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Abstract

This paper con�rms that, as originally reported in Seneta (2004, p. 183), it is im-
possible to replicate Madan et al.�s (1998) results using log daily returns on S&P
500 Index from January 1992 to September 1994. This failure leads to a close inves-
tigation of the computational problems associated with �nding maximum likelihood
estimates of the parameters of the popular VG model. Both standard econometric
software, such as R, and non-standard optimization software, such as Ezgrad de-
scribed in Tucci (2002), are used. The complexity of the log-likelihood function is
studied. It is shown that it looks very complicated, with many local optima, and
may be incredibly sensitive to very small changes in the sample used. Adding or
removing a single observation may cause huge changes both in the maximum of the
log-likelihood function and in the estimated parameter values.

Key words: Variance-Gamma, log stock returns, maximum likelihood estimation,
globally optimizing procedures.

JEL Classi�cation: C58, C61, C63.

1 Introduction

Since Black and Scholes (1973) seminal article on option pricing, there has
been a(n exponentially) growing literature on modeling both asset returns
(log price increments) and option prices. Black and Scholes model implies
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that log price returns are identically and independently distributed as a nor-
mal random variable. When used for option pricing, given the assumption of
constant parameters in the model, �a minimal prediction of the Black-Scholes
formula is that all options on the same underlying asset with the same time-
to-expiration but with di¤erent striking prices should have the same implied
volatility�(Rubinstein, 1994, p. 4).

Both implications appear to be contradicted by the empirical evidence. Daily
log-returns are typically characterized by distributions with kurtosis greater
than three. In other words, higher peaks above the mean and thicker tails, or
more frequent extreme events, than a normal distribution. Usually, there is
little or no autocorrelation in returns, at least for one or two lags, but it is
present a long range dependence structure in squared and absolute returns,
violating the independence assumption. Then, returns often show periods of
low variation followed by periods of higher variation. Namely, they display
varying volatility, or heteroscedasticity. 1 In the options market, at the end of
the 1980s the graph of implied volatility as a function of striking price, for
otherwise identical options, begins to depart from a horizontal line, maybe as
a consequence of the stock market crash of October 1987. 2 Since then volatil-
ity smiles and=or volatility smirks (either forward skew or reverse skew) are
common across option markets as remarked in a countless number of studies.

To overcome these problems, many models have been proposed. The Variance-
Gamma (VG) process is clearly one of the most popular. Introduced as a model
for asset returns in Madan and Seneta (1990), it has then been generalized to
a non-symmetric process in Madan et al. (1998) and its use extended to option
pricing. It belongs to the family of Lévy processes of in�nite activity and �like
the Poisson process, the VG process is pure jump ... and ... it can be expressed
in terms of its Lévy density�(Fu, 2007, p. 23). 3 It is obtained by evaluating
a Brownian motion at a random time given by a gamma process. Random
time that allows to model the �ow of �economically relevant time�, or �mar-
ket activity time�, re�ecting the random speedups and slowdowns in real-time
economic and business activity. In other words, �the more share trades that
occur, or the more information released to the market on a given day, the faster
�time�progresses� (Finlay, 2009, pp. 10-11). 4 �Under this process, the unit
period continuously compounded return is normally distributed, conditional
on the realization of a random time�(Madan et al., 1998, p. 80), with condi-

1 See, e.g., Heyde and Liu (2001), and the references therein cited. Finlay (2009,
pp. 2-3) provides a nice summary of the main points.
2 See, e.g., Rubinstein (1994).
3 See the apppendix in Fu (2007) for a short review of the basic de�nitions of the
Wiener, Poisson, Gamma and Lévy processes. Process of in�nite activity indicates
that the paths jump in�nitely many times, for each �nite interval and jumps that
are larger than a given quantity occur only a �nite number of times.
4 See also Madan and Seneta (1990, p. 517) for some additional intuition.
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tional variance given by a gamma random variable, from here the name VG. 5

The resulting stochastic process has three (four when the location parameter
is included) parameters. In addition to the volatility parameter characterizing
the Brownian motion, there is a parameter that determines the percentage
excess kurtosis in the log return distribution (i.e. a measure of the symmetric
increase in the left and right tail probabilities of the distribution compared to
the normal distribution) and one for skewness that allows for asymmetry of
the left and right tails of that density. Very conveniently, for testing purposes,
it nests the lognormal density and the Black-Scholes formula as a parametric
special case.

The VG model has been reported to perform better than the Black-Scholes, or
geometric Brownian motion (GBM), model in a number of empirical studies.
Madan et al. (1998) show that, once calibrated to the market prices, it cap-
tures volatility smile and fat-tailness of the asset return distribution. Among
the others, Daal and Madan (2005) use it in pricing foreign currency op-
tions, Fiorani (2003) in pricing European and American options on S&P 500,
Fiorani and Luciano (2006) and Hurd (2007) in credit risk modeling. Given
that analytical solutions are available only for European-style options, a lot
of attention has been devoted to implementing e¢ cient numerical methods to
evaluate other kinds of options. 6 The progress in this direction and the nice
properties of the VG model have led to its implementation in the Bloomberg
system through the function SKEW as described in Stein et al. (2007). Re-
cently, VG correlated models have been introduced in Madan and Khanna
(2009) and Eberlein and Madan (2010) and versions of the multivariate VG
model applied in a large scale application (Wallmeier and Diethelm, 2012).
New applications of the VG model include its use to study the magnitude of
the overpricing of the so-called reverse convertibles in Deng et al. (2013) and,
in a regime-switching framework, to value a new type of insurance contract
for near to retirement population in Fard and Rong (2014).

So far, the estimation problem has not received much attention. Some papers
present only few estimated parameters for a small, selected empirical database.
Others, see e.g. Finlay and Seneta (2008), use simulated data. Only recently, a
few works report estimates based on a broad data set. Rathgeber et al. (2013)
consider daily data on the US companies listed in the Dow Jones for the period
01/01/1991-12/31/2011. After applying a regime switching model in order to
identify normal and turbulent times within the data set at hand, they estimate
the VG model for log returns for the various periods with six alternative
estimation methods. In another study, Le Courtois and Walter (2014) estimate

5 See Madan et al. (1998, pp. 80-81) for a summary of the main di¤erences between
Brownian motion and a VG process.
6 See, e.g., Ribeiro and Webber (2003), Almendral and Oosterlee (2007), Kaishev
and Dimitrova (2009) and the references therein cited.
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the VG parameters on the returns of top French companies and of the French
CAC40 Index, over the period 01/03/01-04/15/09, by maximum likelihood
(ML). In both cases the authors, consistent with most of the literature on this
topic, do not report any computational problems. Does this mean that usually,
apart from the occasional need to distinguish between normal and turbulent
periods, the estimation of parameters in a VG model for daily log returns
is computationally straightforward? And that, as reported in Figueroa-López
et al. (2012, p. 19), some problems may be encountered only in �nding ML
estimates for a VGmodel applied to very high frequency data (i.e. observations
distanced 30 minutes or less)? Can practitioners use a generally available, well
documented econometric software, instead of having to write to one of the
cited authors for their individually implemented algorithms, to estimate their
own VG model?

Some hints of caution about the �computational straightforwardness�can be
found in Seneta (2004, pp. 180-183). First, he points out that care has to be
taken in computing ML estimates with packages such as Matlab R which use
implicit functions. Then, in discussing a couple of empirical examples deal-
ing with log daily price di¤erences, he states that �when the original data...
were used ... attempts to �nd ... (the ML estimates of the parameters) were
unsuccessful.�Moreover, since April 2012, it is possible to estimate the pa-
rameters of a VG model by using the, generally available, �VarianceGamma�
R package documented in Scott and Yang Dong (2012). The interested users
can compute the parameters of a VG model simply calling the vgFit function
incorporated in this package for their data set. The goal of this paper is to
shed some more light on the computational complexity of estimating a VG
model for daily log returns. This is done by reporting the author�s experience
in trying to replicate the ML estimates presented in Madan et al. (1998, p.
90, Table 1).

The discussion is organized as follows. After a brief introduction of the VG
model (Section 2), the problems encountered in replicating Madan et al.�s
(1998) results using daily returns on S&P 500 Index from January 1992 to
September 1994 are described in Section 3. At this stage both standard econo-
metric software, such as the vgFit command available in the R package, and
non-standard optimization software, such as Ezgrad described in Tucci (2002),
are used to �nd the optimum of the log-likelihood function. As in the origi-
nal reference, the increments in prices are assumed independent so classical
statistical procedures for estimation and hypothesis testing are readily ap-
plicable. Section 4 describes how sensitive the parameter estimates can be to
very small changes of the estimation sample. Then the performances of sev-
eral procedures using R functions are compared on a big data set (Section 5).
The best performing procedure is applied to Madan et al.�s (1998) sample in
Section 6. The main conclusions are summarized in Section 7.
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2 The VG model

The standard model for asset price movements, namely the Black-Scholes or
GBM model, assumes that the price of an asset at time t � 0 is given by

Pt = P0 exp (�t+ �B (t)) (1)

for � 2 R and � > 0 with fB(t)g a standard Brownian motion, or Wiener
process. Here � and � correspond to the drift and the volatility coe¢ cient
of the Brownian motion, respectively. Log price increments, i.e. continuously
compounded returns, are then given by

Xt = ln(Pt)� ln(Pt�1) = � + � (B (t)�B (t� 1)) (2)

which implies that returns are independent and identically distributed (iid)
normal random variables.

Alternatively, the VGmodel assumes that the price of an asset at time t � 0 �is
obtained by evaluating Brownian motion (with constant drift and volatility)
at a random time given by a gamma process� (Madan et al., 1998, p. 82)
independent of fB(t)g. 7 This random time is the �market activity time�,
denoted here by fTtg, introduced in the previous section. In this case, log
price increments, i.e. continuously compounded returns, are given by

Xt = ln(Pt)� ln(Pt�1) = ��t + � (B (Tt)�B (Tt�1)) (3)

where the increments �t = Tt � Tt�1 are independently, gamma distributed
random variables over non-overlapping intervals of time, i.e.

f� (�t;�; �) =
1

��� (�)
���1t e���t (4)

for �t > 0, � (�) the gamma function and � = 1=� = 1=� then E (�t) = 1
and V ar (�t) = �. Setting E�t = 1 so as �to make the expected activity time
change over unit calendar time equal to one unit�(Seneta, 2004, p. 177) does
not imply any loss of generality. As pointed out in the just cited work, as long
as the increments have a �nite mean, any scaling can be absorbed into the
parameters � and � given that

� (B (Tt)�B (Tt�1)) D= �� 1=2t B (1) : (5)

7 This is sometimes referred to as a subordinated GBM process. The idea of sub-
ordination was developed by Bochner (1955) and subordinated processes were �rst
considered for stock prices by Clark (1973). See, e.g., Finlay (2009, p. 12) for more
details.
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Generally, asset prices include a component associated with the calendar time
t and Eqt. (3) is rewritten as 8

Xt = ln(Pt)� ln(Pt�1) = �+ ��t + � (B (Tt)�B (Tt�1)) (6)
D
= �+ ��t + ��

1=2
t B (1)

with � 2 R. 9 It follows that EXt = � + � and, given that the conditional
distribution of Xt given �t is N(�+ ��t; �2�t), 10

E (Xt � EXt)
2 = �2 + �2� (7)

E (Xt � EXt)
3 = 3��2� + 2�3�2 (8)

and

E (Xt � EXt)
4 = 3�4 (1 + �) + 6�2�2

�
� + 2�2

�
+ 3�4

�
�2 + 2�3

�
(9)

with skewness and kurtosis of the return distribution given by

� =
3��2� + 2�3�2

(�2 + �2�)3=2
(10)

and

� =
3�4 (1 + �) + 6�2�2 (� + 2�2) + 3�4 (�2 + 2�3)

(�2 + �2�)2
; (11)

respectively.

Combining the distribution for �t with Eqt. (6) results in Xt having the mar-
ginal (skew) VG distribution (Madan et al., 1998) with probability density
function (pdf)

fV G (Xt) =

s
2

�

e�(Xt��)=�
2

��1=��
�
1
�

�
24 jXt � �jq
�2 + 2 (�2=�)

35 1
�
� 1
2

(12)

�K 1
�
� 1
2

0@ jXt � �j
q
�2 + 2 (�2=�)

�2

1A
8 The VG process can be viewed as a special case of the Generalised Hyperbolic
distribution (Barndor¤-Nielsen and Halgreen, 1977), because the Gamma distribu-
tion is a special case of the Generalised Inverse Gaussian distribution (Finlay, 2009,
p. 21).
9 The parameter � in Eqt. (6) corresponds to m in Madan et al. (1998) and c in
Seneta (2004).
10 See, e.g., Seneta (2004). These formulae are slightly di¤erent in Madan et al.
(1998) where the log price increments are relative to time 0.
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for Xt 2 R and characteristic function 11

�X (u) = e
i�u

h
1� i��u+

�
�2�u2=2

�i�1=�
: (13)

In Eqt. (12), the function K�(!) for � 2 R and ! > 0 given by

K�(!) =
1

2

Z 1

0
z��1e�

!
2 (z+

1
z )dz (14)

is a modi�ed Bessel function of the third kind (Erdélyi et al., 1953) with index
�, and the VG is sometimes also known as the Bessel K-function distribution
(see, e.g., Johnson et al., 1994, pp. 50�51). 12

The VG distribution is sometimes denoted by V G(�; �; �; �). The four para-
meters (three when returns are centered) determining the VG process are: the
location parameter �, the volatility � of the Brownian motion, the variance �
of the gamma distributed time and the drift � of the time-changed Brownian
motion with drift. The parameter � measures the degree of skewness of the
distribution and � controls the excess of kurtosis with respect to the normal
distribution. As noticed in Madan et al. (1998, p. 86), �� = 0 does indeed
imply that there is no skewness, and furthermore the sign of the skewness is
that of �. Furthermore . . . when � = 0, the fourth central moment divided
by the squared second central moment is 3(1 + �) and so � is the percentage
excess kurtosis in the distribution.� In other words, � measures the degree
of �peakedness�with respect to the normal distribution. A large value of �
results in fat tails, which is observed in the empirical log-returns.

It is apparent that when Tt = t the VG model boils down to the classical GBM
model with a log normal distribution for prices and a normal distribution for
returns. Equivalently, when � = 0 and � ! 0+ the time change is close to the
linear time change and the pdf in Eqt. (12) reduces to that of the standard
normal distribution. 13

3 Computational and estimation problems: The failure

In the paper introducing the non-symmetric VG model, Madan et al. (1998,
pp. 89-90) present their ML estimated parameter values for log daily returns
on the S&P 500 Index from January 1992 to September 1994, for a total of

11 See, e.g., Seneta (2004, p. 180).
12As observed in Seneta (2004, p. 180) there is some ambiguity in the terminology
associated with this function. In some works it is referred to as a modi�ed Bessel
function of the second kind.
13 See, e.g., Seneta (2004, p. 181).
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691 observations (second column of Table 1). 14 This section con�rms that,
as originally reported in Seneta (2004, p. 183), it is impossible to replicate
Madan et al.�s (1998) results.

Table 1
ML estimates of the VG parameters for daily returns on S&P 500 Index

Parameter Madan et al. various vgFit results� Best

(1998) (1) (2) (3) Ezgrad

� 0.0591 0.0056 �0:0001 �0:0001 0.0003

� 0.1172 0.099 7.Eu14 2.201 0.0072

� 0.002 0.1184 89.27 15.24 0.8771

� 0.0048 �0:007 129 140.7 �0:0016

ln L 2569.78 994.60 910.82 2023.55 2890.98

No. of obs. 691 691 691 691 691

* Column (1) is obtained with �default vgFit�, i.e. no options selected, columns (2)
and (3) with the optimization algorithms nlm and the BFGS, respectively, selected
(see Scott and Yang Dong, 2012).

When the vgFit function available in R is used with no options selected (call
it �default vgFit�), to estimate the parameters of a VG model for the above
sample, it yields the results reported in column labelled (1) of Table 1. They
greatly di¤er from the original ones. To check if this is due to a �bad sample�for
the default optimization algorithm, the alternative algorithms made available
in vgFit are used and the associated results shown in columns labelled (2) and
(3) of Table 1. 15 It is apparent that the three �optimization versions�of vgFit
give results very di¤erent from the original ones and di¤erent among them-
selves. What is more disturbing is that columns labelled (1) and (2) present
fairly close log-likelihood values but very di¤erent values for the parameters.
Similarly the best vgFit in terms of log-likelihood value present estimates very
di¤erent from the original ones.

14 The parameters � and � are called m and �, respectively, in Madan et al. (1998).
The standard deviations of parameters are omitted from Tab. 1. At this stage, the
focus is on the estimated parameter values and associated likelihood obtained with
the various methods rather than on how signi�cantly di¤erent from zero a certain
parameter is.
15As documented in Scott and Yang Dong (2012, pp. 16-18), it is possible to choose
di¤erent sets of starting values, namely user-supplied, based on a �tted skew-
Laplace distribution or derived from the method of moments, for each optimiza-
tion method selected in the vgFit function. It is worth it to point out that each
optimization method used, i.e. BFGS, Nelder-Mead and nlm, ends up to the same
optimum regardless of the selected set of starting values.
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For this reason a non-standard optimization software, such as Ezgrad described
in Tucci (2002) is also tried. The log-likelihood of the VG model is maximized
over the parameter space

�0:50 < � < 0:50; 0:0001 < � < 1:00; 0:0001 < � < 1:00; � 0:10 < � < 0:10

with the critical parameter NDPTH set to 14 which means that a function
of 214 local optima is computed. Ezgrad �nds the following candidate for the
global optimum

� = 0:00029, � = 0:02378; � = 0:75426; � = �0:00247

with log-Likelihood equal to 2177.76. When the multidimensional parameter
space is modi�ed (narrowed in some sense) to

�0:30 < � < 0:30; 0:0001 < � < 0:30; 0:50 < � < 1:00; � 0:10 < � < 0:10

with NDPTH=14 the result is

� = 0:00029; � = 0:0072; � = 0:87712; � = �0:00158

with log-likelihood equal to 2890.98 reported in the last column of Table 1.

Simply plugging Madan et al.�s (1998, pp. 89-90) set of estimates into vgFit
and Ezgrad (a Fortran code) to compute the associated log-likelihood value
does not work. Both programs fail to go through the computation. Afraid that
the problem is due to the number precision in R and to a poor implementation
of Bessel and Gamma functions in Ezgrad, based on the numerical recipes in
Press et al. (2007, 1997), the authors decide to independently code the VG
log-likelihood function in Matlab R, where the two functions can be simply
called as implicit functions. Again when Madan et al. (1998) estimates are
used, the two new Matlab R codes explode. The good news is that these new
codes, R and Ezgrad produce exactly the same numbers at double precision.
This con�rms that it is impossible to replicate Madan et al.�s (1998) results
using log daily returns data as originally noticed in Seneta (2004, p. 183) where
it is stated �we do not know the precise methodology ... used ... to obtain the
ML estimates.�

4 Sensitivity of the parameter estimates of a VG model to one
single observation

At this point, one thing is crystal clear. The di¤erent results obtained, for the
same data set, with the various optimization techniques and, sometimes, with
di¤erent sets of starting points or parameter spaces are a clear indication that

9



the likelihood function of a VG density function is highly complicated and it is
easy to land on a local optimum. To see if the computational problems su¤ered
in the previous section by �default vgFit�, Ezgrad and the two Matlab R
codes using implicit functions, are speci�c to the particular sample used the
attention is now turned to a big data set. In this way it is more likely to
incorporate di¤erent types of subperiods, for instance quiet and turbulent
periods, to re�ect a wide variety of real situations facing the researcher. The
S&P 500 Index from Jan. 2nd 1992 to Aug. 20th 2012, for a total of 5200
observations of log daily returns seems an appropriate data set in this sense.
It is used to compute ML estimates of the parameters for a moving window
of 1000 observations. Namely, ML parameter estimates are computed for 4201
windows with the �rst one covering observations 1 through 1000, the second
one observations 2 through 1001 and so on and so forth until the last one
from observation 4201 to 5200. Even though the width of the moving window
is arbitrary, only 1000 observations, it seems appropriate to �nd reasonably
good estimates of the four parameters (three when the location parameter �
is excluded) characterizing a VG model regardless of the good or bad luck of
the estimating researcher.

Before checking the whole set of results, it may be useful to brie�y focus on
the �rst two moving windows which di¤er only for the �rst observation being
replaced by the 1001st observation in the second window. Namely, the second
window starts one day later and ends one day later, as all the �following�
windows in this exercise. The maximum value of the log-likelihood function
drops from 4500 for the �rst window to 1500. 16 Similarly the estimates of
the parameters change remarkably considering that the two samples di¤er
by only one observation. That associated with the location parameter � goes
from -4.53 (1st window) to -6.27, � from .31 to .23 and � from 9.7E-03 to
5.1E-03. Strangely enough, the estimate of the excess kurtosis parameter �
stays constant at 1 in both windows.

The same qualitative behavior can be observed when the analysis is extended
to a few more sequential subsamples. The maximum value of the log-likelihood
function associated with the �rst 27 moving windows obtained with the �de-
fault vgFit�are reported in Fig. 1. Both the maximum of the log-likelihood
function and the parameter estimates considerably change when replacing a
single observation out of 1000.In general, estimates vary up to 30/50% (Fig.
2). Strangely enough, that for � stays constant at 1 for the initial 27 mov-
ing windows. At this point it is unclear if the results are due to a poorly
implemented �default vgFit� function, from now on simply vgFit, or to the
computational complexity of the VG model which translates into its extreme
sensitivity to the estimation sample. For this reason several procedures using

16 The selected optimization algorithm is Nelder-Mead in this and the following
sections.
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Fig. 1. Maximum value of the log-likelihood function with �default vgFit�(27 mov-
ing windows of 1000 obs.)

Fig. 2. ML estimates of the VG parameters with "default vgFit" (27 moving windows
of 1000 obs.)

parameter � parameter �

parameter � parameter �

the generally available R software are implemented and compared in the next
section.
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Fig. 3. Maximum value of the log-likelihood function with vgFit (moving windows
of 1000 obs. for the period 1/3/1992-8/20/2012)

5 Comparing alternative procedures using R

The results associated with vgFit for the whole set of windows are reported
on Fig. 3. One can observe that in some cases the maximum value of the log-
likelihood function is more volatile than what seen in the previous section. Due
to the scale of graph, what looks like a band with a variable width is indeed a
sequence of jumps and the width represents the highest jump su¤ered by the
variable on the y-axis. So, for instance, the band for the �rst 150-160 moving
windows indicates that the value of the log-likelihood function keeps jumping
between 4500 and 1500 with the simple change of one observation. Then the
wider width, for instance between 4000 and�3000 around moving window 320,
denotes a more dramatic change in the maximum value of the log-likelihood
function when the moving window goes forward one observation.

Given these disappointing results, it is decided to exploit R internal capabil-
ities to construct a number of �homemade�alternatives to vgFit. 17 The �rst
candidate, call it procedure vgFitMom, is based on the optim function in R
with starting values for the parameters generated by vgFitStart with the op-
tion startValues set toMoM. 18 The second candidate, procedureMadanMom,
exploits the same optim function with starting values for the parameters ob-

17 This is in the spirit of the algorithm that can be downloaded from
http://stats.stackexchange.com/questions/30054/variance-gamma-distribution-
parameter-estimation.
18 These starting values are based on Barndor¤-Nielsen et al. (1985) as documented
in Scott and Yang Dong (2012, p. 19).
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tained with the method of moments as described in Madan et al. (1998 fn.
16). Namely, the solution to the moment equations discussed in Section 2 is
used as starting point. The third candidate, procedure adhoc, calls the optim
function with starting values for the parameters �, �, � and � set equal to 0,
0:5, 0 and 0:5, respectively. 19 The last candidate, call it procedure 3optim,
consists of three sequential calls to the optim function. The �rst call maximizes
the likelihood of a normal distribution. 20 Then the ML parameter estimates
obtained, together with � = 0:5, are used in the second call as starting values
in the optimization procedure for a symmetric VG. Finally, the ML estimates
for a symmetric VG, together with � = 0, are used as starting values in the
third call to the optim function for the non-symmetric VG.

The likelihood results for procedures vgFitMom and MadanMom are reported
in Figure 4. The maximum value of the log-likelihood function obtained with

Fig. 4. Maximum value of the log-likelihood function with vgFitMom (dark line)
and MadanMom (moving windows of 1000 obs. for the period 1/3/1992-8/20/2012)

the former procedure appears to be highly sensitive to the data set. Dra-
matic changes occur when only one new observation is replaced. On the other
hand MadanMom, based on the method of moments described in Madan et
al. (1998), is clearly less sensitive than the competitor. However, it is worth it
to point out that the density of the VG distribution is not de�ned in a mean-
ingful number of cases, when these optimization procedures are used. In these
circumstances the starting values of the estimates are constrained to be in the
range suggested in Scott and Yang Dong (2012, pp. 22�23), i.e. � and � in the

19 This set of parameters is used fairly often in Scott and Yang Dong (2012, p. 19).
20 This call can be bypassed simply computing the sample mean and standard de-
viation of the data set at hand.
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Fig. 5. ML estimates of the VG parameters with vgFit (moving windows of 1000
obs. for the period 1/3/1992-8/20/2012)

parameter � parameter �

parameter � parameter �

interval (�4:0, 4:0) and � and � in the interval (0:25, 4:0). Therefore, it is hard
to tell how much of the observed di¤erence between these two procedures is
due to the fact that one of them yields more often good starting values, in the
sense that they lead to better results, or to the fact that it leads more often to
bad starting values, i.e. outside the feasible range. In the latter case, similar
results may be the side e¤ect of using the same constrained starting point in
successive windows.

The big changes in the maximum value of the log-likelihood function char-
acterizing vgFit, vgFitMom and MadanMom, when adding or removing one
observation, are associated with pronounced changes of the estimated para-
meter values as well (Fig. 5 and 6). As it is apparent from Fig. 5, the estimate
for � ranges between �2.0 and �22.0, that for � between .05 and .4, with
one isolated case at .6, for � between 0 and .02, with one isolated case at .04,
and for � is always 1. The procedure labelled vgFitMom shows an even more
extreme volatility in the estimates as denoted by the graph scales of Fig. 6.

Undoubtedly, MadanMom performs much better than vgFitMom in terms of
parameter volatility. All parameters look fairly stable throughout the whole
set of moving windows. However it is worth it to point out that this is mainly
due to the scale of the graphs. Indeed,MadanMom performs worst than vgFit,
except for the estimate of the location parameter. Its estimates range between
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Fig. 6. ML estimates of the VG parameters with vgFitMom (dark line) and Madan-
Mom (moving windows of 1000 obs. for the period 1/3/1992-8/20/2012)

parameter � parameter �

parameter � parameter �

-3.0E-03 and 5.3E-03 for � , 2.4 and 16 with one instance at 25 for �, 0.3 and
18 for � and �7 to 18 for �. Again, as for the optimum of the log-likelihood
function, it is unclear how heavily the relative performance of these two �mo-
ments�procedures is a¤ected by the number of cases in which the estimated
starting values of the parameters need to be constrained for computational
reasons.

On the other hand, procedures adhoc and 3optim seem quite insensitive to the
data set used. As apparent from Figure 7, the maximum of the log-likelihood
function changes very smoothly and it never jumps when one observation is
changed. Indeed the latter procedure yields almost always the highest like-
lihood. Out of a total of 4201 likelihoods only in 118 occasions it does not
outperform adhoc and the di¤erence is always incredibly small as shown in
the graph.

The smooth changes in the maximum of the log-likelihood function charac-
terizing procedures adhoc and 3optim are associated with smooth and small
changes in their parameter estimates as shown in Figure 8. Moreover, in this
case the graph scales are smaller than all the others seen so far. Even more
surprising is the fact that when adhoc and 3optim are compared the latter
shows incredibly smooth changes in the estimates over time. Incredibly, be-
cause most of the time the two procedures yield very close results in terms of
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Fig. 7. Maximum value of the log-likelihood function with 3optim (red line) and
adhoc (moving windows of 1000 obs. for the period 1/3/1992-8/20/2012)

maximum value of the log-likelihood function. Only in the last 1000 windows,
approximately the last four years of trading activity, the estimates show some
noticeable variations but are incredibly smaller than those associated with ad-
hoc and are fully consistent with the historical events a¤ecting �nancial mar-
kets. Even though it is not fully clear why this procedure behaves so well in
this context, it clearly represents a Computationally Great Procedure (CGP)
for the VG model at hand.

6 Back to the starting line

The main conclusion of the previous section is that the procedure dubbed
CGP, i.e. three sequential calls to the optim function in R, seems the most
reliable procedure for this class of models. When it is applied to the data set in
Madan et al. (1998, pp. 89-90) it yields the results reported in Table 2. They
look much better than those originally produced with the R package and are
even better than those generated by Ezgrad.

On a chi-squared test (taking twice the di¤erence in log likelihoods given in the
�fth row of the �rst two columns of the various tables) the lognormal model is
easily rejected in favor of the symmetric VG with a �21 statistic of over 36 and
the symmetric VG is not rejected in favor of the non symmetric VG. 21 These
results are qualitatively very similar to those originally reported in Madan et

21 The critical value at 99% is �21;99% = 6:635 and at 99:5% is �21;99:5% = 7:879:
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Fig. 8. ML estimates of the VG parameters with 3optim (red line) and adhoc (moving
windows of 1000 obs. for the period 1/3/1992-8/20/2012)

parameter � parameter �

parameter � parameter �

Table 2
ML estimates of the VG parameters for daily returns on S&P 500 Index

Parameter GBM Symm. VG� VG��

� 0.0001 0.0001 0.0001 (3.2E-4)

� 0.0025 0.0026 0.0026 (4.5E-5)

� - 0.5833 0.5850 (0.1204)

� - - 0 (3.5E-4)

ln L 3147.58 3165.62 3165.62

No. of obs. 691 691 691

* The starting values used for the parameters are the GBM optimum values and
� = 0:5 because this parameter has to be positive:** The starting values used for
the parameters are the Symm. VG optimum values and � = 0:0.

al.�s (1998, p. 90). In both cases the skewness parameter � is not signi�cantly
di¤erent from zero and the GBMmodel is resoundingly rejected in favor of the
Symmetric VG model. However the parameter estimates seem very di¤erent
with volatility around 50 times smaller than the original estimate and the
excess kurtosis parameter 250 times, approximately, larger.
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7 Conclusion

This paper con�rms that, as originally reported in Seneta (2004, p. 183), it is
impossible to replicate Madan et al.�s (1998) results using log daily returns on
S&P 500 Index from January 1992 to September 1994. This failure has led to
a close investigation of the likelihood function associated with the popular VG
model. Both standard econometric software, such as R, and non-standard opti-
mization software, such as Ezgrad described in Tucci (2002), have been used to
study the complexity of the log-likelihood function. It has been shown that the
likelihood function is very complicated, with many local optima, and may be
incredibly sensitive to very small changes in the estimation sample. Adding or
removing a single observation may cause huge changes in the maximum of the
log-likelihood function as well as in the estimated parameter values. The tech-
nique which seems to perform better in terms of robustness to small changes
in the sample, dubbed CGP in this study, is the successive optimization of
the GBM model, symmetric and non-symmetric VG model with the optimum
of the simpler model used as starting point for the optimization of the more
complicated model. However, it is unclear if this good performance is sample
speci�c, problem speci�c or is the outcome of a computationally e¢ cient gen-
eral principle (namely to optimize an n parameter function sequentially with
the optimum of the n � 1 parameter nested function used as starting point
together with the n � th parameter set equal to 0 or positive, as required)
which may prove relevant also in other contexts of global optimization.

A Appendix: CODE FOR MadanMom

library(VarianceGamma)
dataVector1<-read.table(�le="Directory");
typeof(dataVector1)
dataVector<-as.matrix(unlist(dataVector1))
typeof(dataVector)
str (dataVector)
mean(dataVector)
## Data set on daily log returns on the S&P 500 Index from 01/03/92 to
## 8/20/2012
ii=1
for (i in 0:4200){
ii=i
nf=999
f=ii+nf
data=dataVector[ii:f]
m1=mean(data)
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m2=mean((data-m1)^2)
m3=mean((data-m1)^3)
m4=mean((data-m1)^4)
a=0
b=0.5
c=0
d=0.5
e1=a+c
e2=b^2+c^2*d
e3=2*c^3*d^2+3*b^2*c*d
e4=3*b^4*d+12*b^2*c^2*d^2+6*c^4*d^3+3*b^4+6*b^2*c^2*d+3*c^4*d^2
ll = function(par){
(m1-(par[1]+par[3]))^(2)+(m2-(par[2]^(2)+par[3]^(2)*par[4]))^(2)
+(m3-(2*par[3]^(3)*par[4]^(2)+3*par[2]^(2)*par[3]*par[4]))^(2)
+(m4-(3*par[2]^(4)*par[4]+12*par[2]^(2)*par[3]^(2)*par[4]^(2)
+6*par[3]^(4)*par[4]^(3)+3*par[2]^(4)+6*par[2]^(2)*par[3]^(2)*par[4]
+3*par[3]^(4)*par[4]^(2)))^2
}
Ris=optim(c(a,b,c,d),ll, gr=NULL, method = "Nelder-Mead")
print(Ris)
## Constraining the pmts to the Scott and Yang Dong�s (2012, pp. 22-23)
## range
if (b<0.25) {
b=0.25
} else
b=b
if (b>4) {
b=4
} else
b=b
if (d<0.25) {
d=0.25
} else
d=d
if (d>4) {
d=4
} else
d=d
if (c<-4) {
c=-4
} else
c=c
if (c>4) {
c=4
} else
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c=c
if (a>4) {
a=4
} else
a=a
if (a<-4) {
a=-4
} else
a=a
print(a)
print(b)
print(c)
print(d)
## Computing �log-likelihood with the Variance-Gamma package
ll = function(par){
if(par[2]>0&par[4]>0) return( - sum(log(dvg(data, vgC= par[1], sigma=par[2],
theta=par[3], nu = par[4]) )))
else return(Inf)}
## Direct maximisation/minimisation with optim command
Ris=optim(c(a,b,c,d),ll, gr=NULL, method = "Nelder-Mead")
## Printing and saving �nal results
print(Ris)
r1=Ris[[1]][1]
r2=Ris[[1]][2]
r3=Ris[[1]][3]
r4=Ris[[1]][4]
rr=Ris[2]
c=paste(r1,r2,r3,r4,rr)
print(c)
name=paste("Directory",i,".txt")
write.table(c,name)
}

B Appendix: CODE FOR vgFitMom

library(VarianceGamma)
dataVector1<-read.table(�le="Directory");
typeof(dataVector1)
dataVector<-as.matrix(unlist(dataVector1))
typeof(dataVector)
str (dataVector)
mean(dataVector)
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## Data set on daily log returns on the S&P 500 Index from 01/03/92 to
## 8/20/2012
ii=1
for (i in 0:0){
ii=i
nf=999
f=ii+nf
data=dataVector[ii:f]
Ris<-vgFitStart(data, startValues="MoM")
print(Ris)
a=Ris[[1]][1]
a=a[[1]][1]
b=Ris[[1]][2]
b=b[[1]][1]
b=exp(b)
c=Ris[[1]][3]
c=c[[1]][1]
d=Ris[[1]][4]
d=c[[1]][1]
d=exp(d)
aa=a
bb=b
cc=c
dd=d
## Constraining the pmts to the Scott and Yang Dong�s (2012, pp. 22-23)
## range
...
## Computing �log-likelihood with the Variance-Gamma package
...
## Direct maximisation/minimisation with optim command
Ris=optim(c(a,b,c,d),ll, gr=NULL, method = "Nelder-Mead")
## Printing and saving �nal results
...
}

C Appendix: CODE FOR adhoc

library(VarianceGamma)
dataVector1<-read.table(�le="Directory");
typeof(dataVector1)
dataVector<-as.matrix(unlist(dataVector1))
typeof(dataVector)
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str (dataVector)
mean(dataVector)
## data set on daily log returns on the S&P 500 Index from 01/03/92 to
## 8/20/2012
ii=1
for (i in 0:4200){
ii=i
nf=999
f=ii+nf
data=dataVector[ii:f]
## Initial values for the four parameters
a=0
b=0.5
c=0
d=0.5
print(a)
print(b)
print(c)
print(d)
# Computing �log-likelihood with the Variance-Gamma package
ll = function(par){
if(par[2]>0&par[4]>0) return( - sum(log(dvg(data, vgC= par[1], sigma=par[2],
theta=par[3], nu = par[4]) )))
else return(Inf)}
# Direct maximisation/minimisation with optim command
Ris=optim(c(a,b,c,d),ll, gr=NULL, method = "Nelder-Mead")
## Printing and saving �nal results
...
}

C Appendix: CODE FOR 3optim

library(VarianceGamma)
dataVector1<-read.table(�le="Directory");
typeof(dataVector1)
dataVector<-as.matrix(unlist(dataVector1))
typeof(dataVector)
str (dataVector)
mean(dataVector)
## Data set on daily log returns on the S&P 500 Index from 01/03/92 to
## 8/20/2012
ii=1
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for (i in 0:4200){
ii=i
nf=999
f=ii+nf
data=dataVector[ii:f]
## Initial values for the mean and std. dev. of the data. Alternatively
## the sample mean and std. dev. can be used directly in the
## second call to optim in the place of r1 and r2.
a=0
b=0.5
## Computing �log-likelihood with dnorm command
## for the �rst call to optim
ll = function(par){
if(par[2]>0) return( - sum(log(dnorm(data, par[1],
par[2]) )))
else return(Inf)}
## Direct maximisation/minimisation with optim command (�rst call)
Ris=optim(c(a,b),ll, gr=NULL, method = "Nelder-Mead")
print(Ris)
r1=Ris[[1]][1]
r2=Ris[[1]][2]
rr=Ris[2]
c=paste(r1,r2,rr)
print(c)
name=paste("Directory",i,".txt")
write.table(c,name)
a=r1
b=r2
c=0
d=0.5
## Computing �log-likelihood with the Variance-Gamma package
## for the second call to optim
ll = function(par){
if(par[2]>0&par[4]>0) return( - sum(log(dvg(data, vgC= par[1], sigma=par[2],
theta=0, nu = par[4]) )))
else return(Inf)}
## Direct maximisation/minimisation with optim command (second call)
Ris=optim(c(a,b,0,d),ll, gr=NULL, method = "Nelder-Mead")
print(Ris)
r1=Ris[[1]][1]
r2=Ris[[1]][2]
r3=0
r4=Ris[[1]][4]
rr=Ris[2]
c=paste(r1,r2,r3,r4,rr)
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print(c)
name=paste("Directory",i,".txt")
write.table(c,name)
a=r1
b=r2
c=0
d=r4
## Computing �log-likelihood with the Variance-Gamma package
## for the third call to optim
ll = function(par){
if(par[2]>0&par[4]>0) return( - sum(log(dvg(data, vgC= par[1], sigma=par[2],
theta=par[3], nu = par[4]) )))
else return(Inf)}
## Direct maximisation/minimisation with optim command (third call)
Ris=optim(c(a,b,c,d),ll, gr=NULL, method = "Nelder-Mead")
## Printing and saving �nal results
...
}
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