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Abstract

The paper considers a class of neural networks where flux-controlled dynamic memristors are used in the neurons

and finite concentrated delays are accounted for in the interconnections. Goal of the paper is to thoroughly analyze

the nonlinear dynamics both in the flux-charge domain and in the current-voltage domain. In particular, a condition

that is expressed in the form of a linear matrix inequality, and involves the interconnection matrix, the delayed in-

terconnection matrix, and the memristor nonlinearity, is given ensuring that in the flux-charge domain the networks

possess a unique globally exponentially stable equilibrium point. The same condition is shown to ensure exponential

convergence of each trajectory toward an equilibrium point in the voltage-current domain. Moreover, when a steady

state is reached, all voltages, currents and power in the networks vanish, while the memristors act as nonvolatile

memories keeping the result of computation, i.e., the asymptotic values of fluxes. Differences with existing results

on stability of other classes of delayed memristor neural networks, and potential advantages over traditional neural

networks operating in the typical voltage-current domain, are discussed.

1. Introduction

In 2008, the fundamental discovery at Hewlett-Packard laboratories of nanodevices displaying a memristive be-

havior [1], has boosted an unprecedented interest in the modeling, analysis and applications to signal processing tasks

of memristors [2, 3, 4, 5, 6, 7, 8]. The memristor, a shorthand for memory-resistor, was theoretically predicted by

Professor Leon Chua, on the basis of symmetry arguments, as the fourth basic passive circuit element in addition to

the resistor, capacitor, and inductor, in a seminal paper published in 1971 [9]. However, up until 2008 it remained

basically at the level of a theoretic device, mainly due to the difficulty of implementation. Actually, a memristor acts

a resistor, with the key difference that the instantaneous value of the resistance is not fixed, but it depends on the past

history of memristor voltage or current. When the current (or voltage) in a memristor turns off, the memristor is able

to memorize in a nonvolatile way the last value assumed by its resistance (also called memristance) [10]. As such

it can be used as a linear programmable resistor in analog processing circuits [11] or to implement programmable

neural network interconnections [12]. It can also be used as a dynamic nonlinear time-dependent resistor for the

implementation of oscillatory circuits or neuromorphic architectures for real-time signal processing [13, 14, 15].

One main bottleneck of the classical Von Neumann architecture is that processing and storing of information occur

on physically distinct locations, such as in the CPU and in the random-access-memory. This limits the rate at which

information can be transferred and processed. A possible and promising way to overcome this issue is to use a parallel

computational approach, as that offered by a neuromorphic architecture, together with unconventional electric devices

as the memristors, that are able to process and store information on the same physical device [16]. Along this line

of reasoning, recent papers [17, 18, 19] have proposed a neural network architecture where the nonlinear resistors in

the neurons are replaced by nonlinear memristors. Such memristors play a double role, i.e., they participate in the

nonlinear dynamics that is used for processing signals and, at the same time, they are able to store in a nonvolatile

way, in the final values of memristances, the result of processing. An intriguing feature of such neural architectures is

that, due to the presence of memristors, the processing takes place in the flux-charge domain, rather than in the typical

voltage-current domain. As a consequence, when the neural network reaches a steady state, all voltages, current and

power in the network turn off, while the memristors act as nonvolatile memories handling the result of computation,

i.e., the asymptotic values of fluxes. This is another potential advantage with respect to traditional neural networks
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computing in the voltage-current domain, where power continues to be consumed in steady state and batteries are

needed to memorize the result of computation.

In the modeling of neural network architectures it is needed and also desirable to account for the presence of delays

in the neuron interconnections. Delays can be due for instance to the non-instantaneous transmission of signal stimuli

between different neurons. It is also worth mentioning that delays can be deliberately introduced in order that a neural

network is able to perform special signal processing tasks as motion detection [20]. It is known that delays can be the

source of unwanted oscillations in an otherwise stable un-delayed neural network [21, 22], so that a relevant issue is to

find conditions ensuring that, even in the presence of delays, a neural network is stable. One of the most investigated

topics in neural network theory has been indeed to find conditions ensuring that a neural network with delays has a

unique equilibrium point (EP) which is globally exponentially stable (GES). We refer the reader to the review article

[23] for quite an exhaustive account of the relevant results and huge body of literature along this line of research. We

stress that a GES neural network has relevant potential applications for solving global optimization problems in real

time. Indeed, the GES property ensures that the network is able to compute the global optimal solution independently

of the choice of initial conditions, i.e., GES rules out the risk that the network gets stuck at some local minimum of

the cost function to be minimized, see, e.g., [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37], and references

therein. Other closely related applications of GES neural networks are in field of synchronization [15, 35, 38, 39, 40].

Previous papers on neural networks operating in the flux-charge domain [17, 18, 19] have considered the ideal case

where delays in the interconnections are negligible. Goal of this paper is to fill this gap by thoroughly investigating

the dynamics of such neural networks and, in particular, GES of the unique EP, when finite concentrated delays are

taken into account in the interconnections. We will refer to this class of neural networks as delayed memristor neural

networks (DMNNs). The analysis will be conducted by using a recently introduced technique, named flux-charge

analysis method (FCAM), for studying memristor circuits in the flux-charge domain [41, 42].

The structure of the paper is outlined as follows. First of all we extend FCAM in order to handle delay elements

(Section 2). The considered DMNN model, and its foundation are discussed in Section 3. Then, the paper gives con-

ditions on the interconnection matrix, delay interconnection matrix, and nonlinear memristor characteristic, ensuring

that a DMNN has a unique GES EP, with a known convergence rate of solutions, for the dynamics in the flux-charge

domain (Section 4). The convergent dynamics in the voltage current-domain is studied, starting from the dynamic re-

sults in the flux-charge domain, in Section 5, whereas simulations results verifying the theoretic findings are presented

in Section 6. Finally, some pertinent remarks and conclusions are collected in Section 7.

Notation. If x = (xi) ∈ R
N , we denote by ‖x‖ the Euclidean norm of x, while ‖x‖∞ = maxi=1,2,...,N |xi| is the infinity

norm of x. Given a square matrix A = (ai j) ∈ R
N×N , ‖A‖ =

√
ρ(A⊤A), where ρ(·) is the spectral radius and ⊤ is the

transpose, is the induced Euclidean norm, and ‖A‖∞ = maxi=1,2,...,N

∑N
j=1 |ai j| means the infinity norm of A. If A is

symmetric, by A > 0 (resp., A < 0) we mean that A is positive (resp., negative) definite, whereas A ≥ 0 (resp., A ≤ 0)

means that A is positive (resp., negative) semidefinite. Suppose that function γ(·) ∈ C([t0 − τ, t0],R), the space of real-

valued continuous functions defined on [t0 − τ, t0], where t0 ∈ R and τ > 0. Then, we let ‖γ‖ = maxσ∈[t0−τ,t0] ‖γ(σ)‖.

2. Extension of FCAM to Delay Elements

The synthesis of the neurons in a DMNN, and the analysis in the flux-charge domain, are conducted via a new

method, named FCAM, introduced in [41]. In this section, we briefly recall some facts about FCAM needed in the

paper and, most importantly, we extend FCAM in order to handle two-ports delay elements as those considered in the

delayed neural networks here studied.

FCAM can be applied to analyze directly in the flux-charge domain a large class of nonlinear dynamic circuits con-

taining linear resistors, inductors, capacitors, current or voltage sources and nonlinear ideal flux- or charge-controlled

memristors. In addition to the standard electrical variables of a two-terminal element, i.e., the voltage v(t), current i(t),

flux ϕ(t) =
∫ t

−∞
v(z)dz and charge q(t) =

∫ t

−∞
i(z)dz, let us also define the incremental flux

ϕ(t; t0) =

∫ t

t0

v(z)dz = ϕ(t) − ϕ(t0)
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Figure 1: Equivalent circuit in the flux-charge domain of an ideal capacitor and an ideal flux-controlled memristor.

and the incremental charge

q(t; t0) =

∫ t

t0

i(z)dz = q(t) − q(t0)

for t ≥ t0, where t0 is an assigned finite initial time instant.

Each two-terminal element can be represented by an equivalent circuit in the flux-charge domain and has a con-

stitutive relation (CR) involving the incremental flux and charge at its terminals. The equivalent circuit of a linear

capacitor is represented in Fig. 1(a), and the corresponding CR, which can be directly found also from the equivalent

circuit, is

qC(t; t0) = −CvC(t0) +C
d

dt
ϕC(t; t0)

where vC(t0) is the initial capacitor voltage. An ideal resistor has the CR ϕR(t; t0) = RqR(t; t0).

Consider then an ideal flux-controlled memristor. According to the treatment in the seminal paper by Leon Chua

[9], a flux-controlled memristor is defined by a nonlinear relation

qM(t) = q̂(ϕM(t)) (1)

between flux and charge. The flux ϕM(t) is the state variable of the memristor. It is shown in [41] that its CR in terms

of incremental flux and charge is

qM(t; t0) = −q̂(ϕM(t0)) + q̂(ϕM(t; t0) + ϕM(t0)) (2)

whereas its equivalent circuit in the flux-charge domain is in Fig. 1(b).

Remark 1. We remark that an ideal memristor is a memoryless element characterized by the static nonlinear relation

(1), or (2), in the flux-charge domain. Instead, it is a dynamic element in the voltage-current domain, in fact, in that

domain it satisfies the pair of equations iM(t) = q̂′(ϕM(t))vM(t), where vM(t) = dϕM(t)/dt, and the prime denotes

the derivative with respect to the argument of q̂(·). The quantity q′(ϕM(t)), with dimension of Ohm−1, is called the

memductance at ϕM(t).

Remark 2. It is important to stress that the true model and CR of an ideal memristor are given by (1), or (2). An ideal

memristor is known to display a number of peculiar fingerprints, as the fact that it gives rise to a pinched hysteresis

loop in the voltage-current domain when a sinusoidal voltage or current is applied. However, as pointed out by Leon

Chua in [43, p. 770], “the pinched loop itself is useless as a model since it cannot be used to predict the voltage

response to arbitrarily applied current signals, and vice versa. The only way to predict the response of the device is

to derive either the ϕ − q constitutive relation, or the memristance vs. state map.”

Along similar lines we can obtain the equivalent circuits and CRs in the flux-charge domain of memoryless two-

port networks as an operational amplifier (oa) or a voltage-controlled current-source.

3
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Figure 2: Equivalent circuit of in the voltage-current domain (a) and in the flux-charge domain (b) of a delay element.

Let us now consider a delay element represented by a voltage-controlled voltage-source as in Fig. 2(a), where v(t)

is the input voltage, i(t) = 0 is the input current, vτ(t) = v(t− τ), t ≥ t0, is the output voltage and 0 < τ < +∞ is a finite

concentrated delay. We need to specify the initial conditions, which are given by

v(σ) = γ(σ), σ ∈ [t0 − τ, t0]

where γ(·) ∈ C([t0 − τ, t0],R). Such a delay element has not been considered in [41], so in what follows we explicitly

find its CRs in the flux-charge domain, i.e., the relationships between incremental charges and fluxes at its ports. For

the input port we have

q(t; t0) = 0 (3)

for any t ≥ t0. For the output port

ϕτ(t; t0) =

∫ t

t0

vτ(z)dz =

∫ t

t0

v(z − τ)dz =

∫ t−τ

t0−τ

v(z)dz =

∫ t−τ

t0

v(z)dz +

∫ t0

t0−τ

v(z)dz.

Let us consider the initial condition for the incremental flux

ϕ(σ; t0) = Φ̃(σ) =

∫ σ

t0−τ

γ(z)dz, σ ∈ [t0 − τ, t0] (4)

where Φ̃ ∈ C([t0 − τ, t0],R). It can be checked that

ϕτ(t; t0) = ϕ(t − τ; t0) + Φ̃(t0) = ϕ(t − τ; t0) +

∫ t0

t0−τ

γ(z)dz, t ≥ t0. (5)

We conclude that the CRs of the delay element in the flux-charge domain are given by (3) and (5), whereas the initial

conditions are as in (4). The equivalent circuit representation in the flux-charge domain is given in Fig. 2(b).

Note that in the equivalent circuits in the flux-charge domain of the capacitor, memristor and delay element there

are generators related to the initial conditions in the voltage-current domain.

On the basis of FCAM [41], electrical elements can be connected in the flux-charge domain via their terminals

with incremental flux and charge as electrical variables. As a consequence, we can use Kirchhoff flux law (KϕL) and

Kirchhoff charge law (KqL) expressed in the usual way, i.e., the sum of incremental fluxes around any loop, and the

sum of incremental charges in any cutset, are null. It is worth to stress that KϕL and KqL hold when using incremental

fluxes and charges, respectively, while they fail if we use the fluxes ϕ(t) or the charges q(t), see [41] for a detailed

discussion.
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By using the CRs of circuit elements and KϕLs, KqLs, it is possible to write a system of differential algebraic

equations (DAEs) describing the memristor circuit in the flux-charge domain and, on this basis, to obtain also a

state equation (SE) representation. The corresponding SEs in the voltage-current domain are obtainable via time

differentiation of those in the flux-charge domain.

3. Delayed Memristor Neural Network Model

In this section we describe, first in the standard voltage-current domain, and then in the flux-charge domain via

FCAM, the memristor neural network model with delays studied in the paper. Moreover, we give a mathematical

foundation to the model under suitable assumptions.

We consider a 1D neural network array given by the interconnection of N neurons. Let t0 be an assigned finite

initial instant and 0 < τ < +∞ be a finite concentrated delay. The equivalent circuit of the i-th neuron for t ≥ t0, which

is represented in Fig. 3, contains a linear capacitor C and an ideal flux-controlled memristor M satisfying qMi
(t) =

q̂(ϕMi
(t)), where q̂ : R → R is continuously differentiable in R. The terminal ui(t) = vCi

(t) is a buffered terminal

for connections with other neurons. The main novelty with respect to previously considered models [17, 18, 19]

is the presence of the terminal uτ
i
(t) = vCi

(t − τ), which provides a buffered delayed voltage for connections with

other neurons. This can be obtained via a voltage-controlled voltage-source with a delay as described in Section

2. For simplicity, all delays τ > 0 are assumed to be equal. The voltage-controlled current-sources gi ju j(t) and

gτ
i j

uτ
j
(t), j = 1, 2, . . . ,N, represent the currents injected into the i-th neuron due to connections with other neurons.

We have denoted by gi j and gτ
i j

the corresponding interconnection conductances. For future reference we define the

interconnection matrix G = (gi j) ∈ R
N×N and the delayed interconnection matrix Gτ = (gτ

i j
) ∈ R

N×N . We will refer

henceforth to this network as a delayed memristor neural network (DMNN).

In order to study the dynamics of a DMNN for t ≥ t0, we need to provide for each neuron the initial conditions

for the dynamic elements, i.e., the capacitor voltage vCi
(t0), the memristor flux ϕMi

(t0), and the voltage γi(σ), σ ∈

[t0 − τ, t0], for the delay element, where γi ∈ C([t0 − τ, t0],R). Note that we have vCi
(t0) = γi(t0).

The associated circuit of the i-th neuron in the flux-charge domain, obtained via FCAM, is represented in Fig. 4. In

addition to the delay element, the capacitor C is the only dynamic element in the flux-charge domain. Indeed, as dis-

cussed in Section 2, the memristor is a memoryless element in the flux-charge domain with a nonlinear characteristic

as given in (2).

Let us analyze the circuit in Fig. 4 by FCAM. The KqL yields

qMi
(t; t0) + qCi

(t; t0) =

N∑

j=1

gi jϕu j
(t; t0) +

N∑

j=1

gτi jϕ
τ
u j

(t; t0)

whereas by the KϕL we have

ϕMi
(t; t0) = ϕCi

(t; t0) = ϕui
(t; t0)

for any t ≥ t0.
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Recall that the CR of C is given by qCi
(t; t0) = −CvCi

(t0)+CdϕCi
(t; t0)/dt, and that of the memristor by qMi

(t; t0) =

−q̂(ϕMi
(t0)) + q̂(ϕMi

(t; t0) + ϕMi
(t0)). The CR of the delay element is

ϕτui
(t; t0) = ϕui

(t − τ; t0) +

∫ t0

t0−τ

γ(z)dz, t ≥ t0

with initial condition

ϕui
(σ; t0) = Φ̃(σ) =

∫ σ

t0−τ

γ(z)dz, σ ∈ [t0 − τ, t0].

By substitution we obtain the system of N delay differential equations (i = 1, 2, . . . ,N)

C
d

dt
ϕMi

(t; t0) = −q̂(ϕMi
(t; t0) + ϕMi

(t0)) +

N∑

j=1

gi jϕM j
(t; t0) +

N∑

j=1

gτi jϕM j
(t − τ; t0)

+CvCi
(t0) + q̂(ϕMi

(t0)) +

N∑

j=1

gτi j

∫ t0

t0−τ

γi(z)dz.

To simplify the notation, denote by φi(t) = ϕMi
(t), i = 1, 2, . . . ,N, the memristor fluxes and by φ(t) = (ϕM1

(t), . . . , ϕMN
(t))⊤ ∈

R
N the vector of memristor fluxes. In matrix-vector notations, assuming t0 = 0, we obtain that the DMNN satisfies in

the flux-charge domain the following system of N nonlinear delay differential equations

C
d

dt
φ(t) = −Q̂(φ(t)) +Gφ(t) +Gτφ(t − τ) + Q0 (6)

where Q̂(·) = (q̂(·), . . . , q̂(·))⊤ : R
N → R

N is a nonlinear diagonal mapping containing the memristor characteristic

and where

Q0 = Cv0 + Q̂(φ0) − (G +Gτ)φ0 +Gτ

∫ 0

−τ

γ(z)dz

is a term depending in the initial conditions in the voltage-current domain. Here, we have let v0 = (vC1
(0), . . . , vCN

(0))⊤ ∈

R
N , φ0 = (ϕM1

(0), . . . , ϕMN
(0))⊤ ∈ R

N and γ(·) = (γ1(·), . . . , γN(·))⊤ ∈ C([−τ, 0],RN). The initial conditions are

φ(σ) = φ0 +

∫ σ

0

γ(z)dz, σ ∈ [−τ, 0]. (7)

6



Remark 3. In the DMNN (6) we use an ideal memristor model as that introduced by Leon Chua in the seminal

paper [9]. We remark that, in the literature, other classes of delayed memristor NNs have been considered that use

a different memristor model (cf. Remark 2) where the pinched hysteresis loop displayed by a memristor in response

to a sinusoidal voltage or current is approximated by means of a device switching between two different memristance

values, see, e.g., [38, 39, 44, 45, 46, 47, 48, 49, 40, 50, 51, 52], and references therein. We also note that, in model

(6), each memristor is used as the only nonlinear element of a neuron, whereas in the quoted papers memristors are

used as cell interconnections (see Remark 8 in Section 6 for further comparisons).

Remark 4. From an abstract mathematical viewpoint, model (6) is different also from a delayed standard cellu-

lar neural network (CNN) [53] and a Hopfield neural network (HNN). In fact, in (6) the interconnection terms

Gφ(t) + Gτφ(t − τ) are linear in φ(t) and φ(t − τ), whereas the only nonlinearity is the diagonal map Q̂(φ(t)) with

the memristor flux-charge characteristics. In a standard CNN or a Hopfield neural network there are instead nonlin-

ear interconnection terms of the type G f (x(t))+Gτ f (x(t−τ)), where x(·) are the state variables and f (·) is a nonlinear

sigmoidal map, moreover, the neuron self-inhibitions are linear. We mention that the interconnection structure of a

DMNN is instead more similar to that of a full-range CNN [54, 55] or a CNN with resonant tunnelling diodes [56].

3.1. Foundation of DMNN Model

Since, as discussed in Remarks 4, 3, model (6) differs from SCNNs, HNNs, and other previously considered

delayed memristor neural network models, we first need to explicitly give a foundation to the model by studying

existence, uniqueness and boundedness of solutions.

Let T > 0. We say that Φ(·) : [−τ, T ] → R
N is a (local) solution of the initial value problem (IVP) given by (6)

and (7) if Φ(σ) = φ0 +
∫ σ

0
γ(z)dz, σ ∈ [−τ, 0], Φ(·) is continuous on [−τ, T ] and differentiable on [0, T ) and (6) is

satisfied for 0 ≤ t < T . We say that Φ(·) is a (global) solution for t ≥ −τ if it is a solution on [−τ, T ] for any T > 0.

Consider the following assumption.

Assumption 1. The memristor nonlinearity q̂ ∈ C1(R) satisfies

lim
|ρ|→∞

q̂′(ρ) = +∞ (8)

where the prime denotes the derivative of q̂ with respect to its argument, or otherwise it satisfies

lim
|ρ|→∞

q̂′(ρ) = kq > 0 (9)

and we also have

‖G‖∞ + ‖G
τ‖∞

.
= max

i∈{1,2,...,N}

N∑

j=1

|gi j| + max
i∈{1,2,...,N}

N∑

j=1

|gτi j| < kq. (10)

Proposition 1. If Assumption 1 is satisfied, then the following results hold.

1. For any γ ∈ C([−τ, 0],RN), there exists a unique solution Φ(t; 0, γ) of the IVP given by (6) and (7), which is

bounded and hence defined for t ≥ −τ.

2. The solution Φ(t; 0, γ) is C1 in [−τ, 0], and it is C2 for t ≥ 0.

Proof. See Appendix A.

Remark 5. Let us briefly discuss the meaning of Assumption 1. First, we note that any charge-flux memristor char-

acteristic of practical interest satisfies either (8) or (9). This is true for example of the frequently considered cubic

characteristic q̂(ρ) = aρ + bρ3, where b > 0, which satisfies (8), and smooth approximations of the piecewise linear

characteristic q̂(ρ) = aρ + 0.5b(|ρ + 1| − |ρ − 1|), where b > 0, which instead satisfy (9) with kq = b [57, 10, 43].

Under Assumption 1 there exists α such that

q̂′(ρ) ≥ α > −∞, ρ ∈ R. (11)

7



If α ≥ 0, then q̂(·) is a monotone nondecreasing function that models a passive memristor [9, Th. 1]. We stress that the

treatment in the paper includes the case α < 0, i.e., we allow for memristor characteristics that are not monotonically

increasing (locally-active memristors), which are of special interest in several practical applications [57].

Consider now assumption (10). It is easy to see that, under (9), there may be unbounded solutions of (6) if

the restriction (10) on the norm of G and Gτ fails. It is worth mentioning that, due to the practical values of kq

of memristors [10], (10) is not a restrictive assumptions on the interconnections, see also the simulation results in

Section 6.

4. Global Exponential Stability of a DMNN

In this section we investigate, in the flux-charge domain, the fundamental dynamic property of GES of the unique

EP of (6). By an EP we mean a constant solution φ(t) = φe ∈ R
N , for t ≥ −τ, of (6). Note that φe is an EP of (6) if and

only if φe satisfies the algebraic equation

0 = −Q̂(φe) + (G +Gτ)φe + Q0. (12)

Definition 1. The EP φe ∈ R
N of (6) is said to GES if there exist h, k > 0 such that, for any γ ∈ C([−τ, 0],RN), we

have

‖Φ(t; 0, γ) − φe‖ ≤ h max
−τ≤θ≤0

‖γ(θ) − φe‖ exp (−kt), t ≥ 0.

Constant k is said to be the exponential convergence rate of solutions toward the EP.

In order to ensure GES of the EP we need to enforce suitable assumptions on G,Gτ, and the nonlinearities involved

in model (6). In particular, we find it useful to state the assumptions in terms of an LMI as follows.

Assumption 2. There exist a diagonal and positive definite matrix P ∈ R
N×N , and a symmetric and positive definite

matrix Q ∈ R
N×N such that 

−2α
P

C
+ 2

[PG]S

C
+ Q

PGτ

C(
PGτ

C

)⊤
−Q


< 0. (13)

We have denoted by [·]S the symmetric part of an N × N matrix, i.e., [PG]S =
1
2
[PG + (PG)⊤]. By applying Schur’s

complement, Assumption 2 is equivalent to requiring that matrix Σ0 ∈ R
N×N is such that

Σ0 = −2α
P

C
+ Q +

2

C
[PG]S +

1

C
PGτQ−1

(
1

C
PGτ

)⊤
< 0. (14)

We need to establish a preliminary result. Denote by P the class of N × N matrices such that all leading principal

minors are positive [58]. Also denote by EN the N × N identity matrix.

Lemma 1. If Assumption 2 is satisfied, then matrix αEN − (G +Gτ) ∈ P.

Proof. First of all we note that, given Q = Q⊤ > 0, for any square matrix H we have

Q + HQ−1H⊤ − 2[H]s ≥ 0. (15)

Indeed, since (HQ−1/2 − Q1/2)(HQ−1/2 − Q1/2)⊤ ≥ 0, we have HQ−1H⊤ + Q − H − H⊤ ≥ 0, which implies (15).

Since Assumption 2 holds true, from (14) we have

2α
P

C
−

2

C
[PG]S −

2

C

[
PGτ]

S −

(
Q +

1

C
PGτQ−1

(
1

C
PGτ

)⊤
−

2

C

[
PGτ]

S

)
> 0.
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By letting H = (PGτ)/C in (15) we have

Q +
1

C
PGτQ−1

(
1

C
PGτ

)⊤
−

2

C

[
PGτ]

S > 0

which implies

2α
P

C
−

2

C
[PG]S −

2

C

[
PGτ]

S > 0

i.e., [P(αEN −G −Gτ)]S > 0. As a consequence, αEN − (G +Gτ) ∈ P [59].

Theorem 1. Suppose Assumptions 1 and 2 are satisfied. Then, for any Q0 ∈ R
N , (6) has a unique EP φe which is

GES. Moreover, the convergence rate k of solutions toward the EP is given as

k = min



1

4pM

|λM (Σ0) |;
1

2τ
ln


1 +

|λM (Σ0)|

2λM

(
1
C

PGτQ−1
(

1
C

PGτ
)⊤)




(16)

where pM = maxi=1,...,N(pii), pm = mini=1,...,N(pii) and λM(·) denotes the maximum eigenvalue of a symmetric matrix.

Proof. We first address existence and uniqueness of the EP, by showing that the algebraic equation (12) has a

unique solution. Since Assumption 1 holds true, it is easy to verify that, for any ε > 0, Q̄(φe) = Q̂(φe) − αφe + εφe is

a diagonal mapping made of strictly increasing functions mapping R onto R. We can rewrite (12) as

Q̄(φe) + (αEN − (G +Gτ) − εEN)φe = Q0. (17)

Lemma 1 yields αEN − (G +Gτ) ∈ P, which implies that there exists ε > 0 such that αEN − (G +Gτ)− εEN ∈ P [59].

Then, we are under the hypotheses of [17, Th. 6, App. A], and consequently (17) has a unique solution.

If φe is an EP of (6), then ψ(t) = Φ(t; 0, γ) − φe is ruled by

C
dψ(t)

dt
= −Q̃(ψ(t)) +Gψ(t) +Gτψ(t − τ) (18)

where Q̃(ψ) = (q̃(ψ1), q̃(ψ2), . . . , q̃(ψN))⊤ = Q̂(ψ + φe) − Q̂(φe) is such that q̃′(ρ) ≥ α, ρ ∈ R.

Let us choose the following candidate Lyapunov function

V(t) = e2ktψ⊤(t)Pψ(t) +

∫ t

t−τ

e2kzψ⊤(z)Qψ(z)dz (19)

whose time derivative is

dV(t)

dt
= 2ke2ktψ⊤(t)Pψ(t) + 2e2ktψ⊤(t)P

dψ(t)

dt
+ e2ktψ⊤(t)Qψ(t) − e2k(t−τ)ψ⊤(t − τ)Qψ(t − τ)

= e2kt
[
2kψ⊤(t)Pψ(t) + 2ψ⊤(t)P

dψ(t)

dt
+ ψ⊤(t)Qψ(t) − e−2kτψ⊤(t − τ)Qψ(t − τ)

]
.

By (18) we obtain

dV(t)

dt
= e2kt[2kψ⊤(t)Pψ(t) + 2ψ⊤(t)P

−Q̃(ψ(t)) +Gψ(t) +Gτψ(t − τ)

C
+ ψ⊤(t)Qψ(t) − e−2kτψ⊤(t − τ)Qψ(t − τ)]

= e2kt[2kψ⊤(t)Pψ(t) −
2ψ⊤(t)PQ̃(ψ(t))

C
+

2ψ⊤(t)PGψ(t)

C
+ ψ⊤(t)Qψ(t)

+
2ψ⊤(t)PGτψ(t − τ)

C
− e−2kτψ⊤(t − τ)Qψ(t − τ)].
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Since q̃(0) = 0 and q̃′(ρ) ≥ α (see (11)), we have ρq̃(ρ) ≥ αρ2. In fact, ρ > 0 implies q̃(ρ) ≥ αρ, while ρ < 0

implies q̃(ρ) ≤ αρ. It follows that ψ⊤(t)PQ̃(ψ(t)) =
∑N

i=1 ψi(t)piq̃(ψi(t)) ≥ α
∑N

i=1 piψ
2
i
(t) = αψ⊤(t)Pψ(t). Then, we

obtain

dV(t)

dt
≤ e2kt[2kψ⊤(t)Pψ(t) −

2αψ⊤(t)P(ψ(t))

C

+
2ψ⊤(t)PGψ(t)

C
+ ψ⊤(t)Qψ(t) +

2ψ⊤(t)PGτψ(t − τ)

C
− e−2kτψ⊤(t − τ)Qψ(t − τ)].

The previous equation can be rewritten in a matrix form as follows

dV(t)

dt
= e2kt

[
ψ⊤(t) ψ⊤(t − τ)

]
W

[
ψ(t)

ψ(t − τ)

]

where

W =


2kP − 2α P

C
+ 2

C
[PG]S + Q 1

C
PGτ

(
1
C

PGτ
)⊤

−e−2kτQ

 .

We have dV(·)/dt ≤ 0 if and only if W ≤ 0, and such condition can be verified by using the Schur’s complement

for W. First, note that matrix −e−2kτQ is negative definite. Then, we have to check

Σk = 2kP − 2α
C

P
+

2α

C
[P]S + Q +

1

C
PGτe2kτQ−1

(
1

C
PGτ

)⊤
≤ 0. (20)

To this end, let us consider the expression Σ0 in (14), and rewrite (20) as

Σk = 2kP + Σ0 −
1

C
PGτQ−1

(
1

C
PGτ

)⊤
+

1

C
PGτe2kτQ−1

(
1

C
PGτ

)⊤

i.e.,

Σk = 2kP + Σ0 −
1

C
PGτQ−1

(
1

C
PGτ

)⊤ (
e2kτ − 1

)
. (21)

We will now show that, under (14), there exists k > 0 such that Σk < 0.

If we pick k > 0 as in (16), it is seen that both of the following conditions are satisfied

2kpM ≤
1
2
|λM (Σ0) |

(
e2kτ − 1

)
λM

(
1
C

PGτQ−1
(

1
C

PGτ
)⊤)
≤ 1

2
|λM (Σ0) |.

(22)

Then, we have

λM(Σk) ≤ λM(Σ0) + 2kpM +
(
e2kτ − 1

)
λM

(
1

C
PGτQ−1

(
1

C
PGτ

)⊤)
≤ 0.

This implies W ≤ 0 and so dV(t)/dt ≤ 0, i.e.,V(t) is a non increasing function. Then,V(0) ≥ V(t), i.e.,

V(0) ≥ e2ktψ(t)⊤Pψ(t) +

∫ t

t−τ

e2kzψ(z)⊤Qψ(z)dz ≥ e2kτψ(t)⊤pmψ(t)

and

V(0) = ψ(0)⊤Pψ(0) +

∫ 0

−τ

e2kzψ(z)⊤Qψ(z)dz ≤ ψ(0)⊤pMψ(0) + λM(Q)

∫ 0

−τ

‖ψ(z)‖2dz

≤ pM‖ψ(0)‖2 + λM(Q)τ max
−τ≤θ≤0

‖ψ(θ)‖2.
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The last two inequalities can be rewritten as

e2kt‖ψ(t)‖2 pm ≤ V(0) ≤ (pM + τλM(Q)) max
−τ≤θ≤0

‖ψ(θ)‖2

which leads to

‖ψ(t)‖ ≤ e−kt

√
pM + τλM(Q)

pm

max
−τ≤θ≤0

‖ψ(θ)‖. (23)

This implies

‖Φ(t; 0, γ) − φe‖ ≤ e−kt

√
pM + τλM(Q)

pm

max
−τ≤θ≤0

‖Φ(θ; 0, γ) − φe)‖. (24)

5. Voltage-current Domain

By FCAM [41], the SEs describing the dynamics of a DMNN in the voltage-current domain can be obtained by

time differentiation of the SEs (6) in the flux-charge domain. We obtain



C
dv(t)

dt
= −M(φ(t))v(t) +Gv(t) +Gτv(t − τ)

dφ(t)

dt
= v(t)

(25)

where v(·) = (vC1
(t), vC2

(t), . . . , vCN
(t))⊤ is the vector of capacitor voltages and M(φ(t)) = diag(q̂′(φ1(t)), q̂′(φ2(t)), . . . , q̂′(φN(t)))⊤,

where q̂′(φi(t)) is the memristance of the i-th neuron [9]. The initial conditions are

v(σ) = γ(σ), σ ∈ [−τ, 0]; φ(0) = φ0 ∈ R
N (26)

where γ ∈ C([−τ, 0],RN).

We remark that the system of nonlinear delay differential equations (25) describing a DMNN in the voltage-current

domain has order 2N, whereas the associated system in the flux-charge domain (6) is of order N. This order reduction

is perfectly compatible with FCAM and is due to the fact that, as discussed in Section 2, each of the N memristors is

a dynamic element in the voltage-current domain, whereas it is a memoryless element in the flux-charge domain (cf.

Remark 1).

Let T > 0. We say that [V(t; 0, (γ, φ0)),Ψ(t; 0, (γ, φ0))], with V(·) : [−τ, T ] → R
N and Ψ(·) : [0, T ] → R

N , is

a solution of the IVP (25), (26) with initial conditions γ ∈ C([−τ, 0],RN) and φ0 ∈ R
N , if we have the following:

V(σ; 0, (γ, φ0)) = γ(σ) for any σ ∈ [−τ, 0], Ψ(0; 0, (γ, φ0)) = φ0, V(·) is continuous on [−τ, T ] and differentiable on

[0, T );Ψ(·) is differentiable on [0, T ) and (25) is satisfied for 0 ≤ t < T . We say that [V(t; 0, (γ, φ0)),Ψ(t; 0, (γ, φ0))] is

a solution for t ≥ −τ if it is a solution on [−τ, T ] for any T > 0.

Proposition 2. If Assumption 1 is satisfied, then the following results hold.

1. For any γ ∈ C([−τ, 0],RN) and φ0 ∈ R
N , there exists a unique solution [V(t; 0, (γ, φ0)),Ψ(t; 0, (γ, φ0))] of the

IVP (25) and (26), which is bounded and hence defined for t ≥ −τ.

2. The solution [V(t; 0, (γ, φ0)),Ψ(t; 0, (γ, φ0))] is C0 in [−τ, 0], and it is C1 for t ≥ 0.

Proof. See Appendix B.

In the paper we have assumed that q̂(·) is C1 in R
N , so M(φ(·)) is in general only C0 in R

N . A remarkable fact

proved in Proposition 1 is that, although the vector field at the right-hand side of (25) is only C0 in R
2N , the uniqueness

of the solution for (25) is guaranteed. As a direct consequence of the proof of the same proposition it can be seen that

the following relationship holds between the solution of the IPV (25), (26) for a DMNN in the voltage-current domain

and that of the IVP (6), (7) in the flux-charge domain.
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Property 1. Suppose that Assumption 1 is satisfied. Fix any γ ∈ C([−τ, 0],RN) and φ(0) = φ0 ∈ R
N . Then the

following results hold:

1. if Φ(t; 0, γ), t ≥ −τ, is the solution of the IVP (6), (7), then [dΦ(t; 0, γ)/dt,Φ(t; 0.γ)], t ≥ −τ, is the solution of

the IVP (25), (26).

2. Conversely, if [V(t; 0, (γ, φ0)),Ψ(t; 0, (γ, φ0))], t ≥ −τ, is the solution of the IVP (25), (26), then

Φ(t; 0, γ) =

{
φ0 +

∫ t

0
γ(z)dz if t ∈ [−τ, 0]

Ψ(t; 0, (γ, φ0)) if t ≥ 0
(27)

is the solution of the IVP (6) and (7).

The EPs of (25) are obtained by letting dv(t)/dt = 0, dφ(t)/dt = 0. The set of EPs is given by the N-dimensional

manifold (linear subspace) in R
2N

MEP = {(ve, φe) ∈ R
2N : ve = 0, φe ∈ R

N }

namely, there are infinitely many (a continuum of) nonisolated EPs. This is in agreement with the well-known fact that

an ideal flux-controlled memristor can memorize any value of the flux as an equilibrium state in the voltage-current

domain [43]. Note that the capacitor voltages vanish at any EP of (25).

Since there are infinitely many EPs, we cannot have GES for a DMNN in the voltage-current domain. However,

we can prove the following convergence result.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied. Then, any solution of (25)-(26) exponentially converges

toward an EP as t → +∞ and the convergence rate k is given in (16). Moreover, we have v(t) → 0 as t → +∞, i.e.,

the capacitor voltages tend to 0 in steady state.

Proof. Let [V(t; 0, (γ, φ0)),Ψ(t; 0, (γ, φ0))] be a solution of (25)-(26). Point 2 of Property 1 implies that Φ(t; 0, γ)

as in (27) is a solution of the IVP (6)-(7), while Theorem 1 guarantees that Φ(t; 0, γ) (and Ψ(t; 0, (γ, φ0))) converges

exponentially to the unique EP φe and also dΦ(t; 0, γ)/dt→ 0 as t → +∞. Since V(t; 0, (γ, φ0)) = dΨ(t; 0, (γ, φ0))/dt =

dΦ(t; 0, γ)/dt, we have that V(t; 0, (γ, φ0))→ 0 as t → +∞.

To prove exponential convergence to 0 of V(t; 0, (γ, φ0)) we observe that, from (18)

‖V(t; 0, (γ, φ0))‖ ≤
1

C

(
‖Q̂(Φ(t; 0, γ) − φe)‖ + ‖G (Φ(t; 0, γ) − φe)‖ + ‖Gτ (Φ(t − τ; 0, γ) − φe)‖

)

≤
1

C

(
‖Q̂(Φ(t; 0, γ) − φe)‖ + ‖G‖ ‖(Φ(t; 0, γ) − φe)‖ + ‖Gτ‖ ‖(Φ(t − τ; 0, γ) − φe)‖

)

From (24) we have ‖(Φ(t − τ; 0, γ) − φe)‖ ≤ e−ktekτ

√
pM+τλM(Q)

pm
max−τ≤θ≤0 ‖Φ(θ; 0, γ) − φe‖. Additionally, since q̂(·) ∈

C1(R), then Q̂(·) is Lipschitz on any ball B(ρ, ξ) = {x ∈ R
N : ‖x−ξ‖ ≤ ρ}. Let us denote with kQ̂ the Lipschitz constant

for ξ = φe and ρ =
√

(pM + τλM(Q))/pm max−τ≤θ≤0 ‖Φ(θ; 0, γ) − φe‖. Then we can write

‖V(t; 0, (γ, φ0))‖ ≤
1

C

(
kQ̂ + ‖G‖ + ekτ‖Gτ‖

)
e−kt

√
pM + τλM(Q)

pm

max
−τ≤θ≤0

‖Φ(θ; 0, γ) − φe‖ (28)

which proves the exponential convergence to 0 of V(t; 0, (γ, φ0)) with the same exponential rate of Ψ(t; 0, (γ, φ0)).

Remark 6. The dynamic analysis in the paper can be immediately extended to other classes of memristors, such as

ideal extended memristors (memristor siblings), which can be brought back to an ideal memristor by suitable changes

of variables [10]. Also the linear drift model of the HP memristor [1] can be brought back to an ideal memristor

model. It is known that some practically implemented memristors, however, deviates from an ideal memristor and

they need to be modeled by generic or extended memristors using state variables that are not necessarily the flux or

the charge [60, 10]. The study of neural networks containing generic or extended memristors goes beyond the scope

of the present work, but is considered a challenging issue for future works.
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6. Simulation Results

Under the assumptions of Theorem 1 the DMNN (6) has a unique EP φe ∈ R
N for any input

Q0 = Cv0 + Q̂(φ0) − (G +Gτ)φ0 +Gτ

∫ 0

−τ

γ(z)dz ∈ R
N .

From a mathematical viewpoint the DMNN implements a nonlinear mapping φe = φ̂e(Q0) between the space RN of

inputs to the space R
N of EPs toward which any solution of (6) exponentially converges. As discussed in Section

1, such a map is potentially useful for solving a number of signal processing tasks in real time. Among the many

applications there is the solution of global optimization problems in real time, such as linear and programming prob-

lems or sorting problems. In such problems, the GES property prevents the solutions from getting stuck at some

local minimum of the cost function to be minimized. It is important to stress that a convergent neural network that is

multistable, i.e., it possesses multiple locally asymptotically stable EPs, would be instead unsuitable for addressing

such classes of processing tasks. In fact, in the case of multistability, only convergence to a local minimum of the

cost function may be guaranteed when solving optimization problems. Below we give some examples to verify and

illustrate the property of GES of DMNNs in Theorem 1.

Example 1. Let us consider a third-order DMNN (6) such that

G =


−4.0 −0.2 −1.0

0.3 −3.5 −0.1

0.1 −1.0 −4.5

 ; Gτ =


0.1 0.3 0.2

1.0 0.1 0.4

0.5 0.2 0.1



and the memristors have a non-monotonic cubic nonlinearity q = q̂(ϕ) = −ϕ + 1
3
ϕ3 such that α = minR q̂′(ϕ) =

q̂′(0) = −1. Note that we are dealing with locally-active memristors that can be implemented for instance by using

passive memristors in combination with active conductances [57]. Moreover, let C = 1 F. Note that Assumption

1 is satisfied, since q̂′(ϕ) → +∞ as |ϕ| → +∞. It can be verified that also Assumption 2 is satisfied by choosing

P = diag(1.856, 1.856, 1.856) and

Q =


5.568 −0.062 0.555

−0.062 4.954 0.678

0.555 0.678 6.1828

 > 0

so that, according to Theorem 1, the DMNN has a unique GES EP φe for any Q0 ∈ R
3.

Suppose τ = 2 and Q0 = (1,−2, 2)⊤. We conducted simulations of the DMNN by MATLAB routine dde23 when

choosing ϕM(0) = 0 and three different sets of initial conditions, namely, γ(·) ∈ C([−2, 0],R3) is a constant, or a

sinusoidal, or a polynomial function in [−2, 0]

γ(t) = (10.0,−17.857,−0.714)⊤, t ∈ [−2, 0]

γ(t) = (13.22 cos(4t), 28.0 sin(t), 8.621 cos(2t))⊤, t ∈ [−2, 0]

γ(t) = (−0.566(t2 + 3),−1.736(t3 + 1),−2.686(t − 1))⊤, t ∈ [−2, 0].

It can be checked that in the three cases we have, as required, Q0 = (1,−2, 2)⊤. Figure 5 depicts the results of simu-

lations. It is seen that in all cases the DMNN converges to the same EP φe = (0.123,−0.640, 0.723)⊤, in accordance

with the result in Theorem 1. We simulated also the corresponding DMNN system (25) in the voltage-current domain

for the same initial conditions ϕM(0) and γ(·) ∈ C([−2, 0],R3). The results are reported in Fig. 5, where we can check

that any solution converges to an EP (ve, φe) = (0, 0, 0, 0.123,−0.640, 0.723)⊤. Note that, according to Theorem 2, all

capacitor voltages vanish in steady state.

Example 2. Let us now consider a third-order DMNN (6) such that

G =


−2.0 −0.1 −1.0

0.3 −3.5 −0.1

0.1 −1.0 −1.5

 ; Gτ =


0.1 0.3 0.2

0.1 0.1 0.4

0.5 0.2 0.1

 .

13



The memristors are passive and have a monotonic nonlinearity q = q̂(ϕ) = 6|ϕ| arctan(ϕ). We have q̂(·) ∈ C1(R),

moreover 0 ≤ q̂′(ϕ) < 6 for any ϕ ∈ R, hence α = 0. Also let C = 1 F. We can check that Assumption 1 is satisfied

with kq = 6. It can be verified that also Assumption 2 is satisfied by choosing P = diag(2.16, 2.16, 2.16) and

Q =


4.795 −0.144 0.650

−0.144 6.941 0.789

0.650 0.789 4.079

 > 0

hence, according to Theorem 1, the DMNN has a unique GES EP φe for any Q0 ∈ R
3.

Let τ = 3 and Q0 = (1,−2, 2)⊤. We have conducted simulations of the DMNN when ϕM(0) = 0 and three different

sets of initial conditions are chosen, namely, γ(·) ∈ C([−3, 0],R3) is given by

γ(t) = (−4.437, 4.451, 4.604)⊤, t ∈ [−3, 0]

γ(t) = (4.574 cos(4t), 5.668 sin(t), 4.627 cos(2t))⊤, t ∈ [−3, 0]

γ(t) = (1.672(t2 + 3),−1.874(t3 + 1), 11.149(t − 1))⊤, t ∈ [−3, 0].

It can be checked that in the three cases we have Q0 = (1,−2, 2)⊤. The simulation results, shown in Figure 6, confirm

that in all cases the DMNN converges to the same EP φe = (0.131,−0.382, 0.803)⊤, in accordance with Theorem 1.

For the corresponding DMNN system (25) in the voltage-current domain we have verified that, according to Theorem

2, all capacitor voltages tend to 0 as t → +∞.

Example 3. Consider a DMNN (6) with N neurons, having nearest-neighbor interconnections and periodic bound-

ary conditions, namely G and Gτ are given by the circulant matrices

G = circN(a, s, 0, . . . , 0, r) =



a s 0 0 · · · r

r a s 0 · · · 0

0 r a s · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 r a s

s · · · 0 0 r a



and Gτ = circN(ā, s̄, 0, . . . , 0, r̄) depending on the real parameters a, r, s and ā, r̄, s̄, respectively. Let us assume the

memristors have a monotonic nonlinearity q = q̂(ϕ) = βϕ + arctan(ϕ) where β > 0. We have q̂(·) ∈ C1(R), moreover

β ≤ q̂′(ϕ) ≤ β + 1 for any ϕ ∈ R, hence α = β. Also let C = 1 F. We can check that Assumption 1 is satisfied with

kq = β, provided on the basis of (10) the constraint |a| + |s| + |r| + |ā| + |s̄| + |r̄| < β holds.

This kind of circular neural networks are widely investigated in the literature as prototypical systems to study

the potentials and limitations for information processing of neural network arrays [61, 62, 63]. We now want to find

conditions on G and Gτ guaranteeing that Assumption 2 is satisfied by picking P = EN and Q = EN . Following this

choice, (14) simplifies to

−2βEN + EN +G +G⊤ +Gτ(Gτ)⊤ < 0. (29)

Now, considering that G+G⊤ = circN(2a, r+s, 0, . . . , 0, r+s), while Gτ(Gτ)⊤ = circN(ā2+s̄2+r̄2, ā r̄+ā s̄, r̄ s̄, 0, . . . , 0, r̄ s̄, ā r̄+

ā s̄), it turns out that (29) implies

Σ0 = circN(2a + ā2 + s̄2 + r̄2 + 1 − 2β, ā r̄ + ā s̄ + r + s, r̄ s̄, 0, . . . , 0, r̄ s̄, ā r̄ + ā s̄ + r + s) < 0.

Since such a matrix is circulant and symmetric, there is an explicit expression for its eigenvalues [64]

λi(Σ0) = 2a + ā2 + s̄2 + r̄2 + 1 − 2β + 2(ā r̄ + ā s̄ + r + s) cos

(
2πi

N

)
+ 2(r̄ s̄) cos

(
4πi

N

)
; i = 0, 1, . . . ,N − 1.

As a consequence, in order to have both Assumptions 1 and 2 verified, it suffices that the conditions |a|+ |s|+ |r|+ |ā|+

|s̄| + |r̄| < β and maxi=0,1,...,N−1 λi(Σ0) < 0 are satisfied.

We have conducted simulations with MATLAB for a DMNN with N = 10 neurons in the case where G is defined

by a = 0.2, r = −1 and s = 0.1, matrix Gτ by ā = −1, r̄ = −0.8 and s̄ = 0.1, moreover for the memristor
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Figure 5: (a), (c), (e) Time-domain evolution of fluxes and (b), (d), (f) corresponding evolution of voltages for three different solutions of the

DMNN in Example 1.
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Figure 6: (a), (b), (c) Time-domain evolution of fluxes for three different solutions of the DMNN in Example 2.

nonlinearity we have β = 4 and τ = 3. We have |a| + |s| + |r| + |ā| + |s̄| + |r̄| = 3.2 < 4 = β so that Assumption 1

is satisfied. Moreover, maxi=0,1,...,N−1 λi(Σ0) = −4.676 < 0, hence also Assumption 2 is met. Figures 7(a), (b) depict

the numerical results for two different sets of initial conditions γi(σ), σ ∈ [−3, 0], i = 1, 2, . . . , 10, such that in both

cases we have Q0 = (1,−2, 2, 1, 1, 2,−2,−1,−1, 2)⊤. Again, it can be seen that both solutions converge to the same

EP φe = (0.038,−0.343, 0.457, 0.036, 0.171, 0.278,−0.437,−0.042,−0.146, 0.395)⊤, in accordance with Theorem 1.

Remark 7. The examples demonstrate that the property of GES in Theorem 1 may be used for processing signals by

means of a DMNN in the flux-charge domain. The input isQ0, the processing takes place during the transient evolution

of the fluxes, and the processing result is φe(Q0). The processing result is memorized for further use by the memristors

acting as nonvolatile devices in steady state. Note that the memristors are used both for the nonlinear processing of

signals and to memorize the result of processing. In other words, computation and memorization is performed at the

same physical location. Batteries are in principle not needed to memorize the processing results. Consider now the

DMNN behavior in the voltage-current domain. As seen in Theorem 2, and as confirmed by simulations, all capacitor

voltages, as well as all other voltages, current, and hence power in a DMNN, vanish when a steady state is reached.

We stress that this is a potential advantage with respect to Hopfield [65], cellular [53], or Cohen-Grossberg [66]

neural networks computing in the traditional voltage-current domain. Indeed, for those network, voltages, currents

and power do not vanish in steady state, with an increase in power consumption. Moreover, for those networks the

result of processing needs to be transferred to a memory location after the computation in a neuron ends, implying

limitation in the computation speed, as discussed in Section 1. Batteries are also needed to memorize the result of

processing.
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Figure 7: (a), (b) Time-domain evolution of fluxes for two different solutions of the DMNN in Example 3.
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Remark 8. There are several relevant results in the literature concerning global stability of the EP, and related issues

on global synchronization problems, for classes of delayed neural networks with memristors, see, e.g., [38, 39, 44,

45, 46, 47, 48, 49, 40, 49, 50, 51, 52], and references therein. As pointed out in Remark 3 in Section 3, the memristor

model used in those papers is different from that considered here in the class of DMNNs (6). Indeed, in a DMNN we

consider an ideal flux-controlled memristor defined by a nonlinear relationship q̂(·) between flux and charge as that

originally introduced by Leon Chua in the seminal paper [9]. This corresponds to the exact model and CR of an ideal

memristor. Quite differently, the previously quoted papers use a memristor model that retains only one fingerprint of

an ideal memristor, i.e., the fact that the memristance switches between two different values when a sinusoidal input

signal is applied. We also note that the memristor neural networks in the quoted papers operate and compute in the

traditional voltage-current domain, as confirmed by the fact that, differently from DMNNs, voltages and current do

not tend to 0 when a steady state is reached. Potential advantages of DMNNs in terms of power consumption in steady

state, with respect to other models of memristor neural networks, can be envisaged based on these considerations.

7. Discussion and Conclusions

The paper has provided a thorough dynamic analysis of a class of memristor neural networks with concentrated

delays, named DMNNs, operating in the flux-charge domain. A condition based on LMIs is given ensuring that a

DMNN has a unique GES EP in the flux-charge domain and simulations are presented showing that this property is

potentially useful for signal processing tasks. Under the same condition we have a convergent dynamics in the voltage-

current domain and one main feature is that all voltages, currents and power drop off in steady steady, whereas the

memristors are able to keep in memory in a nonvolatile way the result of processing. This is an advantage with respect

to traditional neural network architectures operating in the voltage-current domain, where power does not drop off in

steady state and batteries are needed to store the result of processing.

To the authors knowledge, the theoretic results in the paper are the first results on global stability for memristor

neural networks operating in the flux-charge domain. The simulation results also show the potential usefulness of

globally stable DMNNs for solving in real time signal processing tasks as global optimization problems. There is a

huge body of literature devoted to global stability of delayed neural networks without memristors, where a rich variety

of concentrated and distributed delays are considered, see [23], for a thorough review. Relevant recent contributions

concerning global stability and dissipativity of delayed neural networks with impulses and interval time delays or time

varying delays can be found in [67, 68]. It is arguable that a number of the techniques and results in those papers

can be suitably adapted in order to apply them to analyze global stability in the flux-charge domain for the class of

DMNNs in this paper or some of its extensions. We believe this might be an interesting topic for future research on

memristor neural networks.

Appendix A. Proof of Proposition 1

We start by establishing a preliminary result. Let A > 0 and ζ(·) ∈ C([−τ, A],RN). We let ζt ∈ C([−τ, 0],RN)

be defined as ζt(σ) = ζ(t + σ), σ ∈ [−τ, 0]. Then, we can write (6) in vector form dζ(t)/dt = F(ζt) where F :

C([−τ, 0],RN)→ R
N is given by F(ζt) = −Q̂(ζt(0)) +Gζt(0) +Gτζt(−τ) + Q0.

Property 2. Let q̂(·) ∈ C1(R), M > ‖φ0‖, γ ∈ C([−τ, 0],RN) be such that ‖γ‖ < (M−‖φ0‖)/τ. Then, there exist A > 0,

depending only on M, such that there exists a unique solution Φ(t; 0, γ) of the IVP (6) and (7) defined for t ∈ [−τ, A].

Moreover, the following estimate holds

max
−τ≤η≤A

‖φ(η; γ)‖ ≤ ‖γ‖e(NKq,M+‖G‖+‖G
τ‖)A (A.1)

where kq,M is the Lipschitz constant of q̂(·) in [−M, M].

18



Proof of Property 2. Since q̂(·) ∈ C1(R), q(·) is Lipschitz in [−M, M], i.e., there exists Kq,M such that |q̂(x)− q̂(y)| ≤

Kq,M |x − y| for any x, y ∈ [−M, M]. Consider now ξ, υ ∈ C([−τ, 0],RN), such that ‖ξ‖, ‖υ‖ < M. We have

‖F(ξ) − F(υ)‖ = ‖ − Q̂(ξ(0)) + Q̂(υ(0))‖+ ‖G(ξ(0) − υ(0))‖ + ‖Gτ(ξ(−τ) − υ(−τ))‖

≤ NKq,M‖ξ(0) − υ(0)‖ + ‖G‖ ‖ξ(0) − υ(0)‖ + ‖Gτ‖ ‖ξ(−τ) − υ(−τ)‖

≤ (NKq,M + ‖G‖ + ‖G
τ‖)‖ξ − υ‖

i.e., the vector field F satisfies the Lipschitz condition ‖F(ξ) − F(υ)‖ ≤ K‖ξ − υ‖.

Let γ ∈ C([−τ, 0],RN) such that ‖γ‖ < (M−‖φ0‖)/τ. We have that φ(σ) in (7) satisfies ‖φ‖ < M. As a consequence,

we are under the hypotheses of [69, Th. 3.7, p. 32]. Application of that theorem yields the result in the property.

We are now in a position to complete the proof of Proposition 1.

1. Assume (8) holds true, then there exist finite M̃, M̂ > 0 such that

q̂(M̃) = (‖G‖∞ + ‖G
τ‖∞)M̃ + ‖Q0‖∞, q̂(−M̂) = −(‖G‖∞ + ‖G

τ‖∞)M̂ − ‖Q0‖∞.

Let M̄ = max{M, M̃, M̂}. We want to show that sup−τ≤t≤T ‖Φ(t; 0, γ)‖∞ = sup−τ≤t≤T {maxi=1,2,...,N |φi(t; 0, γ)|} ≤ M̄,

i.e., the solution of the of IVP (6) and (7) is bounded on [−τ, T ]. We observe that, since ‖γ‖ < (M − ‖φ0‖)/τ, then

‖Φ(t; 0, γ)‖∞ ≤ M ≤ M̄, t ∈ [−τ, 0]. We wish to show that this implies ‖Φ(t; 0, γ)‖∞ ≤ M̄, t ∈ [0, τ]. Let tµ ∈ [−τ, 0]

and let µ ∈ {1, 2, . . . ,N} be such that |φµ(tµ; 0, γ)| = maxi∈{1,2,...,N} |φi(tµ; 0, γ)| = ‖φ(tµ; 0, γ)‖∞. We have

dφµ(tµ)/dt = −q̂(φµ(tµ)) +

N∑

j=i

gµ jφ j(tµ) +

N∑

j=i

gτµ jφ j(t − τ) + Q0µ .

If φµ(tµ) > 0, recalling that ‖φ(tµ; 0, γ)‖ ≤ M̄, we obtain

dφµ(tµ)/dt ≤ −q̂(φµ(tµ)) + ‖G‖∞φµ(tµ) + ‖Gτ‖∞M̄ + ‖Q0‖∞.

Il can be easily verified that, if φµ(tµ) = M̄, then dφµ(tµ)/dt ≤ 0. Similarly, if φµ(tµ) < 0, we have

dφµ(tµ)/dt ≥ −q̂(φµ(tµ)) − ‖G‖∞φµ(tµ) − ‖Gτ‖∞M̄ + ‖Q0‖∞

which implies that, if φµ(tµ) = −M̄, then dφµ(tµ)/dt ≥ 0. As a consequence, we have that ‖Φ(t; 0, γ)‖∞ ≤ M̄, t ∈ [0, τ].

Now, we proceed by induction. Assume that ‖Φ(t; 0, γ)‖∞ ≤ M̄ when t ∈ [(k − 1)τ, kτ]. Let tµk
∈ [(k − 1)τ, kτ] and

let µk ∈ {1, 2, . . . ,N} be such that |φµk
(tµk

; 0, γ)| = ‖φ(tµk
; 0, γ)‖∞. Similarly, we can prove that, when φµk

(tµk
) > 0

dφµk
(tµk

)/dt ≤ −q̂(φµk
(tµk

)) + ‖G‖∞φµk
(tµk

) + ‖Gτ‖∞M̄ + ‖Q‖∞.

which implies dφµk
(tµk

)/dt ≤ 0 if φµk
(tµk

) = M̄. When φµk
(tµk

) < 0, we have instead

dφµk
(tµk

)/dt ≥ −q̂(φµk
(tµk

)) − ‖G‖∞φµk
(tµk

) − ‖Gτ‖∞M̄ + ‖Q0‖∞

which implies dφµk
(tµk

)/dt ≥ 0 if φµk
(tµk

) = −M̄. This shows that the solution of the of IVP (6) and (7) is bounded for

t ≥ 0 in the case (8).

Assume now (9), (10) hold true. Considering that lim|ρ|→∞ q̂′(ρ) = kq and kq > ‖G‖∞ + ‖G
τ‖∞, there exists finite

M̃ > 0 such that

q̂(M̃) = (‖G‖∞ + ‖G
τ‖∞)M̃ + ‖Q0‖∞.

For the same reason, we can find a finite M̂ > 0 such that

q̂(−M̂) = −(‖G‖∞ + ‖G
τ‖∞)M̂ − ‖Q0‖∞.

We can define M̄ = max{M, M̃, M̂}, and use an analogous induction argument to prove that the solution of the of

IVP (6) and (7) is bounded for t ≥ 0 also in the case (9), (10).
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Property 2 and boundedness of solution on [−τ, T ] imply existence and uniqueness of a global solution Φ(t; 0, γ)

of the IVP (6)-(7).

2. By definition of solution, we have Φ(σ; 0, γ) = φ0 +
∫ σ

0
γ(z)dz, where γ(σ) is a continuous function. Conse-

quently, Φ(·; 0, γ) is C1 in [−τ, 0). Since the right hand side of (6) is a C1 function (q̂(·) is assumed to be C1), then

Φ(·; 0, γ) is a C2 function in (0, τ). Let us show that limt→0− dΦ(t; 0, γ)/dt = limt→0+ dΦ(t; 0, γ)/dt. From (7) it turns

out that

lim
t→0−

dΦ(t; 0, γ)

dt
= lim

t→0−
γ(t) = γ(0).

Evaluating the right hand size of (6) we have

lim
t→0+

dφi(t; 0, γ)

dt
= (1/C)

(
− q̂(φi(0; 0, γ)) +

N∑

j=1

gi jφ j(0; 0, γ) +

N∑

j=1

gτi jφ j(−τ; 0, γ) + Cγi(0) + q̂(φi(0; 0, γ))

−

N∑

j=1

(gi j + gτi j)φ j(0; 0, γ) +

N∑

j=1

gτi j

∫ 0

−τ

γ j(z)dz
)
.

Since φi(0; 0, γ) = φ0i
and φi(−τ; 0, γ) = φ0i

−
∫ 0

−τ
γi(z)dz, we have

lim
t→0+

dΦ(t; 0, γ)

dt
= γ(0) = lim

t→0−

dΦ(t; 0, γ)

dt

i.e., Φ(·; 0, γ) is C1 in [−τ, 0] and C2 in (0, τ). A simple induction argument can be used to prove that Φ(·; 0, γ) is C2

in (0,+∞).

Appendix B. Proof of Proposition 2

1. Let Φ(t; 0, γ), t ≥ −τ, be the solution of the IVP (6) and (7). We first show that, by means of Φ(·) it is possible

to construct a solution of the IVP (25)-(26). Let us consider V(t; 0, (γ, φ0)) = dΦ(t; 0, γ)/dt, and Ψ(t; 0, (γ, φ0)) =

Φ(t; 0, γ). By definition we have Ψ(t; 0, (γ, φ0)) = φ0. By differentiating both sides of (6), and recalling that

vi(t; 0, (γ, φ0)) = dψi(t; 0, (γ, φ0))/dt = dφi(t; 0, γ)/dt, i ∈ {1, 2, . . . ,N}, we have

C
dvi(t; 0, (γ, φ0))

dt
= −q̂′(φi(t; 0, γ))

dφi(t; 0, γ)

dt
+

N∑

j=1

gi j

dφ j(t; 0, γ)

dt
+

N∑

j=1

gτi j

dφ j(t − τ; 0, γ)

dt

i.e.,

C
dvi(t; 0, (γ, φ0))

dt
= −q̂′(ψi(t; 0, (γ, φ0)))vi(t; 0, (γ, φ0)) +

N∑

j=1

gi jv j(t; 0, (γ, φ0)) +

N∑

j=1

gτi jv j(t − τ; 0, (γ, φ0)).

From (7) we have vi(t; 0, (γ, φ0)) = γi(t) ∈ C([−τ, 0],RN) and, from Property 1, we have that V(t; 0, (γ, φ0)) =

dΦ(t; 0, γ)/dt is a continuous function on [−τ, 0] and it is differentiable for t ≥ 0. As a consequence, we have

that [V(t; 0, (γ, φ0)),Ψ(t; 0, (γ, φ0))] is a solution of the IVP (25), (26) for t ≥ −τ.

Assume for contradiction that the IVP (25), (26) does not have a unique solution. Namely, suppose that, in

addition to [V(t; 0, (γ, φ0)),Ψ(t; 0, (γ, φ0))], there exists a different solution [Ṽ(t; 0, (γ, φ0)), Ψ̃(t; 0, (γ, φ0))] of (25),

(26). Integrating both sides of (25), and noting that
∫ t

0
q̂′(ψ̃i(s; 0, (γ, φ0)))ṽi(s; 0, (γ, φ0))ds =

∫ ψ̃i(t;0,(γ,φ0))

ψ̃i(0;0,(γ,φ0))
q̂′(ψ̃i)dψ̃i =

q̂(ψ̃i(t; 0, (γ, φ0))) − q̂(ψ̃i(0; 0, (γ, φ0))), we have

C(ṽi(t; 0, (γ, φ0)) − ṽi(0; 0, (γ, φ0))) = −q̂(ψ̃i(t; 0, (γ, φ0))) + q̂(ψ̃i(0; 0, (γ, φ0))) +

N∑

j=1

gi j

∫ t

0

ṽ j(z; 0, (γ, φ0))dz

+

N∑

j=1

gτi j

∫ t

0

ṽ j(z − τ; 0, (γ, φ0))dz
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where ṽi(0; 0, (γ, φ0)) = γi(0). By letting σ = z − τ we have

C
dψ̃i(t; 0, (γ, φ0))

dt
−Cγi(0) = −q̂(ψ̃i(t; 0, (γ, φ0))) + q̂(ψ̃i(0; 0, (γ, φ0))) +

N∑

j=1

gi j(ψ̃ j(t; 0, (γ, φ0)) − ψ̃ j(0; 0, (γ, φ0)))

+

N∑

j=1

gτi j

(∫ t−τ

0

ṽ j(z; 0, (γ, φ0))dz +

∫ 0

−τ

ṽ j(z; 0, (γ, φ0))dz

)
.

From (25) and (7) we have
∫ t−τ

0
ṽ j(z; 0, (γ, φ0))dz = ψ̃ j(t − τ; 0, (γ, φ0)) − ψ̃ j(0; 0, (γ, φ0)) and consequently

C
dψ̃i(t; 0, (γ, φ0))

dt
= − q̂(ψ̃i(t; 0, (γ, φ0))) +

N∑

j=1

gi jψ̃ j(t; 0, (γ, φ0)) +

N∑

j=1

gτi jψ̃ j(t − τ; 0, (γ, φ0)) +Cγi(0)

+ q̂(ψ̃i(0; 0, (γ, φ0))) −

N∑

j=1

(gi j + gτi j)ψ̃ j(0; 0, (γ, φ0)) +

N∑

j=1

gτi j

∫ 0

−τ

γ j(z)dz

for any i ∈ {1, 2, . . . ,N}. This shows that Φ̃(t; 0, γ) defined as

Φ̃(t; 0, γ) =


φ0 +

∫ t

0
γ(z)dz if t ∈ [−τ, 0]

Ψ̃(t; 0, (γ, φ0)) if t ≥ 0

is solution of the IVP (6). Since the IVP (6) and (7) admits a unique solution, we necessarily have Ψ(t; 0, (γ, φ0)) =

Ψ̃(t; 0, (γ, φ0)) and then V(t; 0, (γ, φ0)) = Ṽ(t; 0, (γ, φ0)).

2. Derives from Proposition 1 and the link between the solutions of the two IVPs previously established.
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