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Abstract

Protein-protein interactions (PPIs) represent a vast and complex network of

intermolecular relationships essential for organism, in which they control a wide

range of biological processes. This network plays a vital role in the initiation

and progression of cancer; hence, its understanding is crucial for identifying the

key functional modulators of tumor progression and metastasis, and for the

therapeutic intervention. During my PhD, I had the opportunity to contribute

to the structural and functional studies on two different PPIs related to human

cancer, the human thymidylate synthase (hTS) homodimer and the

heterodimeric interaction between human yes-associated protein (hYAP) and

human transcriptional enhanced associate domain 4 (hTEAD4). In the first

chapter, the monomer-monomer interface of hTS was exploited to determine

and deeply investigate residues critical for the quaternary assembly of the

functional enzyme, employing a mutagenic approach. Hence, two sets of hTS

interface variants, defined alanine and charged interface variants, have been

generated and investigated through circular dichroism (CD) thermal

denaturation, kinetic analyses, and X-ray crystallography. We have studied the

two interface hot spots F59 and Y202, for which previous studies demonstrated

the importance in the hTS dimerization process. The hTS variants F59A and

Y202A have been analyzed by means of their thermal stability profiles in

comparison to the native enzyme, and by attempting/performing their

structural characterization. Notably, the crystallographic structure of the

Y202A mutant has been also determined in complex with a dimer disrupter

inhibitor, here named compound 1, providing significant information for the

rational design of novel hTS interface-targeting molecules. In the second

approach, we pointed the attention on the interface residues Gln62 and Thr251

facing themselves on the dimer halves, which have been mutated into Arg and

Glu, respectively. The introduction of these charged amino acidic residues

affects both the enzyme activity and stability. Our mutagenic approach

successfully led to the destabilization of the hTS homodimer, as shown by their

structural analyses, evidencing a slight aperture of their quaternary assembly,

IV



localized in the interface areas surrounding the mutated residues, also

perturbing the active/inactive conformational equilibrium of the enzyme. The

interactions of the new variants with the physiological substrate dUMP and its

analogue FdUMP have been further characterized. Thus, our hTS interface

variants, having a more accessible monomer-monomer interface area may

represent useful tools exploitable to identify and screen innovative

interface-targeting inhibitors. In the second chapter, the heterodimeric

interaction between the Hippo-pathway terminal effector proteins, hYAP and

hTEAD4, was examined. To expand the limited knowledges on this key PPI for

tumorigenesis and on its modulation, we developed protocols for co-expression,

co-purification and crystallization of hYAP TEAD-binding domain (TBD):

hTEAD4 YAP-binding domain (YBD) complexes (named S, M, and L

complexes). By means of X-ray crystallography, the structure of complex S has

been solved, defining new targetable interfaces between the partner proteins.

Notably, this work reports the development of the first protocol for the

heterologous co-expression and co-purification of full-length hYAP in complex

with hTEAD4-YBD (named XL complex), as well as its preliminary structural

characterizations. The pilot data here obtained on the hYAP:hTEAD4 complex

XL proposes the formation of extended interface areas, larger than those

occurring in the complex with the hYAP TBD fragment. The study of these

complexes provides interesting new clues helpful for the rational design and the

development of molecules able to modulate this PPI playing a critical role in

wide-range forms of cancer.
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Part I

General Overview



Protein-protein interactions (PPIs): basic concepts, implication in cancer and main experimental applied in PPI
studies

1.1 Protein-protein interactions (PPIs): basic

concepts, implication in cancer and main

experimental applied in PPI studies

Multi-protein complexes are essential biomolecular machines present in all

kingdoms of life. They are involved in almost all biological reactions, being

crucial to life itself and to the pharmaceutical industry as therapeutic targets

and agents. Within a cell, a great number of proteins works cooperatively to

make specific functions, mainly performed by establishing intermolecular

interactions with other proteins, or with DNA and RNA [1]. Collectively,

cellular biomolecular interactions constitute the “interactome”, currently a key

topic in systems biology [2].

In living organisms, protein-protein interactions (PPIs) are a vast and complex

network of intermolecular relationships essential for performing and regulating

most biological processes [3], including catalysis of metabolic reactions, DNA

replication and transcription, intracellular molecular transport, formation of

immunocomplexes and signal transduction. It has been highlighted that over

80% of proteins do not work alone, but in complexes with partner proteins [4].

Proteins involved in the same cellular processes across species are often

conserved, together with their interaction network [5]. The same protein can

interact with several different partners, being involved in the regulation of a

plethora of processes. Thus, PPIs are central hubs for various intracellular

signaling pathways, defining a complex cellular scenario. Proteins acting as

enzymes, adaptors, transcriptional factors, co-transcriptional regulators, and

intrinsically disordered proteins participate to a complex and large set of

interactions [6]. Establishing different PPIs can lead to different functional

outcomes, e.g. by modulating kinetic properties, substrate specificity and

channeling or conformational changes of an enzyme. Through the

activation/deactivation of specific partners, PPIs can have regulatory roles at

either the upstream or the downstream level of a pathway [7].

A PPI is defined as “direct” if the molecular interfaces of the two partner
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proteins are in physical contact. Otherwise, if their interaction in the complex is

mediated by other proteins, the PPI is defined as “indirect” or “functional”.

Here, only direct binary PPIs are discussed. The binary PPIs can be variably

classified according to the structural and functional characteristics of the

partner proteins. First, they may occur between two or more identical

(homo-oligomers) or different (hetero-oligomers) protein units [8].

Homo-oligomers can be further classified as isologues or heterologous [9]. In

binary isologues assemblies, the interaction between protomers is mediated by

the same surface on both units. On the other hand, heterologous assemblies

occur through different interfaces, since the interactors differ as well [10].

Second, PPIs can be defined as obligate or non-obligate. Homo-oligomers are

typically characterized by obligate PPIs, and they function only upon complex

formation. In contrast, hetero-oligomers are usually composed of units that can

exist in cells also in the isolated state [10]. Third, considering the persistence of

the interaction, PPIs are divided into transient or permanent. The formers are

PPIs that quickly form and dissociate under certain biological conditions, e.g.

allowing cells to quickly respond to external stimuli. Transient PPIs commonly

involve globular domains and small structural epitopes, like short peptide

motifs [11], and they control many cellular processes, like signal transduction,

cell growth, metabolic function, DNA replication and transcription. It is well

known that the recruitment and the assembly of transcription complexes at

specific promoters, as well as the interaction of transcription factors with either

DNA cis-elements or co-transcriptional regulators are transient. On the other

hand, permanent complexes persist for long time and are mediated by extended

and stable interface interactions on partner proteins [11]. Obligate interactions

are usually permanent, while non-obligate interactions can be transient or

permanent [4, 10]. This classification is not absolute, and the nature of

protein-protein associations can be affected by environmental conditions.

The protomers’ concentration and their free binding energy drive the complex

formation; notwithstanding the availability of the interacting interfaces, acting

as binding sites on the partner proteins, is a fundamental requisite [12]. Specific

features of PPI interfaces are hydrophobicity and flatness [13]. Even thought,
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studies

PPI surfaces can be very large [2] , these surfaces are characterized by the

presence of hot spots, which drive the recognition between the protomers,

contributing to a significant portion of the overall interaction binding energy. A

hot spot is defined as a critical residue that, if mutated to an alanine, leads to a

difference in binding energy >2 kcal/mol [14]. Determination of hot spots is

crucial to unveil the mechanism of complex formation and their mutation

significantly alters complex formation and stability [15]. The experimental

identification of hot spots is achieved through alanine scanning mutagenesis

studies. In this approach, the residue of interest is mutated into an alanine,

thus the wild type and mutated proteins are analyzed to determine differences

in their free energy of binding [16]. Alternatively, the effects on PPI stability

can also be investigated by mutating the hot spot into other residues that

perturb the interactions between the partner interfaces. The identification of

PPI hot spots gives important insight into the mechanism of complex formation,

exploitable for drug discovery purposes. Alterations of PPI hot spots are also at

the basis of several types of cancer, where these mutations perturb the

formation of physiological protein complexes, leading to pathological outcomes.

The mutagenetic approach (to alanine or other amino acid) can thus provide

key information on role of hot spot residues and the biological effects induced by

their modification [17].

The composition analysis of PPI interfaces has revealed that these surface areas

are generally enriched in both aromatic and aliphatic hydrophobic amino acids,

but also arginine and asparagine are often present [18]. Tryptophan, arginine

and tyrosine are the most common hot spots found in interface regions [19]. As

matter of fact, hydrophobic interactions drive PPI formation, but hydrogen

bonds and salt bridges mainly contribute to both binding specificity and

stabilization [8]. In some protein complexes, the macromolecular units are

covalently linked by disulfide bridges, giving additional structural stabilization

to these oligomers [18]. For instance, insulin is composed by two chains linked

together by disulfide bonds [20]. Moreover, collapsin-1, a member of the

semaphorin family of axon guidance proteins, covalently dimerizes, a

requirement to perform collapse activity [21]. Also, fibronectin is a protein
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dimer comprised of two covalently linked antiparallel units [22]. Different

secondary structure elements can be observed at the interface areas; α-helices

and β-strands are the main components of homodimer interfaces, nevertheless

non-regular (NR) structures, such as turns and loops, principally contribute to

intersubunit interactions in heterocomplexes [23]. Based on secondary structure

composition, several classes of interfaces can be distinguished: α − α, β − β,

mixed α− β, α−NR, β−NR and NR−NR [23].

To date, the human interactome consists of over 64,000 binary PPIs

(Interactome Atlas) [24, 11]. The elucidation of the whole human cellular

interactome remains challenging, but it is fundamental to explain the biological

processes occurring under physiological and pathological conditions. Alterations

of PPIs are at the basis of a large number of human pathologies, e.g. cancer,

infectious and neurodegenerative diseases, thus PPI targeting represents a valid

therapeutic strategy [4, 25]. In cancer, PPIs endorse tumorigenesis, tumor

progression, invasion, and metastasis; furthermore, they also regulate the

biological mechanisms accounting for the development of the physical and

molecular features defined as hallmarks of cancer. For instance, PPI alterations

are responsible for resistance to cell death, proliferative signaling, promotion of

inflammation, induction of angiogenesis, invasion, and metastatic processes.

Moreover, some PPIs contribute to the development of multiple oncogenic

features; it is well known that MDM2–p53 and Myc–Max play key roles in

evading growth suppression and cell death, as well as in promoting genomic

instability and cancer metabolism [13].

Aberrant PPIs have been observed in both solid tumors and leukemia, such as

breast and prostatic cancer, metastatic melanoma, multiple myeloma, chronic

lymphocytic and acute myeloid leukemia [26]. For example, in chronic

lymphocytic leukemia, the antiapoptotic proteins Bcl2 and Bcl-xL prevent the

physiological oligomerization between Bak and Bax pro-apoptotic proteins and

the subsequent apoptosome formation, resulting in the extended survival of

leukemic B cells [27]. Other than promoting tumorigenesis, PPI alterations are

also involved in the cellular processes leading to the development of drug

resistance in cancer cells. The study of PPI relationships in cancer biology has

4
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significantly increased in last years, and their targeting represents a promising

anticancer approach [13]. Targeting PPIs is a challenging drug discovery

process since the peculiar features of these interacting interfaces [26]. Indeed,

these areas are large and mostly hydrophobic with quite unique shapes, often

flat and few grooves and pockets; these peculiar features complicate the design

of targeting molecules. PPI modulators should thus be able to cover large

surface areas and to take hydrophobic contacts, often leading to high molecular

weight and poorly soluble compounds that would compromise their

pharmacokinetic profile [28]. PPI targeting is further complicated by the

absence of natural ligands, exploitable as starting point for hit identification,

and by the poor accessibility of targetable areas, often hidden by the protomers,

especially in obligate oligomers [26]. According to the biological role of the

targeted interaction, its modulation can be achieved by either PPI inhibitors or

stabilizers. These modulators can bind directly at the protein-protein interface

(orthosteric modulation) or indirectly to allosteric sites (allosteric modulation).

For example, the small molecules RG7112 and RO5045337 are orthosteric

inhibitors of MDM2-p53 interaction currently in clinical phase; whereas

Eribulin mesylate and Vinflunine detartrate are allosteric inhibitors of

Tubulin-α– tubulin-β complex, used in the treatment of breast and bladder

cancers, respectively. In the past years, several anticancer compounds targeting

PPIs have been developed and, now, they are at different stages of clinical trials

[28]. On the chemical standpoint, PPI modulators are classified into three

groups: small molecules, antibodies, and peptides. The first type is often

applied to target tight, narrow areas, surrounding specific PPI hot spots [26].

To cover huge PPI interfaces, antibodies and peptides are usually more

effective. Although monoclonal antibodies selectively recognize and bind to

large interface areas and are widely used in clinical treatments, their practice is

expensive and often leads to adverse immune reactions. On the other hand,

PPI-targeting peptides are designed to target hot spot areas of one protomer,

mimicking the structure of the partner protein. These peptides have high

specificity and affinity for the protein target, but the degradation by cellular

hydrolases could limit their efficacy [26, 29]. The investigation of PPIs cannot
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rely on a single technique but it combines different approaches, including in

vitro, in vivo and in silico methods in a complementary fashion [6]. The main

in vitro approaches used for this purpose are affinity chromatography,

co-immunoprecipitation, mass spectrometry (MS), ultracentrifugation, nuclear

magnetic resonance (NMR), isothermal titration calorimetry (ITC), surface

plasmon resonance (SPR), circular dichroism (CD) spectroscopy , X-ray

crystallography and electron microscopy (EM) [1, 5, 11, 28, 30].

Structural biology, collectively including information obtained through X-ray

crystallography, single particle Cryo-EM and NMR studies, allows to

characterize the molecular basis of PPIs providing essential knowledge on their

mechanisms of formation and regulation, exploitable for the development of

effective modulators [31]. Additional low-resolution structural information can

also be achieved by Small Angle X-ray scattering (SAXS) studies, allowing to

determine the size of protein complexes and, hopefully, to rebuild their external

shape. Among these techniques, X-ray crystallography represents the ‘gold

standard’ for the atomic-level characterization of macromolecule structures and

PPI complexes [32]. Indeed, through crystallographic studies we can provide

atomic-level views of the interacting surfaces in macromolecular complexes. To

date, several biological complexes, playing pivotal cellular roles, have been

characterized through X-ray crystallography; meaningful examples include

eukaryotic and prokaryotic ribosomes and their functional complexes [33, 34, 35,

36], the proteasome [37, 38, 39], and RNA polymerase [40, 41, 42]. This

technique allows also high-resolution characterization of drug binding to PPI

interfaces [28], elucidating their binding modes and giving crucial information

to support rational design of more powerful modulators [26].

1.2 Overview of the thesis work

During the three-years of my Ph.D., carried out in the laboratory of Prof.

Stefano Mangani and Prof. Cecilia Pozzi, my research activities have been

focused on structural and functional studies of protein-protein complexes

related to human diseases and, mainly, cancer. The aim of this work was to
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gain new mechanistic insights into selected targets and their PPIs, supporting

the identification and development of innovative inhibitors. Through X-ray

crystallography and other biophysical techniques, two different PPIs have been

investigated with the goal to obtain valuable data about the mechanistic aspects

of the protein inhibition to progress towards more knowledge in the medicinal

chemistry field and eventually to design and synthetize better inhibitors against

the here studied PPIs. Using X-ray crystallography, I have been able to obtain

atomic-level information on protein-ligand and protein-inhibitor complexes.

During the development of this Ph.D. thesis project, my activities spanned from

molecular cloning to the development of methods for heterologous protein

expression in prokaryotic systems and of reliable protocols for their purification,

and to the characterization of proteins by means of biochemical, spectroscopic

and kinetic analyses and X-ray crystallography.

In the second part, I describe the studies carried out on human thymidylate

synthase (hTS), to target both the enzyme active site and the

monomer-monomer interface of the hTS homodimer (Figure 1.1). TS is an

obligate homodimeric enzyme which provides the only de novo source of dTMP

required for DNA biosynthesis, thus it represents an important target in the

oncology field [43]. Several chemotherapeutic agents targeting the hTS active

site are currently in clinical use, but they are characterized by limited efficacy

for the onset of drug resistance due to TS overexpression. Indeed, hTS acts as

translation repressor of its own mRNA (TS-mRNA). Despite the TS-mRNA

binding site on hTS is still uncharacterized, the experimental evidence suggests

the implication of the hTS dimer interface in hTS-mRNA recognition and

binding. Moreover, since hTS is an obligate homodimer, the alteration or

disruption of its dimer assembly inactivates the enzyme. Thus, among the new

strategies to block hTS activity without triggering drug resistance mechanisms,

there is the disruption of its homodimer quaternary assembly. For this purpose,

in this work, we combine targeted mutagenesis, structural and biophysical

studies to understand the role of important interface residues in the molecular

recognition of the partner subunit of hTS, providing key information for the

rational design of interface-targeting inhibitors. Here, mutagenic studies at the

7



hTS homodimer interface have been performed to deeply investigate the role of

few identified hot spots in the enzyme dimerization process. Two sets of hTS

interface variants, alanine and charged interface variants, have been generated

and investigated by means of circular dichroism (CD) thermal denaturation and

kinetic analyses, and X-ray crystallography. The introduction of charged amino

acid residues in positions 62 and 251 effectively led to the destabilization of the

hTS homodimer, perturbing also the conformational equilibrium between the

active and inactive states of the enzyme. The interactions of the new variants

with the physiological substrate dUMP and its analogue FdUMP have been

further explored. On the other hand, the alanine mutants are more similar to

the native enzyme, resembling its structural and functional properties. The

determination of the X-ray structure of the hTS Y202A mutant in complex

with an interface-targeting inhibitor has provided meaningful information for

the rational design of novel hTS interface-targeting molecules. Thus, the

findings hither reported show new clues on the mechanism regulating this

obligate homo-oligomeric enzyme, and provide insights for its pharmacological

inhibition. In the third part, I describe the studies performed on two proteins

belonging to the Hippo pathway, namely hYAP (human Yes-associated

proteins) and hTEAD4 (human Transcriptional Enhanced Associate Domain 4),

with a special focus on their heterodimeric interaction. hTEAD4 is a

transcriptional factor able to induce gene transcription only upon hYAP

binding. Under pathological conditions, dysregulations of hYAP:hTEAD4

functional association can lead to tumorigenesis, making this PPI a target for

the development of innovative anticancer drugs [44]. Since its recent discovery,

targeting YAP:TEAD interaction has been raised as an attractive therapeutic

strategy in the oncology field. To date, structural information about hYAP and

hTEAD4 full length proteins is missing and knowledge about their interaction is

incomplete. The restricted structural data available on this PPI limit the

development of hYAP:hTEAD4 inhibitors. The design of new molecules

targeting this PPI remains challenging, but of great interest for the scientific

community. To explore this PPI and its modulation, we have focused on the

characterization of the YAP-Binding Domain (YBD) of hTEAD4 and of its

8
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complex with either hYAP or different segments of its TEAD-Binding Domain

(TBD) (Figure 1.1). On this purpose, I have developed protocols for

co-expression, co-purification and crystallization of hYAP TBD:hTEAD4 YBD

complexes. The structural results achieved on these complexes have expanded

the current knowledge on this PPI, defining new targetable interfaces between

the two protein partners. Furthermore, this work reports the development of

the first protocol for the heterologous co-expression and co-purification of

full-length hYAP in complex with hTEAD4-YBD (Figure 1.1). The preliminary

data obtained on the hYAP:hTEAD4 complex suggests the formation of

interface areas larger than those occurring in the complex with the isolated

hYAP TBD. Progress in the study of this complex will provide key information

on the interactions between these human oncoproteins. At the end of this

manuscript, the list of published articles, posters and conference

communications, done during my Ph.D. program, is also reported.
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Figure 1.1: Schematic overview of the main studies reported in the thesis.
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Enzymatic role of hTS

Thymidylate synthase (TS, E.C. 2.1.1.45) is a highly conserved enzyme, which

has a pivotal role for cell survival and replication, since its implication in DNA

biosynthesis [45, 46]. TS is part of the folate metabolic pathway, where it accounts

for the de novo pyrimidine biosynthesis (Figure 2.1 A) [43, 46, 47]. This section

is focused on human TS (hTS), representing a validated target for anti-cancer

chemotherapy. Various hTS inhibitors, targeting the enzyme active site, are

currently applied in clinic; nonetheless, their efficacy is limited by the onset of

drug resistance due to TS overexpression [42, 47, 48, 49]. A deeper understanding

of the drug resistance mechanisms involving this pivotal enzyme would allow the

development of improved anticancer treatments. This section resumes the current

knowledge on the catalytic mechanism, the translation regulatory role, and the

structure of hTS, and the main inhibition strategies reported in literature.

2.1 Enzymatic role of hTS

hTS catalyzes the reductive methylation of 2’-deoxyuridine-5’-monophosphate

(dUMP) to 2’-deoxythymidine-5’-monophosphate (dTMP) using the cofactor

N5,10-methylene-5,6,7,8,-tetrahydrofolate (mTHF), as reductant agent and

carbon donor (Figure 2.1 B) [46]. At the beginning of the catalytic process, the

thiolate moiety of active site Cys195 attacks the carbon atom in position 6 (C6)

of the dUMP pyrimidine base, forming a covalent adduct. This bond activates

the nearby C5 atom of dUMP, which covalently binds the cofactor mTHF,

forming a ternary complex. At this stage, the dUMP C5 accepts the methyl

moiety and the hydride donated by the mTHF C11, leading to the formation of

the products dTMP and 7,8-dihydrofolate (DHF), afterwards released from the

enzyme [46, 52, 53]. Inside cells, the cofactor mTHF is cyclically regenerated by

the subsequent activities of two enzymes, dihydrofolate reductase (DHFR),

which uses NADPH to reduce DHF to 5,6,7,8-tetrahydrofolate (THF), and

serine hydroxymethyl transferase (SHMT), that methylates THF to mTHF,

concomitantly converting serine to glycine (Figure 2.1 B) [46].On the other

hand, the TS product dTMP is then phosphorylated by thymidylate kinase to

2’-deoxythymidine-diphosphate (dTDP), which is subsequently phosphorylated
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Figure 2.1: (A) Schematic diagram of de novo d TMP synthesis involving hTS. (B)Scheme
of the reaction mechanism proposed for the TS catalyzed reaction [50, 46, 51].
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by nucleoside kinases to 2’-deoxythymidine-triphosphate (dTTP), and thus

incorporated during DNA biosynthesis [46, 54]. In human cells, hTS provides

the only de novo synthetic source of dTMP. The inactivation or downregulation

of hTS alters replication and leads to apoptosis of rapidly dividing cells, a

process known as “thymineless death” [55, 56]. This makes hTS an important

target for anticancer therapy (vide infra, section 2.5) [43, 47, 49, 57].

2.2 Structure of hTS

hTS is an obligate homodimer, having each subunit composed of 313 residues

(molecular weight of ≈ 35 kDa). Several hTS structures have been deposited in

the Protein Data Bank (PDB) over the last years, showing the enzyme in its

apo-state and in different binary and ternary complexes with substrates and

inhibitors [47]. hTS has a mixed α/β-fold, showing 7 α-helices and 10 β-strands

arranged in three layers: a six-stranded β-sheet, forming the

monomer–monomer interface, a long α-helix spanning across the β-sheet and

flanked by two shorter helices, and a mixed layer containing the other four

helices and two antiparallel two-stranded β-sheets [43, 47]. In addition, each

subunit contains two domains: the large (residues 1–98 and 130–313) and the

small (residues 99–129) domains. The former domain consists of five α-helices

and the six-stranded β-sheet, whereas the latter domain of four α-helices [43,

58, 59]. hTS works as obligate homodimer, indeed residues from both subunits

contribute to the active site of each protomer [53, 60, 61]. The hTS active site

is a deep L-shaped cavity, characterized by two pockets hosting the substrate

dUMP (substrate binding pocket) and the cofactor mTHF (cofactor binding

pocket) [60, 62]. The structural information available on hTS, highlights the

occurrence of different functional enzyme states, named active and inactive

conformations [59, 63]. From a functional standpoint, these conformations of

hTS homodimers, mainly differ in the orientation of the catalytic loop,

including residues 181–197 and bearing the catalytic Cys195. In the active

conformation, Cys195 is exposed inside the catalytic cavity and the enzyme can

interact with its physiological substrates dUMP. On the other hand, in the

15
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Figure 2.2: Cartoon representations of inactive (A) and active (B) conformations of hTS (in
white cartoon), differing for the orientation of the catalytic loop, residues 181-197 (in green
and magenta cartoon, respectively). The position of the catalytic Cys195 (in sticks, green and
magenta carbon atoms in the inactive and active conformation, respectively).

inactive conformation the catalytic loop is twisted by ≈180◦ shifting Cys195

outside the catalytic cavity, toward the dimer interface [53, 60, 64]. Other

structural differences are localized in regions 99–129 and 144–158, both highly

flexible in the inactive conformation (usually missing in structural models), but

fully ordered in the active state [61, 65, 66, 67]. A dynamic equilibrium between

these functional conformations of hTS exists in solution and within cells. The

presence of molecules able to bind within the active site (e.g. substrate,

substrate analogs/inhibitors) can shift this equilibrium towards the active

conformation, whereas high concentrations of sulfate/phosphate anions have the

opposite effect, stabilizing the inactive conformation [58, 64, 67, 61, 68].

Notably, various hTS residues have been shown to play a role in this dynamic

equilibrium and their mutation can stabilize the enzyme in a specific

conformation. The hTS mutants R163K and V3L are reported to favor the

active and inactive conformation, respectively [69, 66].

2.3 hTS dimer interface and monomer-dimer

equilibrium

The hTS dimer interface is generated by the interactions between the large

six-stranded β-sheets of two facing protomers, thus classifying it as a β − β
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interface [43, 58, 70, 23](Figure 2.3). The interface area involves forty-five

residues of each monomer [43], and, among them, seven arginines and six

aromatic residues [70, 71] are considered pivotal to keep interaction with the

cognate subunit [15, 72]. Former computational and experimental studies based

on alanine scanning have identified various hot spots at the hTS interface

(namely Lys47, Phe59, Arg175, Ile178, Trp182, Leu198, Tyr202, and Tyr213)

[70, 71]. The interface area is slightly modified by the active/inactive state of

hTS but none of these hot spots is affected by the enzyme conformation. The

modulation of the interface interacting area either by point mutations or by

molecules able to bind to it, can interfere with the hTS dimeric assembly, also

perturbing the catalytic activity of the enzyme [58, 67, 70, 71]. Further the

active/inactive equilibrium, hTS can also shift between the monomeric and

dimeric assembly [43, 46, 58]. The monomer is thought to regulate the hTS

mRNA translation through a negative feedback mechanism (vide infra, Section

2.4). The characterization of the mechanisms regulating this monomer-dimer

equilibrium is pivotal to elucidate the hTS regulatory function accounting for

drug resistance in cancer cells. Recent evidence on hTS have shown that the

monomer-dimer equilibrium is concentration dependent [58, 73].

Ultracentrifugation analysis have shown that at concentration >5 µg mL -1 (70

nM) the protein is mainly dimeric, whereas comparable abundances of

dissociated and associated hTS dimers are reached at protein concentrations

≈2.5 µg mL-1 (35 nM). The abundance of the monomer increases by decreasing

the hTS concentration and at concentrations <0.75 µg mL-1 the protein is

mainly monomeric [73]. Further evidence on this equilibrium have been

provided by fluorescence resonance energy transfer (FRET) analysis [63]. By

this technique, the equilibrium constant for the dimer dissociation has been

determined in solution, resulting of 2 x 10-7 M, corresponding to a ∆G◦of ≈38

kJ mol-1 [63].
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2.4 hTS as translational regulator: the

hTS-mRNA interaction

hTS is also a mRNA-binding protein, may contributing to the regulation of the

expression of various genes; thus, hTS is a critical regulator of several key cellular

aspects, including apoptosis and chemosensitivity. In vitro studies have indicated

that hTS negatively regulates the translation of the textitp53 tumor suppressor

gene and of textitc-myc [74], by acting as translational repressor [75, 64, 76, 77].

hTS is also able to bind its own mRNA (hTSmRNA), determining a feedback

inhibition mechanism that regulates the intracellular level of hTS [35, 36, 78].

The hTS-hTSmRNA interaction has a high-binding affinity, with a dissociation

constant (Kd) in the low nanomolar range [78, 79]. Two different hTS binding

sites have been identified on hTSmRNA, recognizing the enzyme by one or both

cis-acting elements. The first region (site 1) consists of nucleotides (nt) 81–110,

adopting a stem loop structure and including the initiation codon [80]. hTS

binding to this element can thus stabilize the hairpin loop making the start

codon unavailable for ribosomal recognition. The second cis-element (site 2) lies

between nt 450-520, in the protein-coding region [74, 76, 81]. In vitro and in

vivo studies have shown that each site could interact independently with hTS,

nonetheless the concomitant binding to both elements is required to achieve the

full translational autoregulatory effect [47]. The active/inactive and monomer/

dimer equilibria of hTS affects the hTSmRNA binding. Indeed, upon binding

to the substrate or to substrate-analogue inhibitors, switching the enzyme to

the active conformation, reduced levels of hTS-hTSmRNA are observed [64, 81].

The net effect of ligand binding is thus the abrogation of translational repression,

resulting in hTS biosynthesis and increased cellular levels [81], responsible for

the onset of drug resistance upon treatment with hTS inhibitors binding to the

active enzyme [82, 83].The form in which hTS interacts with hTSmRNA is still

controversial; either the inactive dimer or the hTS monomer can be responsible

for this interaction. Nonetheless, increasing evidences seem to suggest that is

the hTS monomer that binds to hTSmRNA. The hTSmRNA binding site on

hTS is yet uncharacterized, but experimental evidences suggest the implication
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of the hTS dimer interface in hTSmRNA recognition and binding [76, 83, 84].

Peptides matching the TS interface sequences 31–47, 56–72, 131–147, 176–192,

and 201–217, were reported to bind to hTSmRNA [76].

2.5 Inhibitors of hTS in anticancer therapy

hTS is a well-established target for anticancer therapy and few hTS inhibitors

are currently used in clinical practice for the treatment of the

most-difficult-to-treat cancers, such as colorectal, pancreatic and non-small-cell

lung cancer [85, 86]. The inhibitors to date developed bind to the hTS the

active site, resembling either the substrate dUMP (dUMP-like inhibitors) or the

cofactor mTHF (folate-like inhibitors).

The nucleotide analogues 5-fluorouracil (5-FU), Capecitabine, and Tegafur are

the most effective hTS-targeting drugs [47]. 5-FU is a prodrug, converted inside

cell into three main, active metabolites: fluorodeoxyuridine-monophosphate

(FdUMP), acting as hTS inhibitor, fluorodeoxyuridine triphosphate (FdUTP),

and fluorouridine triphosphate (FUTP), both targeting DNA/RNA biosynthesis

[87]. FdUMP forms a slowly-reversible ternary complex with hTS, leading to its

inactivation. Capecitabine and Tegafur are also 5-FU prodrugs, activated inside

cells by thymidine phosphorylase and uridine phosphorylase, and by

cytochrome P450, respectively [88, 89]. On the other hand, the most effective

mTHF-like (or antifolate) drugs are methotrexate (MTX), pemetrexed (PMX),

raltitrexed (RTX, also known as Tomudex), and pralatrexate (PDX). The

cellular internalization of folate analogues require a carrier-mediated uptake,

usually performed by the folate transporter, the reduced folate carrier (RFC)

[90, 91]. Moreover, inside cells, they undergo to poly-glutamylation by

folylpoly-γ-glutamate synthetase (FPGS) [92, 93]. Cofacor-like drugs are able

to act as multi-targeting agent, inhibiting various folate-dependent enzymes,

such as dihydrofolate reductase (DHFR) and glycinamide ribonucleotide

formyltransferase (GARFTase) [93]. Raltitrexed is a quinazoline folate analogue

that selectively inhibits hTS (IC50= 0.38 µM), currently applied for the

treatment of various solid tumors, including gastric cancer [94] head and neck
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cancer [95] malignant mesothelioma [96] as well as colorectal cancer [97]. This

drug has been studied in synergistic drugs combinations, aiming to potentiate

the activity of both drugs and to limit their toxicity [62]. The

raltitrexed/cisplatin combination was shown to be more effective then cisplatin

alone, improving the outcome and the life-quality of patients with malignant

pleural mesothelioma [96]. A very recently study has provided evidence that

sequential administration of RTX followed by 5FU, inhibit ovarian cancer cell

growth in vitro in a synergic mode. Also, the synergic inhibition of hTS by

FdUMP and RTX has also been shown in the structural characterization of

their ternary complex (PDB id 6ZXO) [62]. Further the classical mTHF-like

drugs, the developed some non-classical antifolates inhibitors (NCAIs) of hTS

have been reported [98]. NCAIs are able to passively diffuse into cells, not

requiring the active transport by RFC and/or FPGS activity [47, 98].

Plevitrexed and Nolatrexed are two examples of NCAIs [98]102, both acting as

effective and selective hTS inhibitors [99, 100].

The main drawbacks of these hTS-targeted therapies are drug toxicity and

resistance, multifactorial phenomena due to TS overexpression and impaired

function of RFC and FPGS proteins [101, 102, 103, 104]. Drugs targeting the

active site stabilize hTS in the active conformation and reduce its affinity for

hTSmRNA, thus releasing it from the complex with the enzyme and inducing

hTS production [90, 101, 105, 106].

Different inhibition strategies are thus needed to effectively block the enzyme

activity without triggering drug resistance phenomena in cancer cells. In 2011,

textitCardinale et coworkers identified few octapeptides that inhibit hTS, by

binding at the inter-subunit interface. Among them, the LR peptide

(LSCQLYQR) was the most promising hTS inhibitor, shown act through an

allosteric mechanism. The characterization of its complex with hTS (PDB id

3N5G) demonstrated that it binds to an allosteric site, at the periphery of the

dimer interface, stabilizing the inactive conformation of the enzyme.

Furthermore, this peptide is effective on resistant ovarian cancer cell lines

without inducing hTS overexpression [58]. A very recent study has reported the

development of a small molecule, named compound F13
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(1-(5-methoxy-1H-indol-3-yl)-N,N-dimethyl-methanamine), able to inhibit hTS

by binding to the dimer interface. At variance with the LR peptide, this

compound has been shown to interact with the active conformation of the

enzyme [67]. The efficacy of the compound on cancer cells has not been

reported yet.

2.6 Main approaches applied in this thesis

In this work, we have performed structural and functional analysis of hTS,

focusing our attention on the investigation of the interface area. In a first

approach, we have studied the two interface hot spots F59 and Y202 [70]. The

latter residue is located on the fourth strand of the interface β-sheet, and its

side chain faces F59’ of the partner subunit [47, 70, 71]. Previous studies

showed that these residues are important for hTS dimerization, indeed their

mutation to alanine induces meaningful destabilization of the dimer assembly.

The monomer-dimer equilibrium of these variants was investigated by FRET

analysis, reporting a significant gain in their Kd with respect to the wild-type

enzyme. In this work, we have deeply investigated the F59A and Y202A

mutants, by analyzing their thermal stability profiles in comparison to the

wild-type enzyme and by attempting/performing their structural

characterization. The structure of the Y202A mutant has been also determined

in complex with a dimer disrupter inhibitor, compound 1, developed by the

research group of Prof. Maria Paola Costi (University of Modena and Reggio

Emilia). Achieving structural information on enzyme-inhibitor complexes is

pivotal for the rational design of novel, improved interface binders. In the

second approach, we have generated and studied a second set of hTS mutants

having interface hot spot residues replaced by bulky, charged amino acids. To

maximize the destabilization effects induced by these mutations on the enzyme

dimer assembly we have chosen residues facing themselves on the dimer halves.

To this end, we have focused our attentions on interface residues Gln62 and

Thr251, that have been replaced by Arg and Glu, respectively. All interface

variants have been characterized by CD thermal denaturation and kinetic
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Figure 2.3: Interface view of the hTS homodimer. The mainly residues belonging to the
monomer-monomer interface region are displayed in sticks (grey carbon atoms). The interface
residues studied in this work (Tyr202, Phe59, Gln62 and Thr251) are highlighted in red. The
dUMP molecule (in stick, green carbon atoms) bound the active site is displayed.
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analyses, and by X-ray crystallography. The results achieved by their

characterization, have provided evidence of the peculiar behavior of these

interface variants, showing the meaningful effects induced by the mutations on

the enzyme activity and stability. The effective dimer destabilization has also

been shown by the structural analysis of the interface variants, evidencing a

slight aperture of their quaternary assembly, localized in the interface areas

surrounding the mutated residues. Thus, these hTS interface variants, may

represent functional tools exploitable to identify innovative interface-targeting

inhibitors.
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Materials and Methods

3.1 Materials and Methods

3.1.1 Cloning and Site-direct Mutagenesis

The hTS gene was previously cloned in the pQE-80L vector (Novagen,

Darmstadt, Germany), downstream the sequence encoding for a non-cleavable

N-terminal His6-tag, within BamHI and HindIII restriction sites (plasmid

pQE80L-hTS) (Figure 3.1) [72]. The pQE80L-hTS plasmid was kindly provided

by the research group of Prof. Maria Paola Costi (University of Modena and

Reggio Emilia) and it was used as template to generate alanine mutants. The

pQE80L-hTS Y202A plasmid was formerly obtained in the lab according to

reported methods [70]. The hTS F59A variant was generated by site-directed

mutagenesis using partially overlapping primers (Table 3.1), designed according

to the protocol defined by Zheng et al. [107]. To generate the hTS F59A

mutant, the PCR was performed using the AccuPrime Taq DNA Polymerase

High Fidelity (Thermo Fisher Scientific, Inc., Waltham, MA, USA), with minor

modifications to the manufacturer’s protocol. The reaction mixture (50 µL)

included 2 ng template DNA (pQE80L-hTS plasmid), 10 µM primer pair, 1 unit

(U) AccuPrime Taq DNA Polymerase, and 1X AccuPrime PCR Buffer I. The

PCR protocol started with an initial denaturation (94 ◦C, 30 sec), followed by

25 cycles of denaturation (94 ◦C, 30 sec), annealing (61 ◦C, 30 sec), and

extension (68 ◦C, 6 min). Thereafter, an aliquot (10 µL) of the PCR-amplified

sample was incubated overnight at 37 ◦C with 1 µL of Fast Digest DpnI

(Thermo Fisher Scientific, Inc., Waltham, MA, USA) to digest the methylated

parental DNA template and select for the newly synthesized DNA containing

mutations. The resulting sample was heat-shock transformed in chemically

competent E. coli TOP 10 cells and positive transformants were selected on

LB-agar plates supplemented with 100 mg L-1 ampicillin. Single colonies were

cultured in LB medium (with 100 mg L-1 ampicillin) at 37 ◦C for 16 h, under

vigorous aeration (220 rpm). The plasmid was extracted through the E.Z.N.A.

® DNA extraction Kit I (Omega Bio-Tek) and the mutation was confirmed by

DNA sequencing (ATAC sequencing, Eurofins Genomics Italy).
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Figure 3.1: Map of the pQE80L-hTS plasmid vector, including the hTS gene cloned within the
BamHI/HindIII restriction sites, downstream the sequence encoding for the His6-tag (indicated
as 6xHis in the map). AmpR: Ampicillin resistance gene; lacI: lactose operon repressor; ori:
origin of replication.
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Gene

Target
Primer

Sequence

(5’→3’)
Product

hTS WT
Fw: F59A GCGTCGCCGGCATGCAGGCGAG

hTS F59A
Rv: F59A CATGCCGGCGACGCTTAAGGTGC

Table 3.1: Sequences of forward (Fw) and reverse (Rv) primers used for mutagenic PCR to
introduce the point mutation F59A. The template used for PCR is the pQE80L-hTS plasmid.
The mutated codon on both strands is in red.

3.1.2 Protein expression and purification

Wt His6-tag hTS (HT-hTS) (recombinant protein sequence in Table ??) was

obtained as formerly described [70]. The production of His6-tag hTS F59A

(HT-hTS F59A) and His6-tag hTS Y202A (HT-hTS Y202A) was carried out

following reported protocols [70], with minor modifications. Briefly, the

expression plasmids were used to heat-shock transform E. coli BL21(DE3) cells

and positive transformants were selected on LB-agar plates added by 100 mg

L-1 ampicillin. Bacterial cells were cultured in LB supplemented with 100 mg

L-1 ampicillin, at 30 ◦C for 20 h and protein overexpression was induced at

OD600nm of 0.6, adding 0.4 mM IPTG

(isopropyl-beta-D-thiogalactopyranoside). Cells, harvested by centrifugation,

were resuspended in buffer A (30 mM NaCl and 50 mM HEPES, pH 7.5) added

by 20 mM imidazole, 0.2 mM phenylmethylsulfonyl fluoride (PMSF), and 0.5

mg mL-1 lysozyme, and disrupted by sonication after 1 h incubation on ice. The

soluble cellular fraction was separated from cell debris by centrifugation (13000

×g, 1 h, 4 ◦C) and the target protein variants were purified by nickel affinity

chromatography (HisTrap FF 5mL column, GE Healthcare), using a three-step

concentration gradient of imidazole (80 mM, 250 mM and 500 mM, in buffer

A). Fractions containing the target proteins, eluted at 250 mM imidazole

concentration, were pooled and extensively dialyzed in buffer A. The high

purity (>98%) of the final protein samples was confirmed by Sodium

dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and

mass spectrometry (MS, vide infra).
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3.1.3 Protein Characterization: Mass Spectrometry and

Circular Dichroism (CD) thermal denaturation

analyses

The purified HT-hTS F59A and HT-hTS Y202A were analyzed by ESI-MS

(LTQ-Orbitrap mass spectrometer, equipped with an electrospray ionization

source interfaced to UPLC Easy LC 1000) on service (Toscana Life Science,

Mass Spectrometry facility). Spectra were recorded on water solutions of the

protein samples having a concentration of 3 µM. The CD spectra of HT-hTS,

HT-hTS F59A and HT-hTS Y202A were recorded at room temperature in the

wavelength range 200-250 nm using the Jasco J-815 spectropolarimeter and

0.1-cm quartz cuvettes. Each sample (200 µL) included a 20 µM protein

solution in 10 mM HEPES pH 7.5 and 100 mM NaCl (buffer signals were

subtracted from sample profiles, during spectra recording). Thermal stability

profiles of HT-hTS and the alanine variants were recorded by monitoring the

far-UV CD signal at 220 nm, according to published protocols [108]. Protein

samples were heated from 25 to 80 ◦C, at a rate of 2 ◦C min-1. A second series

of spectra was subsequently recorded on all variants incubated with 1 mM

dUMP for 30 min on ice. Measurements were performed in triplicates. The

midpoint of the unfolding transition (melting temperature, Tm) was thus

obtained by analyzing data with the software GraphPad Prism 7 in non-linear

regression, using the Boltzmann sigmoidal function.

3.1.4 Crystallization

Crystallization screens were performed for HT-hTS F59A using the

commercially available kits JBScreen Basic (JBSB) 1–4 and Classic (JBSC) 6

from Jena Bioscience (Jena, Germany), and PEG/Ion, Index, Crystal Screen 1

and 2, and Grid screen Ammonium Sulfate from Hampton Research (Aliso

Viejo, California, USA). Drops, consisting of 2 µL protein solution (20 mg mL-1

in buffer A, with and without 20 mM β-mercaptoethanol) and 2 µL precipitant,

were equilibrated over 200 µL reservoir. Crystallization screens were performed

using the sitting-drop vapor diffusion technique [109], at both 8 ◦C and 20 ◦C.
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No crystal growth was observed over 1 year of incubation. Crystals of HT-hTS

Y202A were obtained by the hanging drop vapor diffusion technique in the

so-called high salt conditions, according to reported protocols [70]. Briefly,

crystallization drops consisting of equal volumes of protein (20 mg mL-1 in 30

mM NaCl, 50 mM N-2-Hydroxyethylpiperazine-N’-2-Ethanesulfonic Acid

(HEPES), pH 7.5, and 20 mM β-mercaptoethanol) and precipitant (2.0 M

ammonium sulphate, 5% w/v Peg 400, 0.1 M MES, pH 6.5, and 20 µM

β-mercaptoethanol) solutions were equilibrated over a 600-800 µL reservoir.

Crystals, shown in Figure 3.2 A, were observed after few days of incubation at

20 ◦C. Samples of HT-hTS and HT-hTS Y202A in complex with compound 1

were prepared both by incubation of the concentrated proteins with the

inhibitor (concentrated incubation method) and by co-centrifugation of the

protein-inhibitor complexes (co-centrifugation method). In the former method,

the protein (10 mg mL-1 in 30 mM NaCl, 50 mM HEPES, pH 7.5, and 20 mM

β-mercaptoethanol) was incubated with compound 1 (5 mM, solubilized in

dimethylsulfoxide). On the other hand, in the latter method, diluted protein

solutions (1 mg mL-1, in 30 mM NaCl, 50 mM HEPES, pH7.5 and 20 mM

β-mercaptoethanol) were incubated with compound 1 (0.5 mM) for 12 h at 4

◦C and then concentrated 10-times using centrifugal concentrators having a

molecular weight cut-off of 10 kDa (PierceTM Protein Concentrator PES). The

resulting samples were used for crystallization (crystals of Y202A-compound 1

obtained with co-centrifugation method are shown in Figure 3.2 B) following

the same procedures described for the ligand-free enzymes. The precipitant

solution used for HT-hTS crystalizzation was composed of 1 M ammonium

sulphate and 0.1 M tris(hydroxymethyl)aminomethane (TRIS) pH 8.5. Prior to

data collection, all crystals were washed in cryoprotectant solutions (20% of

either ethylene glycol or glycerol added to each precipitant solution) and flash

frozen in liquid nitrogen.
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Figure 3.2: Crystals of (A) Y202A and (B) Y202A in complex with compound 1 (co-
centrifugation method).

3.1.5 Data collection, structure solution and refinement

Diffraction data were collected at 100 K, using synchrotron radiation at the

Diamond Light Source (DLS, Didcot, UK) beamline I04 equipped with Eiger

2XE 16M detector. Reflection data were indexed and integrated using the

program XDS [110] and scaled with SCALA [111, 112] from the CCP4 suite

[113]. Data collection and reduction statistics are reported in Table ??.

Molecular replacement was performed using the software Molrep [114] and the

structure of hTS in the inactive conformation (PDB id 3N5G [58]) as searching

model, excluding non-protein atoms and water molecules. The structures were

refined through the program REFMAC5 [115] from CCP4 suite [113]. The

molecular graphic software Coot [116] was used for manual rebuilding and

modeling of the missing atoms in the electron density and to add solvent

molecules. Sulfate anions and glycerol and ethylene glycol molecules from

crystallization/cryoprotectant solutions were found in our model and modelled

according to electron density. Furthermore, the inspection of the Fourier

difference map in the structure of the complex HT-hTS Y202A-compound 1

(crystals obtained by the co-centrifugation method) evidenced the presence of

the compound, modeled according to the electron density. On the other hand,

no additional electron density compatible with the presence of the inhibitor was

observed in the structures of the samples obtained by the concentrated

incubation method and of the HT-hTS sample obtained by co-centrifugation

method. The occupancy of exogenous ligands was adjusted to values resulting
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HT-hTS Y202A
HT-hTS Y202A

Compound 1

Diffraction source I04 (DLS) I04 (DLS)

Wavelength (Å) 0.9795 0.9795

Temperature (K) 100 100

Detector Pilatus 6M-F Pilatus 6M-F

Crystal-detector distance (mm) 332.90 368.389

Exposure time per image (s) 0.25 0.25

No. of heterodimers in the ASU 1 1

a = b, c (Å) 95.99 95.99 81.97 96.10 96.10 83.40

Resolution range (Å)
58.37-2.4

(2.53-2.40)

58.91-2.55

(2.69-2.55)

Total no. of reflections 176593(25825) 151189 (22393)

Completeness (%) 100.0 (100.0) 100.0 (100.0)

Redundancy 10.1 (10.4) 10.1 (10.5)

〈I/σ(I)〉 10.4 (2.0) 17.6 (2.4)

CC1/2 0.996 (0.791) 0.999 (0.833)

Rmeas 0.108 (1.224) 0.089 (1.282)

Overall B factor from Wilson plot (Å2) 72.7 72.84

Table 3.2: Data collection and processing statistics. Values in parentheses are for the highest
resolution shell.

in atomic displacement parameters close to those of neighboring protein atoms

in fully occupied sites. The final models were inspected manually, checked with

Coot [116] and PROCHECK [117], and finally validated through the PDB

deposition tools. Final refinement statistics are reported in Table 3.2. Figures

were generated using molecular graphic software PyMOL [118] and CCP4 mg

[119].
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HT-hTS Y202A
HT-hTS Y202A

Compound 1

Resolution range (Å)
58.37-2.4

(2.53-2.40)

58.91-2.55

(2.69-2.55)

No. of reflections, working set 16490 (1182) 14137 (1018)

No. of reflections, test set 902 (64) 740 (56)

Rcryst 0.198 (0.430) 0.186 (0.407)

Rfree 0.248 (0.434) 0.248 (0.393)

No. of non-H atoms

Protein 1813 2127

Ion (Sulfate ion) 10 10

Ligand - 24

Water 37 65

Other ligants - -

Total 1860 2226

R.m.s. deviation

Bonds (Å)
0.007 0.007

Angles (°) 1.644 1.700

Average B factors (Å2) 69.1 74.8

Estimate error on coordinates

based on R value (Å)
0.22 0.32

Ramachandran plot

Most favored (%)
93.0 90

Allowed (%) 7 10

Table 3.3: Refinement statistics for HT-hTS Y202A and in complex with compound 1. Values
in parentheses are for the highest resolution shell.
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3.2 Results and Discussions

3.2.1 Expression, purification, and characterization of HT-

hTS wild type and its alanine variants, F59A and

Y202A

Wt hTS and its interface mutants F59A and Y202A were expressed as His6-

tag recombinant proteins in a heterologous bacterial system, using the BL21

(DE3) E. coli strain. HT-hTS and its variants consist of 325 residues, including

the 12 amino acids belonging to the unremovable N-terminal His6-tag (residues

numbering refers to the hTS sequence, UniProtKB id P04818) [58]. Analogously

to the wt-enzyme, all alanine variants were expressed as soluble proteins and

their purification protocol relied on a single-stage nickel affinity chromatography

(Figures 3.3 A and 3.4 A). The high purity of the protein samples obtained by

this procedure was estimated ≥ 98% by SDS-PAGE analysis (Figures 3.3 B and

3.4 B) and ESI-Orbitrap MS (Figures 3.5 and 3.6; HT-hTS F59A: theoretical

MW = 37038.4 Da, determined MW = 37049.0 Da; HT-hTS Y202A theoretical

MW = 37022.4 Da, determined MW = 37033.0 Da). At variance with the HT-

hTS F59A mutants that was obtained in a yield of 20 mg mL-1 bacterial culture,

the HT-hTS Y202A variant was purified in high yield, estimated to 95 mg L-1

bacterial culture, analogously to HT-hTS (120 mg L-1). The residues in positions

59 and 202 are placed at the dimer interface of the enzyme, where they point

towards each other. The comparison of the CD spectra recorded for hT-hTS and

its alanine variants shows that the overall fold of the protein is not affected by

the introduced mutations (data not shown). The CD technique was also used

to monitor the thermal unfolding profiles of the proteins and to calculate the

midpoint of the unfolding transition (Tm), an effective method to assess the effects

of mutations on protein stability [120, 121]. It is worth noting that the curve of

HT-hTS shows a biphasic unfolding transition, not detected in the profiles of

both hTS F59A and Y202A variants (Figure 3.7). Furthermore, the comparison

of the thermal denaturation profiles recorded for HT-hTS and the alanine variants

shows a slight destabilization of both interface mutants. Indeed, the Tm for HT-
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Figure 3.3: (A) Chromatogram of the nickel- affinity chromatography (HisTrap FF 5mL
column, GE-Healthcare) performed to purify HT-hTS F59A. The UV280nm monitoring and
imidazole concentration are shown as blue and green lines, respectively; the elution fractions
are indicated on the x-axis as red marks. (B) SDS-PAGE analysis of the fractions collected
from affinity chromatography (the protein ladder used for MW estimation is in lane 4).
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Figure 3.4: (A) Chromatogram of the first stage of nickel-affinity chromatography (HisTrap
FF 5mL column, GE-Healthcare) performed to purify HT-hTS Y202A. The UV280nm

monitoring and imidazole concentration are shown as blue and green lines, respectively; the
elution fractions are indicated on the x-axis as red marks. (B) SDS-PAGE analysis of the
collected fractions (the protein ladder used for MW estimation is in lane 5).
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hTS is 53.26 (± 0.08) ◦C, compared to Tm of 51.48 (± 0.18) ◦C and 50.41 (±

0.09) ◦C for HT-hTS F59A and HT-hTS Y202A, respectively (Figure 3.7 A). Tm

decreases by ≈ 2 ◦C and by ≈ 3 °C are observed for HT-hTS F59A and HT-

hTS Y202A, respectively, with respect to HT-hTS. Our results are in agreement

with former data published on these hTS alanine mutants [70], reporting their

reduced dimer stability determined by both computational prediction and FRET

analysis. In this work, we have further characterized the effect of the substrate

Figure 3.5: ESI-Orbitrap spectrum of HT-hTS F59A (theoretical MW = 37038.4 Da,
determined MW = 37049.0 Da).

on the protein stability, measuring the unfolding transition curves of HT-hTS

and its alanine mutants in presence of dUMP. A stabilization effect is observed

for all proteins upon substrate addition, resulting in Tm values of 56.77 (± 0.08)

◦C for HT-hTS:dUMP, of 51.97 (± 0.16) ◦C for HT-hTS F59A:dUMP, and of

54.01 (± 0.14) ◦C for HT-hTS Y202A:dUMP (Figure 3.7 B). It is well known

that, in presence of dUMP, hTS switches to the active conformation. Our data

evidence the improved stability profile of the complex with respect to the ligand-

free state of the enzyme, showing a Tm increment of ≈ 3.5 ◦C. An analogous

effect is observed for the HT-hTS Y202A mutant, reporting a Tm increase of ≈
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Figure 3.6: ESI-Orbitrap spectrum of HT-hTS Y202A (theoretical MW = 37022.4 Da,
determined MW = 37033.0 Da).

4 ◦C in presence of dUMP. On the other hand, a lower effect is observed for the

HT-hTS F59A mutant, displaying a Tm increase of only ≈ 1 ◦C. This finding

correlates with the kinetic profile reported for the mutants [70], showing similar

kinetic profiles for HT-hTS and the Y202A variant but altered for the F59A

mutant (significantly reduced kcat). Since both mutated residues are not part

of the active site, alterations in the catalytic activity and in protein stability

should arise from their effects at the hTS protein-protein interface. The results

of former and present characterizations of these alanine variants suggest that the

mutation F59A induces stronger effects on the enzyme, reporting alterations on

both activity [70] and conformational stability.
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Figure 3.7: Thermal unfolding transition curves of (A) HT-hTS, HT-hTS F59A, HT-hTS
Y202A and (B) of the same mutants incubated with dUMP for 1 h on ice followed by circular
dichroism spectroscopy. Melting temperature (Tm) values determined for the transitions are
reported in the tables.
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3.2.2 Structural characterization of hTS Y202A and hTS

Y202A in complex with the dissociative inhibitor

compound 1

The crystal structures of HT-hTS Y202A and its complex with the dissociative

inhibitor compound 1 have been obtained to resolutions of 2.40 and 2.55 Å,

respectively. Both crystals belong to the P3121 space group with a single chain

found in their asymmetric unit (ASU) (Table 3.2), analogously to the wt

enzyme [58]. The HT-hTS Y202A mutant crystallizes under high salt

conditions, yielding crystals isomorphous to those of HT-hTS. The initial 13

N-terminal residues of the hTS sequence (and the 12 residues belonging to the

His6-tag) are not visible in the crystal structures, coherently with former

structural data on this enzyme [58, 65, 70]. hTS has a mixed α/β structures

and the dimer interface is generated by two large, reversely symmetrical

mixed-sheets [43, 122]. The alanine point-mutation does not affect the overall

fold of the enzyme, which is conserved with respect to HT-hTS (PDB code

3N5G), as also suggested by CD spectra. The comparison of the structures

results in a rmsd upon Cα matching of 0.59 Å (maximal displacement of 3.87 Å

on residue Gly136). The structure of the Y202A mutant clearly shows that the

enzyme is in the inactive conformation, having the catalytic loop 181-197

shifted toward the dimer interface (Figure 3.8). This conformation of the

enzyme is typically observed when the protein is crystallized under high salt

conditions [59, 123]. The inspection of the Fourier difference maps clearly shows

the mutation of Tyr202 to Als202 (Figures 3.8 and 3.9 A). Ala202 is H-bonded

to Ser209 on the next β-strand, interactions mediated by their backbones and

thus not affected by the mutation. Residue 202 is located at the periphery of

hTS dimer, on the fourth strand of the interface β-sheet (Figure 3.9 A), where

it faces Phe59’ on the other protomer (Figure 3.9 A). In the structure of the

mutant, Ala202 takes hydrophobic interaction with the facing Phe59’ (Figure

3.9 B). On the other hand, in the wild type of enzyme, the side chain of Tyr202

is stacked to the aromatic moiety of the facing residues (Figure 3.9 B).

Superimposition between our HT-hTS Y202A and that one previous deposited
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Figure 3.8: Cartoon representation of hTS Y202A enzyme homodimer (subunit A and B are
colored in lightorange). both subunits assume the inactive conformation (loop 181-197 showed
in orange), showing the catalytic Cys195 (in orange and carbon atom sticks) exposed towards
hTS dimer interface. The catalytic Cys195 is modified as S,S-(2-hydroxyethyl)thiocysteine
(SCH195, in orange and carbon atom sticks) in both subunits. The mutated residue Ala202
and the facing Phe59 of the other protomer are displayed in orange and carbon atom sticks.
Sulfate anions are displayed in sticks in the Figure.
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Figure 3.9: Interface view of hTS Y202A variant (light orange cartoon) (A) and wt hTS
enzyme (pale green cartoon) (B). Both enzymes are represented in cartoon and residues in
position 59 and 202 are displayed in orange and carbon atoms (A) or green and carbon atoms
sticks (B). The mutated residue Ala202 (A), as well as Tyr202 (B) establishes two backbone-
backbone H-bonds (grey (A) and red dashes (B)) with S209 on the next β-strand. (A)Ala202
residue takes hydrophobic interaction with the facing F59’. (B) The side chains of Tyr202 are
stacked to aromatic moiety of the facing residues Phe59’.

for the same mutant (PDB id 4JEF) [70] displays that the X-ray structures are

identical, as witnessed by the low value, 0.21 Å, of the rmsd upon Cα matching

(maximal displacement of 3.12 Å, for residue Phe142). As expected, the point

mutation Y202A is not enough itself to disrupt interface contacts in the hTS

homodimer. In addition, in the structure of the HT-hTS Y202A we found two

sulfate anions, respectively, deriving from the crystallization conditions. The

first sulphate ion is salt-bridged to Arg50, Asn183, His208, Arg215, and

Arg175’. Instead, the second anion is bound to Arg50, Arg78, Arg176, Arg185

and the backbone amine of Thr306. The positions and binding of these sulfate

ions is identical to those formerly reported in the structures of wt-hTS (PDB id

3N5G) [58] and Y202A mutant (PDB id 4JEF) [70]. In this work we also tested

a dimer disrupter inhibitor recently synthesized by the research group of

Professor Maria Paola Costi (University of Modena and Reggio Emilia).
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Compound 1 has IC50 values of 21.72 µM and 8.40 µM towards hTS wild type

and hTS Y202A, respectively (unpublished data). Our crystallographic data

show that compound 1 binds the periphery of the monomer-monomer interface

of HT-hTS Y202A (Figure 3.10). The complex was determined by preparing

the sample through the co-centrifugation method, whereas the presence of the

inhibitor was not detected in the samples of the Y202A mutant prepared by the

concentrated incubation method and in those of HT-hTS prepared by both

methods. The comparison between the structures of HT-hTS Y202A and its

complex with compound 1, shows that the binding of the inhibitor does not

significantly alter the enzyme structure. This is supported by the low value,

0.45 Å, of the rmsd upon Cα matching (maximal displacement of 3.37 Å, for

residue Gly136). The analysis of the interface shows that the

monomer-monomer distances are not affected by the point mutation Y202A and

by the presence of compound 1. In the Y202A structure, the inhibitor occupies

an inverted-cone-shaped cleft, lined by residues 162-163, 166-167 and 176-178 of

one protomer and the loop 189’-194’ of the facing half, at the interface

periphery (Figure 3.10). In this area, the inhibitor entails both hydrophobic

and hydrophilic interactions with the surrounding residues inside the cleft. This

binding region partially overlaps with the area buried by the LR peptide, the

octapeptide formerly shown to act as hTS inhibitors by binding at the interface

periphery [58].
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Figure 3.10: Three different views (A), (B) and (C) of the binding site of compound 1 (in
light-blue surface) at the periphery of the dimer interface of the hTS Y202A variant (light orange
cartoon). The mutated residue Ala202 is represented in sticks, magenta carbon atom. The
inhibitor occupies an inverted-cone-shaped cleft (residues in sticks) at the interface periphery.
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Materials and Methods

4.1 Materials and Methods

4.1.1 Cloning and Site-Directed Mutagenesis

The hTS charged variants Q62R, T251E and Q62R-T251E were generated by

PCR-based site-directed mutagenesis, using partially overlapping primers [107]

(Table 4.2; primers purchased from Sigma-Aldrich, Milan, Italy). The pQE80L-

hTS plasmid [70] (Figure 2.3, see details in Section ??) was used as template

for the Q62R and T251E variant, whereas the hTS Q62R-T251E double mutant

was generated using the pQE80L-hTS variant Q62R [108] plasmid as template.

The Q62R mutation was obtained through PCR using the Expand High Fidelity

polymerase (Roche Biochemicals, Basel, Switzerland), according to the published

protocol[108], detailed in Section 2.3. For the other hTS mutants, the PCR

reaction mixtures (50 µL) included 2 ng template DNA, 10 µM primer pair, 1

unit AccuPrime Taq DNA Polymerase High Fidelity and 1X AccuPrime PCR

Buffer I, according to the manufacturer’s protocol (Thermo Fisher Scientific).

The reactions were performed through an initial denaturation step (94 ◦C, 30

sec), followed by 25 cycles of denaturation (94 ◦C, 30 sec), annealing (64 ◦C, 1

min) and extension (68 °C, 6 min). Afterwards, a 10-µL sample of each reaction

mixture was incubated at 37 ◦C for 15 min with 1 µL of Fast Digest DpnI

(Thermo Fisher Scientific), to allow digesting the methylated template DNA.

The resulting samples were heat-shock transformed in chemically competent E.

coli TOP10 cells and positive transformants were selected on LB-agar plates,

supplemented with 100 mg L-1 ampicillin. For each variant, single colonies were

cultured in LB medium added by 100 mg L-1 ampicillin overnight at 37 ◦C (220

rpm) and thus, used for plasmid extraction (E.Z.N.A.® DNA extraction Kit

I, Omega Bio-Tek). The entire gene of each variant was sequenced to confirm

the site-directed mutagenesis and to verify the absence of unwanted mutations

(ATAC sequencing, Eurofins Genomics Italy).
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Gene target Primer Sequence 5’-3’ Product

hTS WT
Fw Q62R GCATGCGGGCGAGATATTCATTAC

hTS Q62R
Rv Q62R CTCGCCCGCATGCCGAAGACGC

hTS WT
Fw T251E ATCCACGAACTGGGTGACGCCC

hTS T251E
Rv T251E CCCAGTTCGTGGATAAAATCACCC

hTS Q62R
Fw T251E ATCCACGAACTGGGTGACGCCC

hTS Q62R-T251E
Rv T251E CCCAGTTCGTGGATAAAATCACCC

Table 4.1: Sequences of forward (Fw) and reverse (Rv) primers used for mutagenic PCR
to introduce the point mutations Q62R and T251E. The hTS variant Q62R and T251E were
obtained using the pQE80L-hTS plasmid as template, whereas the double mutant Q62R-T251E
was generated from the plasmid pQE80L-hTS variant Q62R. The mutated codons on both
strands are in red.

4.1.2 Recombinant Protein Expression and Purification

His6-tag hTS Q62R (HT-hTS Q62R), hTS T251E (HT-hTS T251E) and the

hTS Q62R-T251E (HT-hTS Q62R-T251E) were expressed in the E. coli

BL21(DE3) strain, according to the protocol published for the Q62R variant

[108], detailed in Section 2.3. Briefly, bacterial cells were cultured in ZYP-5052

auto-induction medium [124] supplemented with 100 mg L-1 ampicillin, at 20

◦C for 48 h. Cells, harvested by centrifugation, were resuspended in buffer A

(30 mM NaCl and 50 mM HEPES, pH 7.5) containing 20 mM imidazole, 0.2

mM PMSF, 0.5 mg mL-1 lysozyme, and then disrupted by sonication after 1 h

incubation on ice. The soluble cellular fraction, clarified by centrifugation

(13500 g, 1 h, 8 ◦C), was purified by nickel affinity chromatography (HisTrap

FF 5 mL column, GE Healthcare) using a three-step gradient elution protocol

relying on imidazole as competitive agent (80 mM, 250 mM and 500 mM).

Fractions containing the target proteins, identified by SDS-PGE, were pooled

and extensively dialyzed in buffer A. The resulting samples were concentrated

(PierceTM Protein Concentrator PES, molecular weight cut-off 10 kDa) and

then purified by size exclusion chromatography on a HiLoad 16/600 Superdex

75pg column (GE Healthcare). The high purity of the target proteins was

confirmed as >98% by SDS-PAGE and MALDI-TOF mass spectrometry (vide

infra) analyses.
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4.1.3 Mass Spectrometry analysis

Matrix Assisted Laser Desorption Ionization - Time of Flight (MALDI- TOF)

mass spectrometry analyses were performed on all purified mutants. Each sample

contained a 20 µM protein solution in ultrapure water. Sinapinic acid was used

as matrix, in a 1:1 water/acetonitrile solution added by 0.1% trifloroacetic acid

(TFA). Spectra were recorded on a MALDI TOF Ultraflex III TOF/TOF200

(Mass Spectrometry facility, Toscana Life Science).

4.1.4 Kinetic Activity Assay

Kinetic analyses on HT-hTS Q62R and HT-hTS T251E mutants were

performed according to the protocol reported for wild-type hTS and alanine

variants [70] by the research group of Prof Maria Paola Costi (University of

Modena and Reggio Emilia Modena). The kinetic profile of the HT-hTS

Q62R-T251E double variant was evaluated spectrophotometrically, using a

UV-visible spectrophotometer (Lambda 900/Perkin Elmer Instrument),

according to the same protocol [70, 125]. Briefly, reactions were performed in a

1-mL assay buffer mixture (50 mM TES, pH 7.4, 25 mM MgCl2, 6.5 mM formic

acid, 1 mM EDTA, 75 mM β-mercaptoethanol) and started by adding the

substrate. To determine kinetic parameters, each reaction was monitored for 3

min following the increase in absorbance at 340 nm due to mTHF oxidation.

KM (Michaelis-Menten constant) values were determined for both dUMP and

mTHF by varying their assay concentrations (in the ranges 3–180 µM and 5–80

µM, respectively), keeping fixed the enzyme concentration (2 µM). On the other

hand, the kcat was determined using a fixed concentration of dUMP and mTHF

(120 µM and 55 µM, respectively) and varying the enzyme concentration (in

the range 0.2-4 µM). Measurements were performed in triplicates.

4.1.5 Circular Dichroism (CD) thermal denaturation

analysis

CD spectra of the variants HT-hTS Q62R, HT-hTS T251E, and HT-hTS Q62R-

T251E were recorded in the wavelength range 250-200 nm to verify their folding
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in comparison to HT-hTS. Each sample consisted of a 200 µL protein solution at

the concentration of 20 µM in 10 mM HEPES pH 7.5 and 100 mM NaCl. Spectra

sere recorded using 0.1 cm quartz cuvette at room temperature (buffer signals

were subtracted during spectra recording). For each variant we also determined

the stability profile through thermal unfolding experiments by monitoring the

far-UV CD signal at 220 nm during sample heating from 25 ◦C to 80 ◦C (2 ◦C

min-1 rate). A second set of experiments was performed on each variant incubated

with 1 mM dUMP for 30 min on ice. Measurements were performed in triplicates.

Data were analyzed using the software GraphPad Prism 7 in non-linear regression

using the Boltzmann sigmoidal function for Tm determination.

4.1.6 Crystallization

The recombinant HT-hTS Q62R and HT-hTS Q62R-T251E were concentrated

to 20 mg mL-1, while HT-hTS T251E to 15 mg mL-1 in 30 mM NaCl and 50

mM HEPES, pH 7.5 and stored at -20 ◦C until required. Crystallization screens

(JBSB 1–4 and JBSC 6 from Jena Bioscience and PEG/Ion, Index, Crystal

Screen 1 and 2, and Grid screen Ammonium Sulfate from Hampton Research)

were performed on these protein variants using the vapor diffusion sitting drop

technique at room temperature [109]. Drops, consisting of 2 µL protein (with or

without 20 mM β-mercaptoethanol) and 2 µL precipitant solutions, were

equilibrated against a 200 µL reservoir. For HT-hTS Q62R, crystal growth was

observed in 10–14 days using the JBSC6 solution C4 (2.0 M ammonium sulfate,

100 mM TRIS pH 8.5) as precipitant. For HT-hTS T251E, crystal growth was

observed in 10-15 days using the JBSB3 solution D2 (1.4 M tri-Sodium Citrate,

100 mM TRIS pH 7.5) as precipitant. On the other hand, crystals of HT-hTS

Q62R-T251E were obtained after 20-25 days using the Index solution 29 (60%

v/v TacsimateTM pH 7.0). All variants were crystallized only in presence of 20

mM β-mercaptoethanol, added to the sample solution. The optimization of the

crystallization conditions was performed using the hanging drop vapor-diffusion

method [109] at 20 ◦C, by varying both salt concentration and buffer. Crystals,

suitable for diffraction experiments, were obtained from drops prepared by
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mixing equal volumes of protein and precipitant solutions (Q62R: 2.0–2.2 M

ammonium sulfate, 100 mM bicine pH 9.0; T251E: 1.0 M tri-Sodium Citrate,

100 mM TRIS pH 7.5; Q62R-T251E: 60% v/v TacsimateTM pH 7.0),

equilibrated over 800 µL reservoir. Crystal growth (Figure 4.1) was observed

within 15 days for all variants. Crystals of HT-hTS Q62R-T251E in complex

with either dUMP or FdUMP were obtained by co-crystallization in drops

consisting of equal volumes of protein (above protein solution added by either

20 mM dUMP or 4 mM FdUMP) and precipitant (55% v/v TacsimateTM pH

7.0) solutions equilibrated over 200 µL reservoir. Prior to data collection,

crystals were singularly transferred to the cryoprotectant solution (20% v/v

ethylene glycol or glycerol and 80% v/v precipitant solution) and flash frozen in

liquid nitrogen.

Figure 4.1: Crystals of HT-hTS Q62R (A), HT-hTS T251E (B) and HT-hTS Q62R-T251E
(C).

4.1.7 Data collection, structure solution and refinement

X-ray crystallographic data were collected at 100 K using synchrotron radiation

at the European Synchrotron Radiation Facility (ESRF, Grenoble, France)

beamline ID30B and at the Diamond Light Source (DLS, Didcot, UK)

beamlines I02, I03 and I04. Reflection data were indexed and integrated using

the program XDS [110] and scaled with SCALA [111, 112] from the CCP4 suite

[113]. Data collection and reduction statistics are reported in Tables 3.3 and

4.2. Structures were solved by molecular replacement using the program Molrep

[114] and one subunit of either hTS (active conformation; PDB code 1HVY
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[126]) or HT-hTS Q62R (PDB code 6R2E) [108] as search model for the

structures of the single and double variants, respectively. All structures were

refined through the program REFMAC5 [115] from CCP4 suite [113]. The

molecular graphic software Coot [116] was used for manual rebuilding and

modelling of missing atoms in the electron density, and to add solvent

molecules. Molecules of glycerol and ethylene glycol, and phosphate/sulfate

anions (from production/crystallization conditions) were found in our structures

and modelled according to the electron density. In all structures, the inspection

of the Fourier difference map clearly evidenced the presence of a ligand inside

the enzyme active site, identified as the folate derivative

5-formyl-tetrahydrofolate-di-L-glutamate (5-FTHF-di-L-Glu), according to

former investigations on TS enzymes (vide infra). Furthermore, in the

structures of HT-hTS Q62R-T251E in complex with either dUMP or FdUMP,

we also observed additional peaks in the Fourier difference map, indicating their

presence within the enzyme active site. The occupancy of all exogenous ligands

was adjusted and refined to values resulting in atomic displacement parameters

close to those of neighboring protein atoms in fully occupied sites. The final

models were inspected manually, checked with Coot [116] and PROCHECK

[117], and then validated by the PDB deposition tools. Data refinement

statistics are reported in Tables 4.3 and 4.4. Structural figures were generated

through the molecular graphic software PyMOL [118] and CCP4 mg [119].

4.1.8 Protein data bank (PDB) deposition

Coordinates and structure factors for HT-hTS Q62R were deposited in the

Protein Data Bank under the accession code 6R2E [108].
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HT-hTS Q62R HT-hTS T251E HT-hTS Q62R-T251E

Diffraction source ID30B (ESRF) I02 (DLS) I03 (DLS)

Wavelength (Å) 0.96861 0.97625 0.976230

Temperature (K) 100 100 100

Detector Dectris Pilatus3 6M Pilatus3 6M Pilatus3 6M

Crystal-detector distance (mm) 460.0 368.389 287.349

Exposure time per image (s) 0.20 0.20 0.20

Space group P21221 P21221 P21221

No. of heterodimers in the ASU 8 8 8

a = b, c (Å) 139.94; 167.07; 189.97 142.00; 167.85; 190.30 140.09; 165.76; 190.12

Resolution range (Å) 94.99-2.55 95.15-2.70 29.60-2.25 (2.37-2.25)

Total no. of reflections 861677 (109995) 538835 (77852) 1726632(212452)

No. of unique reflections 145044 (20911) 122656 (17836) 207779 (28926)

Completeness (%) 99.9 (99.6) 98.3 (98.7) 99.3 (95.4)

Redundancy 5.9 (5.3) 4.4 (4.4) 8.3 (7.3)

〈I/σ(I)〉 6.9 (2.1) 4.8 (2) 9.4 (2.7)

Rmeas 0.178 (0.782) 0.154 (0.530) 0.110 (0.729)

Overall B factor from Wilson plot (Å2) 26.83 34.2 41.83

Table 4.2: Data collection and processing statistics for HT-hTS Q62R, T251E and Q62R-
T251E structures. Values in parentheses are for the highest resolution shell.

4.2 Results and Discussions

4.2.1 Expression and purification of HT-hTS wild type and

interface variants

All HT-hTS interface variant were expressed as recombinant proteins having a

non-cleavable N-terminal His6-tag, resulting in whole sequences of 325 residues

(sequence numbering refers to the wild-type hTS, UniProt KB id P04818) [58].

Despite the interface mutations, all variants were mainly expressed in the

soluble cellular fraction of E. coli BL21(DE3) cells. Nonetheless, with respect to

the production of HT-hTS, we had to apply slightly different bacterial culturing

conditions[108] (lower temperature and longer incubation times). The

purification protocol relied on a single-stage of nickel affinity chromatography

(representative chromatogram and SDS-PAGE are shown in Figure 4.1 A and

B), followed by SEC (representative chromatogram in Figure 4.2). The elution

profile of all variants was consistent with the enzyme dimer assembly (Figure

4.2). Highly pure (>98% ) protein samples were obtained by these procedures,
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HT-hTS Q62R-T251E

dUMP FdUMP

Diffraction source I04 (DLS) I03 (DLS)

Wavelength (Å) 0.97950 0.976230

Temperature (K) 100 100

Detector Pilatus 6M-F Pilatus3 6M

Crystal-detector distance (mm) 252.778 270.125

Exposure time per image (s) 0.20 0.20

Space group P21221 P21221

No. of heterodimers in the ASU 8 8

a = b, c (Å) 140.29,166.13,190.63 139.94,165.76,190.22

Resolution range (Å)
29.68-2.80 29.61-2.60

(2.95-2.80) (2.74-2.60)

Total no. of reflections 848687 (122059) 1153883 (170786)

No. of unique reflections 109985 (15922) 136074 (19660)

Completeness (%) 99.9 (100.0) 99.9 (100.0)

Redundancy 7.7 (7.7) 8.5 (8.7)

〈I/σ(I)〉 10.9 (2.9) 10.7 (3.3)

Rmeas 0.119 (0.631) 0.106 (0.617)

Overall B factor from Wilson plot (Å2)
43.81 56.73

RSCC ligand

Table 4.3: Data collection and processing statistics for the structures of HT-hTS Q62R-T251E
variant in complex with dUMP or FdUMP. Values in parentheses are for the highest resolution
shell.
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HT-hTS Q62R HT-hTS T251E HT-hTS Q62R-T251E

Resolution range (Å)
95.17-2.55

95.15-2.70 29.60-2.25
(2.62-2.55) (2.85-2.70) (2.37-2.25)

No. of reflections, working set 137694 (10032) 115974 (8536) 197210 (13252)

No. of reflections, test set 7182 (554) 6123 (428) 10436 (698)

Rcryst 0.196 (0.315) 0.231 (0.334) 0.233 (0.329)

Rfree 0.258 (0.389) 0.277 (0.412) 0.283 (0.35)

No. of non-H atoms

Protein 18550 18587 18476

Ion 93 40 40

Ligand (5-FTHF or 5-FTHF-di-Glu) 284 344 344

Water 2430 903 1089

Total 21357 19829 19331

R.m.s deviations

Bonds (Å) 0.012 0.008 0.009

Angles (°) 2.167 1.746 1.792

Average B factors (Å2) 44.01 34.28 46.10

Estimate error on coordinates

based on R value (Å)
0.326 0.466 0.221

Ramachandran plot

Most favored (%) 96.5 96.1 95.6

Allowed (%) 3.5 3.9 4.4

Table 4.4: Refinement statistics for HT-hTS Q62R, T251E and Q62R-T251E structures.
Values in parentheses are for the highest resolution shell.
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HT-hTS Q62R-T251E

dUMP FdUMP

Resolution range (Å) 29.68-2.80 29.61-2.60

(2.95-2.80) (2.74-2.60)

No. of reflections, working set 104505 (7660) 129127 (9422)

No. of reflections, test set 5425 (396) 6822 (0.299)

Rcryst 0.24986 (0.333) 0.21035 (0.299)

Rfree 0.33761 (0.401) 0.27969 (0.369)

No. of non-H atoms

Proteins 18978 18496

Ligands
120 (dUMP), 168 (FdUMP),

344 (5-FTHF-di-Glu) 344 (5-FTHF-di-Glu)

Water 1450 1474

Total 20892 20482

R.m.s. deviations

Bonds (Å) 0.007 0.008

Angles (°) 1.663 1.825

Average B factors (Å2) 45.013 50.057

Estimate error on coordinates

based on R value (Å)
0.669 0.368

Ramachandran plot

Most favored (%) 92.8 95

Allowed (%) 7.2 5

Table 4.5: Refinement statistics for HT-hTS Q62R-T251E variant in complex with dUMP or
FdUMP.
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as confirmed by SDS-PAGE analysis (Figure 4.2 B) and MALDI-TOF mass

spectrometry (Figure 4.2 A-C ; HT-hTS Q62R theoretical molecular weight

MW = 37142.46 Da, determined MW = 37072.09 HT-hTS T251E theoretical

MW = 37142.46 Da, determined MW = 37121.79 Da; HT-hTS Q62R-T251E

theoretical MW = 37170.52 Da, determined MW = 37170.55 Da). The final

production yields ranged from ≈50 mg L-1 to ≈100 mg L-1 bacterial culture

(HT-hTS Q62R: ≈80 mg L-1; HT-hTS T251E: ≈50 mg L-1; HT-hTS

Q62R-T251E: ≈100 mg L-1).

4.2.2 Protein characterization: thermal stability and

kinetic analyses

Former investigation on hTS have shown that residues placed on the

monomer-monomer interface are crucial for the homodimer assembly of this

enzyme [43, 70]. Here, we have generated three novel hTS interface variants in

which charged residues (Arg and/or Glu) have been placed in critical positions

of the hTS homodimer interface. Notably, the mutated amino acids at positions

62 and 251 face themselves on the cognate subunit. To assess the influence of

the introduced interface mutation on the enzyme stability and catalytic

efficiency, all variants were subjected to CD thermal denaturation and kinetic

analyses in comparison to HT-hTS. At variance with the thermal denaturation

profile of HT-hTS that showed a biphasic transition (Figure 4.5 A, curve in

green), monophasic transitions were recorded for the interface variants (Figure

4.4 A). The introduced interface mutations induce reductions of the Tm values,

resulting of 51.26 (± 0.08) ◦C [108] and 49.87 (± 0.08) ◦C for the single variant

Q62R and T251E, respectively, and of 51,4 (± 0,06) ◦C for the double variant

Q62R-T251E (Figure 4.4 A), with respect to HT-hTS, having a Tm of 53.27 (±

0.09) ◦C (Section 3.2.2).

As formerly discussed in Section 3.2.2, after the addition of dUMP, HT-hTS

undergoes to a stabilization effect, leading to an increment of ≈3.5 ◦C in its Tm

value, that reaches 56.77 (± 0.08) ◦C. Surprisingly, the Tm values of all

interface variance are unaltered upon substrate addition, being 51.11 (± 0.10)
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Figure 4.2: (A) Representative chromatogram of the nickel- affinity chromatography (HisTrap
FF 5mL column, GE-Healthcare) performed to purify HT-hTS Q62R-T251E. The UV280nm

monitoring and imidazole concentration are shown as blue and green lines, respectively; the
elution fractions are indicated on the x-axis as red marks. (B) SDS-PAGE analysis of the
fractions collected from affinity chromatography (the protein ladder used for MW estimation is
in lane 4).
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Figure 4.3: (A) Chromatogram of the HiLoad 16/600 Superdex 75pg column (GE-Healthcare)
purification step. The UV280nm and UV260nm monitoring of protein elution is in blue and green
respectively. Factions are indicated by red marks on the x-axis. (B) SDS-PAGE analysis of the
fractions collected from SEC. The protein ladder is in lane 6.
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Figure 4.4: MALDI-TOF mass spectra of HT-hTS Q62R (A), HT-hTS T251E (B) and HT-
hTS-Q62R-T251E (C).
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◦C and 50.51 (± 0.15) ◦C for the single variant Q62R and T251E, respectively,

and 51.22 (± 0.09) ◦C for the double variant Q62R-T251E (Figure 4.4 B). The

comparison of the Tm values recorded in presence of dUMP, shows reduction of

≈ 5-6 ◦C for all interface variants with respect to HT-hTS (Figure 4.4 B). From

these results we can deduce that the interface variants are not subjected to the

stabilization effect induced by the substrate dUMP, attributed to the switch of

the protein to the active conformation.

As expected, the point mutations introduced at the hTS interface deeply

affected also the enzyme catalytic activity. To evaluate these effects, the kinetic

properties of the mutants have been compared with the kinetic parameters

formerly reported for HT-hTS [70] (Km dUMP: 10 ± 1 µM; Km mTHF: 6 ± 1

µM; kcat: 1.00 ± 0.01 s-1; summarized in Table 4.6). The affinity for the

substrate is almost unaffected by the mutations, as indicated by the analogous

KM values for dUMP (Table 4.6). On the other hand, a slight alteration is

observed for cofactor affinity, resulting reduced by ≈ 3-3.5 times in the interface

mutants with respect to HT-hTS (Km of 16 ± 1 µM and 19 ±1 µM for the

single variant Q62R and T251E, respectively, and of 21 ±1 µM for the double

variant Q62R-T251E; Table 4.6). Furthermore, all variants displayed a 20-30

times decreased turnover rate with respect to HT-hTS [70] (kcat of 0.16 ± 0.06

s-1 and 0.04 ± 0.03 s-1, for Q62R and T251E, respectively, and of 0.03 ± 0.04

s-1 for Q62R-T251E; Table 4.6). This reflects also on the catalytic efficiency,

leading to significantly lower kcat/Km values for all interface variants (see Table

4.6).
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Figure 4.5: Thermal unfolding transition curves of HT-hTS, HT-hTS Q62R, HT-hTS Q62R-
T251E (A) and of the same mutants incubated with dUMP (B) for 1 h on ice, followed
by circular dichroism spectroscopy. Melting temperature (Tm) values determined for the
transitions of each mutant in the absence (A) or in the presence (B) of ligand dUMP are
reported in the tables.
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Km dUMP

(µM)

Km mTHF

(µM)

Kcat

(s-1)

Kcat/Km (dUMP)

(M-1 s-1)

Kcat/Km (mTHF)

(M-1 s-1)

HT-hTS 6 ± 1 10 ± 1 1.00 ± 0.01 1.00 × 10-7 1.67 × 10-7

HT-hTS Q62R 8 ± 1 16 ± 1 0.16 ± 0.06 0.20 × 10-7 0.10 × 10-7

HT-hTS T251E 10 ± 1 19 ± 1 0.04 ± 0.03 0.4 × 10-8 0.2 × 10-8

HT-hTS Q62R-T251E 11 ± 1 21 ± 1 0.03 ± 0.04 0.3 × 10-8 0.1 × 10-8

Table 4.6: Kinetic characterization of His6-tag human thymidylate synthase (HT-hTS) and
of its interface variants HT-hTS T251E and HT-hTS Q62R-T251E. The turnover rate (Kcat),
the Km for dUMP, as well as that for mTHF were determined. Also, the value indicating the
catalytic efficacy (kcat/Km) is reported in the table.

4.2.3 Structural characterization of the HT-hTS variants

Q62R, T251E, and Q62R-T251E

4.2.3.1 Overall fold of the interface mutants Q62R, T251E, and

Q62R-T251E

The structures of the interface variants Q62R (PDB id 6R2E) [108], T251E, and

Q62R-T251E have been obtained at resolution ranging from 2.25 Å to 2.70 Å

(Table 4.2), showing the dimeric quaternary assembly, typical of the wild-type

enzyme (Figure 4.6). All crystals belonged to the primitive orthorhombic space

group P21221 including eight enzyme subunits (four enzyme dimers) in the ASU.

In all structures, the four dimers (A-B, C-D, E-F, G-H) populating the ASU are

nearly identical. The polypeptide chain was fully traced in all models, except for

the starting 12 N-terminal residues belonging to the non-removable His6-tag and

the following 25 residues of the hTS sequence, disordered in all hTS structures

reported so far [65]. From the initial phases of structure solution and refinement,

it was evident that all variants were in the active conformation, with the catalytic

loop 181-197 and the catalytic Cys195 exposed in the active site. The shape of

the electron density in correspondence to the mutated residues at positions 62

and/or 251 proved the effective replacement of the amino acids at these sites.

The side chains of the mutated residues were completely rebuilt in all enzyme

subunits, according to the electron density. The structural comparison among all

models shows that the overall fold is retained in all variants (rmsd of 0.17-0.37

Å upon Cα matching).
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Figure 4.6: Cartoon representation of an enzyme homodimer (subunit A and B are colored
cyan and wheat, respectively) of HT-hTS Q62R-T251E. The mutated residues Arg62 and
Glu251 are displayed in sticks (gray and carbon atoms).

4.2.3.2 The dimer interface in HT-hTS Q62R, HT-hTS T251E and

HT-hTS Q62R-T251E

Residues at positions 62 and 251 were selected to introduce charged interface

mutations since they face themselves on the cognate subunit, thus possibly

maximizing the perturbation effects induced by these modifications. In the

structure of the Q62R mutant, the side chains of the two facing Arg62 point in

two opposite directions at the dimer interface. This arrangement minimizes the

electrostatic repulsions induced by the facing positive charges on the enzyme

halves. In these orientations, the side chains of both arginines interact with the

backbone carbonyl of Gly60 on the partner subunit [108]. Furthermore, on the

two dimer halves, Arg62 is directed towards Arg64 of the same subunit,

creating a positively charged area in which a sulfate anion (from the

crystallization solution) is bound. In the structure of the HT-hTS Q62R-T251E
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double variant the same interaction with Gly60 is also visible, whereas the

sulphate anion is not bound in this region (Figure 4.8 B). In the structures of

the mutants Q62R [108] and Q62R-T251E, the distances measured between the

Cα atoms of facing Arg62 are in the ranges 8.05 – 8.20 (± 0.46) Å and 8.16 –

8.39 (± 0.31) Å, respectively, in the four enzyme dimers found in the ASU.

These distances are slightly increased with respect to those observed in the

wild-type enzyme, where the facing Gln62 are placed ≈ 6.6 Å apart. The local

shifts by ≈ 1.5 Å and ≈ 1.7 Å are spread over a large interface area, inducing a

weakening of the dimer quaternary assembly of both Q62R single and double

variants. As for the Q62R, also the T251E mutation determines mutual

electrostatic repulsions of the two facing Glu251 and Glu251’ residues; their

negatively charged side chains point in the opposite directions in the structures

of both HT-hTS T251E and HT-hTS Q62R-T251E. In each protomer, the side

chain of Glu251 forms a H-bond with Gln211 (Figure 4.8 A and B).

Furthermore, in the structure of the double variant Q62R-T251E, the side

chains of the mutated residues interact with each other, forming an intra-subunit

interaction between the Arg62 guanidinium group the Glu251 carboxylate (Figure

4.8 B). In the structures of the mutants T251E and Q62R-T251E, the distances

between the Cα atoms of facing Glu251 are in the range 7.90 - 8.10 (± 0.66)

and 7.93 - 8.10 (± 0.31) Å, respectively, in the four homodimers presented in the

ASU. These distances are analogous to those measured in wild-type hTS (PDB

id 5X5D [84]), where Cα of facing Thr251 are 7.70 Å apart.

The structural data obtained on the three interface variants correlate with

the destabilization effect reported by CD thermal denaturation analyses

(Section 4.2.2). The point-mutations introduced at the hTS interfaces induce a

slight aperture of the enzyme dimer, particularly evident in the areas

surrounding Arg62 and Glu251, weakening the dimer quaternary assembly of

the variants (Figure 4.9) and leading to a destabilization effect accounting for

Tm reductions. The analysis of the interface areas in the mutant structures,

performed through the PISA webserver

(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html), also supports a

reduced stability of their dimer assembly [127]. Indeed, for the structure of
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Figure 4.7: Interface view of HT-hTS Q62R variant (in cartoon, interacting residues in sticks;
subunit A and B are colored cyan and wheat, respectively). Sulfate anions are displayed in
sticks carbon atoms. The mutated Arg62 (grey sticks and carbon atoms) entails a H-bond
(yellow dashes) with carboxylate of Gln60 in the same protomer; Arg62 is involved in some
salt-bridge (yellow dashes) interaction with sulfate anions and Arg64 belonging to the same
protomers. The mean distance between Cα atoms of facing Arg62-Arg62’(red dash) is 8.12 Å.

wild-type enzyme (PDB id 5X5Q [84]), it is calculated an average interface area

of 2120.8 Å2 and a ∆iG (indicates the solvation free energy gain upon

formation of the interface) of – 20.4 kcal mol-1. On the other hand, slightly

reduced interface areas are calculated for all variants, resulting of 2032.0 Å2 and

1930.7 Å2 for the Q62R [108] and T251E variants, respectively, and of 1954.4

Å2 for the double mutant. This correlates with the increased ∆iG values

estimated to –18.7 kcal mol-1 and –18.8 kcal mol-1 for the Q62R [108] and
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Figure 4.8: Interface view of HT-hTS T251E (A) and HT-hTS Q62R-T251E (B) variants
(in cartoon, interacting residues in sticks; subunit A and B are colored cyan and wheat,
respectively). The mutated T251E (grey sticks and carbon atoms) entails a H-bond (blue
dashes) with carboxylate of Gln211 in the same protomer (A) and (B). (B) Arg62 is H-
bonded (blue dashes) to Gly60 of the partner subunit and to Glu251 belonging to the same
protomer. The mean distance between Cα atoms of facing Glu251E-Glu251E’ (red dash) in
the structure of T251E is 8 Å (A); the distances between the two facing Arg62-Arg62’ and
Glu251E-Glu251E’(red dash) are 8.28 and 8.05 Å, respectively.

T251E variants, respectively, and -17.6 kcal mol-1 for the double variant.

4.2.3.3 The active site in HT-hTS interface charged variants

The structural characterization of the three interface variants Q62R, T251E and

Q62R-T251E revealed that are all in the active conformation. The analysis of

the active site reveals the presence of a continuous electron density extending

from the thiol of the catalytic Cys195, indicating its modification as

S,S-(2-hydroxyethyl)thiocysteine (CME195) (Figure 23). This modification is

due to the reaction with the β-mercaptoethanol added to the proteins prior to

the crystallization experiments. The presence of this reducing agent is critical

for hTS crystallization, indeed no crystal growth is observed without

β-mercaptoethanol. Nearby CME195, a sulfate anion is observed, anchored to

the guanidinium moieties of the four arginine residues Arg50, Arg215, Arg175’,
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Figure 4.9: Structural comparison between the homodimer of HT-hTS Q62R-T251E (subunit
A and B are colored cyan and wheat, respectively) and the wt enzyme (in grey; PDB id 1HVY
[126]). The superimposition (performed by matching subunit A of both models) indicates a
shift of the cognate subunit in the structure of the Q62R-T251E variant, with a slight opening
of the quaternary dimeric structure.

and Arg176’ (Figure 4.10). The positively charged pocket created by these

arginines is responsible for recognition and binding of the dUMP phosphate

moiety [84, 126], mimicked here by the sulfate anion.

In all structure, the active site is also further populated by an exogenous

ligand, occupying the cofactor binding site. The shape of the electron density

observed at this site is highly compatible with a folate-like molecule, and more

precisely, with the reduced form for the cofactor having a bent conformation of

the pyrazine ring of the folate pteridine. Furthermore, according to the

observed electron density, this folate-like molecule has a biatomic substituent on
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Figure 4.10: Cartoon representation of an enzyme homodimer (subunit A and B are colored
cyan and wheat, respectively) of HT-hTS Q62R. The mutated residues Arg62 is displayed in
sticks (gray and carbon atoms). The monomers adopt the active conformation showing the
catalytic Cys195 exposed inside the catalytic cavity. The catalytic Cys195 is modified as S,S-
(2-hydroxyethyl)thiocysteine (CME195, in grey and carbon atoms sticks) in all subunits. The
cofactor analogue 5-formyl-6-tetrahydrofolate (5-FTHF, in sticks carbon atoms in wheat or
cyan) is entrapped in the active site of both enzyme subunits.

the pteridine C5, consistent with either a hydroxymethyl moiety or a formyl

group (5-ethyl derivatives of the cofactor are not known). The ligand was

refined either as 5-hydroxymethyl-6-tetrahydrofolate (5-HMTHF) or 5-FTHF,

without significant changes in the refinement quality indicators and in the

resulting Fourier maps [108]. Moreover, the resolution of the structures (2.25 -

2.70 Å) did not allow us to discriminate between single and double C-O bonds,

preventing further speculations on which THF-derivative is observed in this

site. Nonetheless, we opted for 5-FTHF because this molecule is naturally

formed inside cells [128] and its complexes with another hTS variant (PDB id

6QYQ) [129] and with the bacterial Enterococcus faecalis TS (EfTS, PDB id
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3UWL) were formerly reported [130]. Thus, we report the characterization of

the HT-hTS Q62R in complex with the cofactor analogue 5-FTHF, copurified

with the enzyme. In the structures of both HT-hTS T251E and HT-hTS

Q62R-T251E, a further additional density extends to terminal glutamate

moiety of 5-FTHF, suggesting that we are observing here its di-glutamate

derivative, 5-formyl-6-tetrahydrofolate-di-L-glutamate (5-FTHF-di-Glu). After

their synthesis, folate molecules are polyglutamylated, a modification that aids

retention and compartmentalization in cells. De facto folate, as well as,

folate-like molecules could have a γ-linked polyglutamyl tail of up to eight

residues attached to the first glutamate [131]. Thus, both mono- and

di-glutamate forms of 5-FTHF exist in cells and could be copurified with the TS

variants. In the interface variant structure, both 5-FTHF and 5-FTHF-di-Glu

occupy the cofactor binding site establishing a tight network of conserved

H-bonds and van der Waals interactions with several residues exposed inside

the catalytic cavity (Figure 4.11). The nitrogen N1 of the reduced pteridine is

H-bonded to Asn112, whereas the nitrogen N2 establishes a water-mediated

interaction with the same Asn112. The amine group forms a H-bond with

Ala312 backbone carbonyl and Asp218 carboxylate. The latter residue also

accepts a H-bond from N3 of the pteridine ring. Water-mediated interactions

connect the ketone moiety of the reduced pteridine ring with the backbone

nitrogens of Asp218 and Gly222, and the sidechains of Asn226. The formyl

group on the pteridine N5 makes water-mediated interactions with Glu87 and

His196 and a direct H-bond with the amide nitrogen of Asn226 (Figure 4.11).

The p-aminobenzoate (pABA) portion of the cofactor analogues form a

T-shaped interaction with Phe225. Moreover, the folate derivates make van der

Waals interactions with Met311, Ile108, and Leu221 (Figure 4.11). The shared

glutamate moiety of 5-FTHF and 5-FTHF-di-Glu is stabilized by a network of

water-mediated interactions with the surrounding residues at the entrance of

the active site, whereas the second glutamate moiety of 5-FTHF-di-Glu is

mostly solvent exposed and establishes hydrophobic interactions with Phe80

(Figure 4.11).

The binding mode reported here for 5-FTHF is also the same observed in the
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Figure 4.11: (A) Chemical structure of 5-formyl-tetrahydrofolate-di-glutamate (5-FTHF-di-
Glu). (B) Cartoon representation of active site view of HT-hTS Q62R-T251E (in cartoon,
interacting residues in cyan and carbon atoms sticks). The cofactor analogue 5-FTHF-di-Glu
(in sticks, cyan carbon atoms) is entrapped inside the catalytic cavity by a tight network and
it is surrounded by the omit map contoured at the 2.5 σ level. 5-FTHF is observed in all
active sites of the four dimers found in the ASU. (C) Cartoon representation of active site view
of HT-hTS Q62R-T251E (in cartoon, interacting residues in cyan carbon atoms sticks). The
cofactor analogue 5-FTHF-diGlu establishes a tight network of H-bonds (grey dashed lines) and
van der Waals interactions (water molecules in red spheres and water mediated interactions in
grey dashed lines). Sulfate anions is displayed in sticks.

structures of the complexes with the hTS variant R175C (HT-hTS R175C; PDB

id 6QYQ [129]) and with the bacterial enzyme EfTS (PDB id 3UWL [130]),

showing also retained interactions within the enzyme catalytic cavity. In all

structures, the folate-like molecules populate the cofactor binding site despite

the lack of substrate bound to its pocket (binary complexes). The comparison of

our structural models with those of the ternary complexes hTS-dUMP-raltitrexed

(PDB id 1HVY [126]) and hTS-FdUMP-raltitrexed (PDB id 6ZXO [58]) shows a

different arrangement of 5-FTHF/5-FTHF di-L-glutamate and raltitrexed within
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the cofactor site (Figure 4.12). The reduced pteridine moiety of 5-FTHF/5-

FTHF-di-L-glutamate is rotated by ≈30◦with respect to the bicyclic system of

raltitrexed, protruding in the substrate site (uracil pocket), occupied by dUMP/

FdUMP in the ternary complexes [61, 84, 126, 132].

Figure 4.12: Active site view of the superimposition between the structures of HT-hTS T251E
(wheat cartoon, sulfate anion in sticks) in complex with 5-FTHF-di-Glu (wheat carbon atoms
sticks) and the wt hTS (grey cartoon) in complex with FdUMP and raltitrexed (both in green
and carbon atoms sticks) (A) or with the wt hTS (magenta cartoon) in complex with dUMP
and raltitrexed (both in sticks, magenta carbon atoms) (B). The reduced pteridine moiety of
5-FHTF-di-Glu is moved with respect to the corresponding moiety of raltitrexed of both the
ternary complexes, protruding in the substrate uracil site. In the structure of HT-hTS T251E,
the catalytic cysteine is modified as S,S-(2-hydroxyethyl) thiocysteine (CME195, in grey carbon
atoms sticks).

Former structural studies on hTS have reported a correlation between the

enzyme active/inactive conformation and the ionic strength of the precipitant

solutions used to crystallize the enzyme [123, 126]. Precipitant solutions having

low concentrations (<0.2 M) of ammonium sulfate (low-salt condition) favor the

switch of the enzyme to active conformation, whereas high concentrations (>1

M, high-salt condition) invariantly yielded the inactive conformation [58, 77,

126]. Our interface variants crystallized in the active conformation, despite the

presence of ammonium sulfate in the precipitant solution. Indeed, both HT-

hTS T251E and HT-hTS Q62R-T251E crystallized in sulfate-free conditions (see
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Section 4.1.6, whereas the precipitant used for Q62R crystallization included high

concentration of ammonium sulfate (2.0–2.2 M) [108]. This seems to suggest that

the three interface variants are all stabilized in the active conformation, at least

in part, by the population of the cofactor site by 5-FTHF or 5-FTHF-di-Glu.

This observation also correlates with the results of the CD thermal denaturation

analyses, showing an increment of the Tm for HT-hTS upon dUMP addition,

whereas all interface variants retained the same Tm despite the presence of the

substrate. Upon exposure to the substrate hTS is thought to switch to the active

conformation, leading to increased thermal stability. On the other hand, all

interface variants are already in the active conformation and unchanged thermal

parameters are determined upon substrate addition. The structural data also

contribute to explain the kinetic parameters reported for the interface variants

(Table 4.6). All of them displayed increased KM for mTHF, indicating a reduced

affinity for the cofactor. This could be explained, at least in part, by the presence

of folate-like molecules in the active site, that compete with the cofactor for its

binding pocket. All variants also displayed lower turnover rates and reduced

catalytic efficiencies. These reduced kinetic properties do not only account for the

population of the cofactor site by exogenous folate-like compounds, but they are

also reasonably due to the dimer destabilization effects induced by the interface

mutations. Since both residues 62 and 251 are localized more than 15 Å away

from the catalytic cavity, a direct effect of their mutation on ligand binding seems

unlikely. Nevertheless, we can hypothesize long-range effects of the interface

mutations on the catalytic activity or even on the active/inactive conformation

equilibrium, peculiar of this enzyme. Former studies on hTS have shown that

the introduction of mutations can affect the active/inactive equilibrium of the

enzyme [61, 66]. Gibson and coworkers [66], reported that the hTS R163K variant

is stabilized in the active conformation. Further investigations are needed to fully

elucidate the effects induced by these interface point mutations on hTS and how

they affect the active/inactive conformation equilibrium of the enzyme.
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4.2.4 Structural characterization of the complexes

HT-hTS Q62R-T251E:dUMP and HT-hTS

Q62R-T251E:FdUMP

The crystal structure of HT-hTS double mutant Q62R-T251E was also solved in

complex with the substrate dUMP and with its analogue FdUMP to resolutions

of 2.8 Å and 2.6 Å, respectively (Tables 4.3 and 4.5). As for the dUMP-free

structures, the catalytic Cys195 is exposed inside the catalytic cavity (active

conformation). The analysis of electron density revealed the presence of dUMP

and its analogue FdUMP bound to the substrate pocket in their respective

complexes. Furthermore, the cofactor analogue 5-FTHF-di-Glu was also

observed populating the cofactor binding site of both complexes. In the dUMP

complex, the pyrimidine carbonyl oxygen in position 2 accepts two H-bonds

from Asp218 backbone nitrogen and Gln214 amide nitrogen. The uracil N3

donates an H-bond to the Asn226 carbonyl group whereas the pyrimidine O4 is

H-bonded to Asn226 amide and forms a water-mediated interaction with Glu87.

The dUMP uracil C6 atom is placed ≈3.30 Å apart from the Cys195 Sγ,

excluding the formation of a covalent bond. The hydroxyl of the dUMP ribose

is H-bonded to His256 and Tyr258, whereas its phosphate moiety is salt bridged

to Arg50, Arg215, Arg175’, and Arg176’ (Figure 4.13). The binding of FdUMP

closely resemble that of the substrate, forming also conserved interactions inside

the cavity. The FdUMP C6 atom is positioned slightly closer to the Cys195 Sγ,

showing an average interatomic distance of ≈3.00 Å. FdUMP differs from the

substrate by the 5-fluorine substituent on the pyrimidine ring, that takes

additional halogen bond with Tyr135 hydroxyl (Figure 4.14). The binding

mode of 5-FTHF-di-L-Glu is the same in both complexes and is also similar to

the HT-hTS Q62R-T251E substrate-free structure (Section 4.2.3.3) . The

major difference concerns the position of the reduced pteridine moiety of

5-FTHF di-L-Glu that in the structure of substrate-free HT-hTS Q62R-T251E

is slightly shifted towards the substrates site, partially hindering it. In the

ternary complexes with dUMP and FdUMP, the population of the substrate

pocket induces a slight movement of the reduced pteridine moiety of
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5-FTHF-di-L-Glu, placing the 5-formyl substituent ≈1 Å away with respect to

the position occupied in the substrate free-structure. This allows to retain

analogous interactions with the surrounding residues in all structural models.

In the ternary complexes, additional interactions are entailed between the

dUMP/FdUMP pyrimidine ring and the quinazoline ring of 5-FTHF-di-Glu,

which are stacked to each other. The structures of our ternary complexes with

the HT-hTS double mutant Q62R-T251E are also similar to other ternary

complexes of hTS determined in presence of substrate and cofactor-like

molecules, like raltitrexed [62, 126]. Only slight differences are observed in the

cofactor-like molecules accounting for their different bicyclic systems.
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Figure 4.13: (A) Chemical structure of 2’-deoxyuridine-5’-monophosphate (dUMP). (B)
Cartoon representation of active site view of HT-hTS Q62R-T251E:dUMP (in cyan cartoon).
The substrate dUMP (in sticks, green carbons) is entrapped inside the catalytic cavity with
the cofactor analogue 5-FTHF (in sticks, green carbons) both surrounded by the omit map
contoured at the 2.5 σ level. dUMP and 5-FTHF are observed in all active sites of the
four dimers found in the ASU (C) Cartoon representation of active site view of HT-hTS
Q62R-T251E:FdUMP (in cartoon, interacting residues in sticks, cyan carbons). FdUMP takes
several H-bonds (grey dashed lines) with the surrounding residues (Asp218, Gln214, Asn226,
Glu87;His256,Tyr258; in sticks, cyan carbons), a water mediated interactions with Glu87, and
salt-bridges (grey dashed lines) through its phosphate mojety with Arg50, Arg215, Arg175’,
and Arg176’ (in sticks, cyan atoms). The cofactor analogue 5-FTHF-diGlu establishes the
same tight network of H-bonds and van der Waals interactions visualized in Figure 4.11 and
here omitted for clarity.
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Figure 4.14: (A) Chemical structure of 5’-fluorodeoxyuridine-monophosphate (5-FdUMP).
(B) Cartoon representation of active site view of HT-hTS Q62R-T251E:FdUMP (in cyan
cartoon). The substrate analogue 5-FdUMP (in sticks, green carbons) is entrapped inside the
catalytic cavity with the cofactor analogue 5-FTHF (in sticks, green carbons) both surrounded
by the omit map contoured at the 2.5 σ level. FdUMP and 5-FTHF are observed in all
active sites of the four dimers found in the ASU. (C) Cartoon representation of active site
view of HT-hTS Q62R-T251E:FdUMP (in cyan cartoon, interacting residues in sticks, cyan
carbons). FdUMP takes several H-bonds (grey dashed lines) with the surrounding residues
(Asp218, Gln214, Asn226, Glu87;His256,Tyr258; in sticks, cyan atoms), a water mediated
interactions with Glu87, and salt-bridges (grey dashed lines) through its phosphate mojety
with Arg50, Arg215, Arg175’, and Arg176’ (in sticks, cyan atoms). The 5-fluorine substituent
on the pyrimidine ring, takes halogen bond with the Tyr135 hydroxyl. The cofactor analogue
5-FTHF-diGlu establishes the same tight network of H-bonds and van der Waals interactions
visualized in Figure 4.11 and here omitted for clarity.
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Q62R
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Abstract: In human cells, thymidylate synthase (TS) provides the only source of
2′-deoxythymidyne-5′-monophosphate (dTMP), which is required for DNA biosynthesis. Because of
its pivotal role, human TS (hTS) represents a validated target for anticancer chemotherapy. Nonetheless,
the efficacy of drugs blocking the hTS active site has limitations due to the onset of resistance in
cancer cells, requiring the identification of new strategies to effectively inhibit this enzyme. Human
TS works as an obligate homodimer, making the inter-subunit interface an attractive targetable
area. Here, we report the design and investigation of a new hTS variant, in which Gln62, located at
the dimer interface, has been replaced by arginine in order to destabilize the enzyme quaternary
assembly. The hTS Q62R variant has been characterized though kinetic assay, thermal denaturation
analysis and X-ray crystallography. Our results provide evidence that hTS Q62R has a reduced
melting temperature. The effective destabilization of the TS quaternary structure is also confirmed by
structural analysis, showing that the introduced mutation induces a slight aperture of the hTS dimer.
The generation of hTS variants having a more accessible interface area can facilitate the screening of
interface-targeting molecules, providing key information for the rational design of innovative hTS
interface inhibitors.

Keywords: human thymidylate synthase; interface variant; dimer destabilization; circular dichroism;
thermal stability; X-ray crystallography; site-directed mutagenesis

1. Introduction

Thymidylate synthase (TS, EC 2.1.1.45) plays a pivotal role in human cells,
since it catalyzes the reductive methylation of 2′-deoxyuridine-5′-monophosphate (dUMP) to
2′-deoxythymidyne-5′-monophosphate (dTMP), using N5,N10-methylenetetrahydrofolate (mTHF) as
cofactor. According to the reaction mechanism, the thiol of the catalytic Cys195 attacks the carbon atom
in position 6 (C6) on the dUMP pyrimidine, forming a covalent adduct (Figure S1) [1]. The dUMP
uracil carbon in position 5 (C5) is thus activated to accept the methyl moiety (C11) and the hydride
donated by mTHF. In human cells, TS provides the only synthetic source of dTMP necessary for DNA
biosynthesis, indeed its inhibition halts the replication processes and induces apoptosis in rapidly
dividing cells, an effect known as “thymineless death” [2]. This classifies human TS (hTS) as an
important target in anticancer chemotherapy. As a matter of fact, various TS inhibitors targeting the
enzyme active site such as FdUMP (the active metabolite of 5-fluorouracil) and raltitrexed, are currently
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in use as anticancer agents [3,4]. Nonetheless, the use of these classical hTS inhibitors has restrictions
due to the onset of resistance induced by TS overexpression [3–5]. Thus, new inhibition strategies have
to be explored to effectively inhibit hTS without causing resistance in cancer cells.

Former structural studies have revealed that the hTS homodimers are able to switch between
two alternate conformations, named active and inactive, primarily by changing the orientation of the
loop including the catalytic Cys195 (catalytic loop, residues 181–197; Figure 1a) [6,7]. In the active
conformation, Cys195 is exposed inside the catalytic cavity, whereas it is moved at the dimer interface
upon the switch to the inactive form. The transition to the active conformation is fundamental to
create the functional active site in which dUMP is accommodated, preceding the binding of cofactor
(Figure S2) [7]. Inside cells, hTS acts also as a regulatory protein by binding RNAs, including its own
mRNA (TSmRNA) [5,8]. It has been proposed that active site-targeting inhibitors of hTS stabilize the
active conformation of the enzyme that reduces the affinity of TS for the TSmRNA [5]. This removes
the translational arrest and triggers TS overexpression, leading to drug resistance [5]. The TSmRNA
binding site on hTS is yet uncharacterized. Even so, there is evidence that the hTS dimer interface
plays an important role in hTS-mRNA recognition, perhaps by controlling conformational transitions
that alternatively expose and hide the TSmRNA recognition site [9–11]. The hTS dimer interface
represents an attractive targetable area for the development of new inhibitors that could avoid the
onset of drug resistance. Nonetheless, the generation of interface-targeting molecules is tricky and the
identification of targetable spots on the interface area is a fundamental requisite. For this purpose,
we formerly probed the hTS dimer interface through the generation of a set of alanine variants [12].
Among them, the mutant F59A showed a meaningful dimer destabilization effect, resulting in a Kd of
10 (±2) × 10−5 M, more than three orders of magnitude higher than that measured for the wild-type
hTS, Kd of 5 (±1) × 10−8 M (both determined through fluorescence resonance energy transfer, FRET,
based assays) [12]. This significant gain in the dissociation constant was interpreted as a shift of the
monomer-dimer equilibrium towards the monomeric form [12]. This evidence further suggests that
the area surrounding Phe59 (Figure 1b) is important to stabilize the enzyme quaternary structure,
classifying it as a potentially druggable spot for the development of interface-targeting inhibitors.

On the basis of these results, we have introduced a bulky, charged residue at the dimer interface
close to Phe59, in order to generate destabilized homodimers that can facilitate the access to this
area, simplifying the identification of interface-binding molecules. The hTS variant Q62R, having the
interface residue Gln62 replaced by arginine, was generated and characterized through kinetic assay,
circular dichroism (CD) thermal denaturation analysis and X-ray crystallography. Residue 62 is
proximal to Phe59 and it faces itself on the cognate subunit enhancing the electrostatic repulsion effects
induced by the introduction of a charged residue in this position (Figure 1b).

The CD thermal denaturation studies, performed on the wild-type enzyme and the Q62R variant,
showed meaningful variations in the melting temperature of the mutant, evidencing a destabilization
effect induced by the introduction of Arg62 at the dimer interface. The structure of hTS Q62R was
determined and compared to that of the wild-type enzyme, highlighting a slight aperture of the
mutated enzyme homodimer. Furthermore, the structural analysis revealed that the variant adopts the
active conformation, entrapping a cofactor analogue molecule within the catalytic cavity. The kinetic
characterization of hTS Q62R is consistent with the crystallographic evidence. Our results show that
the mutation Q62R effectively destabilizes the hTS homodimer, supporting the importance of this area
for the enzyme quaternary assembly.
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Figure 1. (a) Cartoon representation of the superimposition between the human thymidylate synthase
(hTS) homodimer (subunits A and B are colored light lilac and yellow, respectively) in the active
(Protein Data Bank, PDB, id 5X5D [13]) and inactive (PDB id 3N5G [14]) conformations. The two
orientations of the catalytic loop (residues 181–197), defining the active (brown trace; PDB id 5X5D [13])
and inactive (green trace; PDB id 3N5G [14]) conformations, are displayed. The catalytic cysteine is
shown in sticks in the active (A) and inactive (I) conformations (brown and green carbons, respectively).
The position of the catalytic cavity is indicated by the presence of the substrate 2′-deoxyuridine
5′-monophosphate (dUMP, in sticks, black carbons; PDB id 5X5D [13]). (b) Interface view of the two
Phe59 pockets, proved to be important for enzyme dimerization [12]. The position of the nearby
Gln62, facing Gln62′ on the cognate subunit, is shown. Residues are displayed in sticks (carbon atoms
are color-coded according to the parent subunits). In all figures, nitrogen atoms are colored blue,
oxygen red, sulfur yellow, and phosphorous magenta.
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2. Materials and Methods

2.1. Cloning and Site-Directed Mutagenesis

The hTS variant Q62R was generated by site-directed mutagenesis using partially
overlapping primers (forward primer: GCATGCGGGCGAGATATTCATTAC; reverse primer:
CTCGCCCGCATGCCGAAGACGC; purchased from Sigma-Aldrich, Milan, Italy) and the pQE80L-hTS
plasmid (including the gene coding sequence for hTS cloned within the BamHI–HindIII restriction sites)
as template. The 50 µL PCR reaction mixture included 50–100 ng template DNA, 1 µM primer pair,
200 µM dNTPs and Expand High Fidelity (Roche Biochemicals, Basel, Switzerland). The reaction was
performed through an initial denaturation step (94 ◦C, 5 min), followed by 25 cycles of denaturation
(94 ◦C, 1 min), annealing (52 ◦C, 1 min), and expansion (72 ◦C, 10 min), and by a final extension step
(72 ◦C, 20 min). Afterwards, an aliquot (10 µL) of the reaction mixture was incubated overnight at 37 ◦C
with 1 µL of DpnI (NEB, Ipswich, MA, USA). The resulting sample was heat-shock transformed in the
E. coli TOP10 strain and positive transformants were selected on LB-Agar plates supplemented with
100 mg L−1 ampicillin. A single colony was cultured in LB medium added by 100 mg L−1 ampicillin
(14 h, 37 ◦C, 220 rpm) and used for plasmid extraction (EZNA DNA extraction kit I, Omega Bioteck,
Norcross, GA, USA). Site-directed mutagenesis was confirmed by sequencing the entire TS gene
(the absence of unwanted mutations was also verified; sequencing service performed by Eurofins,
Ebersberg, Germany).

2.2. Protein Expression and Purification

The wild-type hTS was expressed as His6-tag protein (HT-hTS, the non-cleavable N-terminal
His6-tag was encoded by the pQE80L expression plasmid) in the E. coli strain BL21(DE3) as
previously described [12], with minor modifications. Briefly, bacteria were cultured at 30 ◦C in
the auto-induction medium ZYP-5052 [15] for 30 h. Cells, harvested by centrifugation (3000 g, 15 min,
8 ◦C), were resuspended in buffer A (50 mM HEPES, pH 7.5 and 30 mM NaCl), added by 20 mM
imidazole, 0.2 mM phenylmethylsulfonyl fluoride (PMSF) and 0.5 mg mL−1 lysozyme, and then
disrupted by sonication after 60 min incubation on ice. The cell-free extract, obtained by centrifugation
(12,000 g, 60 min, 8 ◦C), was applied to a HisTrap HP 5 mL column (GE Healthcare, Milan, Italy) and
eluted using a step-gradient protocol, by applying 250–500 mM imidazole concentration in the same
buffer. Fractions containing the target protein were pooled and dialyzed in buffer A. The resulting
sample was concentrated (Vivaspin 20 molecular weight cut-off 10 kDa, Sartorius, Göttingen, Germany)
and further purified by size exclusion chromatography on a HiLoad 16/600 Superdex 75pg column
(GE Healthcare, Milan, Italy). The elution profile was consistent with the enzyme dimer assembly
(not shown). The high purity (>98%) of the resulting protein sample was confirmed by SDS-PAGE
analysis (NuPAGE 4-12% Bis-Tris protein gels; Thermo Fisher Scientific, Waltham, MA, USA) and
MALDI-TOF mass spectrometry (Toscana Life Science, Siena, Italy).

Attempting to produce the HT-hTS Q62R variant under the condition optimized for the wild-type
enzyme resulted in an almost complete localization of the target protein in inclusion bodies. Therefore,
a wide set of expression conditions was screened by testing different culturing media (Luria Broth,
Super Broth, ZYP-5052), incubation temperatures (20 and 30 ◦C), inductor concentrations (isopropyl
β-D-thiogalactopyranoside, IPTG, 0.1 and 0.5 mM), and incubation times (20 and 48 h). Our best
condition turned out to be by culturing bacteria (plasmid transformants of E. coli BL21(DE3)) in the
auto-induction medium ZYP-5052 [15] at 20 ◦C for 48 h. The HT-hTS Q62R variant was purified by
nickel-affinity and size exclusion chromatography following the same procedure described for the
wild-type enzyme.

2.3. Enzymatic Activity Assays

Enzyme activity assays were performed spectrophotometrically, according to a reported
protocol [12]. Briefly, 1 mL reaction mixtures were prepared by adding aliquots of the enzyme
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(0.14–1.50 µM) to the assay buffer (50 mM TES, pH 7.4, 25 mM MgCl2, 6.5 mM HCHO, 1 mM
EDTA, 75 mM β-mercaptoethanol) including variable concentrations of dUMP (3–180 µM) and mTHF
(5–75 µM). Reactions, started by the addition of the substrate, were monitored by following the increase
in absorbance at 340 nm during the oxidation reaction of mTHF to 7,8-dihydrofolate (DHF), for 3 min.
KM (Michaelis-Menten constant) values were determined for both mTHF and dUMP by varying their
concentration in the assays, whereas kcat was determined by changing the enzyme concentration.

2.4. Circular Dichroism (CD) Thermal Denaturation Analysis

The thermal stability of wild-type HT-hTS and the Q62R variant was evaluated using thermal
unfolding experiments by monitoring the far-UV CD signal at 220 nm, on a Jasco (Pfungstadt, Germany)
J-815 spectropolarimeter. The protein samples (20 µM enzyme solution in 10 mM HEPES pH 7.5 and
100 mM NaCl) were heated from 25 to 75 ◦C at a rate of 1 ◦C min−1. Two sets of experiments were
performed on the HT-hTS and the Q62R variant. The first was performed on the purified proteins,
whereas the second on the samples exposed to 1 mM dUMP for 30 min on ice. Measurements were
performed in triplicates. Data were analyzed using the software GraphPad Prism 7 in non-linear
regression using the Boltzmann sigmoidal function for melting temperature (Tm) determination.

2.5. Protein Crystallization

Prior to crystallization experiments the purified protein was concentrated to 20 mg mL−1 and
stored at −20 ◦C (until required). Crystallization trials were performed on the purified HT-hTS Q62R
(20 mg mL−1 in 50 mM HEPES pH 7.5, 30 mM NaCl, with or without 20 mM β-mercaptoethanol)
using the commercially available kits PEG/Ion, Index and Grid screen Ammonium Sulfate from
Hampton Research (Aliso Viejo, CA, USA), and JBScreen Basic (JBSB) 1–4 and Classic (JBSC) 6 from
Jena Bioscience (Jena, Germany). Protein crystal growth was observed in 10–14 days using the JBSC6
solution C4 (2.0 M ammonium sulfate, 100 mM TRIS pH 8.5) as precipitant.

The optimization of the crystallization condition was performed using the hanging drop
vapor-diffusion method [16] at 20 ◦C, by varying both the ammonium sulfate concentration and
the buffer. Crystals, suitable for diffraction experiments, were obtained from drops prepared by
mixing equal volumes of protein (above protein solution, with or without 10 mM dUMP) and
precipitant (2.0–2.2 M ammonium sulfate, 100 mM bicine pH 9.0) solutions, equilibrated over 800 µL
reservoir. Crystal growth was observed within two weeks only in drops prepared by including
20 mM β-mercaptoethanol in the sample solution. Prior to X-ray diffraction experiments, crystals were
transferred to the cryoprotectant solution (20% vol/vol glycerol, 2.4 M ammonium sulfate, 100 mM
bicine pH 9.0) and flash frozen in liquid nitrogen.

2.6. Data Collection, Structure Solution and Refinement

X-ray crystallographic data were collected using synchrotron radiation at the European Synchrotron
Radiation Facility (ESRF, Grenoble, France) beamline ID30B, equipped with a Dectris (Baden-Daettwil,
Switzerland) Pilatus3 6M detector. Reflections were indexed and integrated using the program XDS [17]
and scaled with SCALA [18] from the CCP4 suite [19]. Data collection and reduction statistics are
displayed in Table S1. Crystals of HT-hTS Q62R belonged to the primitive orthorhombic space group
P21221, including eight enzyme subunits (four enzyme dimers) in the cell asymmetric unit (ASU).
The structure was solved by molecular replacement using the software Molrep [20] from the CCP4 suite.
One monomer of hTS in the active (PDB id 1HVY [7]) and inactive (PDB id 3N5G [14]) conformations
were attempted as searching models (excluding water molecules and non-protein atoms), providing
clear evidence that the enzyme crystallized in the active conformation (active conformation: score of
0.775 and wRfac of 0.423; inactive conformation: score of 0.599 and wRfac of 0.548). The structure was
refined with Refmac5 [21] from the CCP4 suite using the TLS parametrization [22] in the last cycles
of refinement. The optimal partitioning of the polypeptide chains was calculated though the TLS
Motion Determination web server [23], resulting in twenty continuous segments. The molecular graphic
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software Coot [24,25] was used for manual rebuilding and modelling of missing atoms. Water molecules
were added through the ARP/wARP suite [26] and checked with Coot. Upon completion of the protein
model, inspection of the Fourier difference map clearly evidenced the presence of a ligand bound
in the active site of all enzyme subunits. The shape of the map indicated that the ligand was a
derivative of tetrahydrofolate (THF) modified at position 5 of the pteridine ring. The two THF
derivatives 5-formyl-6-tetrahydrofolate (5-FHTF) and 5-hydroxymethyl-6-tetrahydrofolate (5-HMTHF)
were alternatively modelled and refined in this site (in all active sites of the four enzyme dimers).
Furthermore, sulfate anions and glycerol molecules from crystallization/cryoprotectant solutions
were found within both enzyme dimers (seventeen sulfate anions and two glycerol molecules were
collectively included in the model). The occupancies of the exogenous ligands were singularly adjusted
to values, resulting in atomic displacement parameters close to those of neighboring protein atoms
in fully occupied sites. The stereochemical quality of the final model was checked using Coot and
Procheck [27]. Refinement statistics are reported in Table S2. Figures were generated through the
molecular-graphic software CCP4mg [28].

2.7. Protein Data Bank (PDB) Deposition

Atomic coordinates and structure factors for HT-hTS Q62R were deposited in the Protein Data
Bank under the accession code 6R2E.

3. Results

3.1. Variant Production

The hTS Q62R variant was generated through site-directed mutagenesis, using partially
overlapping primers and the gene coding sequence for the wild-type enzyme as template for the
PCR reaction. In the resulting amplified DNA, the gene coding sequence for the hTS Q62R variant
was inserted in the pQE80L vector (plasmid pQE80L—hTS-Q62R), which also included the coding
sequence for a non-cleavable N-terminal His6-tag. The variant was expressed as His6-tag protein
(HT-hTS Q62R) in the bacterial strain E. coli BL21(DE3). Attempting to express the variant under the
same experimental conditions adopted for the wild-type enzyme resulted in the almost complete
localization of the target protein in inclusion bodies. To improve the solubility of HT-hTS Q62R, a wide
set of expression conditions was screened relying on different incubation temperatures, culture media,
inductor concentrations, and incubation times. As expected, the formation of inclusion bodies was
generally decreased by reducing the incubation temperature. Indeed, our best conditions turned out to
be caused by culturing bacterial cells at 20 ◦C in the ZYP-5052 auto-induction medium for 48 h.

The purification procedure took advantage from the introduction of the N-terminal His6-tag,
indeed almost pure (>95%) protein samples for HT-hTS and the Q62R variant were obtained after
the first purification step relying on nickel-affinity chromatography. The purification was completed
through size exclusion chromatography, resulting in highly pure protein samples (>98%). The final
production yield for HT-hTS Q62R was estimated to ~80 mg L−1. In contrast, yields of ~200 mg L−1 were
reported for the wild-type enzyme under standard expression conditions [12,29], and confirmed by us
through our modified expression protocol (yield of ~250 mg L−1 using the ZYP-5052 auto-induction
medium).

3.2. Kinetic Characterization

The enzymatic activity assays performed on the HT-hTS and the Q62R variant showed that the
point-mutation introduced at the dimer interface perturbs the kinetic properties of the enzyme (Table 1).
For the variant Q62R, the KM value for the substrate dUMP is almost unaltered with respect to HT-hTS,
whereas the KM value for the cofactor mTHF is ~2.5 times higher. More pronounced is the effect on
the turnover rate (kcat) that results decreased by more than 6 times in the Q62R variant. This reflects
also on the catalytic efficiency, indeed the kcat/KM values determined for the variant are 5–17 times
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lower than those determined for the wild-type enzyme. These results are explained by the binding of a
cofactor-analogue molecule to HT-hTS Q62R and by the destabilization effects induced on the dimer
quaternary assembly (vide infra, Sections 3.3 and 3.4).

Table 1. Kinetic characterization of His6-tag human thymidylate synthase (HT-hTS) and of its interface
variant Q62R.

KM (dUMP)
(µM)

KM (mTHF)
(µM) kcat (s−1)

kcat/KM (dUMP)
(µM−1 s−1)

kcat/KM (mTHF)
(µM−1 s−1)

HT-hTS 10 ± 1 6 ± 1 1.00 ± 0.01 1.00 × 10−7 1.67 × 10−7

HT-hTS Q62R 8 ± 1 16 ± 1 0.16 ± 0.06 0.20 × 10−7 0.10 × 10−7

3.3. Circular Dichroism (CD) Thermal Denaturation Analysis

In hTS, residue 62, either a glutamine, in the wild-type enzyme, or an arginine, in the Q62R variant,
is exposed at the dimer interface on which it faces the same residue (either Gln62′ or Arg62′) on the
cognate subunit. The effect of the introduction of a bulky charged residue at the dimer interface was
evaluated through thermal denaturation analysis by monitoring the CD signal at 220 nm (Figure 2).
The values of the melting temperature (Tm) determined for the purified HT-hTS and the Q62R variant
resulted of 53.27 (±0.09) and 51.26 (±0.08) ◦C, respectively (Figure 2a). The decrease by ~2.0 ◦C in
the Tm of the variant indicates that the mutation introduced at the enzyme dimer interface induces a
destabilization of the protein. The drop in the Tm is even more evident after the addition of the substrate
(to a 50-fold molar excess with respect to the protein concentration, Figure 2b). At variance with the
Q62R variant, for which the same Tm (51.11 ± 0.10 ◦C) was determined after the substrate addition,
the wild-type enzyme undergoes to a stabilization effect in presence of dUMP that increases its Tm

to 56.77 (±0.08) ◦C (gain by ~3.5 ◦C). The comparison between the Q62R variant and the wild-type
enzyme exposed to the substrate, evidences a reduction by ~5.7 ◦C in the Tm of the interface mutant
(Figure 2b). Furthermore, the thermal denaturation profile of HT-hTS suggests a biphasic transition
that is no longer observed after the dUMP addition and in the curves of the variant.
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Figure 2. Thermal unfolding transition curves of HT-hTS and HT-hTS Q62R followed by circular
dichroism. Two sets of curves were determined, one on the purified proteins (a) and the second on the
samples incubated for 30 min with 1 mM dUMP (b). Melting temperature (Tm) values determined
for the transitions are tabulated in the panels. Measures were performed in triplicate. The thermal
denaturation profile of the wild-type HT-hTS suggests a biphasic transition, no longer observed
following dUMP addition and in the curves of the variant.
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3.4. Structural Characterization of the HT-hTS Variant Q62R

The structure of HT-hTS Q62R was solved to 2.55 Å resolution (Table S1), showing that the mutated
protein retains the constitutive dimeric quaternary structure of the wild-type enzyme (Figures 3 and 4a).
Four enzyme homodimers (A–B, C–D, E–F, G–H, in our model) were found in the cell asymmetric
unit (ASU, Figure 3), all fully traced apart for the first twenty-five N-terminal residues (further the
twelve residues belonging to the non-removable His6-tag). From the initial phases of structure solution
and refinement, it was evident that HT-hTS Q62R was in the active conformation. The four dimers
are nearly identical, as testified by the root mean square deviation (rmsd) upon Cα matching that
ranged from 0.15 Å to 0.77 Å among all enzyme subunits. The most evident differences are localized in
subunits B and D, in which the N-terminal segments point in a distinct direction with respect to other
subunits, as evidenced by the structural comparison displayed in Figure 3b. The maximal displacement,
resulting in ~9.5 Å, is observed on the N-terminal Pro26 (measured between the Cα atoms).

3.4.1. The HT-hTS Q62R Active Site

The mutation introduced at the enzyme dimer interface did not affect the architecture of the active
site, indeed it results fully consistent with formerly reported models for the active conformation of
the enzyme [7,13]. Nonetheless, the analysis of the electron density in the active site area evidenced
that the catalytic Cys195 was modified as S,S-(2-hydroxyethyl)thiocysteine (CME195, Figure 4b)
by the reaction with β-mercaptoethanol, added to the protein sample prior to the crystallization
experiments. The presence of this reducing agent was found to be critical for protein crystallization,
indeed attempting to crystallize HT-hTS Q62R without β-mercaptoethanol (or with a different reducing
agent) invariantly failed in crystal growth (as formerly observed also for the wild-type enzyme,
unpublished results). In all subunits, a sulfate anion was observed nearby the catalytic cysteine,
anchored to the guanidinium moieties of the four arginine residues Arg50, Arg215, Arg175′, and Arg176’
(the last two from the partner subunit, Figure 4b). These arginines are also responsible for the recognition
of the dUMP phosphate moiety in the substrate binding site [7,13], mimicked here by the sulfate anion.
Furthermore, in all active sites, the presence of a folate-like molecule was systematically observed
(Figure 4a,b). The shape of the electron density evidenced a bent conformation of the pyrazine ring
of the folate pteridine moiety peculiar to the cofactor reduced form, strongly suggesting that the
ligand was a tetrahydrofolate (THF) derivative (Figure 4b). The substituent on the pteridine C5
was a bi-atomic species, consistent with either a hydroxymethyl moiety or a formyl group (5-ethyl
derivatives of the cofactor are not known). The ligand was refined (in all active sites of the four dimers)
either as 5-hydroxymethyl-6-tetrahydrofolate (5-HMTHF) or 5-formyl-6-tetrahydrofolate(5-FTHF),
without meaningful changes in the refinement quality indicators (as expected) and in the resulting
Fourier maps. Moreover, the resolution of the structure (2.55 Å) did not allow us to distinguish
between single and double C-O bonds, preventing further speculations on which THF-derivative is
observed in this site. Nonetheless, we opted for 5-FTHF because this molecule is naturally formed
inside cells [30] and its complex with the bacterial Enterococcus faecalis TS (Ef TS, PDB id 3UWL) was
formerly reported [31]. The observation of 5-FTHF is further suggested by the orientation, in all
enzyme subunits, of the 5-formyl oxygen that is not engaged in intramolecular interaction with the
adjacent carbonyl of the ketone group on the reduced pteridine. At variance with 5-FTHF, the presence
of 5-HMTHF inside cells has never been detected [30]. We have attempted to refine the putative
5-HMTHF, just for the sake of completeness.
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Figure 3. (a) Cartoon representation of the four HT-hTS Q62R homodimers (A–B, C–D, E–F, and G–H
in our model) found in the cell ASU. (b) The structural comparison between subunit A and B (orange
and cyan cartoon, respectively) shows that their N-terminal segments point in two distinct directions
(residues 26–30 are shown in sticks, carbon atoms are color-coded according to the parent subunit).
The maximal displacement, resulting of ~9.5 Å, is observed between Pro26 of two partner subunits
(measured between their Cα atoms).
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Figure 4. (a) Cartoon representation of an enzyme homodimer (subunit A and B are colored orange and
cyan, respectively). Within each enzyme homodimer, both subunits assume the active conformation,
showing the catalytic Cys195 exposed inside the catalytic cavity. The catalytic Cys195 is modified as
S,S-(2-hydroxyethyl)thiocysteine (CME195, in sticks) in all subunits. The mutated residue Arg62 is
displayed in sticks. The cofactor analogue 5-formyl-6-tetrahydrofolate (5-FTHF, in sticks) is entrapped
in the active site of all enzyme subunits. (b) Active site view of HT-hTS Q62R (in cartoon, interacting
residues in sticks; subunit A and B are colored orange and cyan, respectively). The catalytic Cys195
is modified as S,S-(2-hydroxyethyl)thiocysteine (CME195, in sticks), as visible in the 2Fo-Fc electron
density map contoured at the 1.5 σ level. The cofactor analogue 5-FTHF (in sticks, orange carbons) is
entrapped inside the catalytic cavity by a tight network of H-bonds (blue dashed lines) and van der
Waals interactions (water molecules and water mediated interactions have been omitted for clarity).
The ligand is surrounded by the omit map contoured at the 3 σ level. 5-FTHF is observed in all active
sites of the four dimers found in the ASU. (c) Interface view of HT-hTS Q62R (in cartoon, interacting
residues in sticks; subunit A and B are colored orange and cyan, respectively). The mutated Arg62 is
surrounded by the 2Fo-Fc electron density map contoured at the 1.5 σ level. Electrostatic interactions
are displayed as blue dashed lines. Water molecules are shown as red spheres. Sulfate anions are
displayed in sticks in all panels.
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Within the HT-hTS Q62R active site, the cofactor analogue entails a tight network of H-bonds and
van der Waals interactions (Figure 4b, only direct H-bonds are shown, water mediated interactions
are omitted for clarity). The ketone moiety on the reduced pteridine ring forms water mediated
interactions with Asp218, Asn226, and Gln214. Furthermore, the carboxylate moiety of Asp218 is
positioned ~2.9 Å away from the pteridine nitrogen N3, strongly suggesting that it is protonated,
while donating a H-bond to the protein residue (Figure 4b). The amine moiety on the reduced pteridine
forms either direct or water mediated interactions with Ala312 and Asp218 (only the direct H-bond
with Ala312 is shown in Figure 4b). The pteridine nitrogen N1 donates a H-bond to Asn112 (Figure 4b).
Nearby, the nitrogen N2 forms water mediated interactions with the same Asn112 and with Arg50
(not shown in Figure 4b). Furthermore, 5-FTHF forms close van der Waals contacts with Ile108, Trp109,
Leu192, Leu221, Phe225, and Met311.

3.4.2. The Arg62 Pocket

Residue 62 is localized at the periphery of the dimer interface in which it faces itself on the cognate
subunit (Figure 1b). The shape of the electron density surrounding residue 62 clearly indicated the
presence of an arginine in this site (Figure 4c). At the dimer interface, the side chains of the two facing
Arg62 and Arg62′ are oriented in two opposite directions (Figure 4c). This arrangement is adopted to
reduce the electrostatic repulsions induced by the presence of two facing charged residues. In this
configuration, both arginines interact with the backbone carbonyl of Gly60 on the partner subunit and
with various water molecules (Figure 4c). Furthermore, on the two dimer halves, Arg62 is directed
towards Arg64 (belonging to the same subunit), creating a positively charged pocket on the enzyme
surface in which a sulfate anion (deriving from the crystallization solution) is bound (Figure 4c).
The distances separating the Cα of the two facing Arg62 ranged from 8.05 Å to 8.20 (±0.46) Å in the
four enzyme dimers found in the ASU.

4. Discussion

4.1. 5-FTHF Binding in the HT-hTS Q62R Active Site

Former structural studies performed on hTS invariantly reported the yield of the enzyme in the
inactive conformation in crystals grown under high-salt crystallization conditions (using precipitant
solution including 1.0–1.4 M ammonium sulfate) [7,14,32]. In contrast, HT-hTS Q62R crystallized in
the active conformation using a precipitant solution including a higher concentration of ammonium
sulfate (2.0–2.2 M). The active conformation adopted in the crystal by HT-hTS Q62R can be ascribed to
the population of the cofactor site by 5-FTHF (the formation of the analogous complex in the wild-type
enzyme has never been reported). However, the point-mutation introduced at the dimer interface is
unlikely to affect the ligand binding since Arg62 is localized more than 15 Å away from the catalytic
cavity. Nonetheless, long-range effects have been observed in other enzymes such as E. coli class
Ia ribonucleotide reductase [33]. On the other hand, the presence of 5-FTHF in the Q62R variant,
contributes to explain the observed increase in the KM of mTHF (Table 1), suggesting that the reduced
affinity of the cofactor for its site is due to the binding of the ligand. The increased KM measured for
mTHF in the Q62R variant respect to HT-hTS indicates competition between cofactor and 5-FTHF,
consistently with the crystallographic observation of the enzyme being in the active conformation with
both subunits occupied by the cofactor analogue. The binding of 5-FTHF contributes also to explaining
the reduced catalytic efficiency of the variant, together with the dimer destabilization effect induced by
the mutation.

The wt-hTS—5-FTHF adduct in not available for comparison, but the complex of 5-FTHF with the
bacterial Ef TS (PDB id 3UWL) has been previously characterized [31]. The comparison with HT-hTS
Q62R shows that the ligand adopts the same pose in both enzymes (Figure 5a). Indeed, the active
sites of Ef TS and hTS are widely conserved, the main difference being on the hTS residue Asn112
that is replaced by Trp84 in the bacterial enzyme (Figure 5a). Even so, both residues are involved in
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interactions with 5-FTHF, relying on the formation of either a H-bond in HT-hTS Q62R or van der Waals
interactions in Ef TS (Figure 5a). In both structures, the catalytic cysteine (either Cys195 in HT-hTS Q62R
or Cys197 in Ef TS) are modified by the reaction with β-mercaptoethanol added during the protein
purification/crystallization procedures [31]. It is worth noting that in the structure of HT-hTS Q62R
(and Ef TS), 5-FTHF populates the cofactor pocket independently by the binding of the substrate. To date
all the structures reported for hTS in complex with cofactor analogue inhibitors have been determined
in presence of the substrate that populates its site (ternary complexes) [7,13,34–36]. Our attempts
to characterize HT-hTS Q62R in complex with the substrate dUMP have been unsuccessful. This is
reasonably explained by the >200 times higher concentration of sulfate anions present in the precipitant
solution that compete with the substrate for the population of the phosphate recognition pocket.
Indeed, sulfate anions are observed in this site in all enzyme subunits (Figure 4b). The comparison with
the structure of the ternary complex hTS-dUMP-raltitrexed (PDB id 5X5Q [13]) evidences a somewhat
different arrangement of 5-FTHF and raltitrexed within the cofactor site (Figure 5b). In the structure
of the Q62R variant, the reduced pteridine moiety of 5-FTHF is shifted towards the substrates site,
hindering the uracil binding pocket.
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Figure 5. (a) Active site view of the superimposition between the structures of HT-hTS Q62R (orange
cartoon and carbon atoms) and the bacterial Enterococcus faecalis TS (Ef TS, green cartoon and carbon
atoms; PDB id 3UWL [31]). In both structures, the active site of the enzyme is populated by the cofactor
analogue 5-formyl-6-tetrahydrofolate (5-FTHF, in sticks), showing a conserved binding mode. In both
complexes, the catalytic cysteine is modified as S,S-(2-hydroxyethyl)thiocysteine (CME195 and CME197,
in HT-hTS Q62R and Ef TS, respectively; in sticks). Sulfate anions are shown in sticks. (b) Active
site view of the superimposition between the structures of HT-hTS Q62R (orange cartoon and carbon
atoms, sulfate anion in sticks) in complex with 5-FTHF (in sticks) and the wild-type hTS (grey cartoon
and carbons) in complex with 2′-deoxyuridine-5′-monophosphate (dUMP) and raltitrexed (both in
sticks). The reduced pteridine moiety of 5-FHTF is moved with respect to the corresponding moiety
of raltitrexed, protruding in the substrate uracil site. In the structure of HT-hTS Q62R, the catalytic
cysteine is modified as S,S-(2-hydroxyethyl)thiocysteine (CME195, in sticks).
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4.2. Effect of the Interface Point Mutation Q62R on the hTS Dimer Stability

Human thymidylate synthase works as an obligate dimer, showing a stable quaternary assembly
due to an extended inter-subunit interface. Indeed, the analysis of the dimer interface through the
PISA webserver (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html [37]) results in an average interface
area of 2120.8 Å2 and a ∆iG of −20.4 kcal mol−1 (∆iG, indicates the solvation free energy gain upon
formation of the interface, calculated on the PDB id 5X5Q [13]). The same analysis performed on the
structure of the Q62R variant shows a slight reduction of the interface area, resulting in 2032.0 Å2,
and a ∆iG of −18.7 kcal mol−1, suggesting that the introduced mutation induces a destabilization of
the enzyme quaternary assembly. The negative effect on the enzyme stability is supported by the
results obtained from thermal denaturation analysis. Indeed, for the Q62R variant, a drop in the Tm of
~2.0 ◦C is observed with respect to the wild-type, that increases to ~5.7 ◦C following the addition of the
substrate dUMP (Figure 2). At variance with the Q62R variant, the wild-type enzyme is stabilized by
the substrate, showing a gain in the Tm by ~3.5 ◦C (Figure 2). Former studies on hTS demonstrated
that, in presence of the substrate, the active/inactive equilibrium (normally occurring in solution) shifts
towards the active conformation in which dUMP is observed to bind [7,13]. Thus, the stabilization effect
induced by dUMP on the wild-type enzyme is ascribed to the switch of hTS in the active conformation.
Furthermore, the thermal denaturation profile observed for the wild-type HT-hTS, suggests that it
occurs as a biphasic transition (Figure 2a), due to the active/inactive equilibrium, whereas a monophasic
transition, due to the switch of the enzyme in the active conformation, is visible after the addition the
dUMP (Figure 2b). Our results confirm those formerly obtained by Chen et al. through differential
scanning fluorimetry analysis [13]. On the other hand, an analogous effect is not observed for the Q62R
variant for which the same curves have been determined regardless the presence of the substrate. The
behavior of the variant is explained by the structural characterization of the “as prepared” HT-hTS
Q62R showing that the enzyme adopts the active conformation, stabilized by the interaction with
5-FTHF, that populates the active site. Even though the dUMP binding in the HT-hTS Q62R active
site is allowed (indeed the variant is catalytically active, Table 1), the enzyme is already shifted in the
active conformation (by the interaction with 5-FTHF), minimizing the stabilization effect induced by
the dUMP addition.

The CD thermal denaturation experiments do not provide direct evidence about the structural
reason of HT-hTS Q62R destabilization. However, the comparison of the mutant crystal structure with
that of the wild-type enzyme in the active conformation suggests a likely explanation for the observed
HT-hTS Q62R destabilization occurring in solution. The superimposition, displayed in Figure 6,
provides clear evidence that the point-mutation Q62R induces a slight aperture of the enzyme dimer
which is particularly visible in the area surrounding Arg62 and Arg62′ on the two enzyme halves.
In the Q62R, a distance of ~8.1 Å is measured between the Cα of the two facing Arg62, whereas Gln62
and Gln62′ in the wild-type enzyme are placed ~6.6 Å apart. The local shift, by ~1.5 Å, is spread over a
large interface area (Figure 6), inducing a weakening of the dimer quaternary assembly of the Q62R
variant. This is also consistent with the slight reduction of the interface area observed by PISA analysis.
The drop (5.7 ◦C) of the Tm of the variant is reasonably explained by the destabilization of the enzyme
quaternary structure indicated by the increased inter-subunit distance induced by the mutation.
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Figure 6. Structural comparison between the homodimer of HT-hTS Q62R (subunit A and B are
colored orange and cyan, respectively) and the wild-type enzyme (in grey; PDB id 5X5Q [13]).
The superimposition (performed by matching subunit A of both models) indicates a shift of the cognate
subunit in the structure of the Q62R variant.

To confirm this explanation, we will attempt to perform FRET and NMR experiments in solution
on the Q62R variant to ascertain the influence of this mutation on the monomer/dimer equilibrium
(i.e., determination of the Kd and of the equilibrium shift towards the monomeric form).

5. Conclusions

Protein-protein interfaces (PPIs) are fundamental for the acquisition of the quaternary structure and
for the interaction with partner proteins, but the development of interface targeting inhibitor is difficult.
Even though the extension of the interface area is a challenge, the introduction of single-point mutation
can induce meaningful perturbations that are exploitable for the development of interface-perturbing
drugs. Obligate homodimer enzymes, as hTS, represents a special class of PPIs where the disruption
of interface interactions abolishes their catalytic activity. Thus, the hTS dimer interface represents an
attractive targetable area for the development of innovative hTS inhibitors. Here, we have investigated
the hTS variant Q62R in which the interface residue Gln62 has been replaced by a bulkier charged
arginine. The effect of the point mutation has been evaluated through kinetic analysis, CD thermal
denaturation studies and X-ray crystallography, providing evidence that the mutation Q62R induces a
destabilization effect on the enzyme dimeric structure. Furthermore, our results support the importance
of this interface area for the dimer quaternary assembly, in agreement with former studies highlighting
the key contribution provided by the nearby residue Phe59 [12]. Indeed, a slight aperture of the
hTS dimer is observed subsequently to the integration of Arg62 at the periphery of the inter-subunit
interface. The generation of homodimers having a slightly opened dimeric structure, such as the Q62R
mutant, can facilitate the access of small molecules to the interface area, simplifying the screening of
interface-targeting molecules. Validation procedures on homodimers of the wild-type enzyme are
required to verify the effectiveness of the interface-directed molecules and to avoid false-positive
binders (e.g., Arg62-interacting molecules). Thus, the hTS Q62R variant, may represent a functional
tool exploitable to identify innovative interface-targeting inhibitors.
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Chapter 5

Conclusion



hTS is considered an important target for anticancer chemotherapy [43, 85,

46]. Indeed, various hTS inhibitors, targeting the enzyme active site, are

currently used in clinic as anticancer agents. Nonetheless, these hTS-targeting

drugs have serious limitations due to the onset of resistance. New strategies are

thus needed to effectively block the activity of this enzyme without triggering

drug-resistance phenomena in cells [43, 58]. Targeting allosteric-binding sites or

the hTS homodimer interface are promising strategies; even so, the development

effective interface binders is challenging. On this purpose, the introduction of

point mutations at the hTS dimer interface can perturb the stability of the

enzyme quaternary, helping the design and development of effective

interface-perturbing drugs. In the first section of this work, we have

investigated two hTS interface mutants in which Phe59 and Tyr202 have been

singularly replaced by alanine residues. Former investigation on these variants

pointed out the role of both residue as interface textithot spots in hTS, showing

an effective destabilization of the enzyme quaternary assembly upon their

alanine mutation. Here, we have investigated the thermal stability profiles of

both hTS F59A and Y202A variants, showing a slight reduction of their Tm

values with respect to the wild-type enzyme, indicative of the destabilization

effects induced by the mutations. Despite the attempting made to obtain

crystals of the hTS F59A interface variant, no structural information is yet

available on it. On the other hand, we have solved the X-ray crystal structures

of the hTS Y202A variant and of its complex with the inhibitor 1. The

structure of the complex, shows that 1 binds at the periphery of the dimer

interface, partially matching the binding site of the LR peptide, shown to act as

allosteric inhibitor of hTS by stabilizing the inactive conformation of the

enzyme [58]. The structural information achieved on this complex will guide the

rational design of molecules able to effectively bind hTS outside the catalytic

cavity, thus acting as enzyme inhibitors by different mechanisms of action, such

as allosteric inhibition. In the second section, we have generated and

investigated three hTS interface variants in which the interface residues Gln62

and Thr251 have been replaced by the bulkier charged amino acids arginine and

glutamate, respectively. The interface variants Q62R, T251E, and Q62R-T251E
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have been characterized through CD thermal denaturation and kinetic analyses,

showing that these mutations drastically affect the stability and the catalytic

activity of the enzyme. Indeed, all variants showed significantly decreased Tm

values and enzymatic activity with respect to HT-hTS. To deeply investigate

the effects of these mutations we have also characterized the structure of all

variants and compared them to the information available on the wild-type

enzyme. All interface mutants show a slight aperture of the hTS dimer

interface, reasonably accounting for the destabilization effect observed by

thermal denaturation analysis. We also observed that these interface variants

have a peculiar behavior, resulting from an altered equilibrium between the

active and inactive conformations of the enzyme. Deeper investigations are

needed to unveil the effective contribution of interface mutation on the

active/inactive conformation equilibrium of hTS. Nonetheless, the generation of

hTS variants having a more accessible interface area can facilitate the screening

of interface-targeting molecules, providing relevant information for the rational

design of innovative hTS inhibitors.
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Brief introduction to the review

6.1 Brief introduction to the review

Thymidylate synthases are pivotal enzymes also for bacterial cells where they

provide the only de novo source of dTMP, required for DNA synthesis. In

bacteria, two families of thymidylate synthases have been identified:

folate-dependent and flavin-dependent thymidylate synthases (TS, EC 2.1.1.45,

and FDTS, EC 2.1.1.148, respectively). Due to their fundamental role, TS and

FDTS are validated targets for the development of antibiotic drugs. In this

review, we describe the recent advances in the structural and functional

characterization of bacterial TSs and FDTSs, the current understanding of their

mechanisms of action and the recent progresses in the development of inhibitors

targeting these enzymes in human pathogenic bacteria. TS and FDTS, encoded

by the thyA and thyX genes, respectively, are highly divergent enzymes,

characterized by different catalytic mechanisms and cofactors [46, 133]. At

variance with TS that relies only on mTHF, FDTS requires mTHF, flavin

adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate

(NADPH) to perform its action[46, 51, 133, 134]. In the TS-catalyzed reaction,

mTHF provides both the methylene group and the hydride required to convert

dUMP in dTMP [46, 51, 135]. On the other hand, the two additional cofactors

NADPH and FAD allow FDTSs to combine the TS and DHFR functions,

whereas mTHF is solely used as methyl donor to yield DHF [51, 133]. The

mechanism of action of FDTSs is complicate and it has not been fully

elucidated yet. Mechanistic studies have been also performed on bacterial TSs,

allowing to explain its catalytic activity; nonetheless, the half-site reactivity

[136] is still an open debate and recent evidences are somehow controversial.

The TS dimer interface has been shown to play a major contribution in the

inter-subunit communication, occurring between the two enzymes activity, but

its potential as drug-targetable area is yet unexplored for bacterial enzymes. On

the other hand, a wide variety of molecules have been explored as TS active site

inhibitors over the years, but the high conservation of this region with human

counterpart constitutes an important issue for the design of selective bTS

inhibitors. Even though, some relevant steps forward have been recently
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reported in this field. FDTSs seems more promising as targets for development

of new antibacterial drugs since they have no human counterpart enzymes.

Notably, some human pathogens rely only on this enzyme for dTMP production

[137, 138]. The development of FDTS-targeting molecules has led to the

identification of potent inhibitors; but they resulted only poorly effective in

vivo. Although these are promising results, more efforts are required to obtain

drug candidates effectively targeting bTS and FDTS enzymes.
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Abstract: In cells, thymidylate synthases provide the only de novo source of
2′-deoxythymidine-5′-monophosphate (dTMP), required for DNA synthesis. The activity of these
enzymes is pivotal for cell survival and proliferation. Two main families of thymidylate synthases
have been identified in bacteria, folate-dependent thymidylate synthase (TS) and flavin-dependent TS
(FDTS). TS and FDTS are highly divergent enzymes, characterized by exclusive catalytic mechanisms,
involving different sets of cofactors. TS and FDTS mechanisms of action have been recently revised,
providing new perspectives for the development of antibacterial drugs targeting these enzymes.
Nonetheless, some catalytic details still remain elusive. For bacterial TSs, half-site reactivity is still an
open debate and the recent evidences are somehow controversial. Furthermore, different behaviors
have been identified among bacterial TSs, compromising the definition of common mechanisms.
Moreover, the redox reaction responsible for the regeneration of reduced flavin in FDTSs is not
completely clarified. This review describes the recent advances in the structural and functional
characterization of bacterial TSs and FDTSs and the current understanding of their mechanisms of
action. Furthermore, the recent progresses in the development of inhibitors targeting TS and FDTS in
human pathogenic bacteria are summarized.

Keywords: thymidylate synthase; flavin-dependent thymidylate synthase; mechanism of action;
half-site reactivity; inhibitors; selectivity

1. Introduction

Thymidylate synthase is a class of methyltransferase enzymes required for de novo
2′-deoxythymidine-5′-monophosphate (dTMP) synthesis. These enzymes catalyze the methylation of
2′-deoxyuridine-5′-monophosphate (dUMP) using N5,N10-methylentetrahydrofolate (CH2H4folate) as
co-substrate. Thymidylate synthases are pivotal for cell survival and replication since they provide the
unique biosynthetic source of dTMP, essential for DNA synthesis.

In bacteria, two main families of thymidylate synthases are known, folate-dependent thymidylate
synthase (TS, EC 2.1.1.45) and flavin-dependent thymidylate synthase (FDTS, EC 2.1.1.148), encoded by
thyA and thyX genes, respectively [1,2]. TS and FDTS are highly divergent at all structural levels [1,2].
These enzymes are also characterized by exclusive catalytic mechanisms that involve different sets of
cofactors [1–4]. At variance with TS that relies only on CH2H4folate, FDTS requires CH2H4folate, flavin
adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) to perform
its action [1–4]. In the TS-catalyzed reaction, CH2H4folate provides both the methylene group and the
hydride required to convert dUMP in dTMP (Figure 1) [1,5]. Dihydrofolate (H2folate), generated as
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byproduct of the TS reaction, is then converted to tetrahydrofolate (H4folate) through a second enzyme,
dihydrofolate reductase (DHFR, encoded by folA gene) (Figure 1) [5]. On the other hand, FDTSs are
able to combine the TS and DHFR functions, relying on the two additional cofactors, NADPH and FAD
(Figure 1) [2]. FDTSs use CH2H4folate solely as the methyl donor, yielding H4folate (Figure 1) [2,4].
At a later stage, the pathways of TS and FDTS converge in the recycling of the cofactor CH2H4folate
from H4folate, ensured by the enzyme serine hydroxymethyltransferase [5].
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Figure 1. Reactions catalyzed by TS and DHFR (upper panel) and FDTS (lower panel) (TS, PDB
id 3QJ7; DHFR, PDB id 5UIH; FDTS, PDB id 3GCW). In the FDTS catalyzed reaction, the cofactor
FAD is not displayed because it is oxidized and subsequently reduced in each catalytic cycle. R = 2′-
deoxyribose-5′-monophosphate; R’ = p-benzoyl-amino-l-glutamic acid.

At variance with TS that is present in some viruses and various organisms including humans,
FDTS is unique to bacteria [1–4]. Important human pathogens, including Helicobacter pylori, Borrelia
Burgdorferi, Treponema pallidum, Chlamydia species and Rickettsia species, rely only on FDTS for dTMP
biosynthesis [2,6,7]. On the other hand, human pathogenic bacteria such as Staphylococcus aureus,
Enterococcus faecalis and Pseudomonas aeruginosa, have only the thyA gene, expressing solely the
TS enzyme [2,6,7]. A third group of bacteria, possessing both thyA and thyX genes, has been
identified [2,6,7]. Bacillus anthracis, Clostridium botulinum, and Mycobacterium species are examples
of important human pathogens belonging to this group [2,6,7]. In view of their common biological
function, the reason concomitant expression of TS and FDTS occurs in these bacteria is not yet fully
understood. Studies on Mycobacterium tuberculosis have evidenced that the thyX gene is essential,
while the thyA deletion confers p-aminosalicylic acid resistance [6]. Furthermore, investigations on
multi-drug resistant strains of Mycobacterium tuberculosis, have shown up-regulation of the thyX gene,
responsible for FDTS overexpression [8].

Nowadays, the widespread diffusion of antibiotic resistance is an important health issue [9–12].
The major challenges are the identification of new microbial targets and the development of effective
antibiotic therapies able to treat resistant infections. For this purpose, FDTS represents a promising
target for the development of new antibiotics, since it has no counterpart enzyme in the human
host [13,14]. On the other hand, TS is highly conserved in human and bacteria creating limitations
for the development of inhibitors selectively targeting the bacterial enzyme [15]. Recent studies have
provided important new insights into the catalytic process of both methyltransferase enzymes [3,4].
Indeed, new mechanisms of action for TS and FDTS have been recently proposed [3,4], opening new
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perspectives for the development of antibacterial drugs targeting these enzymes. This review is aimed
to summarize the current understanding of structure and function of bTSs and FDTSs and the recent
progresses in the development of inhibitors targeting these enzymes in human pathogenic bacteria.

2. Bacterial Thymidylate Synthases (bTSs)

2.1. Structural Insights into bTSs from Human Pathogens

Few crystallographic structures of TSs from human pathogenic bacteria have been reported
to date. The structures of TSs from Mycobacterium tuberculosis (MtbTS; PDB id 3QJ7, unpublished
research), Staphylococcus aureus (SaTS; PDB id 4DQ1, unpublished research), Enterococcus faecalis (Ef TS;
PDB id 3UWL [16]), Escherichia coli (EcTS; PDB id 1F4B [17]), Brucella melitensis (BmTS; PDB id 3IX6,
unpublished research), and Elizabethkingia anophelis (EaTS; PDB id 6AUJ, unpublished research) are
currently available in the Protein Data Bank (PDB), but limited information is reported in the literature.

TS works as an obligate homodimer since residues from both subunits contribute to create the
enzyme active site. Each subunit is composed of two domains, named large and small domains
(LD and SD, respectively, Figure 2a). The LD, representing the conserved core of the enzyme, has a
mixed α/β structure characterized by seven α-helices and eight β-strands (Figure 2a). A five-stranded
β-sheet in the LD of each subunit generates the dimer interface, a crucial area for the enzyme function
and for inter-subunit communication [18–20]. On the other hand, the SD is highly variable among
bTSs, in terms of amino acid composition and length (Figures 2b and 3a). The active site is a shallow
cavity embedded between the two domains, where the substrate and the cofactor bind in a sequential
order, relying on dUMP binding followed by CH2H4folate. A recent study has evidenced that the
binding order of substrate and cofactor is tightly controlled in EcTS, whereas it is less stringent for the
human enzyme (hTS) [21].

The substrate binding pocket is highly conserved among bTSs (Figures 2b and 3b). The dUMP
phosphate moiety is bound to four conserved arginine residues (Arg21, Arg166, Arg126′ and Arg127′ in
EcTS), two of them protruding in the active site from the cognate subunit (Arg126′ and Arg127′ in EcTS,
Figure 3b). The four-arginine cluster is pivotal to anchor the substrate in its pocket, indeed substitution
of these arginine residues impairs the enzyme catalytic activity [22–25]. This is also confirmed by the
recent evidence of poor catalytic efficiency displayed by the TS from the non-pathogenic bacterium
Vibrio parahaemolyticus, where Arg127′ is constitutively missing [26]. The correct orientation of the
dUMP uracil ring is ensured by a conserved asparagine (Asn177 in EcTS) [27]. The asparagine amide
moiety forms two H-bonds with the nitrogen N3 (position 3) and the ketone oxygen in position 4,
on the dUMP uracil (Figure 3b). Studies performed on EcTS have revealed that the removal of the
asparagine side chain disorganizes the substrate placement, drastically reducing the enzyme catalytic
activity [27]. The correct orientation of the substrate is further ensured by the H-bonds between the
dUMP ribose hydroxyl and conserved tyrosine and histidine residues (Tyr209 and His207 in EcTS;
Figure 3b). Recent evidence on EcTS has shown that this conserved tyrosine is pivotal to pre-organize
the active site for the hydride transfer in the last stages of the TS catalyzed reaction (the reaction
mechanism is detailed in Section 2.2) [28].

The cofactor binding site is also shared among bacterial TSs (Figures 2b and 3c). The pteridine
nitrogen N3 is H-bonded to the carboxylate group of a conserved aspartic residue (Asp169 in EcTS;
Figure 3c). Within the bTS active site, the cofactor is mainly stabilized by hydrophobic interactions,
indeed it entails a network of van der Waals contacts with a set of conserved hydrophobic residues
(Figures 2b and 3c). The cofactor is further H-bonded (both directly and through water mediated
interactions) with the backbone of the penultimate C-terminal residue (Figure 3c). The C-terminal
segment (residues 261–264 in EcTS) closes on the active site after cofactor binding, sealing the cavity.
The external portion of the active site is highly variable among bTSs, inducing slightly different
orientations of the terminal glutamate moiety of the cofactor, which entails mainly water-mediated
interactions in this area. Lys48 in EcTS is the only conserved residue that characterizes this site. Lys48
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forms a water-mediated interaction with the cofactor glutamate moiety, which has been proved to be
important during the enzyme catalysis [29].
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Figure 2. (a) Cartoon representation of the TS homodimer (MtbTS, PDB id 3QJ7, unpublished
research). The LD of Subunits A and B are colored light cyan and white, respectively. The SD
(residues 67–87, in MtbTS) is colored coral in both subunits. The position of the active site is indicated
by the presence of the substrate dUMP (in sticks, black carbons). (b) Sequence alignment of TSs
from pathogenic bacteria and the human enzyme (hTS). Enterococcus faecalis TS (Ef TS, UniProtKB:
Q834R3), Staphylococcus aureus TS (SaTS, UniProtKB: P67046), Brucella melitensis TS (BmTS, UniProtKB:
P67042), Escherichia coli TS (EcTS, UniProtKB: P0A884), Mycobacterium tuberculosis TS (MtbTS, UniProtKB:
P9WFR9), and Elizabethkingia anophelis TS (EaTS, UniProtKB: A0A077EAN3); human TS (hTS, UniProtKB:
P04818). The present alignment includes only the TS sequences from human pathogenic bacteria for
which the structure has been characterized. The SD is highlighted in coral and the catalytic cysteine in
green. Conserved residues are indicated by asterisks. Residues forming the dimer interface and the
active site are indicated by “i” and “a”, respectively.
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Figure 3. (a) Superimposition among the SD of MtbTS (PDB id 3QJ7, unpublished research, coral
trace), SaTS (PDB id 4DQ1, unpublished research, gold trace), Ef TS (PDB id 3UWL [16], cyan trace),
EcTS (PDB id 1F4B [17], green trace), BmTS (PDB id 3IX6, unpublished research, dark green trace),
and EaTS (PDB id 6AUJ, unpublished research, pink trace). (b) Conserved dUMP interactions within
the substrate binding pocket of the TS active site (EcTS sequence numbering). (c) Cofactor interactions
within the active site (EcTS sequence numbering). Only direct interactions are shown in Panels b and c
for clarity. (d) Active site view of the superimposition of bTS and hTS, evidencing the presence of an
unshared residue in the cofactor site, namely Asn112 in hTS that replaces the conserved tryptophan
residue present in bTSs (Trp83 in EcTS). In all figures, oxygen atoms are colored red, nitrogen blue,
sulfur yellow, phosphorous magenta and halogen grey.

The residues responsible for substrate binding are highly conserved also in the human enzyme
(Figure 2b). However, the set of hydrophobic residues composing the cofactor site is altered in
hTS by the presence of Asn112 that replaces a tryptophan residue (Trp83 in EcTS) shared by bTSs
(Figures 2b and 3d). The presence of unshared residues in the active site of bacterial and human
enzymes is of key importance for the development of selective bTS inhibitors.
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2.2. Latest Updates on the TS Catalytic Mechanism

TS catalyzes the reductive methylation of dUMP to dTMP, using C2H4folate as co-substrate
(Scheme 1) [1,30]. The catalytic cysteine (Cys146 in EcTS; Figure 2b) is fundamental to activate the
substrate and to attract the methylene moiety according to an established mechanism (Steps 1 and 2,
Scheme 1) [3,31]. The thiol of the catalytic cysteine attacks the uracil C6 of dUMP leading to the
formation of a covalent adduct (Step 1) [3,31]. The uracil C5 is thus activated to attack the imine carbon
C11 of the cofactor (resulting from the aperture of the 5-membered ring of C2H4folate) forming the
ternary adduct (Step 2). The mechanism of methyl and hydride transfer from the cofactor has been
recently revised on the basis of new computational and experimental evidences [3,32–36]. According to
the traditional mechanism (Path A), the transfer of the proton from the uracil C5 generates a covalent
enolate intermediate (Step 3A). This stage is followed by the release of H4folate (through Hoffman
elimination, Step 4A). On the other hand, in the new mechanism (path B) the proton abstraction leads to
the cleavage of the covalent bond anchoring the uracil C6 to the cysteine thiol (Step 3B). Subsequently,
the intermediate undergoes 1–3 SN2 reaction, leading to the regeneration of the covalent bond to the
catalytic cysteine (Step 4B). The two mechanisms converge in the formation of the exocyclic methylene
intermediate, that undergoes a concerted hydride transfer and cleavage of the C-S bond (1–3 SN2

reaction, Step 5), preceding the formation of the products (Step 6).
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Scheme 1. Proposed mechanism for the TS catalyzed reaction. The traditional (A) and the recently
revised (B) paths for the central part of the reaction are displayed. R = 2′-deoxyribose-5′-monophosphate;
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2.3. Asymmetry and “Half-Site Reactivity” in bTSs, a Still Open Debate

Several multi-subunit enzymes show the phenomenon of “half-site reactivity”. Strictly speaking,
half-site reactivity occurs when the reaction with a substrate shows a stoichiometry equal to one-half
the number of identical subunits in the multimer. Half-site reactivity represents a form of negative
cooperativity between the protomers, in which binding of the substrates in one catalytic site prevents
catalysis in the partner subunit. Among bTSs, EcTS is the most widely studied, whereas very little is
known about TSs from other pathogenic bacteria. The presence of half-site reactivity in EcTS, was
suggested by kinetic studies, differential scanning and isothermal titration calorimetry and fluorescence
quenching experiments [29,30,37,38]. Nonetheless, recent studies on EcTS have provided evidence of
minimal or absent negative cooperativity in substrate and cofactor binding to both catalytic sites [18,39].
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Isothermal titration calorimetry (ITC) experiments have shown that the binding of substrate and
cofactor occurs in both enzyme subunits with essentially no cooperativity (only a minor effect is
observed in a temperature-dependent manner) [18]. On the other hand, NMR studies have evidenced
a tiny, but detectable, extent of negative cooperativity for substrate and cofactor binding in the
two EcTS protomers [18,39]. On the basis of these investigations, it has been proposed that EcTS is
characterized by a “silent” or “isoergonic” allostery towards dUMP and cofactor binding (meaning
that the two binding events have similar affinities but differ in ∆H, ∆S, and/or ∆Cp) [18,39]. NMR
studies have also highlighted a significant contribution of the TS dimer interface in inter-subunit
communication [39,40]. Meaningful chemical shift perturbations are observed across the dimer
upon the population of both dUMP sites, whereas only local changes are reported when dUMP
binds to only one site. The widespread perturbations induced by the second dUMP binding event
indicates inter-subunit communication between the two substrate sites (and the two catalytic cavities).
These perturbations involve the interface area covering the segment 146–153, Ala132, and residues
198–199 [40]. Therefore, any cooperativity is likely due to long-range, cross-interface effects, occurring
upon binding of dUMP in the second site once the first is already populated [39,40]. Very recently,
new evidence has been reported on EcTS, upon investigating the C-terminal deletion variant I264Am
(lacking the C-terminal Ile264) [19]. In TS enzymes, the C-terminal segment (residues 261–264 in EcTS)
rearranges, following the formation of the ternary adduct with substrate and cofactor, closing the
cavity and contributing to stabilize the active site during catalysis. The structure of EcTS I264Am
shows dimer asymmetry due to different configurations of the catalytic cavities both populated by
dUMP and the cofactor analogue inhibitor CB3717 (PDB id 6CDZ [19]; Figure 4a). Substrate and
inhibitor are correctly aligned to mimic a catalytically-competent configuration only in the active site
of one protomer (Figure 4a,b). On the other hand, the two compounds result slightly displaced in the
partner subunit adopting a non-catalytically-competent configuration (Figure 4a,b). This observation
supports half-site reactivity for EcTS (Figure 4a). In the structure of EcTS I264Am, changes are observed
in the interface area, suggesting that they mediate the inter-subunit communication and regulate
half-site reactivity. The most evident change concerns Phe149, facing itself on the partner subunit, for
which increased sidechain flexibility is observed in EcTS I264Am asymmetric dimers [19]. All together
these evidences suggest that in EcTS both active sites can be concomitantly populated by substrate
and cofactor, but the extent of negative cooperativity at the basis of the half-site reactivity is still
controversial [18,19,39,40]. However, all studies agree on the prominent role played by the dimer
interface on inter-subunit communication. NMR and X-ray crystallographic studies converge on the
involvement of the interface segment extending from the catalytic Cys146 to Tyr153 in inter-subunit
communication [19,40]. The existence of analogous mechanisms in TSs of other pathogenic bacteria is
still unknown.

In bTSs, the SD is highly variable in extension and structure, indeed Ef TS and SaTS are characterized
by a more extended SD, including an additional segment of 50 amino acids (Figure 2b). This can induce
significant differences in asymmetric ligand binding and half-site reactivity among bTSs. The structural
characterization of Ef TS has highlighted huge differences between the enzyme protomers, resulting
in highly asymmetric enzyme homodimers (PDB id 3UWL [16]; Figure 4c). One subunit adopts the
so-called closed conformation, in which the catalytic cavity is fully formed and the SD is structured,
whereas the partner protomer is in the open form, showing a widely unstructured active site and SD
(Figure 4c) [16]. Despite the structure of Ef TS suggests that it could be a half-site reactive enzyme,
its cooperativity profile has still to be fully elucidated. Recent structural investigations have shown
that substrate binding in the open-subunit of Ef TS induces the closure of the dUMP site, whereas the
rest of the catalytic cavity keeps the open conformation (PDB id 6QYA; Figure 4d) [41]. Therefore,
it has been proposed that the open/closed transition occurs in Ef TS as biphasic process in which
dUMP binding triggers the closure of the substrate site whereas cofactor binding is required to fully
structure the catalytic cavity (Figure 4d). In the Ef TS-dUMP complex asymmetric substrate binding
is consistently observed. On the other hand, the structural characterization of SaTS in complex with
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dUMP (SaTS; PDB id 4DQ1, unpublished research) shows symmetric ligand binding, having both
active sites populated by the substrate. Despite Ef TS and SaTS have SDs of similar extension, they
display different behaviors, suggesting that it is not possible to delineate common mechanisms for
bTSs. Therefore, the recent evidences on EcTS half-site reactivity and inter-subunit communication
cannot be directly extended to all bacterial enzymes. The issues of asymmetric ligand binding and
half-site reactivity in bTSs of other pathogenic bacteria remain largely unknown and are worthy of
careful investigation.
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Figure 4. (a) Cartoon representation of EcTS I264Am homodimer (Subunits A and B are colored white and
light turquoise, respectively; dUMP and CB3717 are shown in sticks, color coded according to the subunit;
PDB id 6CDZ [19]). In the active site of Subunit B, the substrate and the cofactor-like inhibitor CB3717
are correctly aligned to mimic a catalytically-competent configuration. On the contrary, in the partner
protomer the two molecules assume a non-catalytically-competent configuration. The induced asymmetry,
generated in the EcTS dimer, supports the half-site reactivity of the enzyme. (b) Active site view of the
superimposition between the catalytically-competent configuration and the non-catalytically-competent
configuration of EcTS I264Am homodimer. (c) Cartoon representation of the EfTS homodimer (Subunits
A and B are colored white and light turquoise, respectively, the SD is colored turquoise in both subunits;
PDB id 3UWL [16]). The EfTS homodimer is highly asymmetric. Subunit B is in the closed conformation,
having the catalytic cavity fully formed, whereas the partner protomer is in the open form, showing a
widely unstructured active site. The cofactor analogue 5-formyl-tetrahydrofolate, 5-FTHF (in sticks, black
carbons), is entrapped in the active site of Subunit B (d) Active site view of the superimposition between
the open (white cartoon and carbons) and the closed (light turquoise cartoon and carbons) states of EfTS
(PDB id 3UWL [16]) and the EfTS–dUMP complex (purple cartoon and carbons; Cys197 is modified
as S-oxycysteine; PDB id 6QYA [41]). dUMP binding in open-state subunits induces the closure of the
substrate site (indicated by a dashed pink arrow), whereas cofactor binding is required to fully structure
the catalytic cavity. The movement of loop 18–26, determining the closure of the substrate site, is evidenced
by the shift of Arg22 (in sticks).
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3. Flavin-Dependent Thymidylate Synthases (FDTSs)

3.1. Structural Insights into FDTSs from Human Pathogens

The structural characterization of FDTSs from human pathogenic bacteria is limited to the enzymes
from Mycobacterium tuberculosis (MtbFDTS; PDB id 2AF6 [42]) and Helicobacter pylori (HpFDTS; PDB
id 3N3Y [43]). FDTS are homotetrameric proteins, with four identical subunits forming extensive
interactions (Figure 5a). Each subunit shows a complex fold, characterized by a central α/β domain
flanked by two helical domains, known as top and bottom domains. The central domain consists of a
four-stranded antiparallel β-sheet, flanked on one side by three α-helices. The four active sites are
located at the interface between three neighboring monomers, having residues from all three subunits
that contributes to create the catalytic cavity (Figure 5a; subunits contributing to each active site are
illustrated in the figure; Active site 1, composed of residues belonging to Subunits A, B and C, is used
for the structural description) [42–44]. FAD acquisition by FDTS was reported to occur inside cells,
during the expression of the protein. Therefore, the purified samples already included the cofactor in its
oxidized form as indicated by the peculiar yellow colorization of the protein solutions [42,43]. Within
each subunit, FAD adopts an extended conformation, covering a total surface area of ~490 Å2 [42,43].
The AMP adenine moiety of FAD is buried inside a deep pocket, whereas the AMP ribose faces the
ribose of the FAD bound to a neighboring subunit (ribose of FADA and FADB, belonging to Subunits
A and B, respectively, in Figure 5b; FADA is considered for the present description). The phosphate
group of AMP and the ribityl and phosphate moieties of flavinmononucleotide (FMN), belonging
to FADA, form H-bonds with the residues of the highly conserved FDTS motif RHR of Subunit A
(residues 95A–97A in MtbFDTS, Figure 5b; corresponding to 74A–76A in HpFDTS). These moieties are
also H-bonded with two further conserved residues belonging to Subunit B (Ser71B and Arg190B in
MtbFDTS, Figure 5b; corresponding to Ser50B and Arg165B in HpFDTS). Inside the active site, the FADA

isoalloxazine ring is H-bonded with the first arginine of the conserved RHR motif (Arg95A in MtbFDTS,
Figure 5b; corresponding to Arg74A in HpFDTS) and with the backbone of a residue belonging to the C
Subunit (Gln103C in MtbFDTS and Val82C in HpFDTS; interaction not shown in Figure 5b). The flavin
ring of FADA is stacked with the pyrimidine of dUMPC. The complex of MtbFDTS with the substrate
analogue FdUMP (PDB id 3GWC [44]) is shown in Figure 5b. FdUMP retains the same binding mode
of dUMP in the HpFDTS-dUMP complex (PDB id 3N3Y [43]). Notably, the dUMPC C5 is aligned to
the flavin N5 of FADA, separated by a short interatomic distance (<3.5 Å). The alignment of these
two atoms is fundamental during the FDTS catalyzed reaction. According to the revised reaction
mechanism (detailed in Section 3.2), the methyl is transferred from CH2H4folate to the FAD flavin
N5, that subsequently donates it to the dUMP C5 allowing the formation of the product dTMP. In
the catalytic cavity, the dUMP substrate (dUMPC) is further stabilized by the interactions with a set
of conserved residues (Arg95A and Arg199A, Arg87C, Ser105C and Arg107C in MtbFDTS, Figure 5b;
corresponding to Arg74A, Arg174A, Arg66C, Ser84C and Arg86C in HpFDTS). The dUMPC uracil C5
and the FADA flavin N5 are shielded from the solvent by a shared tyrosine (Tyr108C and Tyr87C in
MtbFDTS and HpFDTS, respectively), whose phenyl moiety forms a “lid” over the reactive positions
involved in the methyl transfer (Figure 5b).

The structure of MtbFDTS was reported also in complex with the second cofactor NADP+ that
occupies the same site of FAD and adopts an analogous binding mode (PDB id 2GQ2 [45]; Figure 5c).
The nicotinamide of NADP+ is accommodated inside the catalytic cavity in which it replaces the
isoalloxazine system of FAD (Figure 5c) [45]. It is worth noting that attempting to obtain the quaternary
complex MtbFDTS–FAD–BrdUMP–NADP+ by co-crystallization of the enzyme with both cofactors and
the substrate analogue BrdUMP, provided the structure of the binary complex MtbFDTS–NADP+ [45].
The mechanistic explanation of this behavior is not obvious, since it has been postulated that the
regeneration of the reduced flavin during the FDTS catalyzed reaction is mediated by NADPH.
Therefore, they should both bind to the enzyme during this stage. The structural characterization
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of FDTS in complex with both FAD and NADPH can provide key information on the mechanism of
reduced flavin regeneration which has still to be fully elucidated.
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Figure 5. (a) Cartoon representation of the FDTS homotetramer (MtbFDTS; Subunit A is colored dark
green, B light green, C pink, and D gold; PDB id 3GWC [44]). Subunits contributing to each active site
(numbered from 1 to 4) are illustrated in the figure. The Active site 1, composed of residues belonging
to Subunits A, B and C, is used for structural description. FAD and the substrate analogue FdUMP
are represented in spheres (of arbitrary radius, carbon atoms are color-coded according to the parent
subunit). (b) H-bonds (blue dashed lines) of FAD and FdUMP (in sticks, carbon atoms are color-coded
according to the parent subunit) with residues shared between MtbFDTS and HpFDTS (the MtbFDTS
sequence numbering is reported in the picture; PDB id 3GWC [44]). The Active site 1, composed of residues
belonging to Subunits A, B and C, is used for structural description in Panels b and c. (c) NADP+ (in sticks,
carbon atoms are color-coded according to the parent subunit) binding mode in the complex with MtbFDTS
(PDB id 2GQ2 [45]). (d) Active site view of the quaternary complex TmFDTS (white cartoon)–FAD (in
sticks, dark green carbons)–dUMP (in sticks, pink carbons)–CH2H4folate (in sticks, green carbons) (PDB id
4GT9 [46]). The isoalloxazine moiety of FAD is sandwiched between the dUMP uracil and the pteridine
of CH2H4folate. The pteridine N5 of CH2H4folate is perfectly aligned with both the flavin N5 of FAD
and the uracil C5 of dUMP, configurating the active site to allow the FAD-mediated methyl transfer from
CH2H4folate to dUMP (according to the revised reaction mechanisms described in Section 3.2). To facilitate
the comparison, Panels b, c, and d have been generated using the same orientation of the FDTS active site.
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Structural information concerning the CH2H4folate binding mode in MtbFDTS and HpFDTS is
not available. However, the FDTS-CH2H4folate complex has been determined for Thermotoga maritima
FDTS (TmFDTS) [46]. The structure of the quaternary complex TmFDTS–FAD–dUMP–CH2H4folate
(PDB id 4GT9 [46]) shows the isoalloxazine moiety of FAD sandwiched between the dUMP uracil and
the pteridine of CH2H4folate (Figure 5d). In the structure, the pteridine N5 of CH2H4folate is perfectly
aligned with both the flavin N5 of FAD and the uracil C5 of dUMP. This configuration of the active
site allows the FAD-mediated methyl transfer from CH2H4folate to dUMP in accord with the revised
reaction mechanism described in Section 3.2.

3.2. FDTS Reaction Mechanism

The combined results of mass spectrometry, NMR and X-ray crystallographic studies on FDTSs
have led Kohen and coworkers to formulate a new reaction mechanism for this class of enzymes,
reported in Scheme 2 [4]. The proposed multistep process for FDTSs starts with the protonation of
C2H4folate (Step 1), leading to the formation of a Schiff base, that is activated to transfer the methyl
moiety to the flavin N5 of the reduced cofactor FADH (Step 2). In the resulting covalent adduct,
the protonation of the folate N5 is mediated by an unknown species (Step 3). Once the methyl moiety
is transferred on the FAD cofactor, a new Schiff base is formed. The Schiff base can react with the
polarized dUMP (Step 4) to form a covalent intermediate (Intermediate I1) in which the methyl group
bridges the FADH N5 and the dUMP C5. The generation of the intermediate I1 is accompanied by the
release of H4folate from its site (Step 4). The intermediate I1 undergoes protonation on the flavin N5 by
an unknown species (Step 5) which precedes the abstraction of the proton from the dUMP C5, still by
an uncharacterized actor (Step 6). The deprotonation of the C5 induces the transfer of the methylene
group on dUMP (Step 6), leading to the formation of the Intermediate I2. I2 undergoes a redox reaction
in which flavin is oxidized at the expenses of the nucleotide that is reduced to dTMP (Step 7) and
subsequently released from its site. The reduced flavin is regenerated by the oxidation of NADPH to
NADP+ in a second redox reaction (Step 8).
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4. Inhibitors of TSs and FDTSs from Human Pathogenic Bacteria

4.1. Inhibitors of Bacterial TS from Human Pathogens

The main difficulty to develop bTS inhibitors is related to selectivity. The active sites of human
and bacterial TSs are highly conserved, the main difference being one unshared residue in the cofactor
binding site. Furthermore, variable conformational changes have been characterized in bTSs that are
different from those observed in the human enzyme. bTSs shift between open and closed conformations
involving structural rearrangements that are peculiar of each bacterial enzyme [16,19,39]. However,
hTS switches between the active and inactive conformations, by shifting the catalytic cysteine from
the catalytic cavity to the dimer interface [47,48]. In the last decade, different molecular classes have
been investigated to selectively target TSs of human pathogenic bacteria. In silico studies combined
with structural investigations led to the identification of some phtalimide derivatives as selective
bTS inhibitors [49,50]. Compounds 6A and (R)-40 (Figure 6a) resulted effective towards Ef TS (Ki of
7.0 µM and 13.0 µM, respectively), without affecting the human enzyme [49,50]. The structure of Ef TS
in complex with a representative phtalimide derivative showed that Compound 12 (Figure 6a, PDB
id 4O7U [50]) populates the cofactor site regardless the binding of the substrate (Figure 6b). This
configuration is unusual in TS, since cofactor-like inhibitors normally populate their site in presence
of dUMP (ternary complexes). The six-membered aromatic ring of phtalimide forms a close van der
Waals contact with the Ef TS Trp84 (Figure 6b). This residue, shared among bTSs, is replaced by an
asparagine (Asn112) in human TS (Figure 3d), providing basis to explain the selectivity profile of
these molecules.

Phenolnaphthalein derivatives were also proposed as selective bTS inhibitors [51]. Compounds
4B and 9B (Figure 6a) showed relevant selectivity, being active towards EcTS (Ki of 6.4 µM and 6.5 µM,
respectively) and completely inactive against hTS [51]. Attempting to further improve this class of
compounds through the generation of naphthofuranon derivatives resulted in an almost complete loss
of selectivity, being also active towards hTS [52]. The structure of EcTS obtained in complex with a
representative member of this series, revealed that Compound 3 (Figure 6a, PDB id 4LRR) binds inside
the catalytic cavity inducing the rotation of dUMP outside the substrate binding pocket (Figure 6c) [52].

In vitro analysis on pyrimidine-5-carbonitrile derivatives [53] and on the ruthenium-based complex
[(C6H6)RuL(N,N)Cl] [54] reported antimicrobial activity on S. aureus and other human pathogenic
bacteria. In silico studies have identified them as potential SaTS inhibitors [53,54]; however no
experimental evidences have proven their activity towards SaTS.

Recently, the structures of MtbTS in complex with raltitrexed and pemetrexed (Figure 7a), two
known hTS inhibitors, have been reported in the PDB (PDB ids 4FOX and 4FQS, respectively;
unpublished research). The comparison between the structures MtbTS–dUMP–raltitrexed and
hTS–dUMP–raltitrexed (PDB id 5X5Q [48]) shows the inhibitor bicyclic system in two different
orientations inside the catalytic cavities of the two enzymes (Figure 7b). However, the binding mode
of pemetrexed is almost conserved in the active sites of MtbTS and hTS (Figure 7c). Differences in
the ligand binding mode between MtbTS and hTS are exploitable for the development of selective
bTS inhibitors.
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superimposition of the complexes MtbTS–dUMP–raltitrexed (pale turquoise cartoon and carbons;
PDB id 4FOX; unpublished research) and hTS–dUMP–raltitrexed (lilac cartoon and carbons; PDB id
5X5Q [48]). (c) Active site view of the superimposition of the complexes MtbTS–dUMP–pemetrexed
(pale turquoise cartoon and carbons; PDB id 4FQS; unpublished research) and hTS–dUMP–pemetrexed
(lilac cartoon and carbons; PDB id 1JUJ [55]).

4.2. FDTS Inhibitors towards Human Pathogenic Bacteria

Microbial FDTSs have no structural homology with hTS, being highly divergent in the
configurations of the active sites and in their catalytic mechanisms. Therefore, FDTSs represent
promising targets for the development of new antimicrobial drugs.

Natural compounds are an important source to identify new chemical scaffolds. A library of more
than 2300 natural compounds was screened towards FDTSs from various pathogenic bacteria (including
HpFDTS, MtbFDTS, and Chlamydia trachomatis FDTS, CtFDTS) [56]. In this study, 1,4-naphthoquinone
(NQ) derivatives were identified as FDTS inhibitors. Subsequent studies on the NQ derivative C8–C1
(Figure 8a) showed that it is a potent inhibitor of HpFDTS (estimated Ki of 367 nM), displaying
meaningful antimicrobial activity on H. pylori (MIC 10 µg mL−1) [57]. The structure of C8-C1 in
complex with the FDTS from Paramecium bursaria chlorella virus (PBCV1 FDTS; having an almost
conserved active site with respect to bacterial FDTSs) showed that the compound occupies the catalytic
cavity, replacing the dUMP uracil (Figure 8b; PDB id 4FZB [56]).

NQ derivatives were further developed, resulting in two compounds with improved potency
towards HpFDTS [57]. Compound 010-C (Figure 8a) was the most potent HpFDTS inhibitor, having
a Ki in the low nano-molar range (Ki of 28 nM) [57]. These improved NQ derivatives resulted also
effective towards H. pylori (MIC ranging from 0.625 to 10 µg mL−1). The three most potent compounds
of this series were also investigated in vivo using a mouse model for H. pylori infection. The compounds
were tolerated in mice, but displayed a modest antibacterial effect [57].
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In 2016, in silico studies on FDTS were combined with structural investigations leading to the
identification of a new molecular scaffold exploitable for the development of novel FDTS inhibitors [58].
The binding mode of Compound 7 (Figure 8a, 6% inhibition at 100 µM towards MtbFDTS) was clarified
in complex with the FDTS from the non-pathogenic Thermotoga maritima (TmFDTS, PDB id 5CHP [58]).
The structure shows that Compound 7 occupies the dUMP site within the catalytic cavity. Biochemical
assays performed on hTS, evidenced the ineffectiveness of the compound on this target, indicating this
scaffold useful for the development of novel FDTS inhibitors.

Recently, an high-throughput screening has been performed on MtbFDTS, using a library of
40,000 compounds [59]. In silico studies have led to the identification of 1,4-benzoxazine derivatives as
FDTS inhibitors. Further investigations have proven that Compound B1-PP146 (unreported chemical
structure) was the most potent 1,4-benzoxazine derivative of this series. This compound is effective on
MtbFDTS (IC50 of 0.71 µM), displaying competitive inhibition against CH2H4folate [59].

4.3. dUMP-Like Inhibitors towards Human Pathogenic Bacteria Expressing Both TS and FDTS Enzymes

Bacillus anthracis, Clostridium botulinum, and Mycobacterium species are examples of human
pathogenic bacteria expressing both TS (thyA gene) and FDTS (thyX gene) enzymes [2]. Studies
performed on Mycobacterium tuberculosis showed that the thyX gene is essential for bacteria survival
and its overexpression was observed in multi-drug resistant strains [6,8]. However, the thyA gene was
reported less essential for M. tuberculosis but connected with the resistance to p-aminosalicylic acid [6].
The effects of FDTS inhibition on bacteria expressing both methyltransferase enzymes have to be fully
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elucidated and the potential involvement of TS as metabolic bypass to FDTS inhibition is not excluded.
The ability of these enzymes to recognize the same substrate suggested its analogue FdUMP (Figure 9a)
as dual TS–FDTS inhibitor [60,61]. Indeed, FdUMP was reported as potent inhibitor of both MtbTS
(Ki of 2 nM) and MtbFDTS (Ki 100 nM) (Figure 9b,c), exhibiting also a remarkable antimycobacterial
activity (MIC 3.1 µM) [60,61].Molecules 2019, 24, x 18 of 23 
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In 2011, a series of 5-substituted-dUMP analogues was probed towards MtbFDTS and MtbTS [62].
Compound 1 (Figure 9a) resulted the most potent MtbFDTS inhibitor (IC50 of 0.91 µM), showing no
noticeable activity on MtbTS (IC50 > 50 µM) [62]. The replacement of dUMP with 6-aza-dUMP in a
new series of 5-substituted derivatives induced a drop of their potency towards MtbFDTS (maximal
inhibition of 40% at 50 µM), resulting inactive also against MtbTS [63]. Analogously, the replacement of
the nucleotide with an acyclic nucleoside phosphonate moiety (ANP derivatives) reduced the activity
towards MtbFDTS (maximal inhibition of 43% at 50 µM) [64].
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Structure-activity relationship analysis combined with in silico studies led to the development
of 5-undecyloxymethyl-dUMP (Figure 9a), for which an IC50 of 8.32 µM against MtbFDTS was
reported [65]. On the other hand, no detectable inhibition was observed on MtbTS (up to concentrations
of 100 µM) [65]. This compound, together with other derivatives of this series, displayed a significant
antibacterial activity (MIC 10–20 µg mL−1) towards two mycobacterial strains, the virulent laboratory
H37Rv strain and the multi-drug resistant MS-115 [66].

Very recently, a further series of nucleotide analogues has been investigated [67]. Various
5-modified 6-aza- and 2-thio-6-aza-2′-deoxyuridine derivatives have shown a significant antibacterial
activity on important human pathogens, including Mycobacterium smegmatis, Staphylococcus aureus and
Pseudomonas aeruginosa [67]. Docking studies have predicted that they target MtbFDTS. Nonetheless,
their activity on Staphylococcus aureus and Pseudomonas aeruginosa, lacking the thyX gene, strongly
suggests that these compounds inhibit other bacterial enzymes.

5. Conclusions

Methyltransferase enzymes of human pathogenic bacteria represent important targets for the
development of new antibiotic drugs. The catalytic processes of TS and FDTS have been recently
revised, but their mechanisms of action are not yet fully elucidated. For bTSs, half-site reactivity
is still an open debate. Recent insights obtained on EcTS are somehow controversial [18,19,39,40],
suggesting that deeper investigations are required to unveil the extent of inter-subunit cooperativity
in this enzyme. The TS dimer interface area has been shown to play a major contribution in the
inter-subunit communication occurring between the two holoenzyme halves during the catalytic
process. The TS dimer interface is crucial for the enzyme activity, but its potential as drug-targetable
area is yet unexplored for bacterial enzymes.

FDTSs represent a promising target for development of new antibacterial drugs since they have
no human counterpart enzymes. On the other hand, in FDTS, the mechanism of the redox reaction
responsible for the regeneration of reduced flavin is not fully elucidated. During this process, flavin
is reduced at the expenses of NADPH that is oxidized to NADP+. Understanding how FAD and
NADPH interact with FDTS during this stage of the catalytic reaction would represent a breakthrough
to elucidate the mechanism by which the flavin cofactor is regenerated by these enzymes.

The development of FDTS-targeting molecules has led to the identification of potent inhibitors.
Nonetheless, the in vivo properties of these compounds have to be improved to achieve suitable drug
candidates. Targeting this enzyme is crucial not only in human pathogens relying only on FDTS,
but also in those expressing both FDTS and TS enzymes. Although blocking the FDTS activity is
pivotal, the expression of TS could provide a metabolic bypass to FDTS inhibition, leading to resistance.
The importance of developing bTS inhibitors is further evidenced by the existence of important human
pathogens relying only on TS. The high conservation of the active site among bacterial and human
TSs constitutes an important issue for the design of selective bTS inhibitors. Relevant steps forward
have been recently reported opening new perspectives for the development of effective and selective
bTS-targeting drugs. The recent structural evidence acquired on bTSs from human pathogenic bacteria
has also highlighted prominent differences in the conformational flexibility among human and bacterial
enzymes, yet unexplored for the design of selective bTS inhibitors.

These are promising results; however, more efforts are required to obtain drug candidates targeting
bTS and FDTS enzymes.
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Abbreviations

The following abbreviations are used in the manuscript:
dTMP 2′-deoxythymidine-5′-monophosphate
dUMP 2′-deoxyuridine-5′-monophosphate
TS thymidylate synthase
DHFR dihydrofolate reductase
FDTS flavin dependent thymidylate synthase
CH2H4folate N5,N10-methylene-5,6,7,8,-tetrahydrofolate
H2folate dihydrofolate
H4folate tetrahydrofolate
FAD flavin adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
PDB Protein Data Bank
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The Hippo pathway is an evolutionarily conserved intracellular signaling

cascade having a central role in organ size control and tissue homeostasis,

leading both development and regeneration of different organisms [44, 139, 140].

The Hippo pathway has a critical function in regulating fundamental biological

processes, as cell growth, differentiation, survival and apoptosis [44, 139, 141,

142]. The components of the pathway were originally identified in Drosophila;

then, orthologues with similar roles in the signaling network were discovered in

mammals [139, 143]. The core of the Hippo pathway consists of several

serine/threonine kinases activated through a phosphorylation cascade (Figure

7.1). Once the pathway is turned on, mammalian Ste20-like 1 and 2 (MST1/2)

kinases are phosphorylated and, after this modification, they phosphorylate the

Large Tumor Suppressor Kinases (LATS1/2), which interact with the adaptor

protein Mps1-binder-related 1 (MOB1) (Figure 7.1). At this stage, the LATS

1/2 – MOB1 complex phosphorylates the Yes associated protein (YAP),

resulting in its cytoplasmic retention and subsequent degradation by the

ubiquitin-proteasome system [44, 139, 141, 144] (Figure 7.1 and Figure 7.2).

Conversely, when the Hippo pathway is switched off, YAP is not

phosphorylated by LATS1/2 kinases, ant can translocate into the nucleus where

it interacts with different partners, mainly the transcriptional enhanced

associate domain (TEAD 1-4) transcription factors (Figure 7.1 and Figure 7.2)

[44, 139, 141, 145].

Thus, TEADs are the distal mediators of the Hippo signaling and their

interaction with YAP is essential for the expression of the Hippo

pathway-related genes (e.g. Myc, Axl, EGFR, PD-L1 and EGFR) (Figure 7.2)

[44, 146, 147]. Consequently, YAP and TEADs are main downstream effectors

of this signaling pathway. In human cells, the expression of pro-proliferation,

pro-survival and anti-apoptosis target genes is triggered upon hYAP:hTEADs

complex formation [139, 143, 148, 149].

hTEAD proteins are a family of transcription factors which control the

expression of a wide set of genes related to proliferation, differentiation, and

apoptosis [150]. In humans, the family consists of four different genes, which

encode for the four homologous members of the family, named hTEAD1-4
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Figure 7.1: The Hippo signaling pathway in mammals, which consists of a serine/threonine
phosphorylation cascade, leading to the translocation of YAP into the nucleus where it interacts
with TEADs. The YAP:TEAD1-4 complex, acting as downstream effector of the mammalian
Hippo pathway, is underlined in the Figure [44].

(Figure 7.3). The isoforms show tissue and development-specific expression

patterns, and they can be expressed simultaneously in the same tissue [148]. In

this work, we focused on the hTEAD4 isoform which is the most abundant in

human cells and plays a role in a plethora of cancers, as outlined below [151,

152, 153]. hTEAD4 is a nuclear protein consisting of a single polypeptide chain

with 434 amino acid residues and a molecular weight of approximatively 49 kDa

[148]. hTEAD4 shares a high homology sequence (76.5%, 64.27% and 71.06%

sequence homology respect to hTEAD1,hTEAD2,hTEAD3 and hTEAD4

respectively; Figure 7.3) and a common overall architecture with the other

family members [146, 148, 150].

The N-terminus of hTEAD4 is constituted by a TEA DNA-binding domain

(DNA-BD), required for its binding to DNA cis elements; while the YAP/TAZ

binding domain (generally referred to as YBD) has been mapped at the hTEAD

C-terminus [148, 150, 154] (Figure 7.4). Here, we focus on the hTEAD4 YBD, a
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Figure 7.2: Schematic representation of Hippo signaling events in both ON and OFF pathway
states, which determine the nucleus/cytoplasm shuttle of YAP.

Figure 7.3: Sequence alignment among the four hTEAD isoforms (UniProtKB codes,
hTEAD4: Q15561; hTEAD1: P28347; hTEAD2: Q15562; hTEAD3: Q99594) performed with
Clustal Omega. The asterisk (*) indicates positions which have a single, fully conserved residue;
the symbol colon (:) indicates conservation between groups of strongly similar properties; the
period (.) indicates conservation between groups of weakly similar properties.

transactivation domain mediating the interaction with its protein coactivator

hYAP1. Although being transcriptional factors, hTEADs are not able to induce

gene transcription by themselves, but coactivator interactions are required to
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modulate gene expression [155]. Furthermore, all hTEADs have a deep

hydrophobic central pocket in their YBD, where palmitic or myristic acid can

bind under physiological conditions (Figure 7.4), establishing a covalent linkage

with a conserved cysteine residue (Cys359 in hTEAD1, Cys380 in hTEAD2,

Cys371 in hTEAD3 and Cys367 in hTEAD4) [156, 157, 158]. It has been

demonstrated that hTEADs can undergo spontaneous acylation, in presence of

physiological concentrations of either palmitoyl-CoA or myristoyl-CoA [156,

157]. The role of hTEAD4 acylation has not been fully clarified yet. Firstly, it

was suggested that hTEAD4 acylation is important for the interaction with

hYAP [157]. However, recent biochemical studies have shown that the

hYAP1:hTEAD4 interaction is not affected by the acylation of the latter

partner, which seems stabilized upon this modification [156].

Figure 7.4: Domain architecture of hTEAD4. TEADs consist of a TEA DNA binding domain
(DNA BD, in grey) and a YAP/TAZ binding domain (YAP BD, in orange). Cys367 (or C367),
which is the site of hTEAD4 acylation, is displayed in the Figure. Residues included in each
domain are shown.

On the other hand, hYAP is a transcriptional co-activator without an

intrinsic DNA-BD that contains a key activation domain for the association

with the cellular transcriptional machinery [145, 159]. hYAP shuttles between

the cytoplasm and the nucleus where it interacts with hTEADs and drives the

expression of Hippo pathway-target genes. The function of hYAP depends on

its ability to recruit the cellular transcriptional machinery following the binding

to hTEAD transcriptional factors which are bound to the gene promoters. It is

a modular protein having 504 amino acids and consists of several structural

domains (Figure 7.5). As mapped by Vassilev and coworkers, the N-terminus of

hYAP is a proline-rich region, followed by the TEAD-binding domain (TBD,

including amino acids 50-171) [154], two WW small modular domains (named

WW1 and WW2, including residues 171-204 and 230-263, respectively) [160], a
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SH3-binding motif, a coiled-coil (CC) region, and a transcription activation

domain (TAD, determinant for its transcriptional co-regulatory role) (Figure

7.5) [154, 160, 161, 162]. hYAP is an intrinsically disordered protein which

seems to structure upon the interaction with hTEADs [163], however, to date,

the structural information on hYAP is limited to the TBD peptide 50-99 in

heterodimeric complexes with hTEADs [156, 161, 163].

Figure 7.5: Schematic representation of domain organization of the modular protein hYAP.
The TBD, WW1, WW2, CC, TAD domains are shown.

The biological processes controlled by the Hippo pathway are responsible for

multiple oncogenic hallmarks. Indeed, Hippo-pathway dysfunctions, leading to

uncontrolled proliferation and resistance to programmed cell death, are well

documented in several human malignancies [44, 139, 143, 149, 164]. Alterations

of the Hippo signaling account also for cancer progression, by modulating cell

migration, invasion, angiogenesis, immune-deficiency, and metastasis, and for

drug resistance [139, 143, 164]. The main proteins responsible for Hippo

pathway dysfunctions in cancer are hYAP and hTEADs, thus classified as

oncoproteins [164]. The hYAP:hTEAD complex plays a dual role in cancer,

promoting the expression of oncogenes and concomitantly blocking that of

tumor suppressor genes (Figure 7.2). Increased hYAP protein levels and nuclear

localization are reported in various human cancers, such as osteosarcoma (OS),

mesothelioma, Renal Cell Carcinoma (RCC), gastric, endometrial, lung and

liver carcinoma [141, 149, 151, 152, 153, 165]. Analogously, increased expression

of hTEAD is associated with poor prognosis in gastric, breast, colorectal, RCC

and prostate cancers [147, 150, 166, 167, 168]. Increasing attention has been

recently focused on the hTEAD4 isoform which has been associated with high

pathogenicity of head and neck squamous cell carcinoma (HNSCC) [169], and

with poor prognosis in lung adenocarcinoma and breast cancer [170]. Measuring

the expression levels of hYAP and hTEADs can thus represent a valid

prognostic marker in the tumor subsets where their overexpression has been
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correlated with poor therapeutic outcomes[171]. Furthermore, the

re-establishment of physiological levels of hYAP and hTEAD proteins has been

directly correlated with cellular sensitization to chemotherapy and radiotherapy

[172]. In this scenario, targeting the hYAP:hTEADs complex represents an

emerging, promising therapeutic strategy for cancer treatment [44, 149]. Very

few hYAP:hTEADs inhibitors have been reported so far and the development of

new molecules targeting this protein complex remains a challenge [44, 164, 173],

due also the limited structural information available on this PPI [44]. Through

a drug repurposing approach, Verteporfin (VP) has been recently proposed as

potential modulator of the Hippo pathway terminal effectors [173, 174, 175].

Two main approaches have been proposed to disrupt the hYAP:hTEAD

complex: one relies on the development of inhibitors directly binding at the

hYAP-hTEAD4 interface, perturbing the complex formation, whereas the

second is based on allosteric inhibitors targeting the hTEAD acylation pocket.

At variance with the former approach whose efficacy is still under investigation

[44, 176, 177], the second seems not effective. Indeed, molecules targeting the

the hTEAD acylation pocket, like flufenamic and niflumic acids, does not alter

the hYAP:hTEAD PPI [178]. As discussed in part I, achieving an efficient PPI

disruption by small molecules is very difficult due to the large interacting

surfaces connecting the two partner proteins [26, 28]. On the other hand,

peptides seem interesting candidates for this purpose; indeed, starting from the

hYAP Ω-loop amino acid sequence, Zhang and colleagues developed a potent

cyclic peptide acting as hYAP mimetic [179]. The searching for novel

hYAP:hTEAD PPI inhibitors and innovative inhibition strategies is thus still a

challenge. Currently, the structural information available on hYAP and

hTEAD4 is very limited and the structures of the full-length proteins have not

been determined yet. More specifically, the information on this PPI is restricted

to the partner domains, in the structure of the heterodimeric complex between

the hYAP1 TBD (peptide 50-99) and the hTEAD4 YBD. The X-ray

crystallographic studies performed so far on the hYAP:hTEADs complexes has

provided basis to explain the interaction of these partner protein. In 2010, the

structure of the hYAP:hTEAD1 complex (PDB id 3KYS [161]) was firstly
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described, allowing the scientific community to gain valuable information on the

main features of this PPI, relying on the presence of three interacting areas

[161] (Figure 7.6 A). Next, the structural characterization of the

hYAP:hTEAD4 complex (PDB ids 5OAQ [156] and 6GE3 [163]) showed some

differences, displaying only two of these interface regions (Figure 7.6 B).

The purpose of this study is to expand the current structural and functional

knowledge on the hYAP:hTEAD4 interaction and to explore the mechanism

regulating this PPI. This information is essential for the development of

innovative anticancer treatments. On this purpose we have developed reliable,

effective protocols for expression and purification of hTEAD4 YBD and for the

co-expression and co-purification of hTEAD4 YBD in complex with three hYAP

TBD fragments (named S, M, and L complexes). Notably, the structure of

complex S has been solved by means of X-ray crystallography, revealing new

targetable interfaces between the partner proteins. Moreover, we have also

co-expressed and co-purified the full-length hYAP in complex with hTEAD4

YBD and performed preliminary structural characterizations to obtain deeper

insights on this key PPI within the Hippo signaling pathway. In this work, we

report the studies on the isolated hTEAD4 YBD and four protein-protein

complexes in which hTEAD4 YBD interacts either with the three hYAP TBD

fragments 50-120 (S), 50-140 (M), and 50-171 (L), or with the full length hYAP.

For the investigation of the target proteins, different genetic constructs for

recombinant protein expression were generated using sub-cloning and site-direct

mutagenesis techniques. Single proteins and protein-protein complexes (Table

7.1 reports the plasmids, inserts, recombinant vectors and proteins or

protein-protein complexes), were expressed, purified, and characterized in this

thesis work.
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Table 7.1: Summary of the plasmids, inserts, recombinant vectors and proteins or protein-
protein complexes, investigated in this work. The restriction sites employed for molecular
cloning and the tags encoded at the target N-termini (highlighted in red in the Recombinant
vector column) are also reported.
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Figure 7.6: Cartoon representation of the (A) hYAP:hTEAD1 complex (PDB id 3KYS [161],
hYAP and hTEAD1 are in green and gold, respectively); (B) hYAP:hTEAD4 complex (PDB id
5OAQ [156], hYAP and hTEAD1 are in green and gold, respectively).The interacting interfaces
are highlighted.
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Chapter 8

Materials and Methods



Generation of expression plasmids and production of target proteins and protein complexes

8.1 Generation of expression plasmids and

production of target proteins and protein

complexes

8.1.1 Generation of hTEAD4 YBD expression vectors

The synthetic sequence encoding for hTEAD4 YBD (engineered from the whole

gene sequences hTEAD4, Acc. No. NM 003213.4, obtained from NCBI,

National Center for Biotechnology Information, GenBank database) cloned into

the pGEX4-T1 vector within BamHI/XhoI restriction sites (Table 7.1) was

purchased from GenScript USA. This vector also includes the sequence

encoding for Glutathione-S-Transferase (GST) that is expressed at the

N-terminus of the target protein, obtaining the GST-hTEAD4 YBD fusion

protein (Figure 8.1). PCR was carried out using the PlatinumTM SuperFiTM

DNA polymerase (ThermoFisher ScientificTM), in a 50 µl-reaction mixture

containing 1 x SuperfiTM buffer (ThermoFisher ScientificTM), 0.2 mM dNTPs,

0.5 µM of each primer, 10 ng template DNA and 0.01 unit of DNA polymerase.

PCRs were done with an initial denaturation step (30 sec, 98 ◦C), followed by

30 cycles of denaturation (10 sec, 98 ◦C), annealing (10 sec, 58 ◦C), and

extension (3 min, 72 ◦C), and by a final extension step (5 min, 72 ◦C). The

PCR product purified using the NucleoSpin PCR Clean-up Kit

(Machery-Nagel), and the vector pET15b were double digested with restriction

endonucleases NdeI e BamHI (ThermoFisher ScientificTM), according to the

manufacturer’s protocol. Following electrophoresis, both DNA fragments were

purified from the 1% agarose gel using the E.Z.N.A Gel Extraction Kit (Omega

Bio-Tech). Ligation reaction was carried out overnight at 20 ◦C using 1 unit of

T4 DNA ligase (ThermoFisher ScientificTM), 60 ng vector DNA and 36 ng

insert DNA (molar ratio insert DNA-vector 5:1). Thereafter, 10 µL of the

ligation mixture (pET15b – hTEAD4 YBD plasmid) were then used to

heat-shock transform chemically competent E. coli TOP-10 cells. Positive

transformants were then selected on LB agar plates added by ampicillin (100
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Gene Target Primer Sequence 5’–3’

hTEAD4 YBD
Fw: hTEAD4-NdeI GGGAATTCCATATGCGTAGCGTGGCGAGCAGCA

Rv: hTEAD4-BamHI CGCGGATCCTTATTCTTTAACCAGACGATAAATG

Table 8.1: Sequences of forward (Fw) and reverse (Rv) primers used for PCR on hTEAD4
YBD. The forward and the reverse primers contain the NdeI (CATATG) and the BamHI
(GGATCC) restriction sites, respectively (evidenced in red).

mg L-1) and some of them were used to inoculate overnight cultures in LB

medium (added by ampicillin 100 mg L-1). After 16 h of incubation at 37 ◦C,

cells were broken, and the ligated plasmids were purified using the E.Z.N.A.

Endo-free Plasmid miniprep Kit I (according to the manufacturer’s

instructions). The ligated recombinant vector was confirmed by restriction

digestion analysis with NdeI and BamHI enzymes (ThermoFisher ScientificTM)

and then by DNA sequencing (ATAC sequencing, Eurofins Genomics Italy).

Figure 8.1: Map of the pGEX4T-1 - hTEAD4 YBD plasmid vector, including the gene
encoding for hTEAD4 YBD cloned within the BamHI and XhoI restriction sites. The target
gene is inserted downstream the sequence encoding for the GST and the thrombin site. AmpR:
ampicillin resistance gene; lacI: lactose operon repressor; ori: origin of replication.
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Figure 8.2: (A) Map of the final pET15b plasmid vector with hTEAD4 YBD sequence. The
restriction enzymes NdeI and BamHI have been used for PCR-based cloning.The His6 tag and
thrombin site are reported in the map. AmpR: Kanamycin resistance gene; lacI: lactose operon
repressor; ori: origin of replication (B) DNA electrophoresis analysis of cloning product. In
lanes 1 pET15b His6hTEAD4 YBD (6.360 bp) in circular form; in lane 2 the linearized plasmid
which was digested with BamHI enzyme. DNA ladder is reported in lane 5.

8.1.2 hTEAD4 YBD expression and purification

The constructs pGEX4-T1-GST-hTEAD4 YBD (Table 7.1), allowing the

expression of the target protein fused with a thrombin-cleavable GST tag, was

heat-shock transformed in chemically competent BL21(DE3) E. coli cells. The

production and purification of the fusion protein was performed according to

the protocols reported by Bum-Erden et al [180], with minor modifications.

Briefly, cells were grown at 37 ◦C in LB medium supplemented with ampicillin

(100 mg L-1). When optical density at 600 nm (OD600nm) reached the value of

0.6-0.8, protein expression was induced using IPTG 0.5 mM; thus the culture

was cooled down to 18 ◦C and maintained under vigorous aeration for other 40

h. Cells were then harvested by centrifugation (3500 g, 8 min, 8 ◦C) and

resuspended in buffer A (PBS buffer, pH 7.3 and 1 mM DTT), supplemented

with lysozyme (0.5 mg/mL) and 0.2 mM PMSF. After 1 hour of incubation on

ice, cells were disrupted by sonication. The supernatant of the resulting crude

extract was collected by centrifugation (13500 g, 1 h, 8 ◦C) and further purified

by glutathione-affinity chromatography on a GST-Trap FF 5 mL column (GE
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Healthcare), applied to an Äkta Purifier 10 system. The target protein was

eluted in a single step by using an eluting solution composed of 10 mM

glutathione, 1 mM dithiothreitol (DTT), and 50 mM Tris HCl pH 8. Fractions

containing the protein were identified by SDS-PAGE, pooled and dialyzed in

buffer A at 4 ◦C (membrane cutoff 14 kDa). The GST-tag cleavage was

attempted by adding thrombin (13 units mg-1 target protein) directly inside the

dialysis bag, but even after 72 h of incubation only a small amount of mature

protein was produced, as observed by SDS-PAGE analysis. The resulting

sample was passed to a second stage of affinity chromatography (GST-Trap FF

5 mL column) and the mature protein was eluted as unbound fraction. The

purity of the resulting hTEAD4 YBD was verified by SDS-PAGE analysis. The

pET-15b-hTEAD4 YBD expression vector, which includes a thrombin-cleavable

His6-tag added at the N-terminus of the target protein (Table 7.1), was used to

heat-shock transform E. coli ArcticExpress (DE3) cells. The bacterial culture

was grown at 30 ◦C in 1 L of ZYP-5052 auto-induction medium supplemented

with 100 mg L-1 of ampicillin. When the OD600nm reached the value of 1, the

culture was cooled down to 12 ◦C and cell growth was continued for 60 h,

keeping a vigorous aeration. Cells were harvested by centrifugation (3500 g, 20

min, 8 ◦C) and resuspended in buffer A (25 mM TRIS pH 8.0 and 150 mM

NaCl), supplemented with lysozyme (0.5 mg/mL), 0.2 mM PMSF and 20 mM

imidazole and disrupted by sonication after 1 hour of incubation on ice. The

supernatant of the resulting crude extract was collected by centrifugation

(13500 g, 1h, 8 ◦C) and further purified by nickel-affinity chromatography on a

HisTrap FF 5 mL column (GE Healthcare). The target protein was eluted using

a three-step gradient protocol, by applying a 250 mM imidazole concentration

in buffer A. Fractions containing the target protein were identified by

SDS-PAGE, pooled and dialyzed in buffer A at 4 ◦C (membrane cutoff 14 kDa).

The His6-tag cleavage was performed during the dialysis, by adding thrombin (5

units mg-1 target protein) directly inside the dialysis bag. As verified by

SDS-PAGE analysis, the complete His6-tag cleavage was achieved overnight.

The resulting sample was applied to a second stage of nickel-affinity

chromatography (HisTrap FF 5 mL column) and the mature protein was eluted
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as weakly-bound fraction. The high purity (estimated as >98%) of the mature

hTEAD4 YBD protein sample was verified by SDS-PAGE analysis and mass

spectrometry. Liquid Chromatography-Mass Spectrometry, or LC-MS, analyses

were performed by the research group of Prof Maria Paola Costi at the

University of Modena and Reggio Emilia. The tag removal was confirmed by

Western blot (WB) analysis using (using the monoclonal anti-6x His-tag – HRP

conjugated, Sigma Aldrich).

8.1.3 Generation of pRSFDuet1 - hYAP TBD - hTEAD4

YBD expression vectors encoding for the S, M and

L complexes

The expression vector pRSFDuet1 - hYAP TBD L fragment - hTEAD4 YBD

(Table 7.1) was obtained from GenScript USA. This expression vector incudes

the genes encoding for hYAP TBD L fragment and hTEAD4 YBD in the MCS1

(restriction sites BamHI/ HindIII ) and MCS2 (restriction sites NdeI/XhoI ),

respectively. In the MCS1, the target gene is preceded by the sequences

encoding for a thrombin cleavable His6-tag, thus the hYAP TBD is expressed as

His6-tagged protein (Figure 8.3). This vector was used as template to generate

the constructs for the S and M complexes (Table 7.1). To obtain the gene

sequences for the hYAP S and M fragments, the stop codon TAA was

introduced at the position encoding for amino acid 121 and 141, respectively, of

the hYAP TBD L fragment gene. Site-directed mutagenesis was performed by

PCR using partially overlapping primers [107], purchased by Eurofins Genomics

Italy (primer sequences are reported in Table 8.2). Each PCR was carried out

in a 50 µL reaction mixture including 10 ng of DNA template (pRSFDuet1 -

hYAP1 TBD L fragment - hTEAD4 YBD), 1 U of PlatinumTM SuperFiTM

DNA polymerase, 1 x SuperfiTM buffer, 1 x GC enhancer (ThermoFisher

ScientificTM), 0.2 mM dNTPs, 0.5 µM of each primer. PCRs were done with an

initial denaturation step (30 sec, 98 ◦C), followed by 30 cycles of denaturation

(10 sec, 98 ◦C), annealing (30 sec, 68 ◦C or 63 ◦C, for the S and M fragments,

respectively), and extension (2 min, 72 ◦C), and by a final extension step (5

139



Materials and Methods

min, 72 ◦C). Both PCR products were digested with the Fast Digest DpnI

enzyme (ThermoFisher ScientificTM), according to the manufacturer protocol.

Afterwards, 10 µL of each reaction mixture were used to heat-shock transform

E. coli TOP 10 cells. Positive transformants were then selected on LB agar

plates added by kanamycin (50 mg L-1) and some of them were used to

inoculate overnight cultures in LB medium (added by kanamycin 50 mg L-1).

After 16 h of incubation at 37 ◦C, cells were broken, and the plasmids were

purified using the E.Z.N.A. Endo-free Plasmid miniprep Kit I (according to the

manufacturer’s instructions). The presence of the mutations was confirmed by

DNA sequencing (ATAC sequencing, Eurofins Genomics Italy).

Figure 8.3: (A) Map of the pRSFDuet-1 plasmid vector with the sequence encoding for
hYAP1 TBD L fragment cloned in MCS1 within BamHI/HindIII restriction enzymes, whereas
the sequence encoding for hTEAD4 YBD has been cloned into the MCS2 using NdeI and XhoI
enzymes. The His6 tag and thrombin site are reported in the map. KanR: Kanamycin resistance
gene; lacI: lactose operon repressor; RSF ori: origin of replication (B) DNA electrophoresis
analysis of plasmid on 0.8% agarose gel. In lanes 1 the pRSFDuet-1 hYAP1 TBD L:hTEAD4
YBD (4.792 bp) in circular form. DNA ladder is reported in lane 2.

8.1.4 Co-expression and co-purification of the hYAP

TBD:hTEAD4 YBD S, M and L complexes

hTEAD4 YBD and hYAP TBD S, M, L complexes (summarized in Table 7.1)

were co-expressed and co-purified by means of a single protocol. The expression

vector of each complex was used to heat-shock transform E. coli BL21(DE3)
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GeneTarget Primer Sequence5’ - 3’ Product

hYAP1 TBD L
Fw: hYAP1 L-STOP 121 GACCCCGTAACATGTGCGTGCGCACAGCAGC

hYAP1 TBD S
Rv: hYAP1 L-STOP 121 GCACATGTTACGGGGTCAGCGCACCCGCG

hYAP1 TBD L
Fw: hYAP1 L-STOP 141 GCCCGGGTTAACTGACCCCGACCGGTGTG

hYAP1 TBD M
Rv: hYAP1 L-STOP 141 GGGTCAGTTAACCCGGGCTAACCGCACCC

Table 8.2: Sequences of Forward (Fw) and Reverse (Rv) primers used for mutagenic PCR, to
introduce a stop codon (TAA reported in red) at the position encoding for amino acid 121 (S
fragment) and 141 (M fragment) of the hYAP TBD L fragment gene.

cells. The production of the protein complexes was performed by culturing

transformed bacteria in Super Broth (SB) medium added by 50 mg L-1

kanamycin. When OD600nm reached values of 0.6-0.8, protein over-expression

was induced by adding 0.2 mM IPTG and incubating cells for at 20 ◦C for 48 h,

under vigorous aeration. Cells, harvested by centrifugation, were resuspended in

buffer A (250 mM NaCl and 50 mM Tris-HCl, pH 8) added by 20 mM

imidazole, lysozyme (0.5 mg mL-1) and 0.2 mM PMSF, and disrupted by

sonication after 1-h incubation on ice. The soluble cellular fraction was clarified

by centrifugation (13500 x g, 1 h, 8 ◦C) and the protein complex was purified

by taking advantage of the N-terminal His6-tag on the hYAP TBD fragment by

means of nickel affinity chromatography (HisTrap FF 5 mL column). The

purification protocol relied on a three-step concentration gradient of imidazole

(40-250-500 mM in the buffer A), resulting in the elution of His6-tag complexes

at imidazole concentrations ranging from 40 to 250 mM. Fractions containing

the protein complexes were identified by SDS-PAGE, pooled and dialyzed

overnight against buffer A at 4 ◦C (membrane cutoff 3 kDa). The samples

including the His6-tag complexes were then concentrated and applied to an

HiLoad 16/600 Superdex 75pg gel filtration column (GE Healthcare)

equilibrated in buffer A. Eluted fractions containing the target protein

complexes were then concentrated to final concentration of 20 mg mL-1 for each

complex, using PierceTM Protein Concentrator PES (cut-off 10 kDa, Thermo

Fisher Scientific). The high purity of the samples was confirmed by SDS-PAGE,

mass spectrometry, and Western blot analyses (using the monoclonal anti-6x

His-tag – HRP conjugated, Sigma Aldrich).
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8.1.5 Generation of expression vectors for full-length

hYAP and for its complex with hTEAD4 YBD.

The synthetic sequence encoding for hYAP cloned into the pMAL-p5X vector

within BamHI and HindIII restriction sites was purchased from GenScript

(Table 7.1). This vector also includes the sequence encoding for the Maltose

Binding Protein (MBP) which is expressed at the N-terminus of the target

protein, obtaining the MBP-hYAP fusion protein. Furthermore, the gene coding

sequence for the thrombin cleavage site was also added between the two proteins

to allow the tag removal by means of this protease and to including it in the

following sub-cloning in the pQE-80L vector. Indeed, since this vector encodes

for a different affinity tag, His6-tag, but it does not encode for a protease

cleavage site, we decided to include this additional coding sequence before our

target gene, to allow yielding the mature hYAP protein. On this purpose, the

hYAP gene (preceded by the thrombin-cleavage-site coding sequence) was then

sub-cloned in the vector pQE80-L (Novagen), within the BamHI and HindIII

restriction sites (Table 7.1 and Figure 8.4). The hYAP gene (preceded by the

thrombin-cleavage-site coding sequence) was also sub-cloned in the MCS 1

(within the BamHI and HindIII restriction sites) of the pRSFDuet-1 - hYAP

TBD L fragment - hTEAD4 YBD plasmid (Table 7.1), thus replacing the hYAP

TBD L fragment gene. The resulting expression vector, pRSFDuet-1 - hYAP -

hTEAD4 YBD allows the production of the hTEAD4 YBD in complex with full

length hYAP (Table 7.1 and Figure 8.5). For each sub-cloning, the hYAP gene

(preceded by the thrombin-cleavage-site coding sequence) and the plasmids

were obtained by the double digestion with the restriction enzymes BamHI and

HindIII, performed at 37 ◦C for 16 h. Ligation reactions were carried out

overnight at 20 ◦C using 1 unit of T4 DNA ligase. For the hYAP gene cloning

into pQE-80L, 60 ng of vector DNA and 85 ng of insert DNA (molar ratio insert

DNA-vector 5:1) have been used. On the other hand, 40 ng of vector DNA and

28 ng of insert DNA (molar ratio insert DNA-vector 2:1) were used to obtain

pRSFDuet-1 - hYAP - hTEAD4 YBD plasmid (Figure 8.3). Then, 10 µL of the

ligation mixtures were then used to heat-shock transform chemically competent
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Figure 8.4: (A) Map of the final pQE80L plasmid vector with hYAP1 gene cloned into
BamHI/HindIII restriction sites. The His6 tag and thrombin site are reported in the map.
AmpR: Ampicillin resistance gene; lacI: lactose operon repressor; ori: origin of replication (B)
DNA electrophoresis analysis of cloning product on 1.2% agarose gel. In lanes 1 and 2 the
pQE80L hYAP1 (6.251 bp) in circular and linear form, respectively. In lane 3 the restriction
digestion of recombinant vector with enzymes BamHI and HindIII resulted in a vector fragment
with (4.702 bp) and hYAP1 gene (1.549 bp). DNA ladder is reported in lane 5.

E. coli TOP-10 cells. Positive transformants were then selected on LB agar

plates added by either ampicillin (100 mg L-1) or kanamycin (50 mg L-1), for

the pQE-80L – hYAP and pRSFDuet-1 - hYAP - hTEAD4 YBD plasmid,

respectively. Some transformants were singularly used to inoculate LB

overnight cultures, afterwards used to extract the ligated expression plasmids

using the E.Z.N.A. Endo-free Plasmid miniprep Kit I (according to the

manufacturer’s instructions). The ligated recombinant vectors were confirmed

by restriction digestion analysis with BamHI and HindIII enzymes and then by

DNA sequencing (ATAC sequencing, Eurofins Genomics Italy).

8.1.6 Production of full length hYAP1

The production of both MBP-hYAP and His6-hYAP was attempted in different

E. coli strains, ArcticExpress (DE3), BL21(DE3) and BL21(DE3) pLysS, testing

also different culture media (LB, SB, and ZYP5052), and protein over-production

conditions (incubation temperatures of 28 ◦C and 18 ◦C and times of 24 h and

48 h, and IPTG concentrations of 0.1 mM and 1 mM, in LB and SB media).

Regardless the production conditions, both MBP-hYAP and His6-hYAP resulted
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Figure 8.5: (A) Map of the final pRSFDuet-1 plasmid vector with hYAP1 gene cloned in
MCS1 within BamHI/HindIII restriction enzymes; the sequence encoding for hTEAD4 YBD
has been cloned into the MCS2 using NdeI and XhoI enzymes. The His6-tag and thrombin site
are reported in the map. KanR: Kanamycin resistance gene; lacI: lactose operon repressor; RSF
ori: origin of replication (B) DNA electrophoresis analysis of cloning product. In lanes 1 and
2 the pRSFDuet-1 hYAP1:hTEAD4 YBD (5.941 bp) in circular and linear form, respectively.
In lane 3 the restriction digestion of recombinant vector with enzymes BamHI and HindIII
resulted in a vector fragment with hTEAD4 YBD sequence (4.392 bp)and hYAP1 gene (1.549
bp). DNA ladder is reported in lane 5.

poorly soluble in E. coli, being mainly localized in the insoluble cellular fractions

(inclusion bodies). These restrictions in the production of the target protein did

not allowed us to obtain the isolated hYAP and its further characterization.

8.1.7 Co-expression and co-purification of the

hYAP1:hTEAD4 YBD complex (also named as XL

complex)

The production of His6-tag full length hYAP in complex with hTEAD4 YBD

(XL complex) was performed in the E. coli ArcticExpress (DE3) system, using

the ZYP-5052 autoinduction medium (supplemented with 50 mg L-1

kanamycin). Bacterial cells were grown at 30 ◦C until the OD600nm reached

values of ≈1, then the culture was cooled down at 12 ◦C and incubated for

additional 60 h, maintaining the vigorous aeration. Cells, harvested by

centrifugation (3500 g, 20 min, 8 ◦C), were resuspended in buffer A (250 mM
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NaCl, 50 mM Tris, pH 8), supplemented with 20 mM imidazole, lysozyme (0.5

mg mL-1) and PMSF (0.2 mM), and disrupted by sonication after 1 h

incubation on ice. The supernatant of the resulting crude extract was collected

by centrifugation (12000 g, 1 h, 8 ◦C) and further purified by nickel-affinity

chromatography (HisTrap FF 5 mL column). The purification protocol relied

on a three-step concentration gradient of imidazole (40-250-500 mM in buffer

A). The His6-tag complex was eluted by applying imidazole concentrations of

40 mM and 250 mM and the collected fractions (identified by SDS-PAGE) were

pooled and dialyzed overnight in buffer A at 4 ◦C (membrane cutoff 14 kDa).

The protein sample was then concentrated and further purified by gel filtration,

using a HiLoad 16/600 Superdex 200pg coloumn (GE Healthcare) equilibrated

in buffer A. Four main peaks, having retention volumes equal or lower than the

one expected for the protein complex (estimated on its collective molecular

weight), were separated from the column, and further characterized by

SDS-PAGE analysis. Bands corresponding to His6-tag hYAP and hTEAD4

YBD of the target complex were identified only in two main peaks, named F3

and F5 having retention volumes compatible with the heterodimer and an

aggregate of two heterodimers, respectively (as also supported by native PAGE

analysis, see below in section 9.3.2. The presence of His6-tag hYAP was

verified in both fractions by Western blot analysis, (using the monoclonal

anti-6x His-tag – HRP conjugated, Sigma Aldrich). The matching of the

SDS-PAGE protein bands with His6-tag hYAP and hTEAD4 YBD, forming the

target complex, was also verified by peptide mass fingerprinting analysis,

performed on service in Toscana Life Sciences by Dr. Laura Salvini.

8.1.8 Native PAGE and Mass Spectrometry analyses

The purified hYAP TBD:hTEAD4 YBD L and hYAP:hTEAD4 YBD XL

complexes were analyzed by native PAGE, using NativePAGETM 4 -16%

Bis-Tris Gels (Thermo Fisher ScientificTM), according to the manufacturer

protocol. Briefly, samples (including a total protein amount of ≈1 µg) were run

at 4 ◦C by applying a constant current of 150 V for 60 min, then increased to
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250 V for additional 60 min. The NativePAGETM Running Buffer was used as

anode buffer, whereas the cathode buffer was the Light Blue Cathode Buffer

(prepared by adding 0.002 % Coomassie G-250 to the NativePAGETM Running

Buffer). The native gels were stained with the SimplyBlue Safe Stain Coomassie

G-250 (Thermo Fisher ScientificTM) and detection of His6-tag-complexes was

confirmed by Western blot analysis (using the monoclonal anti-6x His-tag –

HRP conjugated, Sigma Aldrich). Native mass-spectrometry analysis on hYAP

TBD:hTEAD4 YBD L was performed on service in Toscana Life Sciences by

Dr. Laura Salvini.

8.1.9 Circular dichroism (CD) and thermal denaturation

analyses

The circular dichroism (CD) spectra of the mature hTEAD4 YBD and of the

four complexes were measured on a Jasco J-815 spectropolarimeter at room

temperature, using a 0.1 cm quartz cuvette and the wavelength range 250-200

nm. All protein sample had a concentration of 20 µM in 25 mM Tris pH 8 and

150 mM NaCl. Each protein sample was also used to perform thermal

denaturation analysis by monitoring the CD signal at 220 nm in the

temperature range 25 ◦C - 100 ◦C (temperature increase rate of 2 °C min-1).

All measurements were performed in triplicates. The midpoint of the unfolding

transition (Tm) was determined for each thermal denaturation profile through

the software GraphPad Prism 7 in non-linear regression procedure applying the

Boltzmann sigmoidal function.

8.1.10 Crystallization of hTEAD YBD and its complexes

with the hYAP TBD fragments and full-length

hYAP

Crystallization trials on hTEAD YBD and its complexes with the hYAP TBD

fragments were performed using the commercially available kits JBScreen Basic

(JBSB) 1–4 and Classic (JBSC) 6 from Jena Bioscience (Jena, Germany), and

PEG/Ion 1 and 2, Index, Crystal Screen 1 and 2, and Grid screen Ammonium
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Sulfate from Hampton Research (Aliso Viejo, California, USA). On the other

hand, the lower amount of sample obtained for the heterodimer hYAP:hTEAD

YBD limited the screens to PEG/Ion 1 and 2. Drops, consisting of 1 µL protein

solution (20 mg mL-1 for hTEAD YBD and its complexes with the hYAP TBD

fragments and 12 mg mL-1 for the heterodimer hYAP:hTEAD YBD) and 1 µL

precipitant, were equilibrated over 200 µL reservoir. Crystallization screens

were performed using the sitting-drop vapor diffusion technique [109], both at 8

◦C and 20 ◦C (only the latter temperature was attempted for the heterodimer

hYAP:hTEAD YBD). To date, no crystal formation was observed for hTEAD

YBD and for the heterodimer hYAP:hTEAD YBD. On the other hand, crystals

of all S, M, and L complexes grew using different precipitant solutions (Tables

??) both at 8 ◦C and 20 ◦C. Unfortunately, all crystals showed poor diffraction

patterns in preliminary X-ray crystallographic analyses. Thus, to improve the

crystal ordering/quality, the micro-seeding crystallization technique was applied

[181]. For each successful condition, crystals were crushed and used to prepare

the mother seeding solution. Seeding solutions at dilutions 1:1000 and 1:10000

were then prepared by following dilutions of the mother solution with each

precipitant. The 1:1000 and 1:10000 seeding solutions were used for

streak-seeding crystallization experiments, as summarized in Table 9.12.

Crystals, grown within few days, were subjected to X-ray crystallographic

analysis to assess improvements in their diffraction patterns. All crystals were

cryoprotected using a solution composed of precipitant enriched by 20% v/v

ethylene glycol and flash frozen in liquid nitrogen. For the complex S, the best

diffracting crystals were obtained using 0.2 M calcium chloride dihydrate, 15%

PEG 3350 as precipitant solution and 5% v/v of 1:1000 seeding solution.

8.1.11 Data collection, structure solution and refinement

A large amount (>200) of protein crystals were screened for diffraction using

synchrotron radiation at the Diamond Light Source (DLS, Didcot, UK) beamlines

I03 and I04 equipped with Eiger2 XE 16M detector. Despite this large crystal

screening campaign, only few crystals of the S complex, grown using the seeding
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technique, provided diffraction patterns at resolution <3 Å. Full data sets were

collected on these crystals, integrated with XDS [110] and scaled through the

CCP4 suite [113] programs SCALA and AIMLESS [111, 112]. After these initial

phases of data processing, the strongest and better-quality dataset was selected

and used for proceeding in structure solution and refinement. Data collection

and processing statistics are reported in Table 8.3. By the Matthews-Cell content

analysis [182], 12 heterodimers were estimated to populate the crystal ASU. The

structure was solved by molecular replacement using the software Molrep [114]

and one heterodimer of hYAP TBD:hTEAD4 YBD (PDB id 6GE3 [163], the

YAP fragments used to obtain this complex includes only residues 60-99) as

searching model. The presence of Non-Crystallographic Symmetry (NCS) [183]

was assessed by the calculation of the Native Patterson Map through the FFT

Patterson program [184]. The structural model of the S complex was refined

using REFMAC5 [115], and the molecular graphic software Coot [116] was used

for electron density inspection, model rebuilding and to add water molecules.

The final model was inspected manually and checked with the programs Coot

[116] and Procheck [117]. Final refinement statistics are reported in Table 8.4.

Figures were generated using the molecular graphic softwares PyMol [118] and

CCP4mg [185].

8.1.12 Preliminary Bio-SAXS and CryoEM studies of the

hYAP:hTEAD4 YBD complex (or XL complex)

Preliminary Size Exclusion Chromatography–Biological Small Angle X-ray

Scattering (SEC-Bio SAXS) data were collected at European Synchrotron

Radiation Facility (ESRF) on the beamline BM29, equipped with a Pilatus3 2M

detector. This preliminary analysis was performed in collaboration with Dr

Dritan Siliqi (Institute of Crystallography- CNR, Bari, Italy) and Dr Giancarlo

Tria (Department of Chemistry “Ugo Shiff”, University of Florence, Italy). The

experiments were carried out on both the samples of both the heterodimer

His6-hYAP:hTEAD4 YBD (XL complex) and the aggregate of two heterodimers

of His6-hYAP:hTEAD4 YBD (2x-XL complex). Different protein samples of XL
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His6-hYAP TBD:hTEAD4 YBD

S complex

Diffraction source I04 (DLS)

Wavelength (Å) 0.9795

Temperature (K) 100

Detector Eiger2 XE 16M

Crystal-detector distance (mm) 385.5

Exposure time per image (s) 0.15

Space group P3121

No. of heterodimers in the ASU
12 (12 hYAP TBD S fragment

and 12 hTEAD4 YBD

a = b, c (Å) 164.58, 258.61

Resolution range (Å) 73.76-2.50 (2.54-2.50)

Total no. of reflections 1092787 (53844)

No. of unique reflections 140121 (6836)

Completeness (%) 100.0 (100.0)

Redundancy 7.8 (7.9)

〈I/σ(I)〉 19.3 (2.3)

CC1/2 0.99 (0.75)

Rmeas 0.072(1.013)

Overall B factor from Wilson plot (Å2) 56.2

Table 8.3: Data collection and processing statistics. Values in parentheses are for the highest
resolution shell.
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His6-hYAP TBD:hTEAD4 YBD

S Complex

Resolution range (Å) 73.76-2.50 (2.54-2.50)

Completeness (%) 100 (100)

No. of reflections, working set 133152 (9737)

No. of reflections, test set 6911 (503)

Rcryst 20.47 (28.5)

Rfree 25.72 (33.9)

No of non-H atoms

Protein 23615

Myristic acid 175

Other (triethylene glycol) 10

Water 501

Total 24301

R.m.s. deviations

Bonds (Å) 0.006

Angles (◦) 1.554

Average B factors (Å2) 57.82

Estimate error on coordinates based on

R value (Å) 0.428

Ramachandran plot

Most favored (%) 92.1

Allowed (%) 7.9

Table 8.4: Refinement statistics. Values in parentheses are for the highest resolution shell.
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and 2x-XL complexes at concentrations of 6 mg mL-1 and 12 mg mL-1 were

applied to a KW-403 SEC column, equilibrated with buffer A (25 mM Tris pH

8, 150 mM NaCl), and the eluate was examined in-line. Furthermore, protein

samples of XL and 2x-XL complexes at concentrations of 3 mg mL-1 and 6 mg

mL-1 were used for batch measurements with the robotic sample changer.

Preliminary cryo-EM analysis on the His6-hYAP1:hTEAD4 YBD XL complex

were performed on service at the Florence Center for Electron Nanoscopy

(FloCEN), University of Florence in collaboration with Dr Giancarlo Tria and

Dr Annalisa Guerri. Samples of both XL and 2x-XL complexes were analyzed

at concentrations of 2, 3 and 6 mg mL-1. For each sample, a volume of ≈3 µL

was applied on glow-discharged Quantifoil Cu300 R1.2/1.3 Cu 300 mesh grids

and the excess of liquid was removed by blotting for 2 sec (blot force 0) using

filter paper, followed by plunge freezing in liquid ethane. Vitrification was done

using a FEI Vitrobot Mark IV at 100 % humidity and 10 ◦C. Cryo-EM images

were then recorded on a Glacios microscope (ThermoFisher ScientificTM), at

200 kV with a Falcon3 detector operating in integration mode, with pixel size of

0.96 Å and a total dose of 53 e– A-2 over an exposure time of 2 seconds.
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Studies on hTEAD4 YBD

9.1 Studies on hTEAD4 YBD

9.1.1 GST-hTEAD4 YBD vs His6-hTEAD4 YBD

The first attempting to obtain hTEAD4 YBD were made as GST-fusion protein

(the whole sequence of the GST-hTEAD4 YBD fusion protein is shown in Table

??) by cloning the target gene in the pGEX4-T1 plasmid (Figure 8.1).

GST-fusion proteins are broadly used to increase the solubility of a target in the

expression system and facilitate their purification by exploiting affinity

chromatographic techniques [186]. Indeed former studies reported the

production of hTEAD4 YBD in E. coli BL21 (DE3) as GST-fusion protein

[180]. Despite the application of analogous expression condition, we observed

that GST-hTEAD4 YBD was mainly present in the insoluble fraction in E. coli

cells. Even so, we attempted to isolate the fusion protein present in the soluble

fraction, using glutathione-affinity chromatography (chromatograms and

SDS-PAGE analyses of GST-hTEAD4 YBD purification are shown in Figures

8.5 and 9.2). A very low amount (3 mg) of highly pure GST-hTEAD4 YBD

was obtained after the first stage of affinity chromatography (Figure 9.1 A).

Despite the high protease amount and long incubation time, attempting to

obtain the mature hTEAD4-YBD resulted only in very low cleavage yields (as

shown in SDS-PAGE analysis reported in Figure 9.1 B). Indeed, in the second

stage of glutathione-affinity chromatography we covered almost only the

uncleaved GST-hTEAD4 YBD, with very low yield, estimated to 1 mg L-1

bacterial culture (Figure 9.2). The lack of an effective thrombin cut could be

reasonably due to the hindrance generated by the fusion proteins that hide the

protease recognition site. Given the problems encountered with this construct,

we decided to try a different, less hindering affinity tag, producing the target

protein as His6-hTEAD4-YBD. On this purpose we cloned the hTEAD4 YBD

gene into the pET-15b vector (Figure 9.7), allowing the expression of the

His6-hTEAD4 YBD recombinant protein (sequence in Table 9.1).

The production trials performed to maximize the yields of His6-hTEAD4

YBD evidenced that a high amount of the target protein is present in the E.
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Sample Studied protein-protein complexes Sequences

hTEAD4 YBD His6hTEAD4 (217-434)

(-21)MGSSHHHHHHSSGLVPR↓ GSH

(1)MRSVASSKLWMLEFSAFLEQQQDPDTYNKHLFVHIGQSSPSYSDPYLEAVDIRQIYD

KFPEKKGGLKDLFERGPSNAFFLVKFWADLNTNIEDEGSSFYGVSSQYESPENMIITCST

KVCSFGKQVVEKVETEYARYENGHYSYRIHRSPLCEYMINFIHKLKHLPEKYMMNSV

LENFTILQVVTNRDTQETLLCIAYVFEVSASEHGAQHHIYRLVKE(219)

hTEAD4 YBD GST-hTEAD4 (217-434)

(-220)MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNL

PYYIDGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDF

ETLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDA

FPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLVPR↓ GS

(1)MRSVASSKLWMLEFSAFLEQQQDPDTYNKHLFVHIGQSSPSYSDPYLEAVDIRQIYDK

FPEKKGGLKDLFERGPSNAFFLVKFWADLNTNIEDEGSSFYGVSSQYESPENMIITCSTKV

CSFGKQVVEKVETEYARYENGHYSYRIHRSPLCEYMINFIHKLKHLPEKYMMNSVLENF

TILQVVTNRDTQETLLCIAYVFEVSASEHGAQHHIYRLVKE(219)

Table 9.1: Summary of the investigated GST-hTEAD4 YBD and His6-hTEAD4 YBD. Amino
acids belonging to the GST and His6 tag are colored in green; the thrombin cleavage sites are
red, respectively, while the sequences of hTEAD4 YBD is in black. The black arrow indicates
the site of cleavage by thrombin protease.

Figure 9.1: (A) Chromatogram of the first stage of Ni2+ affinity chromatography (HisTrap
FF 5mL column, GE-Healthcare) performed to purify His6-hTEAD4 YBD. The UV280nm

monitoring and imidazole concentration are shown as blue and green lines, respectively; the
elution fractions are indicated on the x-axis as red marks. (B) SDS-PAGE analysis of the
fractions collected from affinity chromatography (the protein ladder used to estimate the
molecular weight, or MW, is in lane 6).

coli ArcticExpress (DE3) soluble cellular fraction. Thus, we produced the

target through an efficient, reliable protocol, developed for heterologous protein

expression in this peculiar system, relying on culturing bacteria in the

ZYP-5052 autoinduction medium at 30 ◦C to high OD600nm values (>1),

followed by a 60 h incubation at 12 ◦C. The purification protocol developed to
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Figure 9.2: (A) Chromatogram of the first stage of Ni2+ affinity chromatography (HisTrap
FF 5mL column, GE-Healthcare) performed to purify His6-hTEAD4 YBD. The UV280nm

monitoring and imidazole concentration are shown as blue and green lines, respectively; the
elution fractions are indicated on the x-axis as red marks. (B) SDS-PAGE analysis of the
fractions collected from affinity chromatography (the protein ladder used for MW estimation is
in lane 1).

obtain the mature hTEAD4 YBD relied on a two-stage nickel affinity

chromatography. The highly pure His6-hTEAD4 YBD obtained after the first

stage (chromatogram and SDS-PAGE analysis in Figure 9.3), was thus cleaved

by thrombin protease, and the mature hTEAD4 YBD separated by the second

step of affinity chromatography (chromatogram and SDS-PAGE analysis in

Figure 9.4). The final hTEAD4 YBD yield obtained by these procedures was

estimated to 40 mg L-1 bacterial culture, reporting a drastic increment in target

production with respect to the former attempting with the GST-hTEAD4 YBD

fusion protein.
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Figure 9.3: (A) Chromatogram of the first stage of nickel- affinity chromatography (HisTrap
FF 5mL column, GE-Healthcare) performed to purify His6-hTEAD4 YBD. The UV280nm

monitoring and imidazole concentration are shown as blue and green lines, respectively; the
elution fractions are indicated on the x-axis as red marks. (B) SDS-PAGE analysis of the
fractions collected from affinity chromatography (the protein ladder used for MW estimation is
in lane 6).
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Figure 9.4: (A) Chromatogram of the second stage of nickel- affinity chromatography (HisTrap
FF 5mL column, GE-Healthcare) performed to purify His6-hTEAD4 YBD. The UV280nm

monitoring and imidazole concentration are shown as blue and green lines, respectively; the
elution fractions are indicated on the x-axis as red marks. (B) SDS-PAGE analysis of the
fractions collected from affinity chromatography (the protein ladder used for MW estimation is
in lane 4).
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9.1.2 Characterization of recombinant, mature hTEAD4

YBD

The mature hTEAD4 YBD, obtained from the production as His6-tagged

protein, was employed for characterizations through LC-MS, CD and thermal

denaturation analyses, and finally for structural investigations. The LC-MS

analysis, performed by the research group of Prof Maria Paola Costi at the

University of Modena and Reggio Emilia, showed the presence of three main

species: hTEAD4 YBD (MW= 25808.6) and two acylated forms attributed as

myristoylated hTEAD4 YBD (MW = 26018.9, Myr-hTEAD4 YBD) and

palmitoylated hTEAD4 YBD (MW = 26045.9, Palm-hTEAD4 YBD).

According to their analyses and in agreement with the literature [156], the

non-acylated hTEAD4 YBD constitutes the 25-40% of the sample. Thus, the

target protein seems to be mainly modified inside the expression system,

resulting mainly present as Myr-hTEAD4 YBD. The hTEADs have a deep

hydrophobic central cavity in their YBD that can be populated by myristic or

palmitic acid, acylating the conserved cysteine residue (Cys367 for TEAD4)

exposed inside the pocket, under physiological conditions [187]. Furthermore, it

has been reported that under physiological concentrations of palmitoyl-CoA,

TEADs can undergo PAT-independent auto-palmitoylation [157].

The mature hTEAD4 YBD was also used for CD and thermal denaturation

analyses, to verify the protein folding and to measure its thermal stability. The

CD spectra recorded on hTEAD4 YBD is coherent with a folded protein and

with reported structures [156, 163]. The same sample was thus used to

characterize the thermal unfolding profile of the protein, by monitoring the

far-UV CD signal at 220 nm in the temperature range 25-105 ◦C (Figure 9.5).

The Tm value determined by this analysis for hTEAD4 YBD is of 57.82 (± 0.1)

◦C. Former investigations by fluorescence-based thermal denaturation analysis

(FTDA) [156], reported lower Tm values, 43.7 (± 0.3) ◦C, for the non-acylated

hTEAD4 YBD, and higher Tm values, 54.1 (± 0.2) ◦C, for the acylated protein.

Upon acylation with myristic or palmitic acid, the protein stability increases,

leading to an increment in the Tm value of ≈10 ◦C [156]. The Tm value
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determined by us through CD-thermal denaturation analysis correlates with

that of the acylated form obtained by FTDA. This data is also in agreement

with LC-MS data, showing that in our sample hTEAD4 YBD is mainly present

in the myristoylated form. An analogous effect of increment in protein stability

upon acylation was also reported for hTEAD2 [157]. Nonetheless, the role of

hTEAD acylation has not been fully clarified yet. Although the extensive

attempting of protein crystallization we have not been able to obtain crystals of

the isolated hTEAD4 YBD. Probably, the presence of a fraction of non-acylated

protein in the purified sample has a negative influence on the crystallization

process.
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Figure 9.5: (A) Circular dichroism spectrum of His6- hTEAD4 YBD (217-434) protein.
(B) Thermal unfolding transition curves of hTEAD4 YBD followed by circular dichroism.
Measurements were performed in triplicate. Melting temperature (Tm) values determined for
the transitions is reported in the table.
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9.2 Studies on the hYAP TBD: hTEAD4 YBD

S, M and L complexes

9.2.1 Co- expression and co-purification

The protocol previously described to study the interaction between hTEAD4

YBD and hYAP TBD relied on the production of hTEAD4 YBD in E. coli cells

and the subsequent formation of the complex by its combination with a

synthetic peptide including the hYAP TBD fragment 60-99 (syn-hYAP TBD

60-99). On the other hand, in this work, we have established valid and reliable

protocols for co-expression and co-purification of hTEAD4 YBD in complex

with different hYAP TBD fragments (Table 7.1). By using the DUET vector

technology, the hTEAD4 YBD was co-expressed with hYAP1 TBD fragments

50-120 (S complex), 50-140 (M complex) and 50-170 (L complex) (Tables 9.3

and ??). The constructs or the S and M complexes were generated by

introducing stop codons at proper positions of the hYAP TBD gene on the

expression vector of the complex L through PCR-based site-direct mutagenesis

(Figure 9.8). All complexes were mainly expressed in the soluble cellular

fraction of E. coli BL21(DE3) cells, thus we employed this bacterial strain for

their production, using a different protocol with respect to that developed for

the isolated hTEAD4 YBD. The purification of the complexes, relying on nickel

affinity chromatography, took advantage of the His6-tag present at the

N-terminus of hYAP1, whereas the hTEAD4 YBD was expressed as un-tagged

protein, thus it was co-purified with hYAP1 through the formation of the

heterodimeric complex (the amino acid sequences of all complexes are

summarized in Table 9.2).

After a single stage of nickel affinity chromatography, highly pure (>98%)

samples of the complexes were purified, as demonstrated by both SDS-PAGE

and WB analyses (chromatograms, SDS-PAGE and WB analyses for complexes

S, M, and L are shown in Figures 9.6 - 9.9) and by mass spectrometry (data

not shown). The purification protocol of complex S included an additional

purification stage of size exclusion chromatography (SEC) (the chromatogram
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Sample Studied protein-protein complexes Sequences

Complex S
hYAP1 (50-120)

(-21)MGSSHHHHHHSQDPLVPR↓GSA(1)

GHQIVHVRGDSETDLEALFNAVMNPKTANVPQTVPMRLRKLPDSFFKPPEPKSHSRQASTDAGTAGALTP(70)

hTEAD4 (217-434)

(1)MRSVASSKLWMLEFSAFLEQQQDPDTYNKHLFVHIGQSSPSYSDPYLEAVDIRQIYDKFPEKKGGLKDLFER

GPSNAFFLVKFWADLNTNIEDEGSSFYGVSSQYESPENMIITCSTKVCSFGKQVVEKVETEYARYENGHYSYRIH

RSPLCEYMINFIHKLKHLPEKYMMNSVLENFTILQVVTNRDTQETLLCIAYVFEVSASEHGAQHHIYRLVKE(219)

Complex M
hYAP1 (50-140)

(-21)MGSSHHHHHHSQDPLVPR↓GSA(1)

GHQIVHVRGDSETDLEALFNAVMNPKTANVPQTVPMRLRKLPDSFFKPPEPKSHSRQASTDAGTAGALTPQHVR

AHSSPASLQLGAVSPG(90)

hTEAD4 (217-434)

(1)MRSVASSKLWMLEFSAFLEQQQDPDTYNKHLFVHIGQSSPSYSDPYLEAVDIRQIYDKFPEKKGGLKDLFERG

PSNAFFLVKFWADLNTNIEDEGSSFYGVSSQYESPENMIITCSTKVCSFGKQVVEKVETEYARYENGHYSYRIHR

SPLCEYMINFIHKLKHLPEKYMMNSVLENFTILQVVTNRDTQETLLCIAYVFEVSASEHGAQHHIYRLVKE(219)

Complex L
hYAP1 (50-171)

(-21)MGSSHHHHHHSQDPLVPR↓GSA

GHQIVHVRGDSETDLEALFNAVMNPKTANVPQTVPMRLRKLPDSFFKPPEPKSHSRQASTDAGTAGALTPQHVR

AHSSPASLQLGAVSPGTLTPTGVVSGPAATPTAQHLRQSSFEIPDDV(121)

hTEAD4 (217-434)

(1)MRSVASSKLWMLEFSAFLEQQQDPDTYNKHLFVHIGQSSPSYSDPYLEAVDIRQIYDKFPEKKGGLKDLFERG

PSNAFFLVKFWADLNTNIEDEGSSFYGVSSQYESPENMIITCSTKVCSFGKQVVEKVETEYARYENGHYSYRIHR

SPLCEYMINFIHKLKHLPEKYMMNSVLENFTILQVVTNRDTQETLLCIAYVFEVSASEHGAQHHIYRLVKE(219)

Table 9.2: Summary of the amino acid sequences of the S, M, and L complex investigated
in this work. Amino acids belonging to the His6-tag and to the thrombin recognition site are
colored green and red, respectively, while the sequences of hTEAD4 YBD and hYAP1 TBD are
in black.

and SDS-PAGE is displayed in Figure 9.7), showing that only the heterodimer

is present in solution (retention volume compatible with the molecular weight of

the complex S). Likewise, the results achieved by native mass-spectrometry and

native PAGE analyses for complex L (Figure 9.10) revealed that in solution

only the heterodimeric state is present (determined mass compatible with the

molecular weight of the complex L).

The final purification yields obtained for the S, M, and L complexes were

estimated to 60 mg L-1, 30 mg L-1, and 90 mg L-1 for bacterial culture,

respectively.
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Figure 9.6: (A) Chromatogram of the nickel-affinity chromatography (HisTrap FF 5mL
column, GE-Healthcare) purification of the S complex. The UV280nm monitoring and imidazole
concentration are shown as blue and green lines, respectively. Elution fractions are indicated by
red marks on the x-axis. (B) SDS-PAGE analysis of the fractions collected from the first stage
of nickel-affinity chromatography (the protein ladder is in lane 7). (C) Western-blot analysis of
the F6 fraction. His6-tagged proteins are detected using (using the monoclonal anti-6x His-tag
– HRP conjugated, Sigma Aldrich)
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Figure 9.7: (A) Chromatogram of the HiLoad 16/600 Superdex 75pg column (GE-Healthcare)
purification step. The UV280nm monitoring of protein elution is in blue; fractions are indicated
by red marks on the x-axis. (B) SDS-PAGE analysis of the fractions collected from SEC. The
protein ladders are in lane 6.
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Figure 9.8: (A) Chromatogram of the complex M purification through nickel affinity
chromatography (HisTrap FF 5mL column, GE-Healthcare). The UV280nm monitoring and
imidazole concentration are shown as blue and green lines, respectively, whereas; the elution
fractions are indicated by red marks on the x-axis. (B) SDS-PAGE analysis of the fractions
collected from the first stage of Ni2+ affinity chromatography. The protein ladder is in lane
7. (C) Western-blot analysis of the F7 fraction. His6-tagged proteins are detected using the
(using the monoclonal anti-6x His-tag – HRP conjugated, Sigma Aldrich)
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Figure 9.9: (A) Chromatogram of the complex L purification through nickel affinity
chromatography (HisTrap FF 5mL column, GE-Healthcare). The UV280nm monitoring and
imidazole concentration are shown as blue and green lines, respectively, whereas; the elution
fractions are indicated by red marks on the x-axis. (B) SDS-PAGE analysis of the fractions
collected from the first stage of Ni2+ affinity chromatography. The protein ladder is in lane
7. (C) Western-blot analysis of the F7 fraction. His6-tagged proteins are detected using an
HRP-conjugated antibody able to recognize the His6 epitope.
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Figure 9.10: (A) Mass spectrum in native conditions of fraction F7 of complex L, His6
– hYAP TBD:hTEAD4 YBD, purified by nickel- affinity chromatography, (hYAP TBD S
theoretical MW = 15014Da, determined MW = 14881 Da, hTEAD4 YBD theoretical MW =
25543 Da, determined MW = 25542 Da, hYAP TBD:hTEAD4 YBD S complex theoretical MW
= 40540 Da, determined MW = 40489 Da).(B) Native-PAGE analysis of fractions F7 and F5
of complex L, His6 – hYAP TBD:hTEAD4 YBD, separated by nickel-affinity chromatography.
The migration of the single band of fraction F7 corresponds to a MW of 40.489 Da, indicating
the presence of a heterotetrametric assembly in solution.

9.2.2 Thermal stability analysis of the S, M, and L

complexes

The CD spectra recorded on complexes S, M and L are consistent with folded

proteins (Figure 9.11 A). The formation of a protein-protein complex can affect
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the stability of each partner proteins; the assessment of such stabilization effects

can be performed by analyzing the thermal stability of the complexes. On this

purpose, CD thermal denaturation studies have been carried out on the S, M and

L complexes, by monitoring the CD signal at 220 nm in the temperature range

25-105 ◦C. Unfolding transition curves were thus calculated (Figure 9.11 B) and

analyzed to determine Tm values. The lowest the Tm value, 62.55 (±0.1) ◦C, was

obtained for the S complex (light purple unfolding transition curve in Figure 9.11

B), whereas values of 65.73 (±0.1) ◦C and 66.68 (±0.2) ◦C, were calculated for

the M and L complexes, respectively (dark violet and lilac unfolding transition

curves in Figure 9.11 B). Thus, the interaction of hTEAD4 YBD with the hYAP

TBD S fragment (50-120) results in a Tm increase of ≈4.0 ◦C with respect to

the isolated hTEAD4 YBD (section 9.1.2). Our finding agrees with the data

of Mesrouze et al, which reported shifts of ≈5.0 ◦C and ≈4.2 ◦C in the Tm of

hTEAD4 YBD and Myr-hTEAD4 YBD, respectively, in presence of syn-hYAP

TBD 60-99. Moreover, increasing the length of the hYAP TBD from the S to the

L fragments, leads to complexes with improved thermal stability, as demonstrated

by the increment of ≈4.0 ◦C in their Tm values (Figure 9.11 B). These data seem

to suggest that more extended areas of the hYAP TBD, beyond the region 60-

99 of the synthetic peptide, are involved in the interaction with hTEAD4 YBD.

Notably, the highest thermal stability is observed for the L complex, in which the

whole hYAP TBD, fragment 50-171, is employed. Indeed, the fragment 50-171

was mapped biochemically by Vassilev et al [154] as the one accounting for the

interaction with hTEAD4.
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Figure 9.11: In the upper panel (A) CD curves for S, M and L complexes. In the lower
panel (B), thermal unfolding transition curves determined for the S, M and L complexes
by CD thermal denaturation analysis. Measurements were performed in triplicate. Melting
temperature (Tm) values determined for each complex are reported in the table.
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9.2.3 Crystallization of hYAP TBD:hTEAD4 YBD S, M,

and L complexes

The huge crystallization screening campaign performed on the His6-hYAP

TBD:hTEAD4 YBD S, M and L complexes, allowed us to observe crystal

growth in various conditions, showing their propensity to crystallize in presence

of PEG 3350 (Table 9.12, 9.13 and 9.14). Although in different conditions, this

agent was also employed in the crystallization of the syn-hYAP TBD

60-99:hTEAD4 YBD complex [156, 161, 187]. All successful conditions were

further optimized by varying protein, PEG and salt concentrations, buffer pH,

and incubation temperature, nonetheless, preliminary X-ray crystallographic

analyses revealed only poor diffraction patterns for these crystals, with

resolutions >10 Å. Thus, we decided to move to the micro-seeding

crystallization technique, aiming to improve the crystal ordering and diffraction

quality. The most prominent improvement in the crystal properties was

achieved for the S complex for which we obtained data to 2.5 Å. These crystals

grew in 48 hours, displaying a hexagonal bipyramidal habit (Figure 9.15). On

the other hand, maximum resolution of only 6 Å and 3.1 Å were obtained, for

the M and L complexes, despite the application of the micro-seeding technique

also to grow these crystals.
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Figure 9.12: Pictures and precipitant composition of crystals of complex

Figure 9.13: Pictures and precipitant composition of crystals of complex M
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hYAP TBD:hTEAD4 YBD complex L 

    

0.2 M calcium chloride dihydrate, 
20% w/v PEG 3350 

0.2 M sodium chloride, 20% w/v PEG 
3350 

0.2 M potassium chloride, 20% 
w/v PEG 3350 

0.2 M ammonium chloride, 
20% w/v PEG 3350 

    

0.2 M potassium thiocyanate, 20% 

w/v PEG 3350 

0.2 M lithium nitrate, 20% w/v PEG 

3350 

0.2 M hydrated calcium acetate, 

20% w/v PEG 3350 

0.2 M sodium malonate pH 6.0 

+ 20% w/v PEG 3350 

   

0.2 M sodium malonate pH5+20% 

PEG 3350 
0.2 M sodium malonate pH5+20% PEG 3350+ seeding solution 1:1000 

 

Figure 9.14: Pictures and precipitant composition of crystals of complex L
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Figure 9.15: Crystals of complex S grown using a precipitant solution composed of 0.2 M
calcium chloride dihydrate and 15 % PEG 3350 and seeding solution having a 1:1000 dilution
factor.

9.2.4 Overall structure of YAP TBD:TEAD YBD S

complex

The structure of the hYAP TBD:hTEAD4 YBD S complex has been determined

to 2.5 Å resolution, in the trigonal space group P3121 with unit cell parameters a,b

= 164.58 Å, c = 258.61 Å. The crystal ASU consists of 12 hYAP TBD S fragment:

hTEAD4 YBD heterodimers (Figure 9.16). In all heterodimers, the hTEAD4

YBD chain was completely traced apart for the segment including residues 254-

261. On the other hand, the electron density observed for the hYAP1 TBD S

fragment allowed us to rebuild only the segment including residues 51-100. The

starting N-terminal amino acid (residue 50) and the C-terminal segment 101-120

of the hYAP1 TBD S fragment, and the additional twelve amino acids belonging

to the N-terminal His6-tag were not traced in our model, reasonably because

of their positional disorder. The hTEAD4 YBD adopts an immunoglobulin-like

fold, with a mix of α/β fold (Figure 9.17). The 12 β-strands forming two β-sheets

packed against each other, whereas the 4 α-helices are organized around them. In

detail, the first β-sheet is constituted by strands β1, β2, β5, β8, and β9; while the

second is formed by strands β3, β4, β6, β7, β10, β11, and β12. hTEAD4 YBD

shows two helix-turn-helix motifs, the first involves α1 and α2, connecting strands

β3 and β4 and the second consisting of α3 and α4 which link strands β9 and

β10. The analysis of each hTEAD4 YBD chain reveals the presence of a myristic
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acid molecule populating their hydrophobic pocket (detailed in section 9.2.6).

The hYAP TBD S fragment wraps around the hTEAD4 YBD (Figure 9.17). Li

et al [161] reported that the isolated hYAP TBD is largely unstructured and it

folds only in presence of hTEADs by wrapping around it. In the structure of

the S complex, three main secondary structural elements characterize the hYAP

TBD S fragment: the N-terminal β-strand β1, followed by the α-helix α1, and

the Ω-loop (Figure 53). All these elements take direct interactions with hTEAD4

YBD (as detailed in the following section). The α-helix α1 and the Ω-loop are

connected by a 10-amino acid flexible linker region including the PXXΦP motif

(P: proline; X: any residue; Φ: hydrophobic residue), shown to be important

for the interaction with hTEADs [44, 163]. Indeed, the flexibility of this linker

seems to allow the optimal placement of the hYAP α1 and Ω-loop, forming the

two main interface areas connecting the partner proteins [44, 161].
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Figure 9.16: Cartoon representation of the overall structure of complex S The 12 hYAP
TBD:hTEAD4 YBD complexes are shown. hYAP TBD and hTEAD4 YBD are represented
as light-blue and magenta cartoon, respectively. The myristic acid molecules, populating the
hydrophobic pockets of all hTEAD4 YBD, are displayed in spere, yellow carbon atoms.
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Figure 9.17: Cartoon representation of a representative heterodimer of hYAP TBD:hTEAD4
YBD, complex S. hYAP TBD and hTEAD4 YBD are represented light-blue and magenta
cartoon, respectively. The motifs LXXLF and PXXΦP, and the three interaction regions α1,
β1, and Ω loop of hYAP TBD are labelled in the Figure. The myristic acid molecule, populating
the hydrophobic pocket of hTEAD4 YBD, is displayed as sphere, yellow carbon atoms.

9.2.5 Analysis of the main PPIs characterizing the hYAP

TBD:hTEAD4 YBD S complex

The structure of the S complex shows that the hYAP TBD S fragment interacts

with hTEAD4 YBD via the formation of three interface regions. The first

interface is formed between the strands β1 of hYAP TBD and β7 of hTEAD4
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YBD, extending the β-sheet of the latter protein by one antiparallel strand

formed by the partner protein (Figure 9.18). A network of five intermolecular

H-bonds is established between the peptide backbones of residues Ile54, His56,

and Arg58 on the hYAP TBD β1, and Val 341, Glu343, and Val345 of the

hTEAD4 YBD β7. Moreover, the hTEAD4 YBD Thr347 takes a

water-mediated interaction with the hYAP TBD His52 (Figure 9.18). At

variance with interfaces 2 and 3, interface 1 is mainly formed between backbone

regions of the partner proteins, limiting the contribution of the amino acid

composition of this hYAP area, which is less conserved across species [161]. The

second interface is formed between the hYAP TBD 1 that packs into the

shallow groove lined by hTEAD4 YBD α3 and α4 (Figure 9.19). Several

hydrophobic interactions occur between the hYAP TBD residues Leu65, Leu68,

and Phe69 and the hTEAD4 YBD residues Phe337, Tyr369, Phe373, Lys376,

Leu377, Leu380, Val389, Asn392 and Phe393, making this a hydrophobic

interface area (Figure 9.19). Here, the hYAP TBD shows the conserved LXXLF

motif (L65XXL68F69), being a peculiar binding motif to hydrophobic grooves

[188, 189]. The third interface involves the hYAP TBD Ω-loop and the

hTEAD4 YBD hydrophobic pocket lined by residues belonging to its α1, α4,

β11, and β12 (Figure 9.19). Residues Met86, Leu91, and Phe95 of the hYAP

TBD are implicated in van der Waals interactions with hTEAD4 YBD Val265,

Leu295, Lys297, Val414 and Tyr429 (Figure 9.19). Furthermore, these hYAP

TBD residues interact also with each other, forming the hydrophobic core of the

Ω-loop. The following residue on the Ω-loop, Phe96, forms additional

intramolecular interactions with Arg87, Phe95 and Leu91 contributing to

stabilize the folding of this hYAP TBD area. Interface 3 is also strengthened by

hydrophilic intermolecular interactions entailed between the partner proteins.

The guanidinium group of hYAP TBD Arg89 is H-bonded to the carboxylate of

hTEAD4 YBD Asp272. Furthermore, the hydroxyl of hYAP TBD Ser94 is

H-bonded to hTEAD4 YBD Glu263 and Tyr429 (Figure 9.20). Finally, the

backbone nitrogen of hYAP TBD Met86 forms H-bond with the carboxylate of

hTEAD4 YBD Glu391 (Figure 9.20). Interface 3 has a pivotal role for the

YAP:TEAD interaction, indeed the mutation of the residues 94 on the hYAP
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Ω-loop, as well as those of Glu263 and Tyr429 on hTEAD4 YBD has a drastic

effect on the complex formation [163]. Up to now, the structural information on

the hYAP:hTEAD4 complex was limited to the complex of hTEAD4 YBD with

syn-hYAP TBD 60-99 (PDB id 5OAQ [156]). This complex shows only two

contact areas between the partner proteins, namely interfaces 2 and 3. The

syn-hYAP TBD 60-99 does not include the N-terminal segment required to form

the β1 structural element on hYAP, preventing the formation of this interacting

interface. On the contrary, this contact is observed in our complex that thus

provides a more comprehensive information on the hYAP:hTEAD4 PPI. The

comparison with the syn-hYAP TBD 60-99:hTEAD4 YBD complex shows that,

despite the difference observed at the interface 1, the other two contact areas,

interfaces 2 and 3, are conserved in both structures (Figure 9.21). Although

never reported in the previous crystal structures of the hYAP TBD:hTEAD4

YBD complexes (PDB id 5OQA [156] and PDB id 6GE3 ), the formation of

interface 1 was formerly observed in the structure of complex of hTEAD1 YBD

with hYAP1 (residues 51-100) (PDB id 3KYS) by Li et coworkers [161]. The

comparison with our structure of the S complex shows a highly retained binding

mode of the hYAP TBD around the hTEADs YBD, and the formation of the

same three interacting interfaces (Figure 9.22). A deeper analysis of these

contact areas in both complexes evidences those analogous interactions are

formed between the partner proteins in spite of the hTEAD isoform. This is

consistent with the high sequence homology of the hTEADs YBD, resulting in

an identity of 76.5%, (Figure 7.3) [148]. Notably, the hTEAD YBD residues

involved in the interaction with hYAP TBD are highly conserved between

isoforms 1 and 4 [161, 190], supporting their prominent role in these PPIs.
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Figure 9.18: Representation of interface 1 between hYAP TBD (magenta cartoon):hTEAD4
YBD (light-blue cartoon). H-bonds (grey dashed lines) between the peptide backbones of hYAP
TBD β1 (residues 54-57, (in stick, magenta carbon atoms) and hTEAD4 YBD β7 (residues
341-345 in stick, light-blue carbon atoms) are shown. Water-mediated interaction (grey dashed
lines) between hTEAD4 YBD Thr347 and hYAP TBD His52 in the interface 1. The water
molecule is represented as a red sphere.
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Figure 9.19: Second interface between hYAP TBD (magenta cartoon and carbon atoms) and
hTEAD4 YBD (light-blue cartoon and carbon atoms). The hYAP TBD α1 helix protrudes
into the hTEAD4 YBD binding groove formed by α3 and α4, forming several hydrophobic
interactions. The hYAP TBD residues Leu65, Leu68, and Phe69 (L65XXL68F69 motif) and
the hTEAD4 YBD residues Phe337, Tyr369, Phe373, Lys376, Leu377, Leu380, Val389, and
Phe393 are involved in the formation of interfaces 2 and they are shown in the Figure.
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Figure 9.20: Third interface between hYAP TBD (magenta cartoon and carbon atoms) and
hTEAD4 YBD (light-blue cartoon and carbon atoms). This interface involves the hYAP TBD
Ω-loop and the hTEAD4 YBD hydrophobic pocket lined by residues belonging to its α1, α4,
β11, and β12. Several van der Waals interactions occur between the Met86, Leu91, and Phe95
of the hYAP TBD and Val265, Leu295, Lys297, Val414 and Tyr429 of hTEAD4 YBD (the
mentioned residues are shown in the Figure). In addition, some H-bonds (grey dashed lines)
are established between hYAP TBD Arg89, Met 86, Ser 94 (in stick, magenta carbon atoms)
and hTEAD4 YBD Asp272, Glu391, Tyr429, Glu263 (in stick, light-blue carbon atoms)

181



Results and Discussions

Figure 9.21: Cartoon representation of the superimposition between hYAP TBD:hTEAD4
YBD heterodimer complex S (hYAP TBD in magenta, hTEAD4 YBD in light-blue) and syn-
hYAP TBD 60-99:hTEAD4 YBD (hYAP TBD in lemon-green and hTEAD4 YBD in cyan)
(PDB id 5OAQ) [156]. The three interaction regions α1, β1, and Ω loop of hYAP TBD are
labelled in the Figure In this representation is evident the presence of an extra interaction
interface, interface 1, in our hYAP TBD:hTEAD4 YBD complex S. The N and C-terminal
residue numbers of hYAP TBD in our complex S (51-100) and of syn-hYAP TBD (60-99) are
reported. Myristic acid in the structure of our hYAP TBD:hTEAD4 YBD complex S and that
of hYAP TBD:hTEAD1 YBD are in sphere, yellow and grey respectively.
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Figure 9.22: Cartoon representation of the superimposition between hYAP TBD:hTEAD4
YBD heterodimer complex S (hYAP TBD in magenta, hTEAD4 YBD in light-blue) and hYAP
TBD:hTEAD1 YBD (hYAP TBD in lemon-green and hTEAD4 YBD in cyan) (PDB id 3KYS
[156]). The three interaction regions α1, β1, and Ω loop of hYAP TBD and the three interfaces
between hYAP TBD and hTEAD4 YBD are labelled in the Figure. The N and C-terminal
residue numbers of hYAP TBD in our compex S (51-100) and of syn-hYAP TBD (51-100) are
reported. Myristic acid in the structure of our hYAP TBD:hTEAD4 YBD complex S and that
of hYAP TBD:hTEAD1 YBD are in sphere, yellow carbon atoms and and grey carbon atoms,
respectively
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9.2.6 Myristic acid binding to hTEAD4 YBD in the

structure of the S complex

In all heterodimers, a myristic acid was found to populate the hydrophobic pocket

of hTEAD4 YBD. Since myristic acid was not added to the purified protein, its

binding reasonably occurred within bacterial cells, during the production of the

target proteins (myristic acid is produced under physiological conditions by both

prokaryotic [191] and eukaryotic cells [192]). The molecule of myristic acid was

modelled in each hTEAD4 YBD hydrophobic cavity, according to the observed

electron density. The lack of a continuous electron density extending from the

thiol of hTEAD4 YBD Cys367 suggests that myristic acid is not covalently bound

to the protein (Figure 9.23) [192, 157]. The carboxylate head of myristic acid

is instead H-bonded to the thiol and backbone nitrogen of Cys367 (Figure 9.24

A). The hydrophobic tail forms a network of van der Waals interactions with

some hydrophobic residues exposed inside the pocket, mainly, Phe229, Val316,

Thr332, Val334, Leu366, Met370, Leu390, Ile395 and Phe415 (Figure 9.24 B).

The presence of myristic acid bound to hTEAD4 YBD was formerly reported also

in the structure of the complex syn-hYAP TBD 60-99 (PDB ids 5OAQ [156] and

6GE3 [163]), where it acylated Cys367. However, despite the lack of a covalent

linkage in our structure the binding mode of the fatty acid molecules inside the

hTEAD4 YBD hydrophobic pocket is highly retained in all complexes (Figure

9.25). Thus, the occurrence of protein acylation at Cys367 seems not required

for the population of this protein cavity by myristic acid, that can be driven by

the hydrophobic nature of the pocket.
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Figure 9.23: Hydrophobic central pocket view of hTEAD4 YBD (light-blue cartoon)
populated by myristic acid (in sticks, carbon atoms are colored green) on the structure of
our complex S. The Cys367 (in sticks, carbon atoms in green) is shown.
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Figure 9.24: Hydrophobic central pocket view of hTEAD4 YBD (light-blue cartoon)
populated by myristic acid (in sticks, carbon atoms are colored pink). (A) View of myristic
acid H-bonded (grey dashed lines) to the thiol and backbone nitrogen of Cys367 (B) View of
hydrophobic interactions occurring between the aliphatic chain of myristic acid (pink sticks) and
the hTEAD4 YBD residues (Phe229, Val316, Thr332, Val334, Leu366, Met370, Leu390, Ile395
and Phe415) exposed inside the hydrophobic pocket (light-blue cartoon and carbon atoms,
residues in sticks).
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Figure 9.25: Cartoon representation of the superimposition between myristic acid binding
pocket of hYAP TBD:hTEAD4 YBD heterodimer complex S (hYAP TBD in light blue,
hTEAD4 YBD in magenta and myristic acid in sticks, pink carbon atoms) and myristoylated
hTEAD4 in the syn-hYAP TBD 60-99 :hTEAD4 YBD complex (PDB id 5OAQ [156]) (syn-
hYAP TBD 60-99 in light-pink, hTEAD4 YBD in violet and myristic acid in dark grey). The
myristic acid populates the central hydrophobic pocket of hTEAD4 YBD, but in our complex
S hTEAD4 YBD is not acylated.

9.3 Studies on full length hYAP and its complex

with hTEAD4 YBD (XL complex)

9.3.1 Cloning and expression trials of full length hYAP

In the present study, the hYAP gene was cloned in two expression vectors, pMAL-

p5X and pQE80L (Figure 8.4), allowing the expression of the target both as

MBP-fusion protein and as His6-tag hYAP (amino acid sequences are shown in

Table 9.3). Even though extensive expression trials have been performed on both

MBP-hYAP and His6-hYAP, screening different bacterial strain, culture medium,

incubation times, temperature and inductor concentrations, the target protein
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resulted invariantly localized in the insoluble fraction. Attempting to extract the

protein from the inclusion bodies or to use different expression systems will be

evaluated in future studies on this target. It is worth noting that no previous

reports are available in literature on the production and isolation of this target.
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Sample Studied protein Sequences

hYAP full lenght MBP-hYAP full lenght

(-392)MKIKTGARILALSALTTMMFSASALAKIEEGKLVI

WINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEK

FPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAF

QDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPN

PPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIA

ADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLI

KNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNID

TSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKE

LAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELV

KDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINA

ASGRQTVDEALKDAQTNSSSNNNNNNNNNNLGIEGRIS

HMSMGGRDIVDGSLVPR↓GSEF

(1)DPGQQPPPQPAPQGQGQPPSQPPQGQGPPSGPGQPAP

AATQAAPQAPPAGHQIVHVRGDSETDLEALFNAVMNPK

TANVPQTVPMRLRKLPDSFFKPPEPKSHSRQASTDAGTA

GALTPQHVRAHSSPASLQLGAVSPGTLTPTGVVSGPAATP

TAQHLRQSSFEIPDDVPLPAGWEMAKTSSGQRYFLNHID

QTTTWQDPRKAMLSQMNVTAPTSPPVQQNMMNSASGP

LPDGWEQAMTQDGEIYYINHKNKTTSWLDPRLDPRFAM

NQRISQSAPVKQPPPLAPQSPQGGVMGGSNSNQQQQMR

LQQLQMEKERLRLKQQELLRQAMRNINPSTANSPKCQEL

ALRSQLPTLEQDGGTQNPVSSPGMSQELRTMTTNSSDPFL

NSGTYHSRDESTDSGLSMSSYSVPRTPDDFLNSVDEMDTG

DTINQSTLPSQQNRFPDYLEAIPGTNVDLGTLEGDGMNIEG

EELMPSLQEALSSDILNDMESVLAATKLDKESFLTWL(504)

hYAP full lenght His6-hYAP full lenght
(-21)MGSSHHHHHHSQDPLVPR↓GS

(1)EFDPGQQPPPQPAPQGQGQPPSQPPQGQGPPSGPGQPAPA

ATQAAPQAPPAGHQIVHVRGDSETDLEALFNAVMNPKTANV

QTVPMRLRKLPDSFFKPPEPKSHSRQASTDAGTAGALTPQHV

RAHSSPASLQLGAVSPGTLTPTGVVSGPAATPTAQHLRQSSFEI

PDDVPLPAGWEMAKTSSGQRYFLNHIDQTTTWQDPRKAMSQ

MNVTAPTSPPVQQNMMNSASGPLPDGWEQAMTQDGEIYYIN

HKNKTTSWLDPRLDPRFAMNQRISQSAPVKQPPPLAPQSPGGV

MGGSNSNQQQQMRLQQLQMEKERLRLKQQELLRQMRNINPS

TANSPKCQELALRSQLPTLEQDGGTQNPVSSPGMSQELRTMTT

NSSDPFLNSGTYHSRDESTDSGLSMSSYSVPRTPDDFLNSVDE

MDTGDTINQSTLPSQQNRFPDYLEAIPGTNVDLGTLEGDGMNI

EGEELMPSLQEALSSDILNDMESVLAATKLDKESFLTWL(504)

Table 9.3: Summary of the investigated MBP-full length hYAP and His6-full length hYAP.
Amino acids belonging to the His6-tag and to the thrombin recognition site are coloured green
and red, respectively, while the sequences of hYAP1 full length is in black.

189



Results and Discussions

9.3.2 Co-expression, co-purification and characterization

of the XL complex

The hYAP gene was sub-cloned into the MCS1 of pRSFDuet-1 expression

vector, already including the hTEAD4 YBD the MCS2 (Figure 8.5). The

resulting expression vector allows the co-production of hYAP, bearing a

thrombin cleavable N-terminal His6 tag, and of hTEAD4 YBD (protein

sequences are reported in Table 9.4). At variance with the isolated hYAP that

was expressed in the insoluble cellular fraction in E. coli, the

His6-hYAP:hTEAD4 YBD XL complex was mainly produced as soluble

proteins in the E. coli ArcticExpress (DE3) strain. The expression protocol was

the same adopted to produce the His6-hYAP TBD:hTEAD4 YBD S-L

complexes. The purification of the XL complex relied on a first stage of nickel

affinity chromatography (Figure 9.26), exploiting the N-terminal His6-tag

present on hYAP. The presence of the target proteins in the eluted fractions

was verified by SDS-PAGE and WB analyses (Figure 9.26 B and C ).

Sample Studied protein-protein complex aminoacidic Sequence

Complex XL
hYAP1 (1-504)

(-21)MGSSHHHHHHSQDPLVPR↓ GSA

(1)GHQIVHVRGDSETDLEALFNAVMNPKTANVPQT

VPMRLRKLPDSFFKPPEPKSHSRQASTDAGTAGALTP(70)

hTEAD4 (217-434)

(1)MRSVASSKLWMLEFSAFLEQQQDPDTYNKHLFVH

IGQSSPSYSDPYLEAVDIRQIYDKFPEKKGGLKDLFER

GPSNAFFLVKFWADLNTNIEDEGSSFYGVSSQYESPEN

MIITCSTKVCSFGKQVVEKVETEYARYENGHYSYRIHR

SPLCEYMINFIHKLKHLPEKYMMNSVLENFTILQVVTN

RDTQETLLCIAYVFEVSASEHGAQHHIYRLVKE(219)

Table 9.4: Summary of the investigated XL complex. Amino acids belonging to the His6-tag
and to the thrombin recognition site are colored green and red, respectively, while the sequences
of hTEAD4 YBD and hYAP1 full length are in black.
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Figure 9.26: (A) Chromatogram of the complex XL purification through Ni2+ affinity
chromatography (HisTrap FF 5mL column, GE-Healthcare). The UV280nm monitoring and
imidazole concentration are shown as blue and pink lines, respectively, whereas; the elution
fractions are indicated by red marks on the x-axis. (B) SDS-PAGE analysis of the fractions
collected from the first stage of Ni2+ affinity chromatography. The protein ladder is in lane 7.
(C) Western-blot analysis on the fractions collected from Ni2+ affinity chromatography. The
detection of recombinant His6-tagged proteins is achieve using an HRP-conjugated antibody
able to recognize the His6 epitope.

In the second purification stage the different aggregated states present in

solution were separated according to their molecular weight by means of SEC

on an HiLoad 16/600 Superdex 200pg column (Figure 9.27). The elution profile

obtained from this second purification stage evidenced by the separation of four

species eluted at diverse retention volumes, according to their molecular weights.

The SDS-PAGE analysis of the eluted fractions showed the presence of both

His6-hYAP and hTEAD4 YBD only in two main fractions, F5 and F3, having

retention volumes compatible with the molecular weights of the XL complex and
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an aggregate formed by two XL complexes (2x XL complex) (Figure 9.27).

Figure 9.27: (A) Chromatogram of the HiLoad 16/600 Superdex 200pg column (GE-
Healthcare) purification step. The UV280nm monitoring of protein elution is in blue; fractions
are indicated by red marks on the x-axis. (B) SDS-PAGE analysis of the fractions collected
from the SEC. The protein ladders are in lanes 5 and 6.

The presence of His6-hYAP and hTEAD4 YBD in these fractions was also

confirmed by peptide Mass Fingerprinting analysis on the bands separated by

SDS-PAGE (Figure 9.28 A) (analysis performed on service by Dr. Laura Salvini

at the TLS facility). The mass spectra of the peptide mixtures resulting from the

trypsin digestion of each band, for both F3 and F5 purified fractions, resulted in

the unambiguous identification of both proteins (Figure 9.28). For band 1 and
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band 2 the coverage is equal to 93.3% and 97.3%, respectively (Figure 9.28 A).
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Figure 9.28: (A) SDS PAGE analysis for hYAP:hTEAD4 YBD XL complex F3 and F5.
Schematic representation of the identified peptides by peptide mass fingerprinting after trypsin
digestion of band 1 (B) and band 2 (C). The peptides mixture is correlated to the sequence
of hYAP (Uniprot id P46937) and hTEAD4 (Uniprot id Q15561). The legend with the colour
code for signal intensity is also shown.

The two fractions separated by SEC and attributed as the XL complex and

the aggregate 2x XL complex were then subjected to native PAGE analysis

(Figure 9.29). At variance with SDS-PAGE where proteins are denaturated,

losing their secondary, tertiary, and quaternary structures, in native PAGE

protein structures are retained during the analysis, including the formation of

macromolecular complexes. The results of the native PAGE analysis performed

on these samples confirmed the presence of the His6-hYAP:hTEAD4 YBD XL

complex in fraction F5 and of the aggregate 2x XL complex in fraction F3

(Figure 9.29). At variance with the S and L complex resulting monodisperse in
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the heterodimeric form in solution (section 9.2.1), different aggregated states

have been observed and separated for the XL complex.

Figure 9.29: Native-PAGE, WB analysis of fractions F3 and F5 of complex XL, His6 –
hYAP:hTEAD4 YBD, separated by SEC. The migration of the single band of fraction F3
corresponds to a MW of 166 kDa, indicating the presence of an heterotetrametric assembly in
solution. On the other hand, the migration of the single band of fraction F5 corresponds to a
MW of 83 kDa, indicating presence of His6 – hYAP:hTEAD4 YBD heterodimers in solution.
In the Western-blot analysis, the detection of His6-tagged proteins is performed using an HRP-
conjugated anti His6-tag antibody.

Afterwards, the thermal stability of the XL complex was determined by CD

thermal denaturation analysis resulting in a Tm value of 78.01 (±0.1) ◦C (dark

red unfolding transition curve in Figure 9.30 A). The unfolding transition curve

obtained for the XL complex was then compared with those formerly determined

for the isolated hTEAD4 YBD and for the S-L complexes, reporting an interesting

trend in the Tm values. Indeed upon formation of the XL complex a Tm increment

of ≈22 ◦C is observed with respect to the isolated hTEAD4 YBD (Figure 9.30

B). Notably, the Tm of the XL complex is also ≈12 ◦C higher than that of the L

complex. Thus, the Tm increment observed by increasing the length of the hYAP

TBD fragment employed in complex with hTEAD4 YBD (thus from the S to the L

complex) is further extended by the interaction with full-length hYAP (complex

XL). This finding has prompted the idea that other interaction areas between

hYAP and hTEAD4 YBD, further the known TBD, may exist. This hypothesis is
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consistent also with the data achieved through SEC and native-PAGE analyses,

whereby the presence of different aggregate forms was found in solution. To

our knowledge, this is the first report of isolation and characterization of the

hYAP:hTEAD4 YBD complex.

197



Results and Discussions

Figure 9.30: In the upper panel (A) the CD curve for XL complex. In the lower panel
circular dichroism spectrum of complexes S,M,L and XL. In the lower panel (B), thermal
unfolding transition curves of hTEAD4 YBD and of complexes S,M,L and XL followed by
circular dichroism. Measurements were performed in triplicate. Melting temperature (Tm)
values determined for the transitions is reported in the table.
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9.3.3 Preliminary structural studies of full length hYAP in

complex with hTEAD4 YBD

Preliminary attempting to unveil the structure of full legth hYAP in complex

with hTEAD4 YBD were performed by combing different techniques, X-ray

crystallography, Bio-SAXS and cryo-EM. As first instance, the crystallization of

the XL complex heterodimer was attempted by screening ≈ 100 different

crystallization conditions. Unfortunately, to date, no crystal growth has been

observed in these trials. The limited amount of XL complex heterodimer,

separated by SEC, prevented us by screening further crystallization conditions.

Future, extended crystallization trials are needed to attempt the structural

characterization of this complex by means of X-ray crystallography. As second

instance, preliminarily Bio-SAXS experiments have been performed on both the

XL complex and the aggregate 2xXL complex to achieve information on the

protein folding, flexibility, and ordering of our complex. Different protein

concentrations were screened both in batch or in SEC-coupled methods. The

results of these analyses showed the presence of multiple aggregate forms in

solution, preventing further characterizations by the in-batch method. Better

results have been achieved by SAXS analyses combined with SEC, carried out

for the samples of the XL complex and of the aggregate 2xXL complex at the

concentrations of 6 mg mL-1 and 12 mg mL-1. The first result achieved by these

analyses was the observation of a concentration-dependent aggregation of the

complex. Indeed, in the high-concentration (12 mg mL-1) sample protein

aggregates are predominant, whereas in the low-concentration (6 mg mL-1)

sample the presence of isolated heterodimeric XL complexes is mainly observed.

Furthermore, these preliminary Bio-SAXS data suggest that both proteins

involved in the XL complex have an overall fold but hYAP has some

unstructured, flexible parts. Deeper Bio-SAXS investigations are needed to

provide a more detailed structural characterization of the target complex.

Finally, we also performed preliminary cryo-EM studies on the sample of both

the heterodimer and the aggregate 2xXL complex at the FloCEN Cryo-EM

facility. The sample of the aggregate 2xXL complex resulted non homogenous
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and it was excluded from the analysis. On the other hand, the sample of the

heterodimeric XL complex resulted more homogeneous, but the observed single

particle had limited dimensions to allow their clustering and structural

reconstruction. More potent microscopes are needed to attempt the

visualization of the heterodimeric XL complex. A major issue that can prevent

the structural characterization of this complex by all these techniques is the

presence of disordered, flexible regions. Indeed, it has been widely reported in

literature that hYAP is an intrinsically disordered protein, which assumes a

three-dimensional folding only upon binding to a partner protein [190]. Even so,

no structural information is available on the isolated full length hYAP and on

its complexes with partner proteins.

200





Chapter 10

Conclusion



hYAP and hTEAD4 proteins are downstream effectors of the Hippo

pathway and their interaction is essential for the expression of genes involved in

cell apoptosis, proliferation, survival and growth processes [164]. Alterations of

the hYAP:hTEAD4 complex and of its transcriptional activity contribute to the

insurgence and development of various hallmarks of cancer cell, making the

targeting of this PPI an attractive therapeutic strategy [44, 149, 164]. One

fascinating matter in cancer biology is the deeper understanding of the

interaction mechanisms occurring among oncoproteins widely involved in several

types of cancers, such as hYAP and hTEADs, aiming to develop novel strategies

for cancer treatment. As matter of fact, the development of new drugs able to

modulate the hYAP1:hTEADs interaction could represent a new powerful

weapon to fight cancer, but this is still an open challenge [44, 173, 176]. In this

investigation, we have established novel reliable protocols for expression and

purification of the isolated hTEAD4 YBD and for the co-expression and

co-purification of its complexes with different hYAP1 TBD fragments and the

full length hYAP. Here, hTEAD4 YBD and its S, M, L and XL complexes were

investigated by CD thermal denaturation analyses, showing meaningful

increments in the thermal stability of the complexes with respect to the isolated

hTEAD4 YBD. Notably, the trend of this increment in the complexes correlates

with hYAP length; indeed, the XL complex, employing full length hYAP, has

the highest Tm value. Even though, the structural characterization of the

hYAP:hTEAD4 complex is still a challenge. We attempted the structural

characterization of this complex by different techniques, X-ray crystallography,

bio-SAXS and cryo-EM, providing only preliminary data that deserve deeper

investigations. On the hand, we successed in the determination of the X-ray

crystallographic structure of the complex S, expanding the current structural

information available on this PPI. Indeed, by means of the achieved results we

have demonstrated the formation of three interface regions between hYAP1

TBD and hTEAD4 YBD, with the resolution of the interface 1. Taken together,

our results contribute to expand the current knowledge on the interaction

between hYAP and hTEAD4, providing interesting new clues exploitable for

the rational design and the development of molecules able to modulate this PPI
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playing a critical role in various types of cancer.
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