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Abstract

In the seminal paper of Zadeh about Fuzzy Logic
[10], he defined fuzzy sets over the real unit in-
terval but in real systems applications fuzzy sets
over rational numbers in [0, 1] or over finite sets
of values of a linguistic variable were also used.
In this paper we try to analyze the differences be-
tween these different possible sets of truth-values
in the setting of residuated multiple-valued log-
ics underlying fuzzy sets. Moreover this analysis
also clarifies the differences between t-norms in
the strict sense (over [0, 1]) and t-norm like over
other linearly ordered sets, namely the rational
interval and finite chains.

1 Introduction

Membership functions for fuzzy sets were origi-
nally defined by Zadeh in [10] as functions taking
values in the real unit interval. Therefore, [0, 1] is
the most used set of truth-values for fuzzy logics.
Nevertheless, in the algebraic approach used in
the study of Fuzzy Logic in narrow sense, many
classes of algebras have appeared as the algebraic
counterpart of these logics. These classes con-
tain as prominent examples algebras over [0, 1],
but also algebras over other chains of truth-values
widely used in the applications of Fuzzy Logic,
such as the rational unit interval or finite chains.
In this paper, from the general results on the
structure and embeddability of these algebras, we
present some first results on the relations between
the real, the rational and the finite chain seman-
tics.

First we give in the preliminary section, the nec-

essary results on the generalization of the opera-
tions over [0, 1] to other chains, stressing two rel-
evant properties: divisibility (which is related to
continuity) and residuation (which is related to
left-continuity). This leads to the study of two
classes of algebras: BL and MTL-algebras. For
these classes of algebras we will study their mem-
bers defined over the real and the rational unit
interval and over finite chains, and their relations.

2 Preliminaries on t-norm like
operations

First of all we want to clarify the differences be-
tween R-implications, as defined by Trillas and
Valverde in [9], and residuum as defined in the
framework of residuated lattices and in the logic
of a t-norm (see the definition of BL in [5] or the
definition of MTL in [4]). R-implications were
initially defined from a t-norm∗ as,

R∗(x, y) = sup{z | x ∗ z ≤ y}

while the residuum of a t-norm ∗ is defined as the
operation →∗ such that ∗ and → form an adjoint
pair, i.e. they satisfy the condition:

x → y ≥ z if and only if x ∗ z ≤ y

which is equivalent to the following definition of
the residuum,

x → y = max{z | x ∗ z ≤ y}

Notice that R-implication is defined for each t-
norm, while residuum not. In fact the residuum
exists if, and only if, the t-norm is left-continuous.



Moreover, the residuum seems a better proposal
in order to deal with the Modus Ponens (see e.g.
[5])

Basic properties of a t-norm and its residuum are:

• left-continuity: A t-norm ∗ has residuum ⇒∗
if, and only if, it is left-continuous.

• order and residuum: x ≤ y if, and only if,
x ⇒∗ y = 1.

• Pre-linearity: max((x ⇒∗ y), (y ⇒∗ x)) = 1

• Definability of max: max(x, y) = min((x ⇒∗
y) ⇒∗ y, (y ⇒∗ x) ⇒∗ x)

This leads to the general definition of MTL-
algebras (the algebraic counterpart of the
Monoidal T-norm based Logic defined in [4]) as
algebraic structures A = 〈A,∧,∨, ∗,→, 0, 1〉 such
that:

• 〈A,∧,∨, 0, 1〉 is a bounded distributive lat-
tice,

• 〈A, ∗, 1〉 is a commutative monoid with neu-
tral element 1

• ∗ and → form and adjoint pair (→ is the
residuum of ∗)

• for all x, y ∈ A then (x → y) ∨ (y → x) = 1
(pre-linearity condition)

If the order defined by the lattice operators is to-
tal, A we say that A is an MTL-chain. Chains
play a basic role in the study of MTL-algebras
since every MTL-algebra is representable as sub-
direct product of MTL-chains, and thus equalities
valid for all chains are valid for every algebra.

Furthermore, the following result characterizes
continuous t-norms.

Divisibility: A t-norm is continuous if, and
only if, it satisfies divisibility, i.e. if x ≤ y,
there exists z such that x ∗ z = y.

Divisibility equation: A left-continuous t-
norm is continuous if, and only if, its corre-
sponding MTL-chain satisfies the divisibility
equation, i.e, for all x, y ∈ [0, 1], x ∗ (x ⇒
y) = min(x, y).

This leads to the definition of BL-algebras (the
algebraic counterpart of the Basic fuzzy Logic de-
fined in [5]) as residuated lattices satisfying pre-
linearity and divisibility or, equivalently, MTL-
algebras satisfying divisibility. It is also true
that every BL-algebra is representable as subdi-
rect product of BL-chains.

Therefore it seems natural to generalize t-norm
to t-norm like ∗ over a chain A (which is a dis-
tributive lattice with respect to min and max) and
generalize left-continuity by being residuated and
satisfying pre-linearity, and continuity by being
residuated and satisfying pre-linearity and divisi-
bility. Thus to study t-norm like we use the known
results about the structure of BL and MTL-chains
and their relation with t-norms, i.e. the operation
defining BL and MTL chains over the real unit in-
terval.

3 Structure of MTL and BL-chains
over the real and the rational unit
intervals

3.1 Structure of BL-chains

To study the structure of BL-chains we have at
disposal two main decomposition theorems for
BL-chains. The first one is based on the well-
known decomposition of a continuous t-norm as
ordinal sum of the three basic continuous t-norms,
which in [3] is generalized proving that every BL-
chain is an ordinal sum of the three basic types
(product, Gödel and MV-chains), or a subalgebra
of such an ordinal sum lacking some idempotent
elements. The second one is the decomposition as
ordinal sum of Wajsberg hoops.

Definition 1. A structure H = (H, ∗,⇒, 1) is a
hoop if ∗ is a commutative operation on H with the
neutral element 1 (i.e. x ∗ y = y ∗ x and 1 ∗ x = x
for all x, y) and further ⇒ is a binary operation
satisfying

(i) x ⇒ x = 1 ,
(ii) x ∗ (x ⇒ y) = y ∗ (y ⇒ x),
(iii) (x ∗ y) ⇒ z = x ⇒ (y ⇒ z)

for all x, y, z.
Moreover, we can define an order as: x ≤ y iff
x ⇒ y = 1.
A hoop is a Wajsberg hoop if it satisfies:



(W) (x → y) → y = (y → x) → x

Definition 2. Given a family of hoops {Hi | i ∈
I} and being I a linearly ordered set, the ordinal
sum is the hoop whose universe is A = (∪(Hi −
{1i})) ∪ {1} whose order is defined by
x ≤ y if, and only if:

x ≤i y, if x, y ∈ Hi − {1i}, or
x ∈ Hi − {1i}, y ∈ Hj − {1i}, and i < j, or
y = 1.

and whose ∗ is defined as,

x ∗ y =
{

x ∗i y, if x, y ∈ Hi − {1i}
min(x, y), otherwise

In a Wajsberg hoop A the following conditions
hold:
1) If 0 6= x ∗ y = x ∗ z, then y = z (weak
cancellation)
2) If a linearly ordered Wajsberg hoop A
contains an idempotent element, a, then A
is decomposable as ordinal sum of the Wajs-
berg hoops obtained restricting the operations to
A+

a = [a, 1A] and to A−a = {x ∈ A | x < a}∪{1A}.
3) If A is indescomposable and a ∈ A is idempo-
tent, then a has to be a bound of A.

Proposition 3. In a Wajsberg hoop if a mono-
tone sequence {ai | i ∈ ω}, has a limit α, then
x∗α =

∧
(x∗ai) if ai is a non-increasing sequence

and x ∗α =
∨

(x ∗ ai) if ai is a non-decreasing se-
quence.

Proof: If α belongs to the sequence, the result is
obvious. If the sequence is increasing then the
result is also true because ∗ is infinite distributive
with respect to ∨. Suppose that the sequence is
decreasing, α does not belong to the sequence and
the conclusion is not true, i.e. x ∗α < ∩(x ∗ ai) =
d > 0 (obviously it is impossible to be greater).
By divisibility there must exists an element β such
that both x∗β = d and by weak-cancellation this
imply that α < β < ai for all ai belonging to the
sequence which is impossible. 2

Theorem 4. [1] Any BL-chain is an ordinal
sum of (indescomposable) linearly ordered Wajs-
berg hoops.

3.2 BL-chains over the real and the
rational unit intervals

An interesting point is the difference between Wa-
jsberg hoops over the real or the rational unit in-
terval. In the real case it is well known that the
only Wajsberg hoops are:

• L, defined by the Lukasiewicz t-norm and its
residuum,

• C, defined by product t-norm and its
residuum over (0, 1],

• 2, isomorphic to the two-element Boolean al-
gebra.

However, this is not true over the rational unit
interval. The basic difference is the fact that the
continuity of the real case implies that each Wa-
jsberg hoop must contain only two Archimedean
components, 1 and (0, 1].

Definition 5. Let A be a Wajsberg hoop and let
∼ the following relation:

a ∼ b if, and only if, for some n ∈ ω, either
an ≤ b ≤ a or bn ≤ a ≤ b

Then, ∼ is an equivalence relation and the cor-
responding classes are called Archimedean com-
ponents. The component containing the element
a ∈ A will be denoted by [a]∼.

Proposition 6. Let C be a complete and dense
BL-chain and let A be a component of the decom-
position of C as ordinal sum of Wajsberg hoops.
Then A contains only two Archimedean compo-
nents which are {1} and A− {1}.

Proof: First notice that a indescomposable
Wajsberg hoop does not contain idempotent
elements different from the bounds (remember
that a hoop always has upper bound but not
always has lower bound).
Suppose that A has {1A} (the trivial
Archimedean component) and another
Archimedean component X 6= A − {1}. If
inf X = α ∈ A and this is not the infimum
of A, then by Proposition 3 it is clear that α
has to be an idempotent element and this is
contradictory with our assumption. On the other



hand if inf X = inf A then by asssumption there
must exist an element b, 1A 6= b ∈ A such that
[1A]∼ > [b]∼ > X and thus inf([b]∼) ∈ A and
it is different from the infimum of A. Thus
inf([b]∼) must be idempotent which leads to a
contradiction. 2

This result is concordant with the fact that over
the real unit interval the only indescomposable
Wajsberg hoops, possible components of a decom-
position of a BL-chain over the real unit interval,
are L, C and 2. Notice that all of them have
exactly two Archimedean components.

As an example take the ordinal sum (in the sense
of t-norms) L+Π+G and as ordinal sum of Wajs-
berg hoops is the ordinal sum L+C+(

⊕
2) where

the
⊕

refers to a sum with as many 2 components
as idempotent elements of the initial ordinal sum.

We move now to the case of the rational unit in-
terval. In that case the order of the chain is not
complete and thus Proposition 6 is not true. The
following examples show that we can find Wajberg
indecomposable hoops over the rational unit in-
terval having more than two Archimedean compo-
nents which cannot be the restriction of any inde-
composable Wajsberg hoop over the real unit in-
terval (that necessarily has only two Archimedean
components).

Example 1. Take the product hoop HΠ defined
over (0, 1] ∩ Q (the standard product chain re-
stricted to the rationals without zero). Take a cut
in the interior of the rational unit interval defin-
ing an irrational α ∈ (0, 1) and take the transla-
tion of HΠ over H = Q ∩ (α, 1] (denote by × the
translated t-norm like operation). Take an strictly
decreasing involution n : Q∩[0, 1] → Q∩[0, 1] such
that n(Q∩(α, 1] = Q∩[0, α) and define the t-norm
like over Q ∩ [0, 1] as,

x∗y =


x× y, if x, y ∈ H
n(x →× n(y)), if x ∈ H, and y /∈ H
n(y →× n(x)), if x /∈ H, and y ∈ H
0, otherwise

where →× refers to the residuum of ×. This
corresponds to the disconnected rotation (in the
sense of Jenei in [6]) of a cancellative hoop and
thus it is an MV-chain (a generalized version of
Chang’s MV-algebra). The elements of this alge-

bra are divided in two groups: the so-called “in-
finite” elements (those belonging to Q ∩ (α, 1]),
which form a filter, and the so-called “infinitessi-
mals” (the elements of Q ∩ [0, α)) which are neg-
ative and x ∗ y = 0 for all infinitesimals x, y.
Clearly, this Wajsberg hoop is indecomposable and
has three Archimedean components, {1}, Q∩(α, 1)
and Q ∩ [0, α).

Example 2. Take the lexicographic product of the
ordered Abelian group of integers (Z) with the sum
and the ordered Abelian group of positive rationals
(Q+) with the product operation and denote it by
Z×lex Q+. The negative cone of it is a (cancella-
tive) Wajsberg hoop having three Archimedean
components {(0, 1)}, {(0, r) | r ∈ Q ∩ [0, 1]} and
{(−k, r) | k ∈ N − {0}, r ∈ Q+}. Take finally
a cut in Q ∩ [0, 1] defining a irrational number
α ∈ (0, 1) and take the transform of the three
Archimedean components into the three intervals
{1}, Q∩(α, 1) and Q∩(0, α). The resulting struc-
ture is an indecomposable and cancellative Wajs-
berg hoop over the rational unit interval that has
three Archimedean components.

Notice that the first example is a bounded inde-
composable Wajsberg hoop (i.e. an MV-chain),
while the second one is a cancellative indecom-
posable Wajsberg hoop

3.3 MTL-chains over the real and the
rational unit intervals

As regards to MTL-chains, the situation is com-
pletely different from that of BL. On the one
hand, a general result describing their structure
is not known yet, not even for those defined over
the real unit interval. On the other hand, as a
positive result, MTL-chains enjoy the following
powerful embedding property, which is not true
for BL-chains.

Theorem 7. Every countable MTL-chain is em-
beddable into an MTL-chain defined over the real
unit interval.

The proof of this theorem is given by Jenei and
Montagna by means of a constructive method in
[7].

As a consequence we obtain the following corol-
lary.



Corollary 8. Every MTL-chain defined over the
rational unit interval is the restriction of an
MTL-chain defined over the real unit interval.

The extension of the t-norm like operation from
rationals to reals, is defined in the only possible
way that preserves the left-continuity:

For every α, β ∈ [0, 1] α ◦ β := sup{x ∗ y : x ≤
α, y ≤ β, x, y rational numbers}.

However, this method of completion does not pre-
serve many other properties such as continuity
(i.e. divisibility) or cancellation.

As an example consider the chain in Example 1.
The completion of this chain in the real interval
introduces a new element separating the two non-
trivial Archimedean components, say α. Then for
every x > α, x ◦ α = α and α ◦ α = 0, and thus
the cancellation and the divisibility are not true
anymore.

4 About finite MTL and BL-chains

Now we focus on finite chains. As in the gen-
eral case, the structure of such chains is com-
pletely known for BL-chains and unknown for
MTL-chains. Indeed, since there are no finite
product chains (except for the trivial one and 2),
all finite BL-chains are ordinal sums of finite MV
and Gödel chains. Taking into account that finite
MV-chains are isomorphic to the  Lukasiewicz n-
valued chains Ln, and the obvious structure of
finite Gödel chains Gn, we obtain:

Proposition 9. Each finite BL-chain is isomor-
phic to an ordinal sum of a finite subfamily of
{Ln | n ≥ 1} ∪ {Gn | n ≥ 1}.

This result is equivalent to the representation the-
orem for finite smooth t-norm given in [8].

Since for every n ≥ 1, Ln (resp. Gn) is a subal-
gebra of the MV-chain (resp. the Gödel chain)
over the rational unit interval defined by the
 Lukasiewicz t-norm (resp. the minimum t-norm),
and this is also a subalgebra of L (resp. G, i.e.
the chain over the reals defined by the minimum
t-norm), every finite BL-chain is embeddable both
in a rational chain and in a real chain.

As regards to MTL-chains, Theorem 7 guaran-

tees that, in particular, all finite ones are embed-
dable into an MTL-chain over the real unit inter-
val. Nevertheless the constructive method given
by Jenei and Montagna in [7] does not prove that
these chains are embeddable into a chain over the
rationals.

As mentioned before, Jenei and Montagna’s em-
bedding does not preserve all properties in gen-
eral. For instance, when applied to a finite BL-
chain which is not a Gödel chain, we do not ob-
tain a BL-chain over the reals (see for example
the completion of Ln in [2]).

5 Conclusions

As a summary, over the rational unit interval
there are as many MTL-chains as restrictions of
MTL-chains over the reals, while there is a very
large set of BL-chains that are not isomorphic
restrictions of BL-chains over the unit real in-
terval (recall that by restriction the number of
Archimedean components remains invariant). It
remains as an open problem the description of the
indescomposable Wajsberg hoops over the ratio-
nals in order to obtain a full characterization of
BL-chains over the rational unit interval.

Regarding finite chains, we have fully explained
their structure and embeddability properties in
the rational and in the real unit interval, in the
BL case. However, for finite MTL-chains we only
know that they are embeddable into MTL-chains
over the reals. Their structure and embeddability
into the rational MTL-chains are also open prob-
lems.
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[1] P. Aglianó and F. Montagna. Varieties
of BL-algebras I: general properties, Journal
of Pure and Applied Algebra, 181 (2003) 105–
129.

[2] A. Ciabattoni, F. Esteva and L. Godo.
T-norm based logics with n-contraction,



Neural Network World 5 (2002) 441–452.

[3] R. Cignoli, F. Esteva, L. Godo and A.
Torrens. Basic Fuzzy Logic is the logic of
continuous t-norms and their residua, Soft
Computing 4 (2000

[4] F. Esteva and L. Godo. Monoidal t-
norm based logic: Towards a logic for left-
continuous t-norms, Fuzzy Sets and Systems
124 (2001) 271–288.
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