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Abstract: This study examined whether foliar applications of wood distillate (WD) have a protective
effect on photosynthesis and the antioxidant power of lettuce when exposed to an ecologically
relevant O3 concentration. Seedlings of lettuce (Lactuca sativa L.) were fumigated daily with 60 ppb
of O3 for 30 days, five hours per day. Once per week, 50% of the fumigated plants were treated
with foliar applications of 0.2% WD, while control plants were treated with water. The results
clearly showed the ability of WD to protect lettuce plants from ozone-induced damage. Specifically,
WD-treated plants exhibited lower damage to the photosynthetic machinery, assessed through a
series of chlorophyll fluorescence parameters, a higher chlorophyll content, higher antioxidant power,
as well as antioxidant molecules, i.e., caffeic acid and quercetin, and higher biomass. Counteracting
the overproduction of ozone-generated reactive oxygen species (ROS) is speculated to be the main
mechanism by which WD protects the plant from ozone-induced damage.

Keywords: bio-based product; crop resistance; horticultural plants; O3; toxic effects mitigation

1. Introduction

Ozone (O3) is a global strongly oxidizing pollutant, present at ground level following
the interaction of UV light with anthropogenic gases, such as carbon monoxide (CO),
nitrogen oxides (NOX), methane (CH4), and non-methane volatile organic compounds
(NMVOCS) (EPA 2021). Since the mid-20th century, global background ozone (O3) concen-
trations have rapidly increased [1] with current average concentrations for the mid-northern
latitude of ca. 30–50 ppb [2].

Plants can tolerate and adapt to O3 when chronically exposed to concentrations
below 20 nL/L (ca. 21 ppb; [3]). However, when ground-level exceeds the tolerance
threshold generally estimated at ca. 40 ppb [4,5], O3 becomes phytotoxic and capable
of damaging agricultural plants and forest vegetation, and even the biodiversity of a
whole ecosystem [2,6]. Following the global increase in O3 background concentrations that
occurred in the last 20–30 years, 2–15% reductions in the global crop yield were estimated,
with a remarkable economic loss [7].

In recent years, the search for solutions to protect crop plants from O3 injury has become
of global interest, and among the tested methodologies, i.e., the development of O3-resistant
crops, the selection of resistant germplasm, the use of antiozonants and nanomaterials [8],
the use of antioxidants (vitamins, phytohormones, flavonoids, and polyamines), is a very
promising strategy to protect crop plants from O3 phytotoxicity [9–12].

Wood distillate (WD), also known as pyroligneous acid or wood vinegar, is a bio-based
liquid product obtained from the distillation of the gases produced during the pyrolysis of
woody biomass for the production of green energy [13]. Such a product, still unexploited
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in many agricultural sectors (especially those not involved in organic farming), is now
having great success in agriculture as a phytostimulant for crop plants since its use can
enhance both plant productivity and endogenous defenses against pathogens [14]. WD can
be produced by different feedstocks but the common feature of all WDs is the presence,
to a greater or lesser extent, of antioxidant molecules such as phenols [15]. Results from a
study conducted on the horticultural plant Lactuca sativa L. revealed that foliar application
of 0.2% WD deriving from sweet chestnut (Castanea sativa Mill.) enhances the content of
chlorophyll and biomass of this model species [16], probably owing to its high content of
antioxidant compounds, such as polyphenols [17]. Foliar application of WD is also used to
increase the defenses of olive (Olea europaea L.) trees and grapevine (Vitis vinifera L.) plants
against pathogens [18,19], but the effectiveness of WD in contrasting the phytotoxic action
of O3 on crop plant metabolism is still unexplored.

For this reason, this study examines whether foliar applications of WD have a protec-
tive effect on lettuce exposed to an ecologically relevant O3 concentration.

In detail, we tested if lettuce plants exposed to O3 but not treated with WD have a
similar response, in terms of photosynthetic system, antioxidants, and yield, as plants
treated with WD.

2. Materials and Methods
2.1. Experimental

Seedlings of lettuce (Lactuca sativa L.) cv. Cappuccio bionda were bought from a local
nursery. In the laboratory, plants were carefully removed from their growth phytocells
and transplanted inside plastic pots (10 × 10 × 12 cm) using a commercial potting soil
as the substrate. Seedlings were then acclimatized for one week in a climatic chamber at
20 ◦C, 70% RH, and 350 µM s−1 m−2 PAR with 15 h of photoperiod (from 5:00 a.m. to
20:00 p.m.). The whole pool of seedlings (24 plants) was then fumigated daily with 60 ppb
of O3 for 5 h per day (from 12:00 to 17:00). Once per week, 50% of the fumigated plants
(12 plants) were treated with foliar applications of 0.2% sweet chestnut (Castanea sativa
Mill.) WD (Biodea®), while the remaining 50% of plants were sprayed with water and
used as a positive control. Foliar applications were run after the light cycle, following the
method described by Vannini et al. [16]. All plants were randomly rotated every three days
to minimize any possible influence of microclimatic conditions inside the climatic chamber.
The experiment lasted four weeks and was replicated three times. The sweet chestnut
WD was selected because it had previously been investigated for its safety, for both the
environment and humans [17,20,21].

2.2. Photosynthetic Parameters

Since photosynthesis is considered the main target of O3 phytotoxicity [22], its func-
tionality was assessed by means of selected photosynthetic indicators: the chlorophyll
fluorescence, the analysis of the fluorescence transients plotted on a logarithmic scale (OJIP
transients), and the chlorophyll content.

2.2.1. Chlorophyll Fluorescence Analyses

The analysis of the chlorophyll fluorescence and the analysis of the OJIP transients
are key methodologies to assess the functionality of the photosynthetic machinery fol-
lowing exposure to O3 [5,22]. The former was assessed through a number of the OJIP
step fluorescence parameters, summarized in Table 1, which describes the ability of the
photosynthetic system to absorb, trap, transmit, and convert the absorbed light into
energy for CO2 fixation [23], while the latter analyzed the ∆VOP profile, calculated by
the difference between the VOP profile of treated (Ozone + WD) and control (Ozone)
samples (∆VOP = VOPtreated (ozone + WD) − VOPcontrol(ozone); [24]). Prior to analysis,
the seedlings were dark-adapted for 30 min under a dim green light (10 µmol photons m−2 s−1)
and then lighted with an actinic light (3000 µmol photons m−2 s−1) for one second.
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Fluorescence analysis was run using a plant efficiency analyzer (Handy PEA, Hansatech
Ltd., Norfolk, UK). Fifteen measurements were taken for each replicate.

Table 1. Description of the measured photosynthetic parameters.

Parameter Description

ABS/CS0 Absorbance for excited cross-section
TR0/CS0 Trapping flux for excited cross-section
ET0/CS0 Energy transmission for excited cross-section
RC/CS0 Number of reaction centers for excited cross-section
DI0/CS0 Heat dissipation for excited cross-section
FV/FM Photosynthetic efficiency
PIABS Performance index

2.2.2. Analysis of the Chlorophyll Content

The content of chlorophyll was measured by means of a chlorophyll content meter
(CCM 300, Opti-Science Inc., Hudson, NH, USA), a non-destructive instrument that quanti-
fies the amount of chlorophyll on a surface basis (mg/m2) [25]. Fifteen measurements were
taken for each replicate.

2.3. Expression of Antioxidants
2.3.1. Total Antioxidant Power

Fresh samples (ca. 200 mg) were homogenized with 4 mL of 80% ethanol and then
centrifuged at 15,000 rpm for five minutes. The supernatant (100 µL) was then added to
1 mL of a DPPH solution prepared following the protocol reported by Vannini et al. [26].
After the reaction (ca. 1 h) samples were read at 517 nm and the results were expressed as
% Antiradical Activity (ARA%) following the Formulae:

ARA% = 100 × [1 − (sample absorbance/control absorbance)] (1)

where control absorbance is the absorbance of the reagents only.

2.3.2. Content of Caffeic Acid and Quercetin

Given the high number of antioxidant compounds in plant leaves, caffeic acid and
quercetin were selected as indicators of polyphenols and flavonoids expression [27,28],
respectively. The extraction of caffeic acid and quercetin from lettuce leaves was carried
out according to Tokusoglu et al. [29], with modifications. The upper part of each of the
major fresh leaves (ca. 1 g) was extracted with 3 mL of 70% acetone containing 1% HCl
(v/v). After the homogenization, 0.6 mL of pure HCl was added and the final mixture
was first vigorously shaken and then left at 90 ◦C for two hours. Subsequently, samples
were shaken and then filtered at 0.45 µm. The extracts were directly analyzed by HPLC
(Perkin-Elmer series 200) coupled with a Diode Array Detector (DAD). The analysis of
both caffeic acid and quercetin was run according to the method used by Kumar et al. [30],
combining water (solvent A) and acetonitrile (solvent B) eluted for 21 min as a mobile phase
following the gradient: 0–5 min (80% A), 5–8 min (60% A), 8–12 min (50% A), 12–17 min
(40% A), 17–21 min (20% A); an Agilent C18 column (4.6 x 250 mm; particle size 5µm) was
used. Runs were monitored at 280 and 325 nm for caffeic acid and quercetin, respectively.
Quantifications were carried out using calibration curves of caffeic acid and quercetin (from
5–100 µg/mL), prepared by dissolving the two pure reagents (Sigma, Sant Louis, MI, USA)
in the same solvent used to extract both molecules from the samples.

2.4. Edible Fresh Biomass

From each plant, visibly undamaged leaves (marketable, i.e., those without necrotic
and senescent areas) were removed from shoots and then weighed on a precision balance.
Results were expressed as grams on a fresh weight basis (g FW).
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2.5. Statistical Analysis

To disentangle differences between treated (Ozone + WD) and untreated (Ozone)
plants in terms of chlorophyll fluorescence and chlorophyll content, a linear mixed-effect
model (LMEM) was fitted for each variable, with treatment as a fixed effect and plant as a
random effect [31]. For model validation, scatterplots of the residual and fitted values were
used to check for homoscedasticity, and normal probability (qqnorm) plots as well as the
Shapiro–Wilk test to check for normality. Models were fitted using the restricted maximum
likelihood (REML) estimation, and the significance of the models was checked with type
III Anova using the Satterthwaite method [32]. For all the other parameters analyzed,
a permutation t-test was used to check for differences between treated (Ozone + WD)
and untreated (Ozone) plants. All calculations were run using the free R software [33];
the packages ‘lme4’ and ‘RVAideMemoire’ were used.”

3. Results

WD-treated samples experienced better photosynthetic performances than those only
fumigated with O3 (Table 2). Specifically, WD-treated samples showed a higher absorbance
for excited cross-section (ABS/CS0; ca. 3%), energy transmission (TR0/CS0; ca. 4%),
electron transport (ET0/CS0; ca. 8%), number of reaction centers (RC/CS0; ca. 11%), as well
as a lower energy dissipation (DI0/CS0; ca. 4%). Additionally, WD-treated plants showed
a higher (p < 0.05) expression of the photosynthetic efficiency (FV/FM; ca. 1%), of the
performance index (PIAbs; ca. 25%), and a higher content of chlorophyll (ca. 13%). Analysis
of the two fluorescence profiles confirmed the results obtained by FV/FM, while those of
the VOP test indicated only negligible differences between treatments (Figure 1). Moreover,
samples treated with WD presented a higher (p < 0.05) expression of the total antioxidant
power (ca. 140%), as well as of both caffeic acid (ca. 400%) and quercetin (ca. 105%)
(Figure 2). A higher (p < 0.05) biomass (+18%) was also noted (Figure 3).

Table 2. Expression of photosynthetic parameters (mean ± standard error) in samples of Lactuca
sativa after 30 days of fumigation with 60 ppb of O3 in combination with (Ozone + WD) or without
(Ozone) weekly foliar applications of 0.2% chestnut wood distillate (WD).

Parameter Ozone Ozone + WD p-Value

ABS/CS0 293 ± 2.5 a 301 ± 2.6 b p < 0.05
DI0/CS0 51 ± 0.5 a 49 ± 0.5 b p < 0.01
TR0/CS0 242 ± 2.0 a 252 ± 2.1 b p < 0.001
ET0/CS0 131 ± 1.4 a 141 ± 1.4 b p < 0.001
RC/CS0 105 ± 1.1 a 117 ± 1.1 b p < 0.001
FV/FM 0.826 ± 0.001 a 0.837 ± 0.001 b p < 0.001
PIABS 2.05 ± 0.03 a 2.56 ± 0.04 b p < 0.001

Chlorophyll (mg/m2) 200 ± 3.7 a 225 ± 2.7 b p < 0.001
Different letters indicate statistically significant (p < 0.05) differences between treatments. Abbreviations: ab-
sorbance for excited cross-section (ABS/CS0), heat dissipation for excited cross-section (DI0/CS0), trapping
flux for excited cross-section (TR0/CS0), energy transmission for excited cross-section (ET0/CS0), number of
reaction centers for excited cross-section (RC/CS0), photosynthetic efficiency (FV/FM), performance index (PIABS),
chlorophyll content (Chlorophyll).
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Figure 1. Average log-probit OJIP fluorescence curves and VOP analysis of samples of Lactuca sativa
after 30 days of fumigation with 60 ppb of O3 in combination with (Ozone + WD) or without (Ozone)
weekly foliar applications of 0.2% chestnut wood distillate (WD).
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Figure 2. Expression of the antioxidant power (DPPH%) and concentration (mean ± standard error)
of both caffeic acid and quercetin in samples of Lactuca sativa after 30 days of fumigation with 60 ppb
of O3 in combination with (Ozone + WD) or without (Ozone) weekly foliar applications of 0.2%
chestnut wood distillate (WD). Different letters indicate statistically significant (p < 0.05) differences
between treatments.
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treatments (p-value < 0.05).

4. Discussion

Lettuce is an ozone-sensitive horticultural plant [34] and O3 fumigations caused a
decrease in photosynthesis, chlorophyll content, and biomass of this species, consistently
with other studies [35,36]. However, when 0.2% WD was sprayed on the leaves, plants
showed an improvement in the photosynthetic system, a higher content of chlorophyll
and antioxidant molecules, as well as higher biomass, thus suggesting the ability of WD to
significantly alleviate the O3-induced damage.

WD is rich in antioxidants, such as polyphenols [15,17,37], and is effectively used to
increase both the chlorophyll content and biomass of crop plants, as found in some recent
studies [16,38–41]. Although the mechanisms behind its effectiveness are still in need of
investigation, it has been suggested that this stimulant effect on plant productivity may be
due to the action of antioxidant molecules on cell division [16], in response to the activation
of specific transcription genes, as previously observed by Tanase et al. [42,43].
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To the best of our knowledge, information on the exact mechanism of action of WD
against the O3-induced damage is unknown but it is possible that antioxidant molecules
play a very important role. We speculate that the pool of antioxidants could have acted
in two ways: buffering the interaction between O3 and the apoplast, thus reducing the
overproduction of ROS, i.e., the main factor responsible for the O3-induced toxicity in
plants [44], and/or stimulating the synthesis of ROS scavenger molecules, such as super-
oxide dismutase, peroxidase, and catalase, suggested by Wang et al. [45]. In the first case,
WD may have acted as a strengthener of the plant’s antioxidant defenses, while in the
second case it could have acted as a stimulator. However, information on which of these
two processes plays the greater role has not yet been investigated.

Plants can naturally counteract the oxidative action of O3 through the synthesis of
antioxidants, such as reduced glutathione [46], but when insufficient or when the oxidative
stress is too high, plants may experience reductions in O3-sensitive antioxidant molecules,
such as caffeic acid and quercetin [47–49]. However, following the application of 0.2% WD,
our lettuce plants showed a higher content of these molecules compared to the untreated
ones, thus suggesting a protective role of WD in preventing the oxidation of antioxidant
molecules devoted to counteracting the oxidative pressure induced by O3. Consistently
with this assumption, WD-treated plants experienced higher antiradical scavenging activity
(DPPH) than O3-fumigated plants. From a nutritional point of view, both caffeic acid and
quercetin have antioxidant, anti-inflammatory, and anticarcinogenic activities [50,51] and
in view of the protective action on these molecules from oxidative degradation, WD can be
considered not only as a tool to increase plant productivity but also to defend its nutritional
content from the oxidative stress. However, caffeic acid showed higher reductions than
quercetin, probably because this molecule is involved in several antioxidative roles. It is
reported that this compound is also deputed to shield the photosynthetic system from
oxidative stresses [52], thus explaining its higher consumption in O3-fumigated plants.

Photosynthesis is the main target of O3 phytotoxicity [22] and following its damage,
both energy transmission mechanisms, reallocation of nutrients, and plant growth can be
significantly impaired [44]. Although the photosynthetic system is naturally provided with
antioxidant molecules—i.e., caffeic acid—the concentration of ROS above the threshold of
the system’s antioxidant defenses may damage it, and programmed cell death processes
can be activated [53,54].

Ozone-induced ROS can affect photosynthesis by either damaging structurally the
chloroplast, as evident by ultrastructural changes [26,55], and/or activating cascade signals
which lead to stomatal closure and, in turn, generate further reductions in net photosynthe-
sis, CO2 assimilation, and plant growth [2,44]. As a result, however, reductions in carbon
assimilation may induce increases in the electron transfer with the consequent increase
in unwanted ROS overproduction [56]. Hence, the photosynthetic system starts a self-
regulatory process to achieve protection from photo-oxidation, leading to an immediate
reduction in both the content of chlorophyll and the number of reaction centers [22,57,58],
i.e., the structures dedicated to intercepting light to energetically supply the photosyn-
thetic system [59]. With this process, dissipation (DI0) at the expense of absorption and
transmission (TR0 and ET0) is favored [22] and reductions in the activity of both PSI and
PSII (measured as FV/FM and PI) can be measured, as observed for Canola (Brassica napus
L.) and tomato (Solanum lycopersicum L.) plants in open top-chamber fumigations [5,60].
Nevertheless, following WD foliar applications, all the above-mentioned negative effects
on the electron transport chain of the photosynthetic system were significantly alleviated.
In fact, WD-treated plants experienced a higher number of active reaction centers (RC),
positive values for the parameters involved in the energy absorption, trapping, and trans-
mission from the PSII to PSI (ABS, TR, ET), as well as lower heat dissipation energy (DI).
Additionally, WD-treated plants showed also a higher expression of the photosynthetic
efficiency FV/FM, the maximum quantum yield of primary photochemistry, the perfor-
mance index PI, the overall indicator of the PSI and PSII functionality [61], and higher
content of chlorophyll. Since RCs are naturally subjected to oxidative stress forcing them to
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be rebuilt very quickly [53], we speculate that WD, thanks to its content of antioxidants,
may have greatly reduced this turnover or increased its frequency. Higher photosynthetic
efficiency also means more biomass, with a 10% increase in the ratio for every 30% increase
in photosynthesis [62]. Ozone can effectively reduce photosynthesis with inevitable conse-
quences for plant growth [44], but by shielding the photosynthetic system from oxidation,
the plant’s growth and biomass can also be protected.

5. Conclusions

The results of the present study clearly showed the ability of WD to protect lettuce
plants from ozone-induced damage. Specifically, WD-treated plants exhibited lower dam-
age to the photosynthetic machinery, a higher content of chlorophyll (ca. 13%), a higher
antioxidant power (ca. 140%), as well as antioxidant molecules (i.e., caffeic acid and
quercetin, ca. 400 and 105%, respectively), and higher biomass (ca. 18%). Counteracting the
oxidative stress that occurred at the level of the photosynthetic system is speculated to be
the main mechanism by which WD protects the plant from ozone-induced damage. Moving
forward, WD can be seen not only as a natural product for stimulating plant productivity
but also as a means of protecting crop plants against oxidative stress.
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