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Abstract
The model we study deals with a population of marine invertebrates structured by 
size whose life stage is composed of adults and pelagic larvae such as barnacles con-
tained in a local habitat. We prove existence and uniqueness of a continuous positive 
global mild solution and we give an estimate of it. We prove also that this solution is 
the strong solution of the problem.

Keywords Size-structured population dynamics · Semigroup theory · Affine 
semigroups · Mild solution · Strong solution

1 Introduction

A famous American zoologist of Swiss origin, Louis Agassiz, lived in the XIX 
century defined the barnacles like “little shrimps hanging from the rock with their 
heads, locked in a limestone house and kicked throwing food into their mouths”.

They belong to a species of crustaceans, marine invertebrates whose life is com-
posed of two stages, pelagic larvae and adult sessile.

Barnacles have two larval stages: the first (nauplius) spends its time as part of 
zooplankton floating wherever the wind, waves, currents, and tides may take it. In 
this period, which lasts of about two weeks, it can eat and moult; hence the second 
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stage is reached. At this point the nauplius metamorphoses into a non-feeding, more 
strongly swimming, cyprid larva.

When an appropriate place is found, the cyprid larva cements itself head first to 
the surface and then undergoes metamorphosis into a juvenile barnacle.

Typical barnacles develop six hard plates to surround and protect their bodies. 
For the rest of their lives they are cemented to the ground or even on shells of other 
animals, using their feathery legs, called cirrus, to capture plankton and gametes 
when spawning. They are usually found in the intertidal zone. Once metamorphosis 
is over and they have reached their adult form, barnacles will continue to grow, but 
not moult. Actually, they grow by adding new material to the ends of their heavily 
calcified plates.

The model we study, following He and Wang [7], consists of a non-linear system 
of two equations, the first one models the density of the adults, whereas the second 
one involves larval evolution. The equations are connected by means of the bound-
ary conditions of the evolution of the adults, which takes into account the larval 
evolution.

The population dynamics of marine invertebrates such as barnacles, in which 
sessile adults and pelagic larvae are contained in a local area, are very much dif-
ferent from the population dynamics of vertebrates. Although the sessile adults 
can be viewed as living in limited area, their larvae can freely move from one area 
to another, because each area (patch) is connected by the pelagic pool containing 
the larvae. That is, such a population system in a local area is essentially “open”, 
because newly settled larvae can be carried from outside the region, while the whole 
multipatch system can be “closed” if the larvae are produced by the sessile adults in 
each patch [10]. Moreover, it has been observed in sessile marine populations that 
the space to be settled by the larvae is a principal limiting resource, and the number 
of settlements is approximately proportional to the free space available to larvae.

In 2005, Kamioka [9], developed a rigorous mathematical approach to a closed 
age structured population model, which can be seen as a non-linear extension of 
Roughgarden–Iwasa–Baxter model [8, 13]. Originally, Roughgarden et  al. rec-
ognized the absurd drawback of their model, whereby the population density may 
become negative for some initial conditions.

The main reason for this shortcoming is that the demographic parameters of the 
size growth rate and mortality are assumed to be independent of the population den-
sity. In reality, these parameters will depend on the density of the population or the 
available free space.

Also in [11] it is proposed an age-structured space-limited model, in which any 
references to the dimension is missing and it is proved that the solution of the model 
is a mild solution. Nothing is proved about the existence of a strong solution.

Field research during the last fifty years show that, for many populations, such 
as wild animals, plants and marine invertebrates, demographic and life history 
processes (e.g., growth, reproduction and death) depend on the size of individuals 
rather than age. Individuals’ size is better than age to estimate the ecological and 
commercial values in ecology and resources economy. For these reasons, there have 
been many attempts to construct size-structured models (see, e.g., [1] and [14]). 
Although several discrete size-time models have been formulated for population in 
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space-limited habitats, there are only few attempts, however, to analyze continuous 
time size-structured model with space-limited recruitment, since a rigorous math-
ematical analysis of continuous size-structured models usually involves some con-
siderable complexities.

In this work, unlike [9], which studies an age-structured model, the equation for 
adults evolution takes into account size growth through a function that represents 
the individual growth rate.

Moreover, unlike studies already present in the literature that give the solution in 
an implicit way, we have defined, inspired by types of weaker solution studied for 
linear or semilinear problems, a new type of “mild” solution. This new type of solu-
tion is more explicit than that already present in the literature and give an immediate 
quantitative idea of what is being analyzed. We prove the existence of a mild solu-
tion global in time, by using affine semigroup techniques.

We get also estimates of the solution to prove that the local solution is global in 
time, and eventually, we also prove that this solution is a strong solution, that is it 
satisfies the equation of evolution in the classical sense.

The paper is organized as follows: we consider first that the boundary value of 
adults density is known and has some suitable properties. In this way, we find the 
mild solution of the evolution problem for the adults density by means of affine sem-
igroup techniques and successive approximation procedures.

Then, by using another successive approximation procedure, we find that the 
function which represents the boundary value of adults density belongs to a suitable 
Banach space which ensures that it has the requested properties. At the end we prove 
that this solution is the global strong solution of the system.

2  The model

As we said in the introduction, we analyze the model studied by Zerong He and 
Haitao Wang [7]. The model under consideration reads as follows:

where p(s,  t) represents the size-density function of sessile adults living in a local 
habitat, depending on the size-variable s ∈ (0,m) at time t > 0 , where m > 0 is the 
maximum attainable size (finite).

(1)
𝜕p(s, t)

𝜕t
+

𝜕

𝜕s
(g(s)p(s, t)) = −𝜇(s)p(s, t) − 𝛿(s,Q(t))p(s, t),

t > 0, 0 < s < m,

(2)g(0)p(0, t) = c(M − Q(t))L(t), t > 0,

(3)
d

dt
L(t) = −(v + c(M − Q(t)))L(t) + ∫

m

0

𝛽(s)p(s, t)ds, t > 0,

(4)p(s, 0) = p0(s), L(0) = L0, 0 ≤ s < m,
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Moreover, g(s) is the growth rate, �(s) is the natural death rate at size s and �(s) is 
the fertility rate. The function �(s,Q(t)) represents the density-dependent death rate, 
where

is the size occupied space ( �(s) is the area occupied by one individual of size s) with 
respect to the total available area M.

The unknown function L(t) gives the abundance of larvae in the pelagic pool at 
time t, v is the natural death rate of the larvae and finally c is the settlement rate for 
unit free area.

The data p0(s) and L0 give the initial conditions for larvae and adults respectively.
From a mathematical point of view, the following assumption are made: 

1. the constants c, v, M, m,  are positive and L0 is nonnegative;
2. the functions �(s), p0(s), �(s) are positive and bounded functions on (0, m) . More-

over, ∫ m

0
𝛽(s)p0(s)ds > 0;

3. the growth rate g(s) is positive and bounded for s ∈ [0,m] (that is, ∃ ḡ such that 
0 ≤ g ≤ ḡ ); moreover it is a differentiable function and its derivative is also 
bounded (that is, ∃ k̄ such that |g′| ≤ k̄);

4. the death rate �(s) is positive for all s ∈ (0,m) , locally integrable on [0, m] and 
satisfies the condition 

 which makes the maximum attainable size be finite;
5. the density-dependent death rate �(s,Q) is nonnegative and uniformly bounded for 

(s,Q) ∈ [0,m] × [0,M] , and it has a bounded, continuous and positive derivative 
with respect to Q. Therefore two positive constants 𝛿 and �′ exist such that: 

3  Analysis of the model

Without loss of generality, we assume that the initial size of adult individuals is zero.
The survival rate, i.e., the proportion of newly settled larvae who can survive to 

size s, is given by

Then, from assumption 4., we have l(m) = 0, l�(s) = −l(s)
�(s)

g(s)
.

(5)Q(t) = ∫
m

0

𝛾(s)p(s, t) ds, t > 0,

(6)∫
m

0

�(s)

g(s)
ds = +∞,

(7)0 ≤ 𝛿(s,Q) ≤ 𝛿, 0 ≤ 𝜕𝛿(s,Q)

𝜕Q
≤ 𝛿�.

(8)l(s) ∶= e
{− ∫ s

0

�(r)

g(r)
dr}

.
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In order to avoid mathematical troubles due to the singularity of the mortality 
rate �, let us factor out the natural death rate �(s) in the model (1–4).

Define a new function q(s, t) by

Then is not difficult to see that the system (1–4) reduces as follows:

It is easy to see that the system (10–13) is equivalent to:

where

and �(s) ∶= �(s)l(s) is the new reproduction function of the adult population of size 
s and �(s) ∶= �(s)l(s) is the expected space area occupied by an individual.

According to the assumptions on � and � , also � and � are bounded, i.e., there 
exist two constants �̄�, �̄� such that

Furthermore, we assume that

(9)p(s, t) ∶= q(s, t)l(s).

(10)
𝜕q(s, t)

𝜕t
+

𝜕

𝜕s
(g(s)q(s, t)) = −𝛿(s,Q(t))q(s, t), t > 0, 0 < s < m,

(11)g(0)q(0, t) = c(M − Q(t))L(t), t > 0,

(12)
d

dt
L(t) = −vL(t) − c(M − Q(t))L(t) + ∫

m

0

𝜙(s)q(s, t)ds, t > 0,

(13)q(s, 0) = q0(s), L(0) = L0, 0 ≤ s < m.

(14)
𝜕q(s, t)

𝜕t
+

𝜕

𝜕s
(g(s)q(s, t)) = −𝛿q(s, t) + [𝛿 − 𝛿(s,Q(t))]q(s, t),

t > 0, 0 < s < m

(15)g(0)q(0, t) = 𝜒(t), t > 0,

(16)
d

dt
L(t) = −vL(t) − 𝜒(t) + ∫

m

0

𝜙(s)q(s, t)ds, t > 0,

(17)q(s, 0) = q0(s) ∶=
p0(s)

l(s)
, L(0) = L0, 0 ≤ s < m.

(18)Q(t) = ∫
m

0

𝜓(s)q(s, t)ds, t > 0,

(19)𝜙(s) ≤ �̄�, 𝜓(s) ≤ �̄� , 0 < s < m.
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is a nonnegative function and define the function

Remark 3.1 We introduce the system (14–17) because the term 𝛿 − 𝛿(s,Q(t)) is  
nonnegative and this fact is useful for the estimate of the solution.

Define the Banach space X = L1(0,m), with its usual norm ‖f‖X = ∫ m

0
�f (s)�ds, 

and denote by X+ its positive cone X+ = {f ∈ L1(0,m) ∶ f (s) ≥ 0 a.e. in (0,m)}. By 
defining the operator:

it is possible to prove the following lemma.

Lemma 3.1 The operator N satisfies the following properties:

1.  the operator (�I − N)−1 exists for all 𝜆 > 0;

2.  the operator N is closed;
3.  the domain D(N) of N is dense in X.

Proof The solution of the equation (�I − N)f = h reads as

Hence if h ∈ X+ , then also f ∈ X+.
Moreover ‖(𝜆I − N)−1h‖ ≤ 1

𝜆
‖h‖ ∀𝜆 > 0, h ∈ X+. Any h ∈ X can be written 

as h = h+ − h−, with h+, h− ∈ X+ (h+ =
|h|+h
2

, h− =
|h|−h
2

), and since (�I − N)−1 is a 

positive operator, it is possible to see that for h ∈ X, 𝜆 > 0,

Then, the operator (�I − N)−1 ∈ B(X) and it is the resolvent operator R(�,N) of N. 
Hence Property 1. is proved.

Property 2. follows from the fact that N = −{(𝜆I − N)−1}−1 + 𝜆I, 𝜆 > 0 and 
(�I − N)−1 ∈ B(X).

Property 3. is automatically proved because C∞
0
(0,m) ⊂ D(N) and since 

C∞
0
(0,m) = X, also D(N) = X, hence D(N) is dense in X.   ◻

(20)q0(s) ∶=
p0(s)

l(s)
∈ L1(0,m),

(21)𝜒(t) = c(M − Q(t))L(t), t > 0,

(22)�(t) = 0, t ≤ 0.

(23)Nf = −
d

ds
(gf ), D(N) =

{
f ∈ X,

d

ds
(gf ) ∈ X, (gf )(0) = 0

}
,R(N) ⊂ X,

f (s) =
1

g(s) �
s

0

e
−� ∫ s

s�
1

g(u)
du
h(s�)ds�.

(24)‖(�I − N)−1h‖ ≤ 1

�
‖h+‖ + 1

�
‖h−‖ =

1

�
‖h‖, ∀ h ∈ X.
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Thus, the operator N ∈ G(1, 0;X) [4], and so it generates a strongly continuous 
semigroup of contractions. Now define the following operator:

Note that At depends on t because of its domain. For simplicity, from now on, we 
denote it simply by A.

The operator A is non-linear and it is affine to N [2]. In fact if f1, f2 ∈ D(A) , 
then f1 − f2 ∈ D(N), and if f ∈ D(A), g ∈ D(N) , then f + g ∈ D(A) and 
A(f + g) = Af + Ag.

Remark 3.2 We can write the operator N as the sum of two operators:

where N1 = −g�f , N2 = −gf � and N1 ∈ B(X) (i.e., ‖N1‖ ≤ k̄ ). Thus, N2 = N − N1 is 
a closed operator and N2 ∈ G(1, k̄;X).

Note that by adding and subtracting −g�(s)q(s, t) to (10) we obtain the equivalent 
evolution equation

where �(Q) = �(∙,Q).

The operator A − N1 is affine to N − N1 and it is defined as follows:

With these definitions the system (10–13) can be written as an evolution problem as 
follows:

where

Note that q(t) = q(∙, t) ∈ X and L(t) ∈ ℝ.

From the affine operator theory [2], the problem:

(25)Atf = −
d

ds
(gf ),D(At) =

{
f ∈ X,

d

ds
(gf ) ∈ X, (gf )(0) = 𝜒(t)

}
,R(A) ⊂ X.

(26)Nf = N1f + N2f ,

(27)
dq

dt
= (A − N1)q − g�q − �(Q)q,

(28)
(A − N1)f = −g

df

ds
, D(A − N1) = {f ∈ X, f � ∈ X, (gf )(0) = 𝜒(t)}, R(A − N1) ⊂ X.

(29)
dq(t)

dt
= Aq(t) + F(q(t)), t > 0

(30)
d

dt
L(t) = −vL(t) − c(M − Q(t))L(t) + ∫

m

0

𝜙(s)q(s, t)ds, t > 0,

(31)q(0) = q0, L(0) = L0,

(32)Ff = (𝛿 − 𝛿(s,Q(t)))f .
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has the following solution

where p(t) is a suitable function such that

By choosing p(t) =
�(t−∫ s

0

1

g(u)
du)

g(0)
, we have p(0) = 0 by (22). Finally we obtain:

Now, we just have to understand how to write e(N−N1)t. Since N ∈ G(1, 0;X) and 
N1 ∈ B(X), it follows that N − N1 ∈ G(1, k̄;X), and e(N−N1)t can be find by means of 
the successive approximation procedures [4].

We assume that �(t) is known. Obviously it has to be positive, continuous, differ-
entiable and bounded. Of course �(t) is bounded in any interval [0, t0], with t0 < ∞, 
that is, if t0 > 0 is fixed, a suitable �̄� = �̄�(t0) > 0 exists such that 0 < 𝜒 ≤ �̄� , for any 
t ∈ [0, t0].

In the sequel, we shall prove that �(t) really satisfies all these properties.
We want to formulate an integral equation, whose solution is an analogue of the 

“mild” solution of the linear problem.
In particular, from the system (10–13), we have the following equation for the adults:

Note that, if the solution of (37) is strongly differentiable with respect to t, it will be 
the strong solution of system (10–13). Obviously, this fact necessarily requires the 
differentiability of �(t) with respect to t which will be proved in Sect. 5.

The system (33) is equivalent to the following integral equation [15]:

(33)
df

dt
= (A − N1)f ,

f (0) = f0,

(34)f (t) = e(A−N1)tf0 = p(t) + e(N−N1)t[f0 − p(0)], 0 ≤ t < t0,

(35)p�(t) = (A − N1)p(t), p(t) ∈ D(A − N1).

(36)e(A−N1)tf0 =
�(t − ∫ s

0

1

g(u)
du)

g(0)
+ e(N−N1)tf0.

(37)

q(t) = e(N−N1)tq0 +
�(t − ∫ s

0

1

g(u)
du)

g(0)
− �

t

0

e(N−N1)(t−r)[g� + �(s,Q(r))]q(r)dr.

(38)

q(t) = e(N−N1)tq0e
−𝛿te−k̄t +

𝜒(t − ∫ s

0

1

g(u)
du)

g(0)

+ �
t

0

e(N−N1)(t−r)e−(𝛿+k̄)(t−r)(k̄ − g�)q(r)dr

+ �
t

0

e(N−N1)(t−r)e−(𝛿+k̄)(t−r)[𝛿 − 𝛿(r,Q(r))]q(r)dr.
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We consider the form (38) because it is more useful to prove that its solution (a 
“mild” solution of our problem) belongs to X+.

Define the Banach space Y = C([0, t̄ ],X), with the norm

where t̄ will be chosen later, and consider the positive cone Y+ of Y. Define also the 
operator K,  (D(K) = Y R(K) ⊂ Y) in the following way:

Hence, (38) can be written as:

Lemma 3.2 The operator K is locally Lipschitz on Y and:

Moreover, the operator K maps the positive cone Y+ into itself.

Proof The inequality follows from (38) and the Lagrange Theorem. Finally, K maps 
Y+ into itself by definition.   ◻

Remark 3.3 Let r > 0 be suitably fixed, the sets Dr = {f ∈ X ∶ ‖f‖ ≤ r} and 
Cr = {f ∈ Y ∶ f (t) ∈ Dr,∀ t ∈ [0, t̄]} are closed sets of X and Y respectively.

It is easy to prove that, for any q ∈ Cr,

Moreover, for q1, q2 ∈ Cr the inequality proved in Lemma 3.2 becomes

 Hence, we can prove the following lemma.

Lemma 3.3 The operator K is a contraction on Cr, if t̄ is small enough.

(39)‖f‖Y = sup{‖f (t)‖X , t ∈ [0, t̄ ]},

(40)

Kq = e(N−N1)tq0e
−𝛿te−k̄t +

𝜒(t − ∫ s

0

1

g(u)
du)

g(0)

+ �
t

0

e(N−N1)(t−r)e−(𝛿+k̄)(t−r)(k̄ − g�)q(r)dr

+ �
t

0

e(N−N1)(t−r)e−(𝛿+k̄)(t−r)[𝛿 − 𝛿(r,Q(r))]q(r)dr

(41)q = Kq.

(42)‖Kq1 − Kq2‖Y ≤ (2𝛿 + k̄ + 𝛿��̄�‖q2‖Y )
𝛿 + k̄

(1 − e−(𝛿+k̄)t)ek̄t‖q1 − q2‖Y .

(43)‖Kq‖Y ≤
�
‖q0‖ek̄t

r
+

�̄�

g(0)r
+

k̄

𝛿
(1 − e−𝛿t) +

𝛿

k̄ + 𝛿
ek̄t

�
r.

(44)

‖Kq1 − Kq2‖ ≤ (2𝛿 + k̄ + 𝛿��̄�r)

𝛿 + k̄
(1 − e−(k̄+𝛿)t)ek̄t‖q1 − q2‖Y , ∀ q1, q2 ∈ Cr.
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Proof As t goes to zero, the quantities (1 − e−𝛿t), (1 − e−(k̄+𝛿)t) vanish and ek̄t tends to 
1 . Moreover, a suitable r can be found, such that

Furthermore, we choose t̄ suitably small, such that

Therefore ‖Kq‖Y < c(t̄)r, that is, K maps Cr into itself, and the proof follows directly 
from Lemma 3.2 and Remark 3.3.   ◻

By using the fixed point theorem, the following theorem can be proved:

Theorem  3.1 Equation (41) has a unique positive solution q = q(t) defined for 
t ∈ [0, t̄ ] where t̄ is small enough.

Moreover

Remark 3.4 Note that t̄ has to make the quantities (1 − e−𝛿t), (1 − e−(𝛿+k̄)t) suitably 
small and the constant r is only used to make a contraction in a bounded closed set 
of Y.

In fact, Theorem  3.1 gives a local solution of equation (37). To prove that the 
solution is defined in any interval [0, t0] , t0 > 0, we have to find some a priori esti-
mates of the solution itself [4, 12].

Thus, let t0 > 0 be fixed, from (40), by taking into account the nonnegativity of 
q(t),  and by using the Gronwall Lemma, we have:

Moreover

where ‖ ∙ ‖∞ is the norm in the space L∞(0,m).
Thus, we have found a estimate of ‖q(t)‖ which does not depend on t,  but only on 

t0, so the solution of (41) is defined in [0, t0] ( [12], Chapter 6, Theorem 1.4).
Hence, we have just proved the following theorem.

Theorem 3.2 The integral Eq. (41) has a unique continuous nonnegative solution 
q = q(t), defined for t ∈ [0, t0] where t0 is fixed a priori. Moreover, q(t) belong to the 
closed cone X+, ∀ t ≥ 0 and ‖q(t)‖ ≤ r, ∀ t ≥ 0, where r is fixed appropriately.

(45)
‖q0‖
r

+
�̄�

g(0)r
+

𝛿

𝛿 + k̄
< 1.

c(t̄) =
(2𝛿 + k̄ + 𝛿��̄�r)

𝛿
(1 − e−𝛿t̄)ek̄t̄ +

‖ q0‖Yek̄t̄

r
+

�̄�

g(0)r
< 1.

(46)‖q(t)‖ ≤ r, ∀ t ∈ [0, t̄ ] with a suitable t̄ and q(t) ∈ X+, ∀ t ∈ [0, t̄ ].

(47)‖q(t)‖ ≤ �̄�

g(0)
+ ‖q0‖ek̄t0 +

�̄�

g(0)

k̄ + 𝛿

k̄
ek̄t0 , ∀ t ∈ [0, t0].

(48)‖q(t)‖∞ ≤ �̄�

g(0)
+ ‖q0‖∞ek̄t0 +

�̄�

g(0)

k̄ + 𝛿

k̄
ek̄t0 ,
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Note that with similar techniques, it is possible to prove that (41) has a unique con-
tinuous nonnegative solution defined for any t ∈ [0, t0], belonging to the closed set of 
X : 

where r̄ is fixed. Moreover, from the estimate (48), we can conclude that the solution 
of (41) is a global solution also in L∞(0,m).

As far as the larval equation of system (12) is concerned, we have that:

By substituting the expression of �(t) given by (21) we can prove that

with M ≥ Q(t) if M ≥ �̄�

�
�̄�

g(0)
+ ‖q0‖ek̄t0 +

�̄�

g(0)

𝛿+k̄

k̄
ek̄t0

�
.

4  The function �

In this section, we shall find the function �(t), by applying again the Fixed Point 
Theorem.

Define the following Banach space [6]:

with the norm ‖f‖W = sup{e−kt‖f (t)‖X}, where the constant k will be chosen later. 
Then define in W the operator (��)(t) = c(M−Q(t))L(t), with D(�)=W , R(𝛬)⊂W.

Note that the function � depends on both Q and L,  which depend on � themselves, 
and so

Let t0 > 0 be fixed, from the Theorem 3.2 we know that the solution q(t) exists for 
t ∈ [0, t0] , and we have:

From (50) we have:

(49)𝛴(r̄) = {f ∈ X ∩ L∞(0,m), ‖f‖∞ ≤ r̄},

(50)L(t) = L0e
−vt − ∫

t

0

�(r)e−v(t−r)dr + ∫
t

0

e−v(t−r) ∫
m

0

�(s)q(s, r)ds dr.

(51)|L(t)| ≤ L0 +
�̄�M

�̄�v

(52)W = {f ∈ C((0,∞),X) ∶ sup{e−kt‖f (t)‖X} < ∞},

(53)(��)(t) = cML� (t) − cQ� (t)L� (t).

|��1(t) − ��2(t)| ≤ cM|L�1
(t) − L�2

(t)| + c|Q�1
(t)L�1

(t) − Q�2
(t)L�2

(t)|.
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Multiplying each side by e−kt and taking the supremum, we have:

In a similar way, we can find an estimate for ‖q1 − q2‖W .
By using the Lagrange Theorem and the Gronwall Lemma, we obtain:

where H = 2𝛿 + 𝛿��̄�r + k̄ and k > −𝛿 + H.

Finally, after many computations, by using the definition of �, we get the follow-
ing estimate:

If k > −𝛿 + H is chosen large enough, the operator � is a contraction. Hence, it has 
a unique fixed point and thus a unique function � = �(t) ∈ W exists as solution of 
� = �� .

From our calculations it turns out that �(t) is a nonnegative function if M ≥ Q(t). 
From its definition �(t) is bounded and

5  Existence and uniqueness of the strong solution of the model

In the preceding section we proved that the system (29–31) has a unique nonnegative 
mild solution in L1(0,m) , that is, we proved that (38) has a continuous solution  
and L(t) is given by (50). Actually, we prove that the solution of (37) is strongly 
differentiable with respect to t. The differentiability of L(t) follows immediately 
by standard theorems of ordinary differential equation theory. We observe that the 

(54)

�L𝜒1
− L𝜒2

�

≤ �
t

0

e−vtevr�𝜒1(r) − 𝜒2(r)�dr + �
t

0

e−vtevr
�

�
m

0

𝜙(s)�q1(s, r) − q2(s, r)�ds
�
dr

≤ ‖𝜒1 − 𝜒2‖We−vt �
t

0

e(v+k)rdr + �̄�‖q1 − q2‖We−vt �
t

0

e(v+k)rdr

≤ ‖𝜒1 − 𝜒2‖W
ekt

v + k
+�̄�‖q1 − q2‖W

ekt

v + k
.

(55)‖L𝜒1
− L𝜒2

‖ ≤ ‖𝜒1 − 𝜒2‖W
v + k

+
�̄�

v + k
‖q1 − q2‖W .

(56)‖q1−q2‖W ≤ ḡ

g(0)
‖𝜒1−𝜒2‖W

�
1

k
+

H

k + 𝛿 − H

�
,

(57)

‖𝛬𝜒1 − 𝛬𝜒2‖W ≤
�
c(M + �̄�r)

v + k
+

c�̄�ḡ(M + �̄�r)

(v + k)g(0)

�
1

k
+

H

k + 𝛿 − H)

�

+
c�̄� ḡ

g(0)

�
1

k
+

H

k + 𝛿 − H)

�
+

�
L0+

�̄�M

�̄�v

��
‖𝜒1 − 𝜒2‖W .

(58)𝜒(t) = c(M − Q(t))L(t) ≤ cML(t) ≤ cM

(
L0+

�̄�M

�̄�v

)
.
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solution of the system (10–13), found in [7], is actually a global integral solution, as 
we explain below. In fact, if we consider the following system in a Banach space Z:

where the operator A has a non-dense domain in Z,  it is said that u(t) is an integral 
solution, u ∈ C([0, T), Z) if

and

In [5] it is proved that if a system has an integral solution it also has a mild solution. 
We have proved directly, in Sects. 3 and 4, that our system has a mild solution with-
out using the concept of an “integral solution”. Now, we shall prove that this solu-
tion is also a global strong solution of the system.

In [3], the following semilinear initial-value problem is studied

and the following theorem is proved.

Theorem 5.1 Under the following assumptions:

1.  B ∈ G(M, �;X);

2.  G is a Lipschitz operator ‖G(f1) − G(f )‖ ≤ �(‖f1, ‖f‖)‖f1 − f‖, ∀ f1, f ∈ D(G) = X , 
where �(�1, �2) is a non-decreasing function of �1 and of �2;

3.  G is Fréchet differentiable at any f ∈ D(G) = X, and its Fréchet derivative Gf  
is such that ‖Gf g‖ ≤ �1(‖f‖)‖g‖, ∀f , g ∈ X, where �1(�) is a non-decreasing 
function of �;

4.  ‖Gf1
g − Gf g‖ → 0 as ‖f1 − f‖ → 0 ∀g, f1, f ∈ X;

5.  u0 ∈ D(B);

6.  if a strong solution w = w(t) of (62) exists over [0, t1] ⊂ [0, t0], then 
‖w(t)‖ ≤ � ∀t ∈ [0, t1], where � is a suitable constant that may depend on u0 and 
t0;

 the semilinear initial-value problem (62) has a unique strong solution u(t) defined 
over the whole [0, t0] where t0 is a priori fixed.

(59)
{

d

dt
u(t) = Au(t) + F(u(t)), t > 0,

u(0) = u0,

(60)∫
t

0

u(s)ds ∈ D(A), ∀ t > 0

(61)u(t) = u0 + A∫
t

0

u(r)dr + ∫
t

0

F(u(r))dr.

(62)
du

dt
= Bu(t) + G(u(t)), t > 0,

u(0) = u0,
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Remark 5.1 To prove Theorem 5.1, in [3] it is shown, first, that the integral equation

has a continuous solution, then, in Lemma 5.4, page 200, it is proved that the solu-
tion of (63) is differentiable with respect to t. This is made by calculating directly 
the quantity [u(t + h) − u(t)]h−1 and taking the limit as h goes to zero.

Lemma 5.1 If F is defined by (32) the conditions (2), (3), (4) of Theorem 5.1 are 
satisfied.

Proof Property 2. follows from the definition. In fact,

Hence F is a Lipschitz operator with Lipschitz constant 2𝛿. It easy to prove 
that F is Fréchet differentiable for all f ∈ D(F) = X, with Frechét derivative 
Ff (g) = 𝛿g − 𝛿Qf (s,Qg)(Qg)f − 𝛿(s,Qf )g, where �Qf  is the Fréchet derivative of �. 
Moreover

with 2𝛿 + 𝛿��̄�‖f‖ is a non-decreasing function of ‖f‖. Moreover, from the above ine-
quality Property 4. of Theorem 5.1 also follows.   ◻

Theorem 5.2 Let [0, t0] be given, if q0 ∈ D(N) and �(t) differentiable for t ∈ [0, t0], 
then the solution q(t) of (38) is strongly differentiable for each t ∈ [0, t0].

Proof If � ≡ 0 from Lemma 5.1 and Theorem 5.1 we have that q(t) is differentiable 
with respect to t. If �(t) ≠ 0 the function q will result differentiable as a sum of  
differentiable functions.   ◻

Let us prove now that �(t) is a differentiable function. If t ∈ [0, t0] we have

The first and the third term of the equality (64) have finite limit as h goes to zero. As 
regards the second term we have

(63)u(t) = exp(tB)u0 + ∫
t

0

exp[(t − s)B]F(u(s))ds

‖F(f ) − F(h)‖ =‖(𝛿 − 𝛿(s,Q(t)))f − (𝛿 − 𝛿(s,Q(t)))h‖
=‖(𝛿 − 𝛿(s,Q(t)))(f − h) ≤ 2𝛿‖f − h‖, ∀ f , h ∈ D(F) = X.

‖Ff g‖ =‖𝛿g − 𝛿Qf (s,Qg)(Qg)f − 𝛿(s,Qf )g‖ ≤
≤𝛿‖g‖ + 𝛿��̄�‖g‖‖f‖ + 𝛿‖g‖ = (2𝛿 + 𝛿��̄�‖f‖)‖g‖, ∀ f , g ∈ D(F) = X

(64)

�(t + h) − �(t)

h

= cM

(
L(t + h) − L(t)

h

)
− cL(t + h)

(
Q(t + h) − Q(t)

h

)

− cQ(t)

(
L(t + h) − L(t)

h

)
.
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with

We know from Remark 5.1 that the quantity

divided by h has a finite limit as h goes to zero. Therefore, we have to check that the 
following quantity has a finite limit as h goes to zero:

For a small enough h,  if t < ∫ s

0

1

g(u)
du and t + h < ∫ s

0

1

g(u)
du, we have that:

for the definition of �(t), (21), (22), hence, limh→0
�(t+h)−�(t)

h
 exists and it is finite for 

0 < t < ∫ s

0

1

g(u)
du.

On the other hand, if t > ∫ s

0

1

g(u)
du, but t < 2 ∫ s

0

1

g(u)
du, that is 

t − ∫ s

0

1

g(u)
du < ∫ s

0

1

g(u)
du, since � �(t) exists for t < ∫ s

0

1

g(u)
du, we have that

exists and it is finite, and so limh→0
�(t+h)−�(t)

h
 exists and it is finite again for 

0 < t < 2 ∫ s

0

1

g(u)
du.

Therefore, we can repeat this process for 2 ∫ s

0

1

g(u)
du < t < 3 ∫ s

0

1

g(u)
du and so on, 

∀t ∈ (0, t0).

Hence, we can conclude that �(t) is differentiable ∀t ∈ (0, t0). Therefore the func-
tion q is strongly differentiable with respect to t.

||||
Q(t + h) − Q(t)

h

||||
≤ �̄� �

m

0

|q(s, t + h) − q(s, t)|
h

ds.

q(s, t + h) − q(s, t) = e(N−N1)(t+h)q0e
−𝛿(t+h) +

𝜒(t + h − ∫ s

0

1

g(u)
du)

g(0)
+

+ �
t+h

0

e(N−N1)(t+h−r)e−𝛿(t+h−r)[−g� + 𝛿 − 𝛿(s,Q(r))]q(r)dr − e(N−N1)tq0e
−𝛿t+

−

𝜒(t − ∫ s

0

1

g(u)
du)

g(0)
− �

t

0

e(N−N1)(t−r)e−𝛿(t−r)[−g� + 𝛿 − 𝛿(s,Q(r))]q(r)dr.

e(N−N1)(t+h)q0e
−𝛿(t+h) + ∫

t+h

0

e(N−N1)(t+h−r)e−𝛿(t+h−r)[−g� + 𝛿 − 𝛿(s,Q(r))]q(r)dr

− e(N−N1)tq0e
−𝛿t − ∫

t

0

e(N−N1)(t−r)e−𝛿(t−r)[−g� + 𝛿 − 𝛿(s,Q(r))]q(r)dr,

�(t + h − ∫ s

0

1

g(u)
du) − �(t − ∫ s

0

1

g(u)
du)

h
.

�(t + h − ∫ s

0

1

g(u)
du) − �(t − ∫ s

0

1

g(u)
du)

h
= 0

lim
h→0

�(t + h − ∫ s

0

1

g(u)
du) − �(t − ∫ s

0

1

g(u)
du)

h
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The following Theorem is proved.

Theorem 5.3 Let [0, t0] be fixed, if q0 ∈ D(N) then the function q(t) solution of (38) 
is strongly differentiable and hence problem (29–31) has a unique global strong 
solution.

Proof We have proved that �(t) is a differentiable function, hence since L(t) and q(t) 
are strongly differentiable functions, the problem (29–31) has a unique global strong 
solution.   ◻

6  Concluding remarks

In this paper, we have analysed a non-linear size-structured population model of a 
marine species.

We used the semigroup theory and the concept of affine semigroup.
We succeeded in finding a unique mild solution of the system, and we first proved 

that it is a local solution, that is it is defined for t ∈ [0, t̄] with t̄ small enough and 
then we proved that is a global solution, that is it is defined in any interval [0, t0] with 
t0 priori fixed. At the end, we also proved that the solution is strongly differentiable, 
hence it is a global strong solution of the system.

The model is a realistic extension of that in [7] and [11]. Paper [11] studied, also 
by means of the semigroup theory, a non-linear age-structured model but only the 
existence of a global mild solution is proved, whereas [7] studied a non-linear size-
structured population model like ours but using the theory of non-densely defined 
operators.
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