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Highlights 
· Chemical tuning of the structure of a Dy-dimer enhances its Single Molecule Magnet  

behaviour 

· The new complex can be sublimated intact as thin film  

· The magnetic behaviour of the complex is fully preserved after the sublimation 
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Abstract 

The insertion of Single Molecule Magnets (SMMs) in spintronic devices has drawn much 

attention thanks to their fascinating quantum and classical magnetic properties. Although 

many efforts have been done in this direction, we are still in search of optimal molecules, 

which preserve intact the magnetic bistability at the nanoscale. In this frame, we have 

synthesized a new dysprosium-based dimer characterized by SMM behavior and a double-

butterfly-shape hysteresis. The complex has been successfully deposited intact by sublimation 

in high vacuum and the peculiar SMM behavior of the complex is fully retained at the 

nanoscale demonstrating that a modification of the dimer structure aimed for enhancing the 

SMM character is compatible with nanostructuration purposes.  

Keywords: Single Molecule Magnet, Dysprosium, X-ray photoelectron spectroscopy, Time-

of-Flight Secondary Ion Mass Spectrometry, magnetic bistability, thin film 
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1. Introduction 

Single Molecule Magnets (SMMs) are fascinating coordination mono and polynuclear 

complexes exhibiting magnetic bistability that has purely molecular origin [1,2]. Their 

peculiar combination of quantum and classical properties makes them ideal candidates to be 

integrated in devices for spintronics and quantum computing [3–5]. The integration of these 

objects in hybrid architectures is achieved by their deposition on specific surfaces carefully 

controlling that these fragile systems maintain unaltered their magnetic properties [6,7].  

There are a limited number of SMMs retaining their magnetic behavior at the nanoscale. 

Among them, the tetrairon(III) system (Fe4) [8] is a very interesting molecule that can be 

properly functionalized [9,10] and deposited on the substrate using wet chemistry strategies 

[11,12] as well as by organic molecular beam deposition (OMBD) methods [13,14]. Another 

class of SMMs extensively studied is the one of Terbium(III) bisphthalocyaninato complexes 

[15] that resulted  even more stable and, more importantly, characterized by a magnetic 

bistability that is retained at higher temperature. However, different studies highlight the 

erratic magnetic behavior of such molecules, that can be positively influenced by certain 

substrates [16], but in other cases experience a significant acceleration of the magnetization 

dynamics [17,18]. This justifies the effort in selecting new SMM candidates maintaining their 

behavior at the nanoscale and possibly with improved magnetic performances. Among the 

many synthesized SMMs, lanthanide-based dimers [19–43] have been widely studied because 

they offer a nice platform to investigate magnetic couplings between two lanthanide ions 

[42,44]. We recently demonstrated that such dimer of formula Dy(hfac)3(PyNO)]2 [45] (where 

hfac- = hexafluoroacetylacetone and PyNO= pyridine N-oxide, DyPyNO hereafter) is a 

particularly good candidate for the observation of SMM properties on surface. Indeed, by 

using muon spin relaxation measurements (μ-SR) we evidenced that the magnetic properties 

of this SMM are not altered neither by the metallic substrate nor by the vacuum vicinity [46].

As the magnetic behavior of most lanthanide-based dimers is extremely sensitive to slight 

modification in the dimer architecture [19–21,25–27,31–33,36,43] we have engaged a

chemical work on the DyPyNO molecule in order to optimize its SMM behavior by 

introducing a NO2 electron-withdrawing group on the dimer’s aromatic linker as already 

performed on similar molecules [37]. However the introduction of this electron-deficient 

group is expected to quench the fluorescence with respect to the behavior of the pristine 

DyPyNO molecule [47,48]. Indeed, no sizeable luminescence emission has been observed. 
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In this work, we describe the synthesis and the magnetic studies of molecular film of 

[Dy(hfac)3(PyNO-NO2)]2 (with PyNO-NO2= 4-nitropyridine N-oxide DyPyNO-NO2

hereafter) obtained via OMBD technique. 

2. Results and Discussion 

2.1. Crystal structure of DyPyNO-NO2

Single-crystal X-ray diffraction studies reveal that DyPyNO-NO2 crystallizes in a monoclinic 

system with the P21/n space group (main structural parameters are gathered in table S1). The 

asymmetric unit contains one Dy(hfac)3 moiety and one PyNO-NO2 ligand. Each DyIII ion is 

surrounded by six oxygen atoms from three hfac- ligands (O1, O2, O4, O5, O6 and O7) and 

two oxygen atoms from the NO group of two PyNO-NO2 ligands (O3). The latter connects 

two equivalent Dy(hfac)3 moieties in μ2 mode to form a dinuclear compound of formula 

[Dy(hfac)3(PyNO-NO2)]2 as shown in figure 1. Dy-O distances are in the 2.31-2.42 Å range 

(table S2) as observed on similar compounds [24,30,41]. Overall, each DyIII ion is in an 

almost perfect (CSM = 0.551 [49,50], table S3) square antiprism coordination environment 

with idealized D4d site geometry. The intramolecular Dy-Dy distance is quite short (4.071(4) 

Å) and each dimer is fairly well isolated with the shortest intermolecular Dy-Dy distance of 

10.041(2) Å. 

2.2. Deposition and chemical characterization of the DyPyNO-NO2 film 

The thermogravimetric analysis of DyPyNO-NO2 (see figure S1 and Materials and Methods)

shows a brutal 80% weight loss at 270°C, suggesting that its deposition by sublimation is 

feasible. In order to confirm the possibility to sublimate the complex DyPyNO-NO2 we have 

grown several films on different substrates checking both the chemical integrity and the 

magnetic behavior of the complex after the sublimation. The deposition of the molecule on 

the substrates has been performed by sublimation in High Vacuum (HV, see Materials and 

Methods). The AFM analysis performed on the film grown on Au/Mica (see figure S2-S3)

shows a roughness of less than 5 nm, comparable to what observed on mica suggesting a 

layer-by-layer growth of the DyPyNO-NO2 on gold. A grazing incidence XRD 

characterization (see figure S4) of the same sample evidences the amorphous nature of the 

film, in analogy to what observed for the non-functionalized molecule [46]. The broad peak

around 13° is assigned to the molecular film, while sharper diffraction peaks can be 

attributable to the Au/Mica substrate. 
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ToF-SIMS characterization allows a first direct comparison of the bulk material and the 

sublimated film. In figure 2 the spectrum of the film is compared with the pristine powder. 

The fragmentation pattern of these two samples is almost superimposable, giving a first 

demonstration of the intactness of the molecular deposit obtained by OMBD. The molecular 

peak is not present neither in the scratch nor in the sublimated film according to earlier reports 

based on similar molecules [46]. It is interesting to study the regions corresponding to the 

peaks [M-2hfac-PyNO-NO2]+ (1294 m/z) and [M-4hfac-DyPyNO-NO2]+ (716 m/z), namely 

corresponding to the molecular fragments obtained from the loss of 2(4) hfac- ligands and one 

PyNO-NO2 ligand: the isotopic distribution of these two representative peaks (figure 2) for 

the film and the bulk shows a good agreement with the theoretical pattern. Additionally, also 

the signal of the molecular peak with the loss of a hfac- ligand [M-hfac]+ at 1640m/z is weak 

but clearly visible. Further strong signals of the spectrum are due to the loss of hfac-, PyNO-

NO2 ligands, -NO2 and fluorine such as [Dy(hfac)3(PyNO)-F]+ (857m/z). A complete 

assignment of the peaks in the spectra with their intensity is given in table S4, evidencing that 

the same peaks have been detected in the bulk sample as well as in the sublimated sample.

Further confirmation that molecules in the sublimated film are intact is provided by an XPS 

analysis, being this technique capable of verifying both the stoichiometry of the molecular 

deposits and the valence of the elements present in the deposited molecular layers. A survey 

analysis reveals the presence of the expected elements constituting the DyPyNO-NO2

molecule. A more careful analysis of the regions of interest evidences that the spectral 

features of the system are completely maintained after the deposition (see figure 3, figure S5 

and table S5).  

In particular, the Dy 4d region presents, as expected, a complex spectrum due to 4d-4f

interactions. The fine structure and the main peak centered at 157 eV are perfectly in line with 

a DyIII system [51,52]. The analysis of the O 1s region reveals the presence of three distinct 

contributions attributable to the pyridine N oxide (535.9 eV), the nitro group  (533.4 eV) and 

the ketonic (531.4 eV) oxygen, respectively [53]. The trend of the quantitative analysis of the 

different contributions in the region is in good correspondence with the calculated ones (see 

table S5). The C 1s region shows a fine structure that can be clearly assigned to the different 

carbon atoms according to previous reports on similar complexes [46,54]: at high Binding 

Energy (BE), well separated with respect to the others, a peak attributable to the fluorinated 

carbon (-CF3) atoms centered at 291.8 eV can be identified. The peak at 286.4 eV is due to the 

contributions of the ketonic carbon atoms (C=O) and the carbon bound to with nitrogen. The 

component at lower BE is the sum of the aliphatic and aromatic carbon atoms. The feature at 
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295.6 eV is due to shake-up signal of the C 1s. Table S5 evidences the good agreement 

between the experimental and theoretical values for each component of the C 1s peak. The N 

1s peak is fitted using three components: one for -NO (402.7 eV), another one for -NO2

(405.7 eV) and a third component at lower BE (400.1 eV) in agreement with earlier literature 

reports [53,55]. The peak at lower binding energy can be attributed to a radiation damage that 

is more evident in the bulk sample. The F 1s peak presents a major component at 687.4 eV, 

due to the fluorine in the -CF3 groups, and a minor component at lower binding energy due to 

small radiation damage. A semi-quantitative analysis of the composition of the film according 

to the integrated peak signals gave the values reported in table 1 that well compares with the 

theoretical ones, except for dysprosium. The excess of dysprosium can be justified by the 

error that can be done in the fitting because of the complex peak fine structure. 

The combination of the ToF-SIMS and the qualitative and semi-quantitative XPS analyses 

allows us to safely confirm that the DyPyNO-NO2 film obtained by sublimation in vacuum 

condition is intact from a chemical point of view. This is in line with previous 

characterization of similar compounds [24,56] and confirms that the introduction of the NO2

group does not affect the sublimation capability of this system.

2.3. Magnetic Measurements 

Static and dynamic magnetic susceptibility measurements have been performed on 

polycrystalline samples of DyPyNO-NO2 embedded in grease to avoid preferential 

orientation of the microcrystallites in the magnetic field. The room temperature value of the 

χMT product is 26.52 emu K mol-1 at 300 K (figure S6), slightly lower than the expected 28.34 

emu K mol-1 for two isolated DyIII ions. The χMT value decreases as the temperature is 

lowered because of the progressive depopulation of the sublevels of the J = 15/2 multiplet of 

the DyIII and also because of weak antiferromagnetic interactions between two DyIII centers. 

Such behavior was also observed on DyPyNO [45]. Ab-initio calculations evidences a very 

anisotropic and almost pure mJ  = ±15/2 ground doublet (effective gx = 0.00, gy = 0.01, gz = 

19.56) that is well separated from the first excited one (187 K, 130 cm-1) (table S6). The 

orientation of the magnetic axis in the molecule has been also computed by using post 

Hartree-Fock methods and the axis has been found to lie on an edge of the square antiprism 

coordination polyhedron of the DyIII ions,  almost perpendicular (87°) to the Dy-Dy direction 

(figure 1), as seen in a similar compound [41].  

From the dynamic point of view, frequency dependence of the in-phase (χM’) and out-of-

phase (χM”) component of the magnetic susceptibility have been measured in zero dc field 
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(figure 4). Strong frequency dependence of both signals is observed and in line with what 

found on DyPyNO [45]. Dynamical parameters have been extracted from these measurements 

by fitting the χM” vs frequency curves (table S7) using an extended Debye model and the 

relaxation times (τ) are plotted in figure 5 left [2]. Two regimes are clearly evidenced. At high 

temperature, the relaxation is governed by a thermally activated mechanism (Orbach 

relaxation process) involving excited mJ levels. At low temperature, the Arrhenius plot 

flattens suggesting the onset of a different regime with a weaker temperature dependence. The 

nature of this latter mechanism remains unclear and recent studies points towards a key role 

played by low energy phonon modes [57]. We take into account the two regimes by 

considering the relaxation rate as the sum of two contributions with the following equation: 

 
!"

=  #
 ! exp "# $

%&'
( + )*, equ.1

where the first term represents the Orbach process and the second term mimics a Raman 

process. The fitting of the data in figure 5 left with equation 1 gives the following parameters: 

τ0 = (3.1 ± 1.5) ´ 10-10 s, Δ = 204 ± 8 K, A = 0.037 ± 0.003 and n = 3.93 ± 0.05. The value 

obtained for the barrier of the Orbach process is slightly higher with respect to other 

dysprosium dimers [58,59], and in particular higher that of the parent compound DyPyNO (τ0

= (6.6 ± 2.2)´10-11 s, Δ = 166 ± 4 K, A = 0.104 ± 0.006 and n = 4.25 ± 0.039), as visible in 

table 2 and figure 5 left [46]. Moreover at 1.8 K, the relaxation time is τ1.8K = 2.1s 

significantly higher than what observed on DyPyNO (τ1.8K = 0.42s). These findings confirm 

that the introduction of the NO2 electron-withdrawing group on the bridging ligand of the 

dimer is able to modify the electrostatic environment of the DyIII ion and to lead to an 

optimization of dimer’s SMM behavior.

The distribution of the relaxation times within the sample can be estimated by a Cole-Cole 

plot (i.e. χM” vs χM’, see figure S7) where the extracted α parameters indicates an infinitely 

narrow (α = 0) or infinitely broad (α = 1) distribution of the relaxation times [2]. Here, almost 

all the dimers relax at the same rate in the thermally activated region (α = 0.07 at 15 K) but a 

significant distribution of the relaxation rates characterizes the temperature-independent 

region (α = 0.42 at 2 K) (table S8). Additionally, a remarkable point is that almost all the 

sample is relaxing at low temperature as the non-relaxing fraction (that can be evaluated as 

χS/χT, where χT and χS are the isothermal and adiabatic susceptibility respectively) is estimated 

to be around 4% at 1.8K (see figure S7 and table S8). Overall, the DyPyNO-NO2 dimers 

possess an optimized SMM behavior when compared with DyPyNO (see table 2). 

A similar magnetic characterization has been performed on a DyPyNO-NO2 film of 650 nm 
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where the first term represents the Orbach process and the second term mimics a Raman where the first term represents the Orbach process and the second term mimics a Raman 
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 = 0.037 ± 0.003 and  = 0.037 ± 0.003 and nn = 3.93 ± 0.05.

ained for the barrier of the Orbach process is slightly higher with respect to other ained for the barrier of the Orbach process is slightly higher with respect to other 

dysprosium dimers [58,59], and in particular higher dysprosium dimers [58,59], and in particular higher ththat of the parent compound DyPyat of the parent compound DyPy

 = 0.104 ± 0.006 and  = 0.104 ± 0.006 and 

 Moreover at 1.8 K, the relaxation time is  Moreover at 1.8 K, the relaxation time is 



thickness deposited on a Teflon substrate (see section 3.2.). The behavior of the film, with a 

strong frequency dependence of both χM’ and χM” signals (figure 4) between 4 and 12 K, is

very similar to the one of the bulk material. In the high temperature and high frequencies 

region some spurious effects are visible as a consequence of the very low signal coming from 

the small amount of sample (mfilm = 0.3 mg). These high frequency peaks can be neglected as 

the hysteretic magnetic behavior targeted is at extremely low frequencies or even in a static 

mode. Characteristic dynamic parameters have been extracted using similar procedures as for 

the bulk and relaxation times (τ) and their distribution (α) are highly similar with those of the 

bulk material (figure S7, table 2, S9 and S10). Very interestingly, the non-relaxing fraction is 

also similar. This indicates that almost all the deposited molecules are magnetically efficient. 

Overall, this investigation suggests that DyPyNO-NO2 has a magnetic behavior as robust as 

DyPyNO toward surface deposition and that the optimization of the magnetic relaxation 

observed on DyPyNO-NO2 is also visible once the molecules are nanostructured as films 

(table 2). 

To definitely probe the magnetic efficiency of films of DyPyNO-NO2 further magnetic 

investigation have been performed to characterize the behavior on a longer timescale.

Magnetic hysteresis has been measured at 0.5 K with a 15.5 Oe/s sweep rate on DyPyNO-

NO2 derivatives in both bulk and films phases. Both hysteresis loops have the same double-

butterfly-like shape, as shown in figure 5 right. The loops adopt an S-shape close to zero-field 

because of the strong antiferromagnetic interaction between the DyIII ions within each dimer 

[30]. The opening of the hysteresis loop on the DyPyNO-NO2 film demonstrates that the 

magnetic bistability is successfully preserved after the sublimation. After the low-field step 

the loop is narrowing as a consequence of the level crossing between the first excited state 

and the ground state of the dimers [37,39,42,45]. In the Ising approximation, and treating each 

DyIII center as an effective spin ½, this crossing allows to estimate the AF interaction using 

Hcrossing = -j/2gµB [45], where j is the exchange constant and g = 19.56 is the calculated 

gyromagnetic factor of the effective spin ½. Given the accuracy in quantifying Hcrossing, a

rough estimation of j is -2.9 cm-1 for DyPyNO-NO2 either as bulk or film. Hence, the AF 

coupling within the dimer is not altered by their nanostructuration in film. Overall, film and 

bulk hysteresis loops of DyPyNO-NO2 are almost superimposable in the low field region.

This is a significant proof of the persistence of the SMM behavior of DyPyNO-NO2 once 

nanostructured in a film. 

3. Material and Methods 
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3.1. Synthesis 

4-Nitropyridine N-oxide has been purchased from TCI Chemicals and used without further 

purification. Dy(hfac)3∙(H2O)2 has been obtained by reported methods [60]. Dy(hfac)3∙(H2O)2

(0.1 mmol) is dissolved in 10 ml CHCl3. Then a 10 ml CHCl3 solution of 4-Nitropyridine N-

oxyde (0.1 mmol) is added drop by drop. The resulting solution is stirred for 5 mins and 

recovered by a layer of n-heptane solvent at 2°C. After several days, crystals suitable for 

single-crystal X-ray diffraction are obtained. Structural data files are available as CCDC 

1528789.

3.2. Thermal Analysis 

Thermo-gravimetric and thermo-differential analyses have been performed in platinum 

crucibles under a nitrogen atmosphere between room temperature and 1000°C with a heating 

rate of 5°C·min-1 using a Perkin Elmer Pyris-Diamond thermal analyzer. At the end of the 

experiments, the compounds were maintained for one hour at 1000°C under air atmosphere in 

order to complete the combustion. 

3.3. X-ray Powder Diffraction 

Diagrams of DyPyNO-NO2 bulk and “cold finger” have been collected using a Panalytical 

X'Pert Pro diffractometer with an X'Celerator detector. The typical recording conditions were 

45kV, 40mA for Cu Kα (λ=1.542Å), the diagrams were recorded in θ-θ mode between 5° and 

75°.  The DyPyNO-NO2/Au/Mica film has been investigated by grazing angle X-ray 

diffraction (XRD) using a Cu Kα source with a Bruker D8 Advance diffractometer equipped 

with a focusing mirror accessory. The reported data have been obtained by placing the X-ray 

source between 1° and 5° relative to the sample plane and scanning with the detector an angle 

between 5° and 40°. The pristine Muscovite mica substrate has been measured with the same 

instrument, using a Bragg-Brentano configuration. 

3.4. OMBD preparation and characterization 

The deposition of the molecule on the substrates is performed by sublimation in HV. We use a 

homemade Knudsen cell: the molecular powders are hosted in a quartz crucible heated by 

Joule effect by a tantalum wire. A K-type thermo-couple, buried into the powder, allows for 

temperature control. The sublimation rate is controlled by a quartz microbalance (QCM).

During the sublimation the powders are heated up to 415 K reaching a deposition rate of 

1.5Å/min. In order to confirm the rate obtained by QCM, a scratch of the film grown on Au 
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on mica Muscovite has been measured with AFM (see figure S3), following the procedure 

used for similar samples [45]. We measured the film prepared for XPS presenting a nominal 

thickness of DyPyNO-NO2 of 50 nm on 80 nm of gold. Since the scratch a thickness is 125 

nm (DyPyNO-NO2 + gold), the value of the QCM appears reliable. 

ToF-SIMS 

The bulk reference has been obtained by scratching the DyPyNO-NO2 powder on a copper 

foil, while the film of ≈ 33 nm has been deposited on a gold on mica substrate. 

A TRIFT III spectrometer (Physical Electronics, Chanhassen, MN) equipped with a gold 

liquid-metal primary ion source was employed for the ToF-SIMS analyses. Spectra were 

calibrated to C2H2
+ (m/z = 26.0156), CF+ (m/z = 30.9984), CF3

+ (m/z = 68.9952) and [M-

4hfac- DyPyNONO2]+ (m/z = 717.9274). Theoretical isotopic patterns for the most relevant 

signals were calculated with Molecular Weight Calculator Program. 

XPS 

The bulk reference has been obtained by scratching the molecular powder on a carbon tape, 

while a film of ≈ 50 nm has been deposited on a gold on mica substrate. The film shows a 

marked charging effect due to the low conductivity of the molecular film that has been 

corrected using as reference the CCF 1s peak at 291.8 eV. The inelastic background of the 

spectra was subtracted by means of the Shirley method [61]. Data analysis was based on a 

standard method for deconvolution using mixed Gaussian (G) and Lorentzian (L) line shapes 

(G = 30%, L = 70%, Gaussian-Lorentzian product) for each component in the spectrum.  

XPS measurements are carried out in an UHV chamber with a base pressure in the low 10−10

mbar range. The chamber is equipped with a SPECS Phoibos 150 electron analyzer and a 

monochromatic Al X-ray source operating at a power of 100 W (13 kV and 7.7 mA). The X-

ray source is assembled at 54.44° with respect to the analyzer. This setup has been used to 

characterization the sublimated film. The characterization of the scratch, used as a reference, 

has been performed with a standard Al source with a power of 100 W (10 kV and 10 mA). 

The pass energy was set to 40 eV for all the experiments.  

3.5. Ab-initio computational details 

Wavefunction-based calculations were carried out on a model structure of [Dy(hfac)3(PyNO-

NO2)]2 (vide infra) by using the SA-CASSCF/RASSI-SO approach, as implemented in the 

MOLCAS quantum chemistry package (versions 8.0) [62]. In this approach, the relativistic 

effects are treated in two steps on the basis of the Douglas–Kroll Hamiltonian. First, the scalar 

terms were included in the basis-set generation and were used to determine the spin-free 
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wavefunctions and energies in the complete active space self-consistent field (CASSCF) 

method [63]. Next, spin-orbit coupling was added within the restricted-active-space-state-

interaction (RASSI-SO) method, which uses the spin-free wavefunctions as basis 

states[64,65]. The resulting wavefunctions and energies are used to compute the magnetic 

properties and g-tensors of the lowest states from the energy spectrum by using the pseudo-

spin S = 1/2 formalism in the SINGLE-ANISO routine [66,67]. Cholesky decomposition of 

the bielectronic integrals was employed to save disk space and speed-up the calculations [68]. 

The active space of the self consistent field (CASSCF) method consisted of the nine 4f 

electrons of the DyIII ion spanning the seven 4f orbitals, i.e. CAS(9,7)SCF. State-averaged 

CASSCF calculations were performed for all of the sextets (21 roots), all of the quadruplets 

(224 roots), and 300 out of the 490 doublets (due to software limitations) of the DyIII ion. 

Twenty-one sextets, 128 quadruplets, and 107 doublets were mixed through spin−orbit 

coupling in RASSI-SO. All atoms were described by ANO-RCC basis sets [69–71]. The 

following contractions were used: [8s7p4d3f2g1h] for Dy, [7s6p4d2f] for Y, [4s3p2d] for the 

O atoms of the first coordination sphere of the metal ions, [3s2p1d] for the other O atoms, the 

N atoms of the PyNO groups and the C atoms, [3s2p] for the other N atoms and [2s] for the H 

atoms. The atomic positions were extracted from the X-ray crystal structures and the CF3

groups were replaced by H atoms. 

4. Conclusion 

As a conclusion, we have demonstrated that the sublimable DyPyNO dimer can be modified 

into DyPyNO-NO2 which shows slightly improved SMM behavior. Strong anisotropy and a 

relatively high energy barrier (204 K), in line with ab-initio calculations, is identified together 

with an extremely large fraction of relaxing molecules (96% of the sample at 1.8 K). As its 

parent compounds, DyPyNO-NO2 is extremely robust toward sublimation processes as 

demonstrated by XPS and ToF-SIMS. Magnetic dynamic properties of the film are very 

similar to those of the bulk material and hysteresis loops definitely prove the robustness of the 

magnetic properties of the dimers once nanostructured as film. Consequently, the chemical 

modification of the bridging ligand of this class of evaporable SMM complexes can enhance 

its magnetic properties without compromising chemical stability face to sublimation and 

robustness of magnetic properties when nanostructured in a film. 
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Captions 

Figure 1 a) Representation of the [Dy(hfac)3(PyNO-NO2)]2 molecule (hydrogen atoms are omitted for clarity) b) 
Coordination environment of the DyIII ion with calculated easy magnetic axis as orange arrows. 

Figure 2 ToF-SIMS spectrum of the film (in red) and the bulk reference (in blue). In the bottom part there are 
two zoomed regions. 

Figure 3 XPS region of Dy 4d and O 1s for DyPyNO-NO2 film and bulk. 

Figure 4 Frequency dependence of the in-phase (χM’, top) and out-of phase (χM’’, bottom) component of the 

magnetization of [Dy(hfac)3(PyNO-NO2)]2 as bulk (left) and as film (right) measured in zero static magnetic 
field. Color mapping from 1.8 (blue) to 20 K (red). 

Figure 5 (Left) Arrhenius plot of DyPyNO-NO2 as bulk (black squares) and film (red squares) and comparison 
with DyPyNO as bulk (triangles). The data of DyPyNO have been already reported in [46], but here the data are 
fitted using equation 1. (Right) Hysteresis loops recorded at 0.5 K for DyPyNO-NO2 as bulk (black) and as film 
(red).  
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 as bulk (left) and as film (right) measured in zero static magnetic  as bulk (left) and as film (right) measured in zero static magnetic 

as bulk (black squares) and film (red squares) and comparison as bulk (black squares) and film (red squares) and comparison 
with DyPyNO as bulk (triangles). The data of DyPyNO have been already reported in [46], but here the data are with DyPyNO as bulk (triangles). The data of DyPyNO have been already reported in [46], but here the data are 
fitted using equation 1. (Right) Hysteresis loops recorded at 0.5 K for DyPyNO-fitted using equation 1. (Right) Hysteresis loops recorded at 0.5 K for DyPyNO-NONO22 as bulk (black) and as film  as bulk (black) and as film 



Tables 

Table 1. Semi-quantitative analysis of DyPyNO-NO2 as film and bulk. 

F 1s Dy 4d C 1s O 1s N 1s F1s/N1s

theoretical 36.0% 2.0% 40.0% 18.0% 4.0% 9

evaporated 35.7% 2.8% 46.3% 15.2% 3.7% 9.6
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Table 2. Main dynamical parameters extracted for DyPyNO-NO2 as bulk and film. Comparison with DyPyNO as 
bulk is provided [45]. 

DyPyNO 
bulk

DyPyNO-

NO2 bulk
DyPyNO-

NO2 film
Energy barrier 

Δ
166 K 204 K -

Characteristic relaxation time 
τ0

6.64 10-11 3.1 10-10 s -

Relaxation time at 1.8K 
τ1.8K

0.42s 2.1 s -

Distribution of τ 

α (max-min)
0.05-0.007 0.42-0.07 0.26-0.03

Non-relaxing fraction at lowest T
XS/XT

8.8% 3.7% 5.1 %
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