Browning and Meghir (1991), our test of separability of gasoline taxes from the goods 

of interest consists of a Likelihood Ratio (LR) test in which we compare a restricted model where the 

budget share equations (6) depend on gasoline taxes (after controlling for prices, total expenditure and 

demographic variables) with an unrestricted model where all tax coefficients are equal to zero. Under 

the null hypothesis that the unrestricted model holds, the test statistic follows a Chi-squared 

distribution with 18 degrees of freedom
23

. Table 3 reports all the estimated coefficients relevant to 

gasoline taxes as well as the result of the LR separability test. The intercept coefficients are 

statistically significant in all equations. And the coefficients of the interactions both with total 

expenditure and squared total expenditure are significant in most equations. As to the LR test, the Chi-

squared test statistic allows us to reject the null hypothesis of gasoline taxes’ separability. 

Table 3 – Separability test of gasoline taxes: selected QAIDS parameter estimates. 

Intercept of the budget shares 

Parameter Food Electricity Nat. Gas Oth. Fuels Gasoline Pub. Transp. 

αi 0.248 0.044 0.043 0.255 0.136 0.231 

 (0.002) (0.002) (0.004) (0.029) (0.002) (0.022) 

αi,TAX  -0.007 0.013 -0.008 0.132 -0.034 0.014 

 (0.003) (0.001) (0.001) (0.006) (0.002) (0.004) 

Total expenditure coefficients 

Parameter Food Electricity Nat. Gas Oth. Fuels Gasoline Pub. Transp. 

βi -0.089 -0.032 -0.023 -0.047 -0.044 -0.016 

 (0.001) (0.001) (0.001) (0.004) (0.001) (0.004) 

(β * αTAX)i 
0.007 

(0.003) 

0.024 

(0.001) 

0.019 

(0.002) 

-0.007 

(0.007) 

0.004 

(0.002) 

-0.019 

(0.004) 

Squared total expenditure coefficients 

Parameter Food Electricity Nat. Gas Oth. Fuels Gasoline Pub. Transp 

λi -0.009 -0.001 -0.006 -0.04 -0.012 -0.006 

 (0.001) (0.000) (0.000) (0.002) (0.000) (0.001) 

(λ* αTAX)i 
0.006 

(0.002) 

-0.005 

(0.001) 

0.002 

(0.001) 

-0.036 

(0.005) 

0.008 

(0.002) 

0.006 

(0.003) 

       

Separability test of αTAX 
LR Chi-squared (18 d.f.) p-value  

1393.240 0.000  

Note: Robust standard errors in brackets. 

4.2 Estimation results 

Table 4 presents the predicted budget shares calculated at sample mean values together with the 

income elasticities and the compensated (Hicksian) price elasticities (also at sample mean values). 

  

                                                      
23

 The LR test involves 18 restrictions: 6 on the intercepts; 6 on the interactions of taxes and total expenditure; 6 on the 

interactions taxes squared and total expenditure. 
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Table 4 - Predicted budget shares, income elasticities and compensated price elasticities at 

sample mean values. 

 Food at 

home 
Electricity Nat. Gas Oth. Fuels Gasoline 

Pub. 

Transp. 

Oth. 

Expend. 

Budget 

shares  
0.232 0.057 0.025 0.005 0.095 0.022 0.565 

Income 

elasticities 

0.636 

(0.014) 

0.490 

(0.019) 

0.487 

(0.022) 

0.586 

(0.060) 

0.656 

(0.010) 

0.841 

(0.069) 

1.291 

(0.007) 

Own price 

elasticities 

-0.676 

(0.033) 

-0.782 

(0.015) 

-0.218 

(0.026) 

-1.219 

(0.162) 

-0.713 

(0.018) 

-0.084 

(0.162) 

0.234 

(0.167) 

On average, gasoline expenditure accounts for almost 10% of households’ budgets, the second highest 

share among the goods considered in our demand system. In general, the predicted budget shares 

calculated at sample mean values are very close – as one would expect – to the respective sample 

mean values (Table 1). The second row in the same table indicates that none of the goods in the model 

(except for the aggregate Other expenditures) is a luxury good. Demand for public transportation 

exhibits the largest income elasticity (0.84), a result most likely explained by the heterogeneity of the 

relative aggregate
24

. Among the energy goods, gasoline is the one with the largest response to income 

changes (0.65). As regards the demand responses to price changes, the (long-run) price elasticity of 

gasoline demand is also high (-0.71), but not too dissimilar from the estimates in other studies fitting 

demand systems to pooled cross-sectional US data
25

. 

We now focus on the patterns of the mean price elasticity and of the mean tax elasticity of gasoline 

demand across income distribution
26

. These patterns are of special interest because they are relevant to 

the comparative distributional analysis of tax increases versus market-related price increases carried 

out in the next Section. The left graph in Figure 3 shows the price elasticities of gasoline demand at 

sample mean values within the (year-specific) income quintiles. For all years, price elasticities 

decrease (in absolute value) with income level. This result is in line with those of several studies 

finding that gasoline demand of lower income households is on average more price responsive than 

that of better-off ones (West, 2004, 2005; West and Williams, 2004; Small and Van Dender, 2007; 

Wadud et al., 2010a; Liu, 2014). Other studies, however, identify different and even opposite 

relationships between the price elasticity of gasoline demand and income
27

. 

  

                                                      
24

 As specified in Section 3.1, Public transportation includes the fares paid for buses, taxis, coaches, trains, ferries and 

airlines.  
25

 For example, in Oladosu (2003), the mean compensated price elasticity of gasoline demand is -0.70 for the third-oldest 

owned vehicle and -0.36 for the oldest; in West and Williams (2004), the mean elasticity is -0.73 for the first total 

expenditure quintile and -0.18 for the fifth; in West and Williams (2007), the range is -0.75 to -0.27 for single-adult and 

two-adult households, respectively. 
26

 For each year, households are sorted by disposable income per adult equivalent. The new OECD equivalence scale is 

used, according to which the head of household weighs 1, all other household members aged over 13 weigh 0.5 each, and 

those under 14 weight 0.3 each.  
27

 Kayser (2000), Hughes et al. (2008), Spiller and Stephens (2012) and Gillingham (2014) find the gasoline demand of 

wealthier households to be more price elastic. Wadud et al. (2008, 2009, 2010b) find the price elasticities to be highest at 

the bottom and at the top of the income distribution, while Hausman and Newey (1995), Brännlund and Nordström 

(2004) and Frondel et al. (2012) do not find statistically significant differences in price elasticities across income levels. 



Silvia Tiezzi and Stefano F. Verde 

16 Robert Schuman Centre for Advanced Studies Working Papers 

Figure 3 – Price and tax elasticities of gasoline demand at sample mean values, by year and 

income quintile. 

 

This heterogeneity of outcomes may be due to multiple factors affecting gasoline demand. On the one 

hand, lower income households are likely to be more responsive to a gasoline price increase as their 

lower budgets imply that the income effect is stronger. On the other, gasoline demands of wealthier 

households may be more responsive to gasoline tax increases, which can be regarded as persistent 

price increases. The above literature may find conflicting evidence because it makes no distinctions in 

this respect. The right graph in Figure 3 shows our estimated elasticities of gasoline demand to 

information on gasoline taxes
28

 by income level. In contrast to the price elasticities, which get smaller 

with income, the tax elasticities increase with income. This result is consistent with the hypothesis that 

tax increases affect long-run consumer decisions, including notably investment in more fuel-efficient 

cars
29

. The reasoning is that (while wealthier people are less responsive to market-related price 

changes because they are less affected) tax changes, which are persistent price changes, must be 

determinants of decisions that both impact on gasoline demand and that wealthier people are more 

likely to make. Buying a new car – a more fuel-efficient one in the case of a tax increase – is the most 

obvious decision fitting these two conditions.  

4.3 Simulation results: distributional analysis 

In this section, we assess the distributional incidence – the degree of regressivity – of the two types of 

simulated gasoline price increases. First, however, let us recall the relevant specificities of the two 

simulation scenarios. In the Tax Scenario, the federal gasoline tax is raised by $0.22/gallon. In the 

Market Scenario, a market-related price increase of the same size is simulated. In the Tax Scenario, 

the impact of the price increase on households’ gasoline demands is given by the sum of the price 

effect and the signaling effect. In the Market Scenario, only the price effect is in play. For the Tax 

Scenario, welfare changes caused by the tax increase cannot be derived, but approximations of the 

welfare impacts are provided by the changes in households’ tax payments. The distributional incidence 

of the tax increase is thus based on economic impacts calculated in this way. By contrast, the 

distributional incidence of the market-related price increase is more accurately quantified by the CVs.  

Beginning with the Market Scenario, the left graph in Figure 4 shows, for each of the years 

considered, the mean CV as a proportion of income, by income quintile. For all years, the emerging 

                                                      
28

 The elasticity to information on gasoline taxes only includes the signaling effect of a tax change, not the price effect as 

previously defined. 
29

 There is ample evidence that gasoline price changes affect the fuel economy of newly purchased cars. For example, 

Busse et al. (2013) find that a $1 increase in the gasoline price leads to a 21.1% increase in the market share of the 

highest fuel economy quartile of cars and a 27.1% decrease in the market share of the lowest fuel economy quartile of 

cars. 
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patterns indicate that the simulated price increase is clearly regressive. On average, the welfare loss for 

the households in the first income quintile is in relative terms around four times as big as that suffered 

by the households in the top quintile
30

. Though differences in welfare impacts over time are generally 

modest, slightly smaller effects and slightly bigger effects are observed for the years 2008 and 2009, 

respectively. These years correspond to the maximum and the minimum levels of the gasoline price 

path over the simulation period. Hence, the simulated price increase represents respectively smaller 

and greater percentage increases of the baseline (historical) prices.  

Figure 4 – CV as a % of income (tot. expend.) at sample mean values, by year and income (tot. 

expend.) quintile. 

 

Taking the lifetime approach, by using total expenditure, instead of disposable income, as a measure 

of ability to pay (both for ranking the households and for expressing the welfare effects in relative 

terms), results in a partially different picture. The right graph in Figure 4 shows the results obtained. 

Compared to those in the left graph, the effects are smaller in magnitude for the first quintiles (across 

years), similar for the second quintiles, and bigger for the others. This is because on average total 

expenditure is smaller than income, but the converse is true for the poorest. More interestingly, while 

overall the distributional impact remains regressive, the degree of regressivity is significantly lessened, 

with the central quintiles bearing the largest burdens
31

. This difference is due to the fact that the 

distribution of total expenditure is more uniform than that of income. 

The above results are largely comparable to those in West and Williams (2004), which to our 

knowledge is the only US study estimating the distributional incidence of a gasoline price increase 

based on welfare effects. Using a demand system approach and CE data from 1996 to 1998, West and 

Williams (2004) find that the Equivalent Variation (EV) following a gasoline price increase of about 

$1.00/gallon (an increase five times as big as that considered here) would have ranged -3.01% to -

1.60% of total expenditure. Above all, the distributional incidence of the price increase is very similar 

to that emerging from our application when using total expenditure as a measure of ability to pay. 

Turning to the Tax Scenario, the left graph in Figure 5 depicts the distributional incidence of the 

tax increase based on the changes in tax payments as a proportion of income
32

. The magnitude of the 

effects is similar to that of the CVs in the Market Scenario. Because of the signaling effect, gasoline 

demand decreases by greater amounts in the Tax Scenario than in the Market Scenario
33

. However, in 

                                                      
30

 Table A5, in the Appendix, shows the values of the CVs in absolute terms. Tables A7 and A8 show the corresponding 

values of disposable income and of total expenditure, respectively. 
31

 This type of result is very common in the literature, since Poterba’s (1991) seminal paper showing the difference in terms 

of distributional incidence between using income or total expenditure as measures of ability to pay. 
32

 Table A6, in the Appendix, shows the values of the changes in tax payments in absolute terms. 
33

 Table A9, in the Appendix, shows the average percentage variations in gasoline demand under the two scenarios. 
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the Market Scenario, the greater welfare losses related to the higher cost of gasoline consumption are 

partly offset by the welfare gains related to the consumption of gasoline substitutes. In the Tax 

Scenario, the changes in tax payments do not take this substitution effect into account. 

Figure 5 – Left graph: Change in tax payments as a % of income, by year and income quintile;  
Right graph: Impact ratio 1

st
-to-5

th
 income quintiles, by scenario. 

 

Finally, though a direct comparison is not perfect given the use of different measures of economic 

impact, the right graph in Figure 5 shows that the tax increase is slightly more regressive than the 

market-related price increase (by simply comparing the mean impacts for the bottom and top income 

quintiles). The fact that on average price elasticities decrease (in absolute value) with income while the 

tax elasticities increase, as previously shown, underlies this result.  

5. Conclusions 

A growing empirical literature finds that gasoline tax changes have much greater impacts on gasoline 

demand than equal-in-size market-related price changes. The persistence of tax changes and their 

salience (through media coverage) are the explanations most frequently provided for this observed 

outcome. Some studies make explicit reference to the signaling effect of tax policy (Barigozzi and 

Villeneuve, 2006), but do not go as far as specifying how the signaling effect of gasoline taxes may 

operate. We take things a step further in positing and testing, within a structural demand system fitted 

to US data, that the signaling effect of a tax change is additional to the effects of tax-inclusive price 

changes. The idea is that the signaling effect of gasoline tax changes is one that impacts on long-run 

consumer decisions, such as purchasing a more fuel-efficient car, changing transportation mode or 

moving closer to work, over and above the incentives provided by the variations in tax-inclusive 

gasoline prices. We find evidence corroborating this hypothesis. Firstly, gasoline taxes turn out to be a 

statistically significant determinant of household demand additional to gasoline prices. Secondly, 

while the estimated mean price elasticity of gasoline demand decreases (in absolute value) with 

income, the tax elasticity increases. This result is consistent with our hypothesis on the signaling effect 

inasmuch as wealthier households more effectively reduce gasoline demand through long-run 

decisions, notably by buying more fuel-efficient vehicles. 

In the US, gasoline price increases are clearly regressive according to our simulations. While much 

more effective in reducing gasoline demand, tax increases appear to be slightly more regressive than 

market-related price increases, owing to the said difference in demand responses. Secondary is the role 

of demand response in determining regressivity, which in the first place depends on the pattern of 

gasoline consumption across income distribution. By contrast, much more substantial is the difference 

in outcomes if total expenditure, instead of income, is used as a measure of ability to pay, 

demonstrating the relevance of this methodological choice (criticized by some authors). If total 
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expenditure is used, the households in the middle of the income distribution – and not the poorest – 

bear the largest burdens. 

Gasoline taxes are an indispensable instrument for cost-effectively reducing gasoline consumption 

and, hence, the series of negative externalities (global and local) associated with it. Gasoline tax 

increases are regressive, but this is by no means a reason to give them up – we could not 

overemphasize this point. The high effectiveness of gasoline taxes in reducing gasoline demand 

implies that even small tax increases can significantly improve the environment while minimizing the 

importance of the related distributional effects. Secondly, gasoline taxes generate revenue that can be 

used to offset their regressivity. Notably, the revenue could be used to finance policies that facilitate 

investment of lower-income households in more fuel-efficient vehicles or their access to alternative 

means of transportation. 
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Appendix 

Table A1 – Distribution of observations across time (year and month of the interview). 

  Year 

Month  2006 2007 2008 2009 2010 2011 2012 2013 Total 

 January  0 914 869 887 950 929 908 890 6,347 

 February  0 861 888 884 934 917 937 890 6,311 

 March  0 929 893 889 957 897 885 894 6344 

 April  937 896 887 903 950 926 921 877 7,297 

 May  909 871 886 887 930 913 916 877 7,189 

 June  930 905 895 928 971 898 852 897 7,276 

 July  885 894 874 906 912 889 875 841 7,076 

 August  900 853 863 909 952 907 907 826 7,117 

 

September 
 937 886 876 947 971 879 870 877 7,243 

 October  890 910 840 968 923 921 897 712 7,061 

 

November 
 881 894 874 903 966 898 894 837 7,147 

 

December 
 920 866 867 943 891 920 833 837 7,077 

 Total  8,189 10,679 10,512 10,954 11,307 10,894 10,695 10,255 83,485 

Table A2 – Distribution of observations across PSUs (MSAs) and States. 

Primary Sampling Unit (MSA) State(s) Frequency Percent 

 Philadelphia – Wilmington – Atlantic City PA – NJ – DE – MD 4,112 4.93% 

 Boston – Brockton – Nashua  MA – NH – ME – CT 4,987 5.97% 

 New York NY 6,152 7.37% 

 New York, Connecticut suburbs NY – CT 2,666 3.19% 

 New Jersey suburbs NJ 5,167 6.19% 

 Chicago – Gary – Kenosha IL – IN – WI 8,024 9.61% 

 Detroit – Ann Arbor – Flint MI 4,342 5.20% 

 Cleveland – Akron OH 2,226 2.67% 

 Minneapolis – St. Paul MN – WI 2,700 3.23% 

 Washington DC – MD – VA – WV 2,603 3.12% 

 Baltimore MD 2,140 2.56% 

 Dallas – Ft. Worth TX 4,289 5.14% 

 Houston – Galveston – Brazoria TX 3,498 4.19% 

 Atlanta GA 3,732 4.47% 

 Miami – Ft. Lauderdale FL 2,862 3.43% 

 Los Angeles – Orange CA 9,220 11.04% 

 Los Angeles suburbs CA 3,173 3.80% 

 San Francisco – Oakland – San Jose CA 5,658 6.78% 

 Seattle – Tacoma – Bremerton WA 3,305 3.96% 

 San Diego CA 2,629 3.15% 

 Total  83,485 100.00% 
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Table A3 – Price indices (1982-84 = 100) and gasoline excise taxes (sum of federal and State 

taxes). 

Price indices
a
/taxes Obs.(#) 

Unit 
Mean 

St. 

deviation 
Min Max 

Food at home 83,485 index 215.38 25.45 122.86 251.77 

Electricity 83,485 index 202.38 49.65 102.03 327.80 

Natural gas 83,485 index 198.65 38.80 112.18 371.55 

Other home fuels 83,485 index 291.56 46.41 228.03 384.30 

Gasoline 83,485 index 262.86 52.20 143.60 453.11 

Public transportation 83,485 index 251.35 19.04 219.86 285.36 

Other expenditures 83,485 index 187.30 18.98 123.82 228.57 

Gasoline taxes, nominal 83,485 cents/gallon 42.43 8.69 32.90 67.40 

Gasoline taxes, real (1982-84 

prices)
b
 

83,485 cents/gallon 19.44 3.57 14.06 29.57 

a: All indices are Laspeyres price indices, for all urban consumers, not seasonally adjusted. b: Nominal taxes 

deflated by the US CPI (1982-84 = 100). 

Table A4 – Estimated QAIDS coefficients. 

 i=1 i=2 i=3 i=4 i=5 i=6 

Coefficient Food Electricity Natural gas Other fuels Gasoline Pub. transp. 

αi
 0.248 0.044 0.043 0.255 0.136 0.231 

 0.002 0.002 0.004 0.029 0.002 0.022 

βi
 -0.089 -0.032 -0.023 -0.047 -0.044 -0.016 

 0.001 0.001 0.001 0.004 0.001 0.004 

gi
 -0.009 -0.001 -0.006 -0.04 -0.012 -0.006 

 0.001 0.000 0.000 0.002 0.000 0.001 

αi,NE

 
0.030 0.011 0.007 -0.050 0.003 -0.256 

 0.001 0.001 0.002 0.010 0.001 0.004 

αi,SO

 
0.020 0.035 -0.006 -0.007 0.009 0.008 

 0.001 0.001 0.003 0.005 0.001 0.003 

αi,WE

 
0.034 -0.011 -0.030 -0.014 0.018 -0.013 

 0.002 0.001 0.001 0.006 0.001 0.003 

αi,NCAR

 
-0.010 0.002 0.000 0.016 0.025 -0.019 

 0.000 0.000 0.000 0.001 0.000 0.001 

αi,TWOE

 
-0.008 -0.000 0.001 0.000 0.003 -0.008 

 0.001 0.001 0.001 0.002 0.001 0.002 

αi,AGE_REF

 
-0.009 0.018 0.023 0.101 -0.046 -0.041 

 0.001 0.001 0.001 0.003 0.001 0.002 

αi,N1

 
-0.084 -0.004 0.009 0.115 0.004 -0.041 

 0.001 0.001 0.001 0.006 0.001 0.004 

αi,N3

 
0.026 0.006 0.009 0.076 -0.009 -0.025 

 0.002 0.001 0.001 0.005 0.001 0.004 

αi,N4

 
0.051 0.010 0.006 0.044 0.003 -0.104 

 0.001 0.001 0.001 0.003 0.001 0.003 

αi,N5 0.049 0.007 0.001 0.009 0.007 -0.004 

 0.002 0.001 0.001 0.004 0.001 0.003 

αi,N6 0.021 0.009 0.010 0.073 0.004 -0.035 
 0.001 0.001 0.001 0.005 0.001 0.003 

αi,EDUC -0.005 -0.002 -0.001 -0.000 -0.005 -0.000 
 0.000 0.000 0.000 0.001 0.000 0.001 

αi, TAX -0.007 0.013 -0.008 0.132 -0.034 0.014 
 0.003 0.001 0.001 0.006 0.002 0.004 

R2 0.327 0.199 0.128 0.067 0.217 0.048 

N obs   83,140   83,140 83,140 83,140   83,140 83,140 

Note: Asymptotic standard errors robust to heteroskedasticity below the coefficients. 
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Table A5 – Market Scenario: mean CVs ($/quarter), by income quintile and year. 

Income quintile 2006 2007 2008 2009 2010 2011 

1
st
 13,6 14,0 12,9 16,4 14,7 14,5 

2
nd

 23,2 23,5 21,0 27,0 24,3 23,7 

3
rd

 29,0 28,7 26,8 33,6 30,9 30,4 

4
th

 34,1 34,5 31,7 39,3 36,3 36,0 

5
th

 37,3 37,2 34,6 39,3 38,4 39,8 

Table A6 – Tax Scenario: mean change in tax payments ($/quarter), by income quintile and 

year. 

Income quintile 2006 2007 2008 2009 2010 2011 

1
st
 17,1 15,8 17,0 17,1 14,9 16,3 

2
nd

 24,2 21,0 22,1 21,2 19,0 18,9 

3
rd

 30,6 28,6 28,0 26,2 25,3 24,7 

4
th

 34,0 32,7 30,9 28,4 26,4 28,6 

5
th

 38,0 34,2 31,7 30,9 28,0 27,3 

Table A7 – Mean household disposable income ($/quarter), by income quintile and year. 

Income quintile 2006 2007 2008 2009 2010 2011 

1
st
 3835,0 3804,9 3716,1 3823,9 4011,0 3901,2 

2
nd

 9732,0 8918,1 9089,8 8968,5 9112,4 9281,6 

3
rd

 14362,2 14319,6 14543,2 14293,7 14552,6 14554,1 

4
th

 20754,6 20908,6 21046,8 20942,2 20663 20866,2 

5
th

 39598,0 41801,9 40517,2 40261,5 41017,2 39716,9 

Table A8 – Mean household total expenditure ($/quarter), by income quintile and year. 

Income quintile 2006 2007 2008 2009 2010 2011 

1
st
 6384,3 6614,7 7073,4 6987,3 6813,8 7140,2 

2
nd

 9609,4 9316,5 9475,4 9302,4 9210,3 9310,0 

3
rd

 12229,3 12240,9 12658,3 11926,0 12194,4 12393,1 

4
th

 15660,2 15838,9 16114,9 15520,2 15128,3 15548,3 

5
th

 24059,5 23579,5 23152,4 22978,3 23003,3 23026,6 

Table A9 – Market Scenario vs Tax Scenario: average percentage variations in gasoline demand. 

 2006 2007 2008 2009 2010 2011 

Market 

Scenario 
-1,9% -1,8% -1,5% -2,0% -2,1% -1,7% 

Tax Scenario -13,5% -14,4% -14,4% -14,7% -14,2% -13,6% 
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