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Abstract

In this paper we study generic expansions
of predicate logics of some left-continuous
t-norms (mainly Gödel and Nilpotent Min-
imum predicate logics) with a countable set
of truth-constants. Using known results on t-
norm based predicate fuzzy logics we obtain
results on the conservativeness and complete-
ness for the expansions of some predicate
fuzzy logics. We describe the problem for
the cases of  Lukasiewicz and Product pred-
icate logics and prove that the expansions
of Gödel and Nilpotent Minimum predicate
logics are canonical complete for tautologies,
and strong standard complete for deduction
upon any set of premisses.

Keywords: Monoidal T-norm based Logic
MTL, Gödel,  Lukasiewicz, Product and
Nilpotent Minimum propositional and pred-
icate logics, t-norm-based logic, Rational
Pavelka Logic, Gödel, Product and Nilpotent
Minimum logics with truth-constants, com-
pleteness results.

1 Introduction

In the context of expansions of propositional t-norm
based fuzzy logics with truth-constants, an algebraic
analysis has been recently used to establish different
completeness results (with respect to a finitary no-
tion of deduction) for a number of propositional logics,
among them Gödel and Nilpotent Minimum logics [5],
Product logic [17], logics a continuous t-norm [4] and
logics of Weak Nilpotent Minimum t-norms [6].1

This approach contrasts with the one related to
 Lukasiewicz logic, initiated by Pavelka [16] for the

1For a number these logics their complexity issues have
been recently studied in [8].

propositional case, and extended by Nóvak [14, 15] for
the first-order case. This latter approach, based on a
infinitary notion of provability, strongly relies on the
continuity of the truth functions of  Lukasiewicz logic
(and hence not applicable to other t-norm based log-
ics), and it was simplified by Hájek in [7], both for
the propositional and first-order cases. In particular,
Hájek defines what he calls Rational Pavelka Predicate
Logic, RPL∀ for short, as the expansion of  Lukasiewicz
predicate logic  L∀ by introducing in the language a
truth-constant r for each rational r of [0, 1] and by
adding the well-known book-keeping axioms

r&s↔ max(0, r + s− 1)

(r → s) ↔ min(1, 1− r + s)

Hájek shows that RPL∀ enjoys the so-called Pavelka
style completeness, which means that for any theory T
and formula ϕ, one has

‖ϕ‖T = |ϕ|T ,

where ‖ϕ‖T = inf{‖ϕ‖M | M model of T} is the truth
degree of ϕ in T and |ϕ|T = sup{r | T `RPL∀ r → ϕ}
is the provability degree of ϕ from T .

In this paper, following the algebraic approach men-
tioned above, we consider the expansions with truth-
constants of the corresponding predicate logics, with
special attention to the cases of Gödel and Nilpotent
Minimum. In fact, to the best of our knowledge, until
now only the expansion of  Lukasiewicz predicate logic
with truth-constants had been considered in the liter-
ature. A nice and deep result contained in [10] proves
that Rational Pavelka Predicate logic RPL∀ is a con-
servative expansion of  Lukasiewicz predicate logic  L∀
and, since  L∀ is not recursively axiomatizable with re-
spect to the standard semantics, so neither is RPL∀.
This is a negative result. In this paper we show other
negative results, but also two positive new results.
Namely, after some preliminary definitions and results
in next section, we first prove that the expansions of
predicate Product, Gödel, Nilpotent Minimum logics



(and more generally any pseudo-complemented t-norm
based logic) are conservative expansions of their corre-
sponding predicate logics. Moreover, we prove (canon-
ical) standard completeness results for the expansions
with truth-constants of Gödel and Nilpotent Minimum
predicate logics. The paper ends with some conclu-
sions and remarks.

2 Preliminaries

2.1 Propositional expansions with
truth-constants

The basic logic we will use is the Monoidal t-norm
based logic MTL introduced in [3] and proved to be
the logic of left-continuous t-norms and their residua
in [11]. In this setting, given a left-continuous t-norm
∗ we will denote by [0, 1]∗ the standard MTL-chain
given by the left-continuous t-norm ∗ and its residuum
⇒, i. e. [0, 1]∗ = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, and by
L∗ the axiomatic extension of MTL whose equivalent
algebraic semantics is V([0, 1]∗), i. e. the variety gen-
erated by [0, 1]∗. Well-known examples of these logics
are the cases when ∗ is the minimum t-norm (L∗=
G), the  Lukasiewicz t-norm (L∗ =  L), the product t-
norm (L∗ = Π) or the nilpotent minimum t-norm (L∗
= NM).

Now, given a left-continuous t-norm ∗ and its corre-
sponding logic L∗, let C = 〈C, ∗,⇒,min,max, 0, 1〉 be a
countable subalgebra of the standard L∗-algebra [0, 1]∗.
Then, the logic L∗(C) is defined as follows:

(i) the language of L∗(C) is the one of L∗ expanded
with a new propositional constant r for each r ∈ C \
{0, 1},

(ii) the axioms of L∗(C) are those of L∗ plus the book-
keeping axioms:

r&s↔ r ∗ s
r → s↔ r ⇒∗ s

for each r, s ∈ C. The algebraic counterpart of the
L∗(C) logic consists of the class of L∗(C)-algebras, de-
fined as structures

A = 〈A,&,→,∧,∨, {rA : r ∈ C}〉

such that:

1. 〈A,&,→,∧,∨, 0A, 1A〉 is an L∗-algebra, and

2. for every r, s ∈ C the following identities hold:

rA&sA = r ∗ sA

rA → sA = r ⇒ sA.

The L∗(C)-chains defined over the real unit interval
[0, 1] are called standard. Among them there is one

which reflects the intended semantics, the so-called
canonical standard L∗(C)-chain

[0, 1]L∗(C) = 〈[0, 1], ∗,⇒,min,max, {r : r ∈ C}〉,

i. e. the standard chain where the truth-constants
are interpreted by themselves. Note that, for a logic
L∗(C) there may exist multiple standard chains as soon
as there exist different ways of interpreting the truth-
constants on [0, 1] respecting the book-keeping axioms.
For instance, let C = [0, 1] ∩Q and let ∗ be a pseudo-
complemented t-norm, i.e. a left-continuous t-norm ∗
whose definable negation ¬x = x ⇒ 0 is the so-called
Gödel negation, i.e. ¬x = 0 for all x 6= 0 and ¬0 = 1.
In such a case, if ∗ is closed on C, it is easy to check
that the algebra A = 〈[0, 1], ∗,⇒,∧,∨, {rA : r ∈ C}〉
where

rA =
{

1, if r > 0
0, otherwise

is always a standard L∗(C) algebra. This is the case
e.g. of minimum and product t-norms. Furthermore,
in the particular case of ∗ = min, for any α > 0, the
algebra A = 〈[0, 1], ∗,→,∧,∨, {rA : r ∈ C}〉 where

rA =
{

1, if r ≥ α
0, otherwise

is also standard G∗(C).

Since the additional symbols added to the language
are 0-ary, L∗(C) is also an algebraizable logic and its
equivalent algebraic semantics is the variety of L∗(C)-
algebras. This, together with the fact that L∗(C)-
algebras are representable as a subdirect product of
L∗(C)-chains, leads to the following general complete-
ness result of L∗(C) with respect to the class of L∗(C)-
chains. In the following, for any set Γ ∪ {ϕ} of L∗(C)-
formulae and any class K of L∗(C)-chains, we write
Γ |=K ϕ to denote that, for each A ∈ K, e(ϕ) = 1A for
all A-evaluation e model of Γ.
Theorem 1. For any set Γ∪{ϕ} of L∗(C)-formulae, it
holds that Γ `L∗(C) ϕ if, and only if, Γ |={L∗(C)−chains}
ϕ.

The issue of studying when a logic L∗(C) is also com-
plete with respect to the class of standard L∗(C)-chains
(called standard completeness property) or with re-
spect to the canonical standard L∗(C)-chain (called
canonical standard completeness property) has been
addressed in the literature for some logics L∗. Hájek
already proved in [7] the canonical completeness of
the expansion of  Lukasiewicz logic with rational truth-
constants for finite theories. More recently, the ex-
pansions of Gödel (and of some t-norm based logic re-
lated to the nilpotent minimum t-norm) and of Prod-
uct logic with countable sets of truth-constants have
been proved to enjoy the canonical standard complete-
ness for theorems in [5] and in [17] respectively. A



rather exhaustive description of completeness results
for the logics L∗(C) can be found in [4] and in [6].

2.2 Core predicate fuzzy logics

Predicate versions of the propositional t-norm based
logics described above have also been defined and stud-
ied in the literature. Following [9] we give below a
general definition of the predicate logic L∀ for any
(propositional) core fuzzy logic L. A finitary logic L
in a countable language is a core fuzzy logic [1] if:

(i) L expands MTL;

(ii) L satisfies the congruence condition:
ϕ↔ ψ `L χ(ϕ) ↔ χ(ψ), for every ϕ,ψ, χ;

(iii) L satisfies the following local deduction theorem:
Γ, ϕ `L ψ iff there a is natural number n such that
Γ `L ϕ& n. . . &ϕ→ ψ.

Note that the logics L∗(C) introduced above are core
fuzzy logics, so what follows also applies to them.

Given a core fuzzy logic L, the language PL of L∀ is
built from the propositional language L of L by en-
larging it with a set of predicates Pred, a set of object
variables V ar and a set of object constants Const, to-
gether with the two classical quantifiers ∀ and ∃. The
notion of formula trivially generalizes taking into ac-
count that now, if ϕ is a formula and x is an object
variable, then (∀x)ϕ and (∃x)ϕ are formulae as well.

In first-order fuzzy logics it is usual to restrict the
semantics to L-chains only. For each L-chain A
an L-interpretation for a predicate language PL =
(Pred,Const) of L∀ is a structure

M = (M, (rP )P∈Pred, (mc)c∈Const)

where M 6= ∅, rP : Mar(P ) → A and mc ∈ M for
each P ∈ Pred and c ∈ Const. For each evaluation
of variables v : V ar → M , the truth-value ‖ϕ‖AM,v

of a formula (where v(x) ∈ M for each variable x) is
defined inductively from

‖P (x, · · · , c, · · · )‖AM,v = rP (v(x), · · · ,mc · · · ),

taking into account that the value commutes with con-
nectives, and defining

‖(∀x)ϕ‖AM,v = inf{‖ϕ‖AM,v′ | v(y) = v′(y) for all
variables y, except x}

‖(∃x)ϕ‖AM,v = sup{‖ϕ‖AM,v′ | v(y) = v′(y) for all
variables y, except x}

if the infimum and supremum exist in A, otherwise
the truth-value(s) remain undefined. An structure M
is called A-safe if all infs and sups needed for definition

of the truth-value of any formula exist in A. Then, the
truth-value of a formula ϕ in a safe A-structure M is
just

‖ϕ‖AM = inf{‖ϕ‖AM,v | v : V ar →M}.

When ‖ϕ‖AM = 1 for a A-safe structure M, the pair
(M,A) is said to be a model for ϕ, written (M,A) |=
ϕ. Sometimes we will call the pair (M,A) an L∀-
structure.

The axioms for L∀ are the axioms resulting from
those of L by substitution of propositional variables
with formulae of PL plus the following axioms on
quantifiers (the same used in [7] when defining BL∀):

(∀1) (∀x)ϕ(x) → ϕ(t) (t substitutable for x in ϕ(x))
(∃1) ϕ(t) → (∃x)ϕ(x) (t substitutable for x in ϕ(x))
(∀2) (∀x)(ν → ϕ) → (ν → (∀x)ϕ) (x not free in ν)
(∃2) (∀x)(ϕ→ ν) → ((∃x)ϕ→ ν) (x not free in ν)
(∀3) (∀x)(ϕ ∨ ν) → ((∀x)ϕ ∨ ν) (x not free in ν)

The rules of inference of L∀ are modus ponens and
generalization: from ϕ infer (∀x)ϕ.

A completeness theorem for first-order BL was proven
in [7] and the completeness theorems of other pred-
icate fuzzy logics defined in the literature have been
proven in the corresponding papers where the propo-
sitional logics are introduced. The following general
formulation of completeness for predicate core fuzzy
logics is from the paper [9].

Theorem 2. For any core fuzzy logic L over a predi-
cate language PL, it holds that

T `L∀ ϕ iff (M,A) |= ϕ for each model (M,A) of T ,

for any set of sentences T and formula ϕ of the pred-
icate language PL.

3 Types of completeness properties
and their relationships

We will use the following terminology and notation to
refer to the usual three notions of completeness for
core fuzzy logics.

Definition 3. Let L be a core fuzzy logic and let K be
a class of L-algebras. We define:

• L has the property of strong K-completeness, SKC
for short, when for every set of L-formulae Γ and
every L-formula ϕ, Γ `L ϕ iff Γ |=K ϕ.

• L has the property of finite strong K-
completeness, FSKC for short, when for every
finite set of L-formulae Γ and every L-formula ϕ,
Γ `L ϕ iff Γ |=K ϕ.



• L has the property of K-completeness, KC for
short, when for every L-formula ϕ, `L ϕ iff |=K ϕ.

They are analogously defined for the predicate logics.

Definition 4. Let L be a core fuzzy logic. We say that
L∀ has the SKC if for each language Γ, theory T , and
formula ϕ the following are equivalent:

• T `L∀ ϕ.

• (M,A) |= ϕ for each A ∈ K and each model
(M,A) of the theory T .

We say that L∀ has the FSKC if the above condition
holds for finite theories. Finally, we say that L∀ has
the KC if the above condition holds for the empty the-
ory.

When K is the class of standard algebras in the variety
of L-algebras, then instead of K-completeness proper-
ties we talk about standard completeness properties
and we use the notation RC instead of KC (to stress
that it is a completeness with respect to algebras de-
fined of the real unit interval). Moreover, as mentioned
above, when the considered core fuzzy logic is of the
form L∗(C) we can think of further restricting the se-
mantics to the canonical standard algebra. Thus, we
also consider the three canonical standard complete-
ness properties for these logics both in the proposi-
tional and in the first order case.

The completeness properties, their relations and al-
gebraic equivalent (or sufficient) conditions have been
studied in [2]. In particular, the following results for
the SKC have been proved.

Theorem 5 ([2]). Let L be a core fuzzy logic and let
K be a class of L-algebras. Then:

1. L has the SKC if, and only if, every countable L-
chain can be embedded into some chain from K.

2. L∀ has the SKC if every countable L-chain can be
σ-embedded (i.e. with an embedding which pre-
serves existing suprema and infima) into some
chain from K.

Now we recall a relation between completeness of a
propositional core fuzzy logic L and completeness of
its corresponding predicate logic L∀.

Proposition 6 (cf. [2]). If for some family K of L-
chains L∀ enjoys the KC (FSKC, SKC resp.), then L
enjoys the KC (FSKC, SKC resp.) as well.

This proposition yields a necessary condition for the
completeness properties of predicate fuzzy logics that
will be useful to refute some completeness results in

the next section. In a similar way we will also use
the following proposition relating completeness of two
predicate logics when one is a conservative expansion
of the other one.

Proposition 7. Let L and L′ be two core fuzzy logics
such that L′∀ is a conservative expansion of L∀. Let
K′ be a class of L′-chains and let K be the class of their
L-reducts. If L′∀ enjoys the K′C (FSK′C, SK′C resp.),
then L∀ enjoys KC (FSKC, SKC resp.) as well.

Proof: Assume that L′∀ enjoys the KC and we prove
that L∀ also enjoys it. Suppose that 6`L∀ ϕ for some
formula ϕ in language of L∀. Then, since L′∀ is a con-
servative expansion of L∀ we also have 6`L′∀ ϕ, hence
there is some structure (M,A′) with A′ ∈ K′ such that
(M,A′) 6|= ϕ. Let A be the L-reduct of A′. Since ϕ is
an L∀-formula, it is clear that (M,A) 6|= ϕ. 2

4 Completeness results for some
L∗∀(C) logics

In the following, given a left-continuous t-norm ∗ and
its corresponding logic L∗, and a countable subalgebra
C of the standard L∗-algebra [0, 1]∗, we will denote by
L∗∀(C) the predicate version of the (core fuzzy) logic
L∗(C) according to the definitions in Section 2.2.

Remark about the notation used. In the way we have
just defined L∗∀(C), we should have rather used the no-
tation L∗(C)∀, since we have started by the expanded
logic L∗(C) and then we have defined the predicate
variant over it. But in fact, starting with the L∗∀ logic
and then expanding it with the truth constants from C
leads exactly to the same predicate logic and thus we
will keep using L∗∀(C). Moreover, we will make also
use of the notations G∀,  L∀, Π∀ and NM∀ when refer-
ring to L∗∀ logic when the t-norm ∗ is the minimum,
 Lukasiewicz, product and nilpotent minimum t-norm
respectively.

In the case of expansions of L∗∀ logics with truth-
constants, it was already proved by Hájek et al. in
[10] that RPL∀ (Rational Pavelka predicate logic2) is
a conservative expansion of  L∀. Next theorem proves
the analogous result for other logics.

Proposition 8. If ∗ is a pseudo-complemented t-norm
or the nilpotent minimum t-norm, then L∗∀(C) is a
conservative expansion of L∗∀.

Proof: Let ϕ be an L∗∀-formula such that 6`L∗∀ ϕ. We
must show that 6`L∗∀(C) ϕ. By hypothesis, there is
some L∗∀-structure (M,A) such that (M,A) 6|= ϕ.
It is enough to show that A can be expanded to an

2In our notation RPL∀ corresponds to  L∀(C) when C =
[0, 1] ∩ Q.



L∗(C)-chain. If ∗ is a pseudo-complemented t-norm we
can define the interpretation of every truth-constant
r such that r 6= 0 as 1A (see Section 2.1). Assume
now that ∗ is the nilpotent minimum t-norm. If C has
no negation fixpoint, we define the interpretation of a
truth-constant r as 1A when ¬r < r, and we define
it as 0A when ¬r > r. If C has the negation fixpoint
1
2 , we can suppose that A also has a negation fixpoint
a (otherwise it could be added as shown in [13]), and
then we interpret 1

2 and the rest of the constants as in
the previous case. 2

This result, together with the one above mentioned by
Hájek et al., shows that when ∗ is one of the three
basic continuous t-norms ( Lukasiewicz, product and
minimum), L∗∀(C) is a conservative expansion of L∗∀
for every subalgebra C of truth-constants, except for
the case of  Lukasiewicz t-norm where the result has
only been proved for C = [0, 1] ∩Q.

Now we are prepared to deal with the standard com-
pleteness properties of predicate logics with truth-
constants. It is well known that Product and
 Lukasiewicz predicate logics do not enjoy the stan-
dard completeness. Therefore, by Propositions 7 and
8,  L∀(C) and Π∀(C) do not have the KC when K is
the class of all standard  L∀(C)-chains and the class
of all standard Π∀(C)-chains, respectively; hence these
logics do not enjoy the canonical standard complete-
ness neither. The same reasoning would also hold
for every logic based on a pseudo-complemented t-
norm ∗ for which we know that L∗∀ fails to enjoy
the standard completeness.3 This is not the case for
Gödel and Nilpotent Minimum predicate logics which,
in fact, satisfy the strong standard completeness. Next
we show that these completeness properties extend to
their expansions with truth-constants.

Theorem 9. The logics G∀(C) and NM∀(C) enjoy the
SRC.

Proof: As stated in the preliminaries, the strong stan-
dard completeness follows from the property of σ-
embeddability. Since Gödel logic already satisfies
the strong standard completeness, we know that any
countable G-chain is σ-embeddable into [0, 1]G, thus
every countable G(C)-chain is also σ-embeddable in a
standard G(C)-chain. Indeed, given a countable G(C)-
chain A let f be the σ-embedding of its G-reduct into
[0, 1]G. Then A, as G(C)-chain, is also σ-embeddable
into the standard G(C)-chain defined over [0, 1]G in-
terpreting each truth-constant r as f(rA). The proof
for NM∀(C) is completely analogous. 2

3This is the case of all pseudo-complemented continu-
ous t-norms except for [0, 1]G, which enjoys the standard
completeness (see [12]).

A natural question here is whether these complete-
ness results can be improved by restricting the seman-
tics to the canonical standard algebra. As a matter
of fact, the canonical FSRC fails for the logics G(C)
and NM(C), as shown in [4, 6]. Therefore, by Propo-
sition 6, this completeness property also fails for their
predicate versions. Nevertheless, we can still prove the
canonical standard completeness for these logics.
Theorem 10. The logics G∀(C) and NM∀(C) enjoy
the canonical RC, i.e. the provable formulae coincide
with the 1-tautologies of the canonical standard chain
[0, 1]G(C) and of [0, 1]NM(C) respectively.

Proof: We only give a sketch of the proof for G∀(C)
(the proof for NM∀(C) is similar with the obvious
changes). Soundness is obvious as usual. For the con-
verse direction we will argue by contraposition, i.e.
we will prove that if 0G∀(C) ϕ for some formula ϕ,
then there is a G∀(C)-structure (M, [0, 1]G(C)) such
that (M, [0, 1]G(C)) 6|= ϕ.

If 0G∀(C) ϕ, then there exists a G∀(C)-structure
(M,A) over a countable G-chain A and an evaluation
v such that ‖ϕ‖AM,v < 1A. Take s = min{r ∈ C | rA =

1A, r appears in ϕ} and define g : A→ [0, 1] by taking
g(1A) = 1 and g |

A\{1A} a bijection of A \ {1A} into
[0, s) preserving existing suprema and infima, and such
that g(rA) = r for every truth-constant appearing in
ϕ such that rA 6= 1A. Using the mapping g we can
produce a structure (M′, [0, 1]G(C)) in such a way that
for every evaluation e on (M,A) and every evaluation
e′ on (M′, [0, 1]G(C)) it holds that

‖P (t1, t2, .., tn)‖[0,1]G(C)

M ′,e′ = g(‖P (t1, t2, .., tn)‖AM,e)

for each predicate symbol P .

Now by induction we can prove that given any M and
e and their associated M′ and e′, the following state-
ment is true for all ψ subformula of ϕ:
a) If ‖ψ‖AM,e = 1A, then ‖ψ‖[0,1]G(C)

M ′,e′ ≥ s,

b) If ‖ψ‖AM,e 6= 1A, then ‖ψ‖[0,1]G(C)

M ′,e′ = g(‖ψ‖AM,e).
From this result the theorem is easily proved. 2

5 Conclusions

In this short paper we have considered the (canonical)
standard completeness properties for several promi-
nent predicate fuzzy logics enriched with constants for
intermediate truth-values. Some of these properties
have been denied by showing that the standard com-
pleteness already fails for the corresponding logic with-
out additional truth-constants, while in some other
cases the answer has turned out to be positive by some
ad hoc proofs. The following tables collect these re-
sults.



Logic RC FSRC SRC
 L∀(C) No No No
Π∀(C) No No No
G∀(C) Yes Yes Yes

NM∀(C) Yes Yes Yes

Logic Can. RC Can. FSRC Can. SRC
 L∀(C) No No No
Π∀(C) No No No
G∀(C) Yes No No

NM∀(C) Yes No No

As open problems that we plan to address in a forth-
coming paper we can mention the following:

1. For which left-continuous t-norms ∗ is L∗∀(C) a
conservative extension of L∗∀?

2. Is it possible to prove the result of Proposition
8 for  Lukasiewicz logic when the language is ex-
panded with truth-constants for irrational values?

3. Is the canonical FSRC true for G∀(C) and
NM∀(C) when the language is restricted to eval-
uated formulae (i.e. formulae of the kind r → ϕ,
where there are no new truth-constants in ϕ)?

4. Investigate completeness results for the expan-
sions of the logics L∗∀(C) with the projection con-
nective ∆.
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