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Memristor Neural Networks for Linear and
Quadratic Programming Problems

Mauro Di Marco, Mauro Forti , Luca Pancioni, Giacomo Innocenti , and Alberto Tesi

Abstract—This article introduces a new class of memris-
tor neural networks (NNs) for solving, in real-time, quadratic
programming (QP) and linear programming (LP) problems.
The networks, which are called memristor programming NNs
(MPNNs), use a set of filamentary-type memristors with sharp
memristance transitions for constraint satisfaction and an addi-
tional set of memristors with smooth memristance transitions for
memorizing the result of a computation. The nonlinear dynamics
and global optimization capabilities of MPNNs for QP and LP
problems are thoroughly investigated via a recently introduced
technique called the flux–charge analysis method. One main
feature of MPNNs is that the processing is performed in the flux–
charge domain rather than in the conventional voltage–current
domain. This enables exploiting the unconventional features of
memristors to obtain advantages over the traditional NNs for QP
and LP problems operating in the voltage–current domain. One
advantage is that operating in the flux–charge domain allows
for reduced power consumption, since in an MPNN, voltages,
currents, and, hence, power vanish when the quick analog tran-
sient is over. Moreover, an MPNN works in accordance with the
fundamental principle of in-memory computing, that is, the non-
linearity of the memristor is used in the dynamic computation,
but the same memristor is also used to memorize in a nonvolatile
way the result of a computation.

Index Terms—Global optimization, memristor, neural
networks (NNs), nonsmooth analysis, programming problems,
stability.

I. INTRODUCTION

CURRENT data-intensive applications in the Internet of
Things (IoT), cloud computing, and edge computing

call for ever-increasing data processing capabilities and the
availability of computing devices with lower power con-
sumption [1]–[3]. Conventional computation machines, as the
Turing–Von Neumann machine, are currently facing crucial
challenges to tackle these computing power and energy-
demanding applications called the heat and memory wall,
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in addition to the advent of Moore’s law slowdown [4]–[6].
In particular, the Von Neumann bottleneck originates from
the speed limitations due to the continuous data movements
between the processor (CPU) and memory (RAM) with phys-
ically distinct locations.

The use of neural-network (NN) architectures imitating the
analog and parallel computational abilities of the brain, in
combination with new nanoscale components with unconven-
tional functions and dynamics, are long-term visions aimed
at overcoming the drawbacks of the Turing–Von Neumann
machines and sustain the growth of the electronics indus-
try at the end of Moore’s law. In this scenario, a prominent
role is played by the memristor, that is, the fourth basic
passive circuit element, in addition to the resistor, inductor,
and capacitor. This has been theoretically envisioned by Prof.
Chua in 1971 [7] using an axiomatic approach on device
modeling and symmetry arguments on the basic electric quan-
tities. An ideal memristor is a circuit element defined by a
nonlinear relationship between flux ϕ (the integral of volt-
age or voltage momentum) and charge q (the integral of
current or current momentum). One distinctive signature is
the pinched hysteresis loop displayed in the voltage–current
plane when subject to a sinusoidal input. Memristors provide
various advantages over state-of-the-art digital complemen-
tary metal–oxide–semiconductor (CMOS) components, such
as scalability, small on-chip area, low-power dissipation, effi-
ciency, and adaptability [8], [9]. They also enable implement-
ing synapses and neurons in an extremely energy-efficient way.
More important, memristors and memelements, in general,
can perform both information processing and storing of com-
putation outputs on the same physical device. This provides
analog capabilities unavailable in standard circuit elements and
enables on-chip memory, biologically inspired parallel com-
puting, and in-memory computing, that is, the integration of
storage and computation in the same physical location, which
is crucial to overcome the Von Neumann bottleneck [10]–[14].

There is an extensive literature on the use of memristors as
synapses in dynamic NNs. The reader is referred to [15]–[18]
and the references therein, for an account on some relevant
contributions. Such papers mainly consider NNs with an addi-
tive structure as Hopfield or cellular NNs (CNNs) [19], [20].
Several basic dynamic phenomena are investigated, as the con-
vergence of solutions toward equilibrium points (EPs), in view
of the applications to computational tasks related to content
addressable memories and synchronization, or oscillatory and
complex behaviors useful for implementing spatiotemporal
real-time neural processors [21]–[25].
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Solving linear programming (LP) and quadratic program-
ming (QP) problems in real time is another category of
computation problems of extreme importance in all engi-
neering fields. Several classes of NNs with outstanding
performances have been put forward to solve LP and QP
problems. The first pioneering works on NNs for LP prob-
lems are due to Pyne [26] and Tank and Hopfield [27].
Later, Kennedy and Chua [28] greatly extended those works
to nonlinear programming problems, while Forti et al. [29]
further extended the approach to classes of nonsmooth
optimization problems. In particular, Liu and Wang [30]
proposed an effective NN for LP problems with hard-limiter
saturation nonlinearities. Such approaches are based on a
penalty function method, either approximate (smooth case)
or exact (nonsmooth case). NNs for LP and QP prob-
lems that avoid the use of a penalty parameter have been
devised by Rodríguez-Vázquez et al. [31]. Subsequently,
several approaches have been proposed, leading to NNs
with different architectures, each displaying special features
and advantages. These include the NNs with a single-layer
structure by Liu and Wang [32] or a multilayer structure
by Gao and Liao [33]; the NNs introduced by Xia [34],
Leung et al. [35], and Xia and Wang [36] using a primal–dual
approach; and the NNs by Xia et al. based on a projection
approach [37]. This brief review is far from being exhaus-
tive. The reader is referred to [30], [34], [36], [38]–[46], and
the references therein, for a more complete overview of the
related relevant literature.

All the quoted approaches share the common feature that
they map and solve the QP or LP problems via a dynamic
NN evolving in the traditional voltage–current domain. In
particular, the problems are solved during the evolution of
the capacitor voltages, and the results of the computation are
the asymptotic values of such voltages. Since a small capaci-
tance cannot hold a charge for a sufficiently long time, extra
memory is in practice required, implying additional circuitry
and leading to problems as the Von Neumann bottleneck.

The goal of this article is to introduce new memristor NN
architectures for solving real-time QP and LP problems. We
refer henceforth to these networks as memristor program-
ming NNs (MPNNs). MPNNs exploit some nonconventional
features of memristors for improving their performance with
respect to the traditional memristorless NN for solving anal-
ogous optimization problems. The advantages include the
implementation of an in-memory computing scheme, thus
providing a concrete way to overcome the Von Neumann
bottleneck and reduce power dissipation.

The main contributions can be summarized as follows.
1) This article introduces a new class of MPNNs, where

two different sets of memristors are used in the neu-
rons and in the constraint neurons. Memristors in the
constraint neurons are used to implement the diode-
like nonlinear characteristic needed to impose constraint
satisfaction in the penalty function method. They are
characterized by a conductance (memductance) that
sharply switches between two largely different values,
as it happens for the class of filamentary-type mem-
ristors [47]. Memristors in the neurons are used to

memorize the result of the computation as the asymp-
totic value of their resistance (memristance). They have a
smooth dependence of the memristance on the input as it
happens for memristors based on diffusion mechanisms
as the celebrated HP memristor [48].

2) We use a recent method [49]–[51], called the flux–charge
analysis method (FCAM), in order to: a) map QP and LP
problems onto the new MPNN architecture and b) per-
form a thorough analysis of the nonlinear dynamics
and optimization capabilities. In particular, we have the
following.

a) New nonlinear dynamic phenomena due to the
presence of memristors are highlighted, such as
the basic property of foliation of the state space in
invariant manifolds, that follows from the existence
of invariants of motion for the MPNN dynamics.

b) By using FCAM in combination with tools from
nonsmooth analysis, and a nonsmooth form of
the Łojasiewicz inequality, conditions are given
ensuring that each solution converges either expo-
nentially or in finite time to an optimal solution.
The robustness of the global convergence is also
addressed.

3) Examples and numerical simulations are provided to
verify and illustrate the effectiveness, advantages, and
optimization capabilities of MPNNs.

One main novelty of the proposed MPNNs is that the analog
computation and optimization is performed in the flux–charge
domain rather than in the traditional voltage–current domain
as it happens for NNs introduced so far to solve QP and LP
problems. Computation in the flux–charge domain permits to
achieve a number of advantages as summarized next.

1) It is shown that at the end of the analog transient, all capac-
itor voltages, as well as all other voltages and currents in
the MPNN, vanish, that is, in the steady state, an MPNN
turns off and power consumption vanishes. Nonetheless,
memristors are able to memorize in a nonvolatile way
the result of computation in the asymptotic value of their
memristance. An MPNN consumes power only during
the short analog transient with potential advantages in
terms of power consumption over NNs computing in
the voltage–current domain, where voltages, current, and
power do not vanish in the steady state.

2) An MPNN works in accordance with the fundamen-
tal principle of in-memory computing [10], [13], [14].
Indeed, the role of memristors is two-fold: their nonlin-
earity is used for analog computation purposes, more-
over, memristors are also used to store in a nonvolatile
way the result of computation. Again, this is basically
different from NNs computing in the voltage–current
domain, where the result of computation is the asymp-
totic value of the voltage on capacitors.

The structure of this article is outlined as follows. In
Section II, we recall some facts about FCAM needed in
this article. The optimization problem considered here is
formalized in Section III, while the MPNN architecture
to solve this problem is introduced in Section IV. The
main results on dynamics, optimization capabilities, and
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robustness of convergence are given in Sections V–VII.
Section VIII provides some application examples. Finally,
the main conclusions drawn in this article are collected
in Section IX.

II. FCAM

FCAM is a recently developed method to effectively analyze
the dynamics of nonlinear memristor circuits in the flux–
charge domain [49]–[51]. Consider a two-terminal (one-port)
circuit element and let v and i be the voltage and current at
its terminals. Let ϕ(t) = ∫ t

−∞ v(τ )dτ be the flux (or voltage
momentum) and q(t) = ∫ t

−∞ i(τ )dτ be the charge (or current
momentum).

Suppose we are interested in analyzing the dynamics of a
memristor circuit starting from a finite initial instant t0. Let
us introduce the incremental flux

ϕ(t; t0) = ϕ(t)− ϕ(t0) =
∫ t

t0
v(τ )dτ

and the incremental charge

q(t; t0) = q(t)− q(t0) =
∫ t

t0
i(τ )dτ

for any t ≥ t0. FCAM is based on using the Kirchhoff flux
law (KϕL) and Kirchhoff charge law (KqL) for the incremental
flux and charge in combination with the constitutive relations
(CRs) of circuit elements, that is, the links that each element
establishes between the incremental flux and charge at its ter-
minals. KϕL and KqL, which are the natural counterparts of
the Kirchhoff voltage and current laws in the voltage–current
domain, simply express the physical law of conservation of
the incremental flux and charge.

The building blocks of MPNNs are resistors, capacitors,
memristors, and operational amplifiers (Section IV). Next, we
recall their CRs in the flux–charge domain. The reader is
referred to [49] for further details.

A (linear) resistor defined by Ohm’s law v = Ri satisfies an
analogous law ϕ(t; t0) = Rq(t; t0) in the flux–charge domain.
An ideal capacitor q = Cv has the CR in the flux–charge
domain

q(t; t0) = Cϕ̇(t; t0)− Cv(t0)

where v(t0) is the initial condition (IC) at t0 for the state
variable v of C (the dot means the time derivative).

Consider now a flux-controlled memristor q(t) =
h(ϕ(t)) [7]. The CR in the flux–charge domain is

q(t; t0) = h(ϕ(t; t0)+ ϕ(t0))− h(ϕ(t0))

where ϕ(t0) is the IC at t0 for the state variable ϕ of the
memristor. Dually, for a charge-controlled memristor ϕ(t) =
f (q(t)), the CR in the flux–charge domain is

ϕ(t; t0) = f (q(t; t0)+ q(t0))− f (q(t0))

where q(t0) is the IC at t0 for the state variable q.
Finally, consider an ideal operational amplifier (oa) oper-

ating in the linear region and satisfying v1 = 0 and i1 = 0.
In the flux–charge domain, the CRs are ϕ1(t; t0) = 0 and
q1(t; t0) = 0.

We refer the reader to [49] and [52] for the equiva-
lent circuits in the (ϕ, q)-domain of the resistor, capacitor,
flux-controlled or charge-controlled memristor, and oa.

Remark 1: Note that a flux-controlled memristor has an
algebraic CR in the flux–charge domain depending however
on the IC at t0 for the state variable. In the voltage–current
domain, the same memristor has a CR in differential form
i(t) = W(ϕ(t))v(t), ϕ̇(t) = v(t), where W(ϕ) = f ′(ϕ) is the
memductance in Ohm−1 (the prime denotes the derivative of
f with respect to its argument). It is well known that one main
signature of the memristor is the pinched hysteresis loop in
the v-i plane in response to a sinusoidal voltage signal. Dual
considerations hold for a charge-controlled memristor.

III. QP AND LP PROBLEMS

Consider the following optimization problem.
Minimize the scalar function

ψ(x) = 1

2
xTGx + aTx : Rq → R (1)

subject to the affine constraints

γj(x) = 〈Bj, x〉 − cj ≥ 0, j = 1, 2, . . . , p (2)

where 〈·, ·〉 denotes the scalar product, p and q are positive
integers, x, a ∈ R

q, 0 	= Bj ∈ R
q, and cj ∈ R, j = 1, 2, . . . , p.

Moreover, G ∈ R
q×q is a symmetric positive-definite matrix

for a QP problem, while G = 0 for an LP problem. The
superscript T means the transpose.

The feasibility region is the closed convex polyhedron
defined by the affine constraints

P = {x ∈ R
q : 〈Bj, x〉 − cj ≥ 0, j = 1, 2, . . . , p

} ⊂ R
q.

Henceforth, we assume that P is bounded, moreover, we have
int(P) 	= ∅, where int denotes the interior. Let

M = arg min
x∈P

ψ(x) 	= ∅
be the set of global minimizers of ψ in P . It is known that
for LP problems, M is a closed convex set, while for QP
problems, M = {x∗} is a singleton.

IV. MEMRISTOR NN FOR QP AND LP PROBLEMS

The dynamic canonical nonlinear programming network
proposed by Kennedy and Chua [28] is one of the first and
more relevant NNs for solving the QP and LP problems. The
network satisfies the system of differential equations

Cv̇i = −ai −
q∑

j=1

gijvj −
p∑

�=1

b�is

( q∑

k=1

bikvk

)

(3)

for i = 1, 2, . . . , q, where C is the neuron capacitance, vi, i =
1, 2, . . . , q, are the capacitor voltages, and s(·) is a nonlinearity
with a suitable shape used to impose constraint satisfaction.

Kennedy–Chua (KC) NN is an extension of the LP NN orig-
inally proposed by Tank and Hopfield [27]. KCNN exploits
a penalty function method, that is, the dynamic equations
are the negative gradient of an energy function given by
(1/2)vTGv + aTv plus a barrier term forcing constraint satis-
faction. Later, Forti et al. [29] introduced a nonsmooth version
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Fig. 1. Architecture of an MPNN.

of KCNN, where s(·) is replaced by a discontinuous function,
that is able to implement an exact penalty function method.

Next, we introduce a new class of NNs with memristors
that satisfy a system of differential equations analogous to (3)
where v is replaced by the vector ϕ of fluxes of certain mem-
ristors. Such NNs, called MPNNs, map and solve the QP or
LP problems by computing in the flux–charge domain and are
shown to feature potential advantages over the traditional NNs
operating in the voltage–current domain.

A. MPNN Architecture

The proposed MPNN architecture is composed of a set of
neurons and a set of constraint neurons interconnected with
each other as shown in Fig. 1. Each neuron is implemented
via a summing integrator oa. A flux-controlled memristor Mϕ

with CR qmi(t) = h(ϕmi(t)) is connected at the oa output
to memorize the result of computation in a nonvolatile way
(Fig. 2). Each constraint neuron is implemented via a sum-
ming oa with a charge-controlled memristor Mq with CR
ϕ
γ
mi(t) = f (qγmi(t)) in feedback (Fig. 3). Note that each neu-

ron and constraint neuron has an inverting oa to implement
negative interconnections.

Let us describe in detail the neurons and constraint neurons
in the flux–charge domain using FCAM (see Section II).

The equivalent circuit of the ith neuron in the flux–charge
domain is shown in Fig. 2. This has been obtained using the
equivalent circuits in the same domain for a resistor, capacitor,
flux-controlled memristor, and oa, as in [49] and [52].

We assume that the capacitor C is initially charged at
vi0 = vi(t0), while Mϕ is initially discharged, that is, ϕmi0 =

Fig. 2. Neuron and equivalent circuit in the flux–charge domain.

ϕmi(t0) = 0. By using KϕL, KqL, and CRs of circuit elements,
it is seen that the neuron satisfies

ϕmi(t; t0) = ϕCi(t; t0)

qi(t; t0) = Cϕ̇Ci(t; t0)− Cvi0

qmi(t; t0) = h
(
ϕCi(t; t0)

)
.

We suppose that the memristor CR is given by

h
(
ϕmi

) = 1

2
αϕ2

mi
+ βϕmi

where α, β > 0, hence the memductance (the reciprocal of
memristance)

M
(
ϕmi

) = h′(ϕmi

) = αϕmi + β

has a linear dependence on the flux.1

By measuring the memristance, we can indirectly obtain
the flux, which is the variable used in the MPNN compu-
tation (see Section VIII). There are standard procedures to
measure the memristance, which are typically based on apply-
ing a small sensing voltage or current pulse of some preset
waveforms, across the memristor terminals. The memristor can
be modeled as a linear resistor obeying Ohm’s law when the
sensing signal amplitude is sufficiently small. More details can
be found in [9], while automated techniques for memristance
measurements are described in [53].

The equivalent circuit of a constraint neuron in the flux–
charge domain is shown in Fig. 3, where Mq is assumed to
be initially charged at qγmi0 = qγmi(t0). The constraint neuron
is described by the static relationships

qγi (t; t0) = qγmi
(t; t0)

ϕγmi
(t; t0) = f

(
qγi (t; t0)+ qγmi0

)− f
(
qγmi0

)
.

We assume henceforth that the nonlinearity f (qγmi) of the
memristor has a (reverse) diode-like shape as in Fig. 4(a).

1Actually, the important property to be enjoyed by the memristors used
in neurons is that the measurement of the memristance enables to indirectly
measure the flux. This is true when there is a smooth monotone increasing
(e.g., linear) dependence of memristance or memductance on flux, as it hap-
pens for some classes of practical memristors based on a diffusive mechanism
as the celebrated memristor implemented at HP [48, p. 81].
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Fig. 3. Constraint neuron and equivalent circuit in the flux–charge domain.

(a) (b)

Fig. 4. (a) Stiff nonlinearity f (·) of a memristor in a constraint neuron and
(b) discontinuous approximation d(·) of f (·).

More precisely, f (qγmi) is a C1 monotonically increasing func-
tion with a very large positive slope for qγmi ≤ −qε and a very
small positive slope for qγmi ≥ qε , where qε is a small positive
charge. Hence, the memristance

Wγ
(
qγmi

) = f ′(qγmi

)

is very high for qγmi ≤ −qε , whereas it assumes very low values
for qγmi ≥ qε . Such a nonlinearity is typical of filamentary-type
memristors [47]. Depending on the input, such memristors can
quickly switch from an open circuit (very low conductance
Goff) when the filament is not formed, to a short circuit (very
high conductance Gon) after filament forming. In the literature,
very high ratios Gon/Goff reaching several orders of magni-
tude are reported for filamentary-type memristors (see [54] and
[55]). We also note that the monotone increasing property of f
is in accordance with the passivity of the memristor [7, Th. 1].

The linear interconnection structure (see Fig. 1) is such that
we can write for the neurons

qi(t; t0) = −
q∑

j=1

gijϕCj(t; t0)−
p∑

�=1

b�iϕ
γ
m� (t; t0)

for i = 1, 2, . . . , q. Moreover, for the constraint amplifiers

qγi (t; t0) =
q∑

k=1

bikϕCk(t; t0), i = 1, 2, . . . , p.

Putting together the equations for the neurons and
interconnections, and recalling that ϕmi0 = 0, hence
ϕmi(t; t0) = ϕmi(t), we obtain that an MPNN satisfies

Cϕ̇mi(t) = Cvi0 +
p∑

�=1

b�if
(
qγm�0

)−
q∑

j=1

gijϕmj(t)

−
p∑

�=1

b�if

( q∑

k=1

bikϕmk(t)+ qγmi0

)

(4)

for i = 1, 2, . . . , q. This is a system of q differential equations
in the same number of state variables given by the memristor
fluxes ϕmi(t), i = 1, 2, . . . , q. The ICs are by construction
ϕmi(t0) = 0, i = 1, 2, . . . , q.

According to FCAM [49], the equations of the MPNN
in the voltage–current domain can be simply obtained by
differentiating in time (4), namely

Cv̇i(t) = −
q∑

j=1

gijvj(t)−
p∑

�=1

q∑

k=1

b�ibikf ′(qγmi
(t)
)
vk(t) (5)

for i = 1, 2, . . . , q and

q̇γmi
(t) =

q∑

k=1

bikvk(t) (6)

for i = 1, 2, . . . , p, where we considered that qγmi(t) =∑q
k=1 bikϕmk(t)+ qγmi0 and ϕ̇mi(t) = ϕ̇i(t) = vi(t).
This is a system of q + p differential equations in the same

number of state variables in the voltage–current domain given
by the capacitor voltages v = (v1, v2, . . . , vq)

T ∈ R
q and the

constraint memristor charges qγm = (qγm1 , qγm2 , . . . , qγmp)
T ∈

R
p. The ICs of the state variables are vi(t0) = vi0, i =

1, 2, . . . , q, and qγmj(t0) = qγmj0 , j = 1, 2, . . . , p.

V. MPNN FOR QP AND LP PROBLEMS

Our goal is to design an MPNN such that it maps and solves
QP and LP programming problems in the flux–charge domain.
This entails addressing a number of relevant dynamical issues
including the following ones.

1) To prove that under suitable assumptions, (4) satis-
fied by an MPNN in the (ϕ, q)-domain is analogous
to the equations describing KCNN in the (v, i)-domain
(Section V-A).

2) To show that the state space in the (v, i)-domain of an
MPNN can be foliated in invariant manifolds and that
addressing the previous point 1) boils down to choos-
ing via the ICs the suitable invariant manifold where an
MPNN should evolve (Section V-B).

3) To conduct a thorough analysis of the optimization
capabilities of an MPNN directly in the (ϕ, q)-domain
(Section VI) using the analogy established in point 1).

4) To prove some fundamental peculiar properties of
MPNNs in the (v, i)-domain, such as the property that
capacitor voltages and hence power vanish when the
transient is over (Section VI-E).
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A. Analogy Between MPNN and KCNN

Consider again (4) satisfied by an MPNN in the (ϕ, q)-
domain. The equations contain constant terms vi0 and qγmi0

corresponding to the ICs for the state variables in the voltage–
current domain. The next result shows that by suitably choos-
ing such ICs, we obtain an MPNN satisfying a system of
differential equations analogous to that of the KCNN.

Proposition 1: Suppose to choose the ICs for the state
variables in the voltage–current domain as follows:

vi0 = − 1

C

[

ai +
p∑

�=1

b�if (−ci)

]

, i = 1, 2, . . . , q

qγmi0
= −ci, i = 1, 2, . . . , p. (7)

Then, (4) boils down to

Cϕ̇mi(t) = −ai −
q∑

j=1

gijϕmj(t)

−
p∑

�=1

b�if

( q∑

k=1

bikϕmk(t)− ci

)

(8)

for i = 1, 2, . . . , q. With this choice, an MPNN satisfies in
the flux–charge domain a system analogous to that satisfied
by KCNN in the voltage–current domain, that is, system (3),
provided the vector of capacitor voltages v is replaced by that
of neuron memristor fluxes ϕm and nonlinearity s(·) is replaced
by the constraint neuron nonlinearity f (·).

Proof: Directly follows substituting (7) into (4).
Let us define ϕ(t) = (ϕm1(t), ϕm2(t), . . . , ϕmq(t))

T ∈ R
q

and F(ρ) = (f (ρ), f (ρ), . . . , f (ρ))T: Rq → R
p and let BT =

(B1,B2, . . . ,Bp) ∈ R
q×p. Then, omitting dependence on t, and

choosing t0 = 0, in a matrix–vector form for QP problems (8)
can be written as

Cϕ̇ = −a − Gϕ − BTF(Bϕ − c) (9)

with ICs ϕ(0) = 0.
In the voltage–current domain, in a matrix–vector form

Cv̇ = −Gv − d

dt

[
BTF

(
qγ
)] = −Gv − BTJF

(
qγ
)
Bv (10)

q̇γ = Bv (11)

where JF is the Jacobian of F, we let qγ =
(qγm1 , qγm2 , . . . , qγmp)

T ∈ R
p and considered that qγ = Bϕ − c.

The ICs are v0 = v(0) and qγ0 = qγ (0).
For LP problems, letting G = 0, we have

Cϕ̇ = −a − BTF(Bϕ − c) (12)

with ICs ϕ(0) = 0, while in the voltage–current domain

Cv̇ = − d

dt

[
BTF

(
qγ
)] = −BTJF

(
qγ
)
Bv (13)

q̇γ = Bv (14)

with ICs v0 = v(0) and qγ0 = qγ (0).
Remark 2: From a circuit viewpoint, the interconnecting

structure of an MPNN is analogous to that of a Hopfield NN
and a KCNN for LP and QP problems. The fundamental dif-
ference is the use of memristors in the neurons and constraint

neurons of an MPNN. Memristors enable to process signals
in the (ϕ, q)-domain, instead of the traditional (v, i)-domain,
as it happens for Hopfield and KCNNs. As we shall see,
this enables to implement an effective computation scheme
according to the principle of in-memory computing, where
memristors process and also store the computation output. In
addition, computing in the (ϕ, q)-domain permits to lower the
power requirements.

B. First Integrals, Invariant Manifolds, and Reduced-Order
Dynamics

At first glance, it seems surprising that the order q + p of
the equations describing the dynamics of an MPNN in the
voltage–current domain is different from the order q of the
equations in the flux–charge domain. As shown next, such an
apparent inconsistency can be explained via FCAM and the
principle of the foliation of the state space of memristor NNs
in the voltage–current domain [49].

1) QP Problems: Consider for QP problems function
QQP : Rq+p → R

q of the state variables in the voltage–current
domain

QQP
(
v(t), qγ (t)

) = BG−1(Cv(t)+ BTF
(
qγ (t)

))+ qγ (t).

Theorem 1: The time derivative of QQP along the solu-
tions of (10) and (11) identically vanishes, namely,
Q̇QP(v(t), qγ (t)) = 0 for any t ≥ 0.

Proof: From (10), we obtain v = −G−1(Cv̇) −
G−1(d[BTF(qγ )]/dt). Substituting in (11), q̇γ + BG−1(Cv̇)+
BG−1(d[BTF(qγ )]/dt) = 0 and hence

d

dt

[
qγ + BG−1(Cv)+ BG−1BTF

(
qγ
)] = 0

for any t ≥ 0.
Theorem 1 implies that the p scalar functions

[QQP(v, qγ )]i : R
q+p → R, i = 1, 2, . . . , p, are a set

of p independent invariants of motion for the dynamics of an
MPNN for QP problems in the voltage–current domain.

Let

M(Q0) = {(v, qγ
) ∈ R

q+p : QQP
(
v, qγ

) = Q0
} ⊂ R

q+p

where Q0 ∈ R
p is a constant vector. Note that for a fixed Q0 ∈

R
q, M(Q0) is a q-dimensional manifold in R

q+p and that,
by varying Q0, we obtain ∞p nonintersecting manifolds into
which R

q+p is decomposed. Due to Theorem 1, each manifold
M(Q0) is positively invariant for the dynamics of an MPNN.
Namely, if (v(t), qγ (t)) is a solution of (10) and (11) with ICs
(v0, qγ0 ) ∈ M(Q0), then we have (v(t), qγ (t)) ∈ M(Q0) for
any t ≥ 0. On each manifold, the dynamics has a reduced-
order q and is described in the flux–charge domain by (4).2

2) LP Problems: Analogous results hold for LP problems,
for which we define the function QLP : Rq+p → R

p as follows:

QLP(v(t), qγ (t)) = Cv(t)+ BTF
(
qγ (t)

)
.

2The relationship between the solutions of MPNN in the voltage–current
domain and those of the reduced-order system on each manifold can be found
via a technique analogous to that discussed in [56, Sec. III].



1828 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 3, MARCH 2022

Theorem 2: The time derivative of QLP along the solu-
tions of (13) and (14) identically vanishes, that is,
Q̇LP(v(t), qγ (t)) = 0 for any t ≥ 0.

Proof: From (13), we obtain d[Cv(t)+ BTF(qγ (t))]/dt = 0
for any t ≥ 0.

Theorem 2 implies that the p scalar functions
[QLP(v, qγ )]i : R

q+p → R, i = 1, 2, . . . , p, are a set
of p independent invariants of motion for the dynamics of an
MPNN for LP problems in the voltage–current domain.

Analogous properties as those previously discussed hold for
the invariant manifolds of an MPNN for LP problems

M(Q0) = {(v, qγ
) ∈ R

q+p : QLP
(
v, qγ

) = Q0
} ⊂ R

q+p

where Q0 ∈ R
p is a constant vector.

VI. DYNAMIC ANALYSIS

A. Nonsmooth MPNN Model

Consider (9) and (12) describing the dynamics of an MPNN
for QP and LP problems, respectively. Due to the presence of
constraint neurons implemented with filamentary-type mem-
ristors, such equations contain stiff nonlinearities f (ρ) with
a very low slope for positive ρ and a very high slope for
negative ρ. As discussed in [57], in such a case, it is conve-
nient to analyze the limiting case where f is approximated by
a nonsmooth discontinuous nonlinearity. The analysis of the
discontinuous case is in fact able to highlight salient features
of motion as the presence of sliding modes along discontinu-
ity surfaces and the intriguing phenomenon of convergence in
finite time. Such properties would be instead difficult to study
via a traditional analysis using smooth nonlinearities.

More precisely, we replace f with a discontinuous nonlin-
earity

d(ρ) =
{

0, ρ > 0
[−σ, 0], ρ = 0

(15)

where σ > 0. Moreover, d(·) is a continuous, single-valued,
nondecreasing function when ρ < 0.

The assumption d is nondecreasing is justified by the fact
that, as already mentioned, a passive memristor has a mono-
tone characteristic relating charge and flux [7]. Actually, in
the analysis in this article, we do not need to know the exact
behavior of d(·) for ρ < 0. The only property that matters is
that d(·) is nondecreasing and so d(ρ) ≤ −σ when ρ < 0.
Again, this is consistent with the fact that actual memristors
have boundary effects and saturations such that the character-
istic behavior is not exactly known beyond saturation [58]. A
possible function d(·) is depicted in Fig. 4(b).

Then, we obtain for an MPNN the nonsmooth model

ẋ ∈ −a − Gx − BTD(Bx − c)
.= F(x) (16)

where we let for simplicity, x = ϕ and D(x) =
(d(x1), d(x2), . . . , d(xq))

T. We also consider a normalized
value C = 1 for the capacitance. Note that the vector field
F defining (16) is multivalued at points where some compo-
nents of Bx − c vanish, hence we are actually dealing with a
differential inclusion rather than an ordinary differential [59].

By a solution of (16) in [0,T] we mean an absolutely con-
tinuous function x(·) in [0,T] such that we have ẋ(t) ∈ F(x(t))
for almost all (a.a.) t ∈ [0,T]. An EP is a stationary solution,
that is, ξ ∈ R

q is an EP if and only if we have 0 ∈ F(ξ). This
is equivalent to

η(ξ)
.= −Gξ − a ∈ NP (ξ) (17)

where NP (ξ) is the normal cone to the convex set P at ξ [60]
(see also [61, Sec. I-a)]). Let E be the set of EPs of (16).

B. Gradient Differential Inclusion

Let

dns(ρ) =
⎧
⎨

⎩

0, ρ > 0
[−σ, 0], ρ = 0
−σ, ρ < 0

(18)

and also consider the single-valued function ds(ρ) = d(ρ) −
dns(ρ), which is continuous and nondecreasing in R.

On this basis, define the energy function

E(x) = E0(x)+ Ens(x)+ Es(x) : Rq → R

where

E0(x) = 1

2
xTGx + xTa

Ens(x) = σ

p∑

j=1

max
{
0,−γj(x)

}

Es(x) =
p∑

j=1

∫ γj(x)

0
ds(ρ)dρ

and γj(x) = 〈Bj, x〉 − cj = BT
j x − cj is as in (2).

Function E is convex, (hence) continuous, but not differen-
tiable (Appendix A). Moreover, it is seen that (16) corresponds
to the gradient differential inclusion

ẋ ∈ F(x) = −∂E(x)

where ∂E is the generalized (Clarke’s) gradient of E
(Appendix B).3

The next result is a direct consequence of the fact that (16)
is the gradient of a convex function.

Proposition 2:
1) The vector field F defining (16) is maximal monotone,

that is, we have 〈xa−xb, ζa−ζb〉 ≥ 0 for any xa, xb ∈ R
q

and any ζa ∈ F(xa) and ζb ∈ F(xb).
2) For any x0 ∈ R

q, there is a unique solution x(t) of (16)
with IC x(0) = x0, which is defined for t ≥ 0.
Furthermore, t → E(x(t)) is a monotone nonincreasing,
convex function such that for a.a. t ≥ 0

Ė(x(t)) = −‖ẋ(t)‖2

3) The function t → ‖ẋ(t)‖ is monotone nonincreasing.
Proof: Since E is convex in R

q, the result in point 1) follows
from [59, Proposition 1, p. 159]. Points 2) and 3) follow from
the fact that F is maximal monotone [59, Th. 1, p. 147 and
Th. 1, p. 159].

3We refer the reader to [62] and [57, Sec. I(a)] for the definition and
basic properties of Clarke’s gradient. We recall that since E is convex, ∂E
coincides with the classical subdifferential of convex analysis. We also note
that ∂W = ∇W, where ∇ denotes the gradient, when W is smooth (C1).



DI MARCO et al.: MEMRISTOR NNs FOR LP AND QP PROBLEMS 1829

C. Convergence to the Feasibility Region

The next result addresses the convergence of MPNN solu-
tions to the feasibility region.

Proposition 3: Choose R > 0 such that P ⊂ BR = {x ∈
R

q : ‖x‖ < R} and let

σth = 2λMR2 + ‖a‖R

χmin
(19)

where x̃ ∈ intP , hence γi(x̃) > 0, i = 1, 2, . . . , p, and

χmin = min
i=1,2,...,p

{γi(x̃)} > 0.

Moreover, λM = maxi=1,2,...,q{λi} and λi are the eigenvalues
of G.

Assume that σ > σth and let x(t), t ≥ 0, be the solution
of (16) with IC x(0) = x0 ∈ BR. Then:

1) the set BR is positively invariant for the dynamics
of (16), that is, x0 ∈ BR implies x(t) ∈ BR for any t ≥ 0;

2) the feasibility region P is positively invariant for the
dynamics of (16);

3) the solution x(·) reaches P in finite time t̄ and stays in
P thereafter, that is, x(t) ∈ P for any t ≥ t̄;

4) within P , that is, for t ≥ t̄, the solution x(·) satisfies the
differential variational inequality (DVI)

ẋ ∈ −Gx − a − NP (x).

Proof: If we let y = x − x̃, then (16) becomes

ẏ ∈ −a − Gx̃ − Gy − BTD(By + Bx̃ − c) (20)

that has the form of the nonsmooth gradient system (3) studied
in [61]. Moreover, y = 0 ∈ intP and (Bx̃ − c)i = γi(x̃) > 0,
i = 1, 2, . . . , p. Due to [61, Properties 1 and 2], the results in
the proposition hold whenever σ > MaMb, where

Ma = max
y∈BR

‖Gy + a + Gx̃‖,Mb = R

χmin
.

To complete the proof, note that ‖Gy + a + Gx̃‖ ≤ ‖Gy‖ +
‖a‖ + ‖Gx̃‖ ≤ λMR + ‖a‖ + λMR = 2RλM + ‖a‖.4

Proposition 4: If σ > σth, we have E ∩ BR = M.

Proof: Follows by applying [61, Property 3] to (20).
Proposition 4 means that for sufficiently large σ , MPNN

implements an exact penalty function method, where the set
E of EPs of (16) in BR coincides with the set of global
minimizers of the QP or LP problem.

D. Convergence to Constrained Minima

Here, we give the main results on the convergence of
solutions of the MPNN and global optimization capabilities.

Theorem 3: Assume that σ > σth and let x(t), t ≥ 0, be
the solution of (16) with IC x(0) = x0 ∈ BR. Then, x(·) has a
finite length on [0,+∞), that is

∫ +∞

0
‖ẋ(t)‖dt < +∞

and converges to an EP in M as t → +∞.

4Nonlinearity d(ρ) in model (16), which is nondecreasing for ρ < 0, is
slightly more general than the nonlinearity dns(ρ) used in [61], which has
0 slope for ρ < 0. However, the proof of [61, Properties 1 and 2] can be
straightforwardly adapted to be applied to d. We omit the details for brevity.

Proof: Once more, consider the system (20). The result fol-
lows from [61, Th. 3], where a nonsmooth version of the
Łojasiewicz inequality is used to prove the finiteness of the
trajectory length and convergence of each solution toward an
EP in M.

The next results state that for QP problems, there is either
global exponential convergence with a known rate, or global
convergence in finite time, to a global optimum. Moreover,
for LP problems, global convergence is always in finite time.
These convergence properties make it clear that MPNNs are
effective for solving LP and QP problems in real time.

Theorem 4: Consider the MPNN (16) for QP problems and
let σ > σth. Let M = {x∗}, where x∗ is the global minimizer
of the QP problem and let x(·) be the solution of (16) with IC
x(0) = x0 ∈ BR. The following hold.

1) If η(x∗) = −Gx∗−a ∈ intNP (x∗), then x(·) converges in
finite time to x∗, that is, there exists tf such that x(t) = x∗
for any t ≥ tf.

2) If η(x∗) = −Gx∗ −a ∈ bdNP (x∗), where bd denotes the
boundary, then x(·) converges exponentially to x∗, that
is, there exist t̄ > 0 and κ ′, κ ′′ > 0 such that

∥
∥x(t)− x∗∥∥ ≤ κ ′ exp

{−κ ′′(t − t̄
)}
, t ≥ t̄.

Proof: The result is a consequence of a nonsmooth version
of the Łojasiewicz inequality for QP problems [61, Th. 1] and
Theorem 3 in the quoted paper.

Theorem 5: Consider the MPNN (16) for LP problems and
let σ > σth. Let x(·) be the solution of (16) with IC x(0) =
x0 ∈ BR. Then, x(·) converges in finite time to a singleton in
M, that is, there exist x̄∗ ∈ M (depending upon x0) and tf
such that x(t) = x̄∗ for any t ≥ tf.

Proof: The result follows from a nonsmooth version of
the Łojasiewicz inequality for LP problems [61, Th. 2] and
Theorem 4 in the quoted paper.

It is worth to stress that due to Theorem 5, for LP problems
convergence in finite time to a global minimizer holds even
if (16) has a continuum of (nonisolated) EPs.

E. Convergence to 0 of Capacitor Voltages

In view of the practical applications of MPNNs, we are
interested not only in the convergence of x(·) toward a global
minimizer but also in convergence to 0 of the capacitor volt-
ages v. In fact, if v → 0, it is easy to see that all voltages
and currents drop off in an MPNN. Namely, power drops off
after a quick transient, with advantages in terms of energy
consumption with respect to traditional NNs operating in the
voltage–current domain.

Since a solution x(·) of an MPNN is absolutely continuous,
x(·) is differentiable for a.a. t ≥ 0 and ẋ(·) is a measurable
function. Recalling that C = 1, the vector of capacitor voltages
is simply given by v(t) = Cẋ(t) = ẋ(t) for a.a. t ≥ 0.

It is worth to remark that since we are dealing with a dif-
ferential equation with a discontinuous right-hand side, the
convergence of x(·) does not, in general, ensure convergence
to 0 of ẋ. The reader is referred to [57, Example 2] for an
example of this kind. In what follows, we show however that
for an MPNN we can rule out such an unwanted phenomenon.
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We start for simplicity with LP problems.
Corollary 1: Consider the MPNN (16) for LP problems and

let σ > σth. Let x(·) be the solution of (16) with IC x(0) =
x0 ∈ BR. Then, there exists tf such that v(t) = 0, t > tf.

Proof: Simply follows from Theorem 5.
Consider now an MPNN for QP problems. In this case,

in general, we do not have convergence in finite time of a
solution x(·). Moreover, there may exist instants accumulating
at t = +∞ for which ẋ(·) is not defined. In such a case,
there are difficulties in using the standard concept of the limit
as t → +∞. Following the discussion in [59, p. 311], we
can however use the concept of almost limit, as in the next
definition, which is in practice as useful as that of the limit
when dealing with functions that are only differentiable for
a.a. t.

Definition 1 [59]: Let ρ(t) : [0,+∞) → R
q be a measur-

able function. We say that ρ̄ ∈ R
q is the almost limit of ρ as

t → +∞, and we write ρ̄ = alimt→+∞ρ(t), if for any ε > 0
there exists tε > 0 such that μ{t ∈ [tε,+∞) : ‖ρ(t) − ρ̄‖ >
ε} = 0, where μ denotes the measure.

Theorem 6: Consider the MPNN (9) for QP problems and
let σ > σth. Let x(·) be the solution of (9) with IC x(0) =
x0 ∈ BR. The following hold.

1) If η(x∗) = −Gx∗ − a ∈ intNP (x∗), then there exists tf
such that we have v(t) = 0 for any t ≥ tf.

2) If η(x∗) = −Gx∗ − a ∈ bdNP (x∗), then we have
alimt→+∞v(t) = 0.

Proof: 1) Follows from point 1) of Theorem 4. 2) According
to point 3) of Proposition 2, function t → ‖ẋ(t)‖ is monotone
nonincreasing for t ≥ 0. Let us verify that ‖ẋ(t)‖ decreases to
0 as t → +∞. We argue by a contradiction assuming ‖ẋ(·)‖
decreases to ε̄ > 0 as t → +∞. In this case, we have ‖ẋ(t)‖ ≥
ε̄ for a.a. t ≥ 0 and so limτ→+∞

∫ τ
0 ‖ẋ(t)‖dt = +∞, contra-

dicting the fact that any solution has finite length on [0,+∞)

(Theorem 3). Since ‖ẋ(t)‖ decreases to 0 as t → +∞, then
for any ε > 0, there is tε > 0 such that ‖ẋ(t)‖ < ε for a.a.
t ≥ tε , which implies a limt→+∞ ‖ẋ(t)‖ = 0.

VII. ROBUSTNESS OF GLOBAL CONVERGENCE

In Section VI, we have given a number of fundamen-
tal results concerning global convergence of solutions for an
MPNN. Such results are heavily dependent on the fact that a
nominal MPNN is described by a gradient system of differ-
ential inclusions. Since even arbitrarily small perturbations of
a gradient system might result in a system that is no longer
described by the gradient of some function, robustness issues
concerning convergence become important.

Such robustness problems are well known in the context
of the Hopfield-type NNs and CNNs. Recall that a symmetric
CNN is a gradient system and enjoys convergence toward EPs
when the interconnections are symmetric. However, as shown
in [63], there are competitive CNNs that implement a globally
inconsistent decision scheme and display large-size nonvanish-
ing oscillations even arbitrarily close to symmetry. The reader
is referred to [64] and [65] for other types of oscillatory or
complex dynamics that can be observed for small perturbations
of symmetric matrices in NNs.

The goal of this section is to show that an MPNN enjoys
some basic robustness properties of convergence. In general,
we may study the robustness of convergence with respect to
perturbations of the interconnection matrices G or B, vec-
tor a, or the threshold σ of nonlinearity d. It is easily seen
that the convergence results in Section VI are robust with
respect to small variations of a or σ since under such varia-
tions, an MPNN is still described by a gradient system. We
thus consider a perturbed MPNN for solving QP problems
described by

ẋ ∈ −a − Hx − BTD(Bx − c)
.= H(x) (21)

where H = G+�G and �G is a nonsymmetric perturbation of
G, that is, �GT 	= �G and so HT 	= H. Note that matrix B is
assumed to be unperturbed. The case where B is perturbed can
be dealt with analogous techniques but a detailed treatment is
omitted here to avoid repetitions and an excessive length.

The loss of symmetry of H implies that (21) is no longer
a gradient system. Nonetheless, a result analogous to that of
Proposition 3 holds with σth replaced by

σ̃th = 2
√
ξMR2 + ‖a‖R

χmin

where ξM = maxi=1,2,...,q{ξi} > 0 and ξi are the eigenvalues
of HTH (Appendix C). The only difference is that, since H
is no longer maximal monotone, we are not able to prove
the uniqueness of the solution in BR\P . The uniqueness of
the solution holds instead within set P , where the perturbed
system still satisfies a DVI, as stated in the next result.

Proposition 5: Assume that σ > σ̃th. Then, within P ,
system (21) is equivalent to the DVI

ẋ ∈ −Hx − a − NP (x). (22)

Such a DVI enjoys the property of uniqueness of the solution
with respect to the IC in P .

Proof: Let x(·) be a solution of (21) such that x(t) ∈ P for
t ≥ t̄. We have −BTD(Bx−c) = −∂(Ens(x)+Ens(x)) ∈ NP(x)
[61, p. 1476], hence there exists η(t) ∈ NP (x(t)) such that
ẋ(t) ∈ −Hx(t)−a−η(t) for a.a. t ≥ 0. This means that x(·) is
also a solution of the DVI (22). The uniqueness of the solution
in P holds due to [66, Property 3]. The uniqueness implies
that (21) and (22) are equivalent within P .

Let us now study the existence, uniqueness, and global
stability of the EP of (21).

Proposition 6: If the symmetric part of H, that is, HS .=
(1/2)(H +HT), is positive definite, then (21) has a unique EP
ξ ∈ P .

Proof: By following a procedure as that to prove
[61, Property 1, point 2)], it can be verified that in BR\P ,
there is no EP of (21). Within P , there exists instead at least
an EP of (21) due to the viability theorem for DVIs (see
[59, Th. 1, p. 267]). Finally, let us prove that the EP is unique.
We argue by a contradiction assuming there exist two different
EPs ξ1 	= ξ2 of (21) in P . Then, there exist η1 ∈ NP (ξ1) and
η2 ∈ NP (ξ2) such that −Hξ1 − a = η1 and −Hξ2 − a = η2.
Due to the monotonicity of the normal cone [59], it is known
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that 〈ξ1 − ξ2, η1 − η2〉 ≥ 0. However, we also obtain

〈ξ1 − ξ2, η1 − η2〉 = 〈ξ1 − ξ2,−Hξ1 − a + Hξ2 + a〉
= 〈ξ1 − ξ2,−H(ξ1 − ξ2)〉
= −(ξ1 − ξ2)

TH(ξ1 − ξ2)

= −(ξ1 − ξ2)
THS(ξ1 − ξ2) < 0

since HS is positive definite and ξ1 	= ξ2. Hence, we have
reached a contradiction.

Theorem 7: Assume that HS is positive definite and let x(·)
be a solution of (21) with IC x(0) = x0 ∈ BR. Then, x(·)
converges exponentially to the unique EP ξ , namely, there
exists t̄ ≥ 0 such that

‖x(t)− ξ‖ ≤ ∥∥x(t̄)− ξ
∥
∥ exp

{
−λ̃m

(
t − t̄

)
/2
}
, t ≥ t̄

where λ̃m = mini=1,2,...,q{λ̃i} > 0 and λ̃i are the eigenvalues
of HS.

Proof: We already noted that any solution of (21) with IC
in BR reaches P in finite time and stays in P thereafter. Then,
it suffices to consider a solution x(·) such that x(t̄) ∈ P and
show that it converges exponentially to ξ for t ≥ t̄. To this
end, consider the candidate Lyapunov function

V(x) = 1

2
‖x − ξ‖2 = 1

2
(x − ξ)T(x − ξ).

The function V(x(t)) is differentiable for a.a. t ≥ 0 and we
have V̇(x(t)) = 〈∇V(x(t)), ẋ(t)〉 = 〈x(t)− ξ, ẋ(t)〉. From (22),
for a.a. t ≥ t̄, there exists η(t) ∈ NP (x(t)) such that ẋ(t) =
−Hx(t) − a − η(t). Furthermore, since ξ is an EP of (21),
−Hξ − a = ηξ , for some ηξ ∈ NP (ξ). Therefore, we obtain

V̇(x(t)) = 〈x(t)− ξ, ẋ(t)〉
= 〈x(t)− ξ,−Hx(t)− a − η(t)+ Hξ + a + ηξ

〉

= 〈x(t)− ξ,−H(x(t)− ξ)− η(t)+ ηξ
〉

= −〈x(t)− ξ,H(x(t)− ξ)〉
− 〈

x(t)− ξ, η(t)− ηξ
〉

≤ −〈x(t)− ξ,H(x(t)− ξ)〉
≤ −

〈
x(t)− ξ,HS(x(t)− ξ)

〉

≤ −λ̃m‖x(t)− ξ‖2 = −λ̃mV(x(t))

where we have taken into account that the normal cone
NP (·) is a maximal monotone operator and so 〈x(t) − ξ,

η(t)− ηξ 〉 ≥ 0. Now, [66, Th. 6] yields the result.
It is worth remarking that standard techniques based on

LMIs [67] can be effectively used to find the allowed per-
turbations �G for which HS is positive definite and the result
on global convergence in Theorem 7 holds.

VIII. APPLICATION EXAMPLES

Here, we present some toy examples of QP and LP problems
to verify the theoretical results and illustrate the optimization
capabilities of MPNNs.

Example 1. Consider the following QP problem. Minimize
ψ(x) = (1/2)xTGx + ax, where

G = 1

4

(
1.5 −1
−1 2

)

, a = (−1.2,−3.5)T (23)

Fig. 5. Trajectory of MPNN for solving the QP problem in Example 1 (blue)
and that in Example 2 (red).

and x = (x1, x2)
T ∈ R

2 (q = 2), subject to the affine
constraints BTx − c ≥ 0, where (p = 6)

B =
(

1 1.5 −1 −4/3 1/2 0
0 −1 −1 1 1 1

)

(24)

and

c = (2,−28/5,−14,−7/2, 4, 2)T (25)

defining the polyhedron in Fig. 5. In this case, M = {x∗} =
{(7, 7)T} is a vertex of P and −Gx∗ −a ∈ intNP (x∗) (Fig. 5).
If we pick R = 11 and x̃ = (7, 4.5)T, we obtain from (19) that
σth = 76.8.

We used MPNN (16) for solving this QP problem. The
matrices G and B and vector c in the MPNN model (16) are
chosen as in (23)–(25), respectively. The discontinuous nonlin-
earity d(·) is as in (15), where we have chosen σ = 80 > σth.
Next, we report the numerical simulations of the MPNN (16)
for this QP problem. Recall that according to the design pro-
cedure of an MPNN in Section V, we are interested in the
evolution of the solution of (16) starting at x(0) = ϕ(0) = 0.
Fig. 5 shows the trajectory starting at the origin and converging
to the global minimizer x∗, while Fig. 6 shows the time evo-
lution of the memristor fluxes x1(·) = ϕ1(·) and x2(·) = ϕ2(·)
showing convergence to the exact solution x∗ in finite time.
These results are in accordance with Theorem 4. Fig. 6 also
shows the evolution of the capacitor voltages v1(·) = ẋ1(·)
and v2(·) = ẋ2(·), confirming that they tend to 0 in finite
time (Theorem 6). Hence, as predicted, power turns off in the
MPNN after the transient is over, with advantages in terms
of power consumption. The memristor in the neurons are
able to hold in memory the result of the computation, that
is, the memristor fluxes, which can be indirectly measured
via the memristance. This behavior is in accordance with the
in-memory computing principle.

For comparison, we also simulated KCNN (3) for solving
the same QP problem. In particular, the nonlinearity s(·) in (3)
has been chosen according to [28] as s(ρ) = 0 for ρ ≥ 0, while
s(ρ) = κρ for ρ < 0, where κ > 0. Fig. 7 shows the corre-
sponding time-domain behavior of the capacitor voltages v1(·)
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Fig. 6. Evolution of x1(·) = ϕ1(·) (red solid), x2(·) = ϕ2(·) (red dashed)
and ẋ1(·) = v1(·) (blue solid), ẋ2(·) = v2(·) (blue dashed) for the MPNN in
Example 1.

Fig. 7. Evolution of the capacitor voltages v1(·) (blue solid) and v2(·) (blue
dashed) for KCNN (3) used for solving the QP problem in Example 1.

and v2(·), when the ICs are v1(0) = v2(0) = 0 and κ = 10.
It is seen that v1 tends to 7.1, while v2 tends to 6.96, which
approximates the exact solution (7, 7) of the problem. This is
due to the fact that KCNN is a smooth NN that implements
an inexact penalty method. The most important difference is
that the capacitor voltages do not tend to 0 for KCNN, hence
power does not turn off in the steady state. As already dis-
cussed, in practice, the capacitors in a KCNN are unable to
hold in memory the result of computation so that an extra
memory would be needed with potential problems related to
the Von Neumann bottleneck.

Example 2. Consider the same QP problem as in Example 1
with a replaced by ā = (−6.2,−3.5)T. Now, M = {x̄∗} =
{(9.6, 4.4)T} is a point on a face of P and −Gx̄∗ − ā ∈
bdNP (x̄∗) (Fig. 5). Fig. 8 shows the simulation results
obtained by applying MPNN (16) to this QP problem. Note
that we have exponential convergence of x(·) to x̄∗ and
exponential convergence to 0 of ẋ(·) in accordance with
Theorems 4 and 6.

Example 3. Consider the following LP problem. Minimize
ψ(x) = a′x with a = (6, 3, 4)T and x = (x1, x2, x3)

T ∈ R
3

(q = 3) subject to the constraints BTx − c ≥ 0, where

BT =
⎛

⎝
−4 7 1 1 0 −1
3 1 0 1 0 −1
3 −2 0 0 1 −1

⎞

⎠

Fig. 8. Evolution of x1(·) = ϕ1(·) (red solid), x2(·) = ϕ2(·) (red dashed)
and ẋ1(·) = v1(·) (blue solid), ẋ2(·) = v2(·) (blue dashed) for the MPNN in
Example 2.

Fig. 9. Polyhedron P (green) and trajectories of MPNN for solving the LP
problem in Example 3.

and c = (2, 6, 0, 0, 0,−5)T (p = 6) defining the poly-
hedron in Fig. 9. The theoretic optimal is M = {x∗} =
{(16/25, 38/25, 0)T} on a vertex of P . By choosing R = 5
and x̃ = (0.5, 0.3, 1)T, we obtain σth = 12.2. Let σ = 15.
Next, we show the simulation results obtained by applying
MPNN (16) to this LP problem. Fig. 9 shows in red the trajec-
tory in the state space R

3 starting at the origin and converging
to (0.6398, 1.5202,−0.0005)T, in close agreement with the
theoretic results x∗. From the time evolution, we can also
observe convergence in finite time of x(·) in accordance with
Theorem 5 and convergence to 0 in finite time of ẋ(·) as pre-
dicted by Corollary 1. As shown in the figure, convergence to
x∗ holds also for other trajectories starting at different ICs.

IX. CONCLUSION

To the best of our knowledge, the MPNNs introduced in
this article are the first NNs using the unconventional features
of memristors to obtain advantages for solving QP and LP
problems with respect to traditional NNs. One main feature
is that an MPNN operates and computes in the flux–charge
domain, rather than in the traditional voltage–current domain.
This yields advantages as reduced power consumption and
the possibility of implementing a computation scheme accord-
ing to the principle of in-memory computing. The approach
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presented in this article is based on constructing an NN whose
behavior in the flux–charge domain is analogous to that dis-
played by a KCNN in the voltage–current domain. Such an
approach can, in principle, be extended also to other NNs in
the literature for solving QP and LP problems, as those cited
in Section I. The key point is to construct via the use of mem-
ristors an NN that is analogous to the original one but works
in the flux–charge domain. In doing so, memristors should
be carefully selected so that their flux–charge (or charge–flux)
characteristics correspond to the voltage–current nonlinearities
used in the original NN models. Addressing these problems
is in our opinion a good topic to be further investigated in
future works. Further work will be also devoted to address the
case of more general functions to optimize or include more
general constraints, as equality constraints, in the optimization
problem.

APPENDIX A

The function E0 is convex since G is symmetric and positive
definite. It is known that Ens is nonsmooth but convex [61]. Let
us now verify that Es is a (smooth) convex function. Note that
Es is convex if and only if, for any j = 1, 2, . . . , p, function
∫ BT

j x−cj

0 ds(ρ)dρ : R
q → R is convex, that is, the following

inequality holds for any x1, x2 ∈ R
q and λ ∈ [0, 1]:

∫ BT
j [λx1+(1−λ)x2]−cj

0
ds(ρ)dρ

=
∫ λ

(
BT

j x1−cj

)
+(1−λ)

(
BT

j x2−cj

)

0
ds(ρ)dρ

≤ λ

∫ BT
j x1−cj

0
ds(ρ)dρ + (1 − λ)

∫ BT
j x2−cj

0
ds(ρ)dρ.

This in turn is true if function ν(y) = ∫ y
0 ds(ρ)dρ : R → R

is convex in R. Since ν′(y) = ds(y) and ds(y) is a monotone
nondecreasing function, ν is indeed convex. Then, E is convex
being the sum of three convex functions.

APPENDIX B

Let us rewrite system (16) as

ẋ = −a − Gx − BTDns(Bx − c)− BTDs(Bx − c) (26)

where Dns(x) = (dns(x1), dns(x2), . . . , dns(xq))
T and Ds(x) =

(ds(x1), ds(x2), . . . , ds(xq))
T. Due to the symmetry of G,

−Gx − a = −∇E0(x). Moreover, it has been shown
in [61, Sec. II] that −BTDns(Bx − c) = −∂Ens(x). Finally,
let us verify that −BTDs(Bx − c) = −∇Es(x). We have

∇Es(x) =
q∑

j=1

∇
(∫ BT

j x−cj

0
ds(ρ)dρ

)

=
q∑

j=1

Bjds

(
BT

j x − cj

)
= BTDs(Bx − c).

The result is proved considering that since E0,Ens, and Es are
convex, ∂

∑ =∑ ∂ [29, Sec. I-a)].

APPENDIX C

Let y = x − x̃ so that (21) becomes

ẏ ∈ −a − Hx̃ − Hy − BTD(By + Bx̃ − c)

that has the form of the nonsmooth system (3) studied in [61].
We also have y = 0 ∈ intP and (Bx̃ − c)i = γi(x̃) > 0,
i = 1, 2, . . . , p. We can use [61, Properties 1 and 2] to show
that the claimed results hold whenever σ ≥ MaMb, where

Ma = max
x∈BR

‖Hx + a + Hx̃‖, Mb = R

χmin
.

Now, it is enough to note that ‖Hx + a + Hx̃‖ ≤ ‖Hx‖ +
‖a‖ + ‖Hx̃‖, moreover, for any y ∈ R

q, we have ‖Hy‖2 =
〈Hy,Hy〉 = yTHTHy ≤ ξM‖y‖2, hence ‖Hx + a + Hx̃‖ ≤
2
√
ξMR + ‖a‖.
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