
SoftwareX 18 (2022) 101061

E

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

GNNkeras: A Keras-based library for GraphNeural Networks and
homogeneous and heterogeneous graph processing
Niccolò Pancino a,b,∗, Pietro Bongini a,b, Franco Scarselli a, Monica Bianchini a
a University of Siena, Department of Information Engineering and Mathematics, Via Roma 56, 53100, Siena (SI), Italy
b University of Florence, Department of Information Engineering, Via S. Marta 3, 50139, Florence (FI), Italy

a r t i c l e i n f o

Article history:
Received 18 January 2022
Received in revised form 27 February 2022
Accepted 17 March 2022

Keywords:
Graphs
Machine Learning
TensorFlow
Keras
Graph Neural Networks

a b s t r a c t

In several areas of science and engineering, data can be naturally represented in graph form, where
nodes denote entities and edges stand for relationships between them. Graph Neural Networks (GNNs)
are a well-known class of machine learning models for graph processing. In this paper, we present
GNNkeras, a library, based on Keras, which allows the implementation of a large subclass of GNNs.
GNNkeras is a flexible tool: the implemented models can be used to classify/cluster nodes, edges, or
whole graphs. Moreover, GNNkeras can be applied to both homogeneous and heterogeneous graphs,
exploiting both inductive and mixed inductive–transductive learning, and can implement a layered
version of GNNs, namely the LGNN model.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v2.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00019
Code Ocean compute capsule
Legal Code License BSD 3-Clause Licence
Code versioning system used git
Software code languages, tools, and services used python3
Compilation requirements, operating environments & dependencies TensorFlow 2.x, NumPy, SciPy, Typing
If available Link to developer documentation/manual github.com/NickDrake117/GNNkeras/tree/GNNkeras_SoftwareX
Support email for questions niccolo.pancino@unifi.it

Software metadata

Current software version 2.0
Permanent link to executables of this version github.com/NickDrake117/GNNkeras/tree/GNNkeras_SoftwareX
Legal Software License BSD 3-Clause License
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows
Installation requirements & dependencies TensorFlow 2.x, NumPy, SciPy, Typing
If available, link to user manual - if formally published include a reference to
the publication in the reference list

github.com/NickDrake117/GNNkeras/tree/GNNkeras_SoftwareX

Support email for questions niccolo.pancino@unifi.it

∗ Corresponding author at: University of Siena, Department of Information
ngineering and Mathematics, Via Roma 56, 53100, Siena (SI), Italy.

E-mail address: niccolo.pancino@unifi.it (Niccolò Pancino).

1. Motivation and significance

A graph is a data structure composed of a collection of nodes
and edges that can be used to represent objects or patterns
along with their relationships. Nodes and edges can be associ-
ated with vectors of values, describing the attributes of patterns
ttps://doi.org/10.1016/j.softx.2022.101061
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2022.101061
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101061&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00019
http://github.com/NickDrake117/GNNkeras/tree/GNNkeras_SoftwareX
mailto:niccolo.pancino@unifi.it
https://github.com/NickDrake117/GNNkeras/tree/GNNkeras_SoftwareX
https://github.com/NickDrake117/GNNkeras/tree/GNNkeras_SoftwareX
mailto:niccolo.pancino@unifi.it
mailto:niccolo.pancino@unifi.it
https://doi.org/10.1016/j.softx.2022.101061
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Niccolò Pancino, Pietro Bongini, Franco Scarselli et al. SoftwareX 18 (2022) 101061

a
t
u
p
e
c
t
c
n
a
i
p
t
m
g
i
c

p
b
t
m
o
i
p
b
G
w
o
t
s

d
d
s
m
w
a
l
h
a
w
m
p
i
G
G
c
o
i
t

M
o
w
i

o
G
t

v
c
c
s

nd relationships, respectively. Nowadays, graphs play an impor-
ant role in many modern applications, since they are widely
sed to describe the information of interest in many real-world
roblems in different fields, including physics, social science,
conomics, and bioinformatics. For instance, in biological and
hemical processes, nodes denote entities, such as atoms, pro-
eins, or genes, while edges represent chemical bonds, physical
ontacts, or metabolic interactions. Actually, graphs constitute the
atural data domain in many bioinformatics applications, such
s, for instance, in the identification of interfacing amino acids
n Protein–Protein Interaction (PPI) [1–3] or in the prediction of
olypharmacy side effects [4]. More generally, it can be observed
hat a graph representation allows to naturally merge the infor-
ation from different applications, by joining the corresponding
raphs. In fact, in the extreme case, the entire information relat-
ng to the set of applications owned by a company/organization
an be collected in a single graph.
Common Machine Learning (ML) techniques can only be ap-

lied to vector data, but the advancement of the role played
y relationships in modern applications prompted researchers
o design new approaches for the graph-structured data do-
ain. Graph Neural Networks (GNNs) are a well-known class
f machine learning models for graph-structured data process-
ng based on neural networks. The first GNN model has been
roposed in [5]. Recently, a huge number of approaches has
een introduced, including Graph Convolutional Networks [6],
rapSAGE [7], Graph Attention Networks [8], and Graph Net-
orks [9]. Moreover, GNNs have been applied to a large number
f tasks, such as for drug repurposing [10], physics simula-
ion [11], and recommendation systems [12]. See [13–15] for
ome recent reviews.
In this context, it is important for researchers and software

evelopers to have adequate and flexible tools that support the
evelopment of applications with current GNN models and pos-
ibly favor the study of new versions of GNNs. While there are
any deep learning frameworks available today, Keras along
ith TensorFlow 2 has greater adoption in both the industry
nd the research community than any other deep learning so-
ution. Keras provides optimized modules, it is scalable and it
as native support for mixed-precision training on Nvidia GPUs
nd TPUs for speeding up the learning process. For this reason,
e developed a new Keras library which consents to imple-
ent an important subclass of GNNs. More precisely, GNNkeras
rovides a GNN model derived from the original one proposed
n [5]: this model can be easily extended to all the recurrent
NNs [15], which are a large subclass of GNNs. The Layered
raph Neural Networks (LGNNs) are also available [16]: LGNNs
an be considered a deeper version of GNNs and are capable of
vercoming the so-called long-term dependency problem, i.e. the
nability of the network to correctly process complex graphs, due
o dependencies between distant nodes.

GNNkeras users can of course easily access a huge number of
L features. This fact is guaranteed by Keras itself, which is built
n top of TensorFlow 2, one of the most used and complete soft-
are libraries for ML. Also note that, as far as we know, GNNkeras

s the first tool specifically designed for recurrent GNNs.1
Finally, GNNkeras is flexible and permits to manage a variety

f activities, graph domains, and learning approaches. In fact,
NNkeras can tackle tasks where the goal is to classify pat-
erns, the relationships represented by the edges in a graph, or

1 More precisely, at the time of submission of this manuscript, an alpha
ersion of an official GNN library for Keras is available at https://github.
om/tensorflow/gnn, which, however, appears to be designed primarily for
onvolutional rather than for recurrent GNNs, like the ones offered by our
oftware.

even an object represented by an entire graph. Moreover, both
homogeneous and heterogeneous graph-structured data can be
processed. Heterogeneous graphs, where nodes/edges represent
different types of objects and can have different features, are
especially important in modern applications, where information
is often gathered from different sources. Ultimately, GNNkeras
allows the use of two types of learning paradigms: a classi-
cal inductive learning scheme and a mixed inductive–transitive
learning scheme [17,18], in which, for some nodes, features are
enriched with the corresponding target,2 which is explicitly ex-
ploited in the diffusion process and provides a direct transductive
contribution.

2. Software description

The GNNkeras software is based on TensorFlow 2.x and Keras
(TensorFlow backend), one of the most used deep learning frame-
works worldwide [19]. Three types of tasks can be faced, called
node-focused, edge-focused, and graph-focused. Node-focused
problems concern situations in which all the nodes of a graph,
or a subset of them, have a desired target: intuitively, an output
must be produced in correspondence of each targeted node,
which can be used for classification, regression, or clustering pur-
poses. For example, localize a particular compound in a macro-
molecule, when the molecule is represented as a graph, is a
node-focused task. On the other hand, edge-focused problems
concern tasks in which the targets are associated to the edges:
the GNN must classify, cluster, or even predict the existence of
relationships between patterns. Predicting the nature of chemical
bonds between atoms or molecules represents an edge-focused
task. Finally, a graph-focused task concerns problems in which a
unique target is associated to the whole graph, and the goal is to
predict a property or to cluster the complex object represented by
the graph. Predicting the mutagenicity of a particular compound
is an example of this kind of task.

Based on an information diffusion mechanism, GNNs can pro-
cess homogeneous and heterogeneous graph-structured data. In
particular, GNNs create an encoding network, an architecture
which replicates the topology of the input graph, by means of
Multi-Layer Perceptron (MLP) units, implementing a state tran-
sition function fw at each node, and an output function gw (on
targeted nodes or edges). The network unfolds itself in time and
space, respectively, by replicating the MLP units on each node
of the input graph, and by recurrently exchanging neighborhood
information until a stable equilibrium point or the maximum
number of iterations is reached. In this resulting feed-forward
network, called unfolding network, each level corresponds to an
instant in time and contains a copy of all the elements of the
encoding network, on which the connections between the various
layers also depend.

In the heterogeneous graph-structured data domain, the learn-
ing process differs from the one in the homogeneous case only for
the number of MLPs used as building blocks, since different MLPs
are exploited on the states of different types of nodes. In the het-
erogeneous setting, indeed, there is a different state updating MLP
for each node or edge type, which will learn different versions of
the state transition function. An example of the learning process
on a heterogeneous graph is depicted in Fig. 1.

In the original framework, GNNs are inductively trained based
on a supervised learning environment. However, GNNs and LGNNs
can also take advantage of transductive learning [17,18], thanks

2 In this paper, we identify with the term target the expected output of the
network on a certain entity, a node for example. Therefore, in the case of a
node-focused classification problem, the target will represent the class to which
the node belongs.
2

https://github.com/tensorflow/gnn
https://github.com/tensorflow/gnn

Niccolò Pancino, Pietro Bongini, Franco Scarselli et al. SoftwareX 18 (2022) 101061

{

v
c
w
i
t
o
n
i
o

g
A
e
g
o
c
o

x
s
t
x
e
X
p

i
i
i
s

Fig. 1. A composite GNN learning on a heterogeneous graph with two node types (green and red) and one edge type. From left to right: a generic undirected input
graph; the encoding network, where green and red blocks represent two types of state transition function fw , while blue boxes represent the output function gw; the
unfolding network, in the form of a feed-forward network with T + 1 layers. The same scheme applies to a non-composite GNN with a unique MLP implementing
fw on each node. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to the natural way the information flows and spreads across the
graph. In the transductive framework, the training set nodes and
their targets are used in conjunction with the test patterns. In
particular, the feature vectors of a subset of the training nodes
– called transductive nodes – are enriched with their targets, to
be explicitly exploited in the diffusion process, yielding a direct
transductive contribution.

2.1. Definitions

Formally, a generic graph is a pair G = (V , E), where V =

{v0, v1, . . . , vn−1} denotes the set of vertices or nodes, and E =

(vi, vj) : vi, vj ∈ V } represents the set of its arcs. In particular,
i ∈ V denotes a node and eij ≡ (vi, vj) ∈ E denotes an arc
onnecting vi to vj and pointing from vi to vj. More specifically,
hen the graph is undirected, the connection between two nodes

s called an edge and, in our implementation, it corresponds to
wo arcs (vi, vj) and (vj, vi), pointing in opposite directions. The
rder and the size of a graph are defined as its number of nodes
= |V | and its number of arcs m = |E|, respectively. The set

nv(vi) = {vj ∈ V : eji ∈ E} is the incoming neighborhood
f vi, i.e. its adjacent nodes, connected to vi by an arc pointing

to vi, while ine(vi) = {eji ∈ E} is the set of arcs entering vi,
that is, coming from its neighborhood and pointing to vi. The
size of the incoming neighborhood |inv(vi)| for a given node vi
corresponds to the number of its neighbors in inv . Moreover, a
eneric finite graph can be represented by its adjacency matrix
∈ Rn×n

= {aij ∈ {0, 1} : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1} whose
lements indicate whether or not two nodes are adjacent in the
raph. GNNkeras exploits a modified version of this matrix, based
n some criteria: in particular, if there exists an arc (vi, vj) ∈ E,
onnecting two generic nodes vi, vj ∈ V , then aij ∈ R ̸= 0,
therwise aij = 0.
Nodes and arcs can be respectively associated with vectors

i ∈ Rln and eij ∈ Rle of attributes describing their features. By
tacking all these vectors, the node feature matrix X ∈ Rn×ln , and
he arc feature matrix E ∈ Rm×(2+le) are obtained: a generic row
i ∈ X represents the i-th node feature vector, while a generic row
i ∈ E describes the i–th arc, linking the nodes whose indices in
constitute the first two components of ei, i.e. e0i and e1i , thus

ointing from the node ve0i
to ve1i

.
A representation of the node vi ∈ V can be provided by its

state si ∈ Rds , obtained based on the information contained in vi
as well as in its incoming neighborhood inv(vi). By stacking all
the states, a node-state matrix S ∈ Rn×ds is collected.

During graph processing, the state of all the nodes is updated
teratively, until convergence or a maximum number of iterations
s reached at step T . During this process, each node interacts with
ts neighbors by exchanging messages. Let fw be a parametric
tate transition function, used for the state calculation, g be a

parametric output function, which describes how the output is
produced at step t = T , and ϕ be a neighborhood aggregation
function, which defines how the messages coming from inv(vi) –
composed of nodes’ feature vectors, nodes’ states and arcs’ states
– are aggregated. Then the state sti for t ≤ T and the output
oT
i = oi at node vi are defined as follows:

sti = fw(st−1
i , xi, ϕ(st−1

inv (vi)
, xinv (vi), eine(vi)))

oi = gw(sTi , xi)
(1)

Note that the state sti for the node vi is based on its features, on its
state at the previous time step st−1

i and on an aggregated message
derived from its incoming neighborhood. Eq. (1) can be rewritten
in a compact form as:

St = Fw(St−1, X, ϕ(St−1,X, E))

O = Gw(ST ,X)
(2)

where Fw and Gw are the global transition function and global
output function, i.e. the stacked version of |V | instances of fw
and gw , respectively. Both fw and gw can be implemented by MLP
units, in the following referred to as nets and neto. Function ϕ
can be any aggregation function of the messages from inv(vi).
In particular, three possible functions ϕ are considered in the
software: the sum of the incoming messages, ϕsum, the average
over the size of the incoming neighborhood inv(vi), ϕavg , and the
normalization over the size of the graph, ϕnorm, defined as:

ϕsum(vi) =

∑
j∈inv (vi)

(st−1
j , xj, eji)

ϕavg (vi) =
1

|ne(vi)|

∑
j∈inv (vi)

(st−1
j , xj, eji)

ϕnorm(vi) =
1

|V |

∑
j∈inv (vi)

(st−1
j , xj, eji)

(3)

In supervised and semi-supervised applications, a generic graph
is also associated with a target matrix T, which is obtained by
stacking all the available target values and whose dimensions
are variable, since it can be associated with the whole graph, the
whole set of nodes or arcs, or a subset of them.

In the heterogeneous graph domain, both V and E could repre-
sent objects and relations of different type or nature, sometimes
also being described by feature vectors of variable length. Let K
be a finite set of node types, associated with a node feature set
dimension LKn = {lkn : k ∈ K }, then vk

i ∈ V denotes a generic
node of the graph belonging to type k ∈ K and described by a
feature vector xki ∈ Rlkn . Although for the sake of completeness,
arcs representing different types of relations can be described by
feature vectors of different lengths, in the vast majority of hetero-
geneous graph datasets, they are not related to any attribute: in
w

3

Niccolò Pancino, Pietro Bongini, Franco Scarselli et al. SoftwareX 18 (2022) 101061

(
w
S

s
t
n
r
h
n
z
a
c
i
i

f
s

ϕ

Fig. 2. Software architecture. In the main GNN folder, graph data representation classes are provided; Models sub-folder provides MLP, GNN, LGNN, CGNN
Composite GNN) and CLGNN (Composite Layered GNN) models implementations, while Sequencers sub-folder provides graph sequencers for feeding models
ith GraphObject/CompositeGraphObject data. Note that the aforementioned MLP model is a function that returns a Keras Sequential model, meaning that every
equential model can be used for implementing nets and neto .

uch cases, it is therefore possible to ‘‘homogenize" the different
ypes of relationships, yielding a unique type of arc between
odes, described by a fixed-sized feature vector standing for the
elationship it represents. Therefore, in the presented software, a
eterogeneous or composite graph is described by its composite
ode feature matrix X ∈ Rn×Ln , where Ln = max(LKn) – as a
ero padding is added to shorter feature vectors – and by its
rc feature matrix E ∈ Rm×(2+le). The incoming neighborhood set
an be composed of nodes of different type inv(vi) = {ink

v(vi) ⊆

nv(vi) : ink
v(vi) ∩ inh

v(vi) = ∅, ∀k ̸= h, k, h ∈ K }, where
nk

v(vi) = {vk
j ∈ V : eji ∈ E, k ∈ K } has size |ink

v(vi)|.
In addition to functions defined in Eq. (3), in this domain, a

urther aggregation function ϕcavg is considered, defined as the
um of the averages over the number and type of the neighbors:

cavg (vi) =

∑
k∈K

1
|ink

v(vi)|

∑
j∈inkv (vi)

(st−1
j , xkj , eji) (4)

For this purpose, it is quite useful to define the composite adja-
cency matrix set, used by the CompositeGNN to get the incoming
message of a node, AK = {Ak ∈ Rn×n

}, where Ak = {akij ∈ R :

k ∈ K , 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1} is the composite adjacency
matrix of type k. In particular, if there exists an arc (vk

i , vj) ∈ E,
connecting two generic nodes vk

i , vj ∈ V , then akij ∈ R ̸= 0,
otherwise akij = 0.

2.2. Software architecture

GNNkeras has been implemented as a module using the
Python3 programming language and it is based on NumPy, SciPy,
and TensorFlow libraries. This package includes GNN models for
node-based, edge-based, and graph-based applications, working
in homogeneous and heterogeneous graph domains, both in in-
ductive and transductive learning contexts. NumPy and SciPy
provide efficient numerical routines for dense and sparse data,
while TensorFlow and Keras provide a simple and smart way to
define and manage models, as well as to simplify the learning and
evaluation processes. Fig. 2 shows a graphical representation of
the package directory organization.

2.3. Software functionalities

The software relies on a custom graph representation, which
is implemented in graph_class.py and defined as a GraphOb-
ject instance. For speeding up the learning procedure, before
feeding a GNN model, a GraphObject is converted in another
custom graph representation, called GraphTensor, which contains

a tensor-based description of all the attributes for the graph
to be correctly and quickly processed by the GNN model. In
the heterogeneous setting, another class defined by Compos-
iteGraphObject/CompositeGraphTensor is provided in compos-
ite_graph_class.py. GraphObject and GraphTensor – as well
as their heterogeneous versions – are the data types GNNkeras is
based on. Although they represent the same object, they differ in
the data types used for their attributes: GraphObject is described
by NumPy arrays and SciPy sparse matrices while GraphTensor
– as the name suggests – by TensorFlow constant and sparse
tensors.

2.4. Graph data type

An instance of GraphObject/GraphTensor is therefore a com-
pact representation of a generic graph G = (V , E), which is
initialized at least by a node feature matrix X, an arc feature
matrix E, and by a target matrix T. Since not all vi ∈ V or eij ∈ E
are necessarily associated with a target value, a boolean output
maskmo ∈ B is included in the GraphObject, to define whether or
not a target value ti ∈ T is associated with a specific node or arc.
Moreover, when the dataset is composed of only one single graph,
a boolean set mask ms ∈ B is included, so as to specify the subset
of nodes or arcs belonging to a specific dataset or data batch. Note
that, for the graph to be correctly processed, the dimensions of
ms and mo must match, while mo must contain as many true
values as the number of values in T. In the heterogeneous domain,
an instance of CompositeGraphObject or CompositeGraphTensor
includes a boolean type mask mK ∈ Bn×K

= {mK
ik ∈ B}, to

specify the type for each node, such that mK
ik = 1 if and only if

node vi = vk
i , otherwise mK

ik = 0. During the initialization phase,
a GraphObject defines automatically three SciPy sparse matrices
in coordinate format: the adjacency matrix A and an arc–node
matrix AN, which are used in the aggregation message procedure
in the state transition phase – affected by a hyperparameter
aggregation_mode, whose value defines the ϕ version to be
used for aggregating the messages –, and the node-graph matrix
NG, which is used by the GNN models in graph-based applications
to convert a node-based output to an overall graph-based output,
calculated as the average of the nodes’ output. A GraphObject and
a CompositeGraphObject can be also saved in a single NumPy
uncompressed/compressed npz file – or in a folder of text files
– which includes all the necessary matrices for their complete
representation. Given a dataset of graphs, in the form of a list of
graph data elements, these classes also provide a smart way to
save the entire dataset in a single folder, from which it can be
loaded when needed.
4

Niccolò Pancino, Pietro Bongini, Franco Scarselli et al. SoftwareX 18 (2022) 101061

p

p
a
f

2

o
s
b
t
a
i
d
t
i
g
t
a
a
n
o
u
A
h
–
n

2

c
f
b
G
t
g

ut
Fig. 3. Composite GNN model. The GraphSequencer generates from GraphObjects batches of GraphTensor which are presented to the model as input. All quantities
ass through multiple operations (matrix multiplications, boolean mask filtering, and concatenating processes) to form the input to nets and neto .

In order to be correctly processed by the GNN models, Gra-
hObjects and CompositeGraphObjects are required to be fed to
special data handler, the Graph Sequencer, described in the

ollowing.

.5. Graph Sequencer

A GraphSequencer is a data manager for fitting to a sequence
f data – such as a dataset of graphs – which is fed with a
ingle GraphObject or a list of GraphObject elements to generate
atches of GraphTensors, whose attributes are presented as input
o the given GNNkeras model. A total of six GraphSequencer
re provided, for multi-graph and single-graph-based datasets,
n homogeneous and heterogeneous graph domains, and for in-
uctive and transductive learning approaches. It is worth noting
hat the transductive one is a special class of Sequencer, which
s fed with homogeneous GraphObjects while generating hetero-
eneous graph data. Indeed, for each epoch and batch, it splits
he graph training targeted nodes into two subsets of inductive
nd transductive nodes. In the transductive set, the target of
node is integrated in its feature vector. Therefore, for that
ode, no supervision is used in the learning process. Instead, no
peration is carried out on the (supervised) inductive set, which is
sed in the learning process for adapting the model’s parameters.
s a consequence, the new graph cannot be represented by a
omogeneous GraphTensor, since two types of nodes are present
described by feature vectors of different lengths – thus making
ecessary the CompositeGraphTensor representation.

.6. GNN models

Since GNNkeras is a Keras-based software, where the GNN
lasses inherit from the Keras.Model class, it comes with all the
unctionalities provided by TensorFlow 2.x and Keras (TensorFlow
ackend). To parallelize software execution on modern CPUs and
PUs, all the operations have been based on matrix multiplica-
ions. Fig. 3 shows the processing scheme of a heterogeneous
raph by a Composite GNN model.

3. Illustrative examples

An example of the software application in a homogeneous
graph-domain problem is presented below. Let G be a dataset
of N graphs, with N > 100, described by three lists of X, E, T
matrices of equal length – nodes, arcs, targs lists – such that
the i-th element refers to the i-th graph. Let nets and neto be
described by MLP Keras.Sequentialmodels. Then net_state
and net_output refer to two single models, nets and neto, for a
single GNNmodel. In the LGNN case, nets_state and nets_outp
refer to two lists having length equal to the number of layers in
the model and containing nets and neto instances for each GNN
layer of the LGNN model. Before defining the GNN as well as the
LGNN model, let set some parameters:

GNN
state_dimension = 3
max_iteration = 5
state_threshold = 0.01

LGNN
get_state = False
get_output = True
training_mode = ’ s e r i a l ’

Learning procedure
loss_funct ion = t f . Keras . losses . categor ical_crossentropy
optimizer = t f . optimizers .Adam(learning_rate =0.001)
epochs = 10

Graphs
aggregation_mode = ’ average ’ # incoming message po l i c y
addressed_problem = ’ c ’ # fo r c l a s s i f i c a t i o n problems
focus = ’ g ’ # fo r graph−based problems

Each element of nodes, arcs and targs is necessary for
the construction of the single GraphObject instance. Once the
dataset is built, it is fed to two MultiGraphSequencer – since
the dataset is composed of multiple graphs – for the training and
the test set, respectively. In the following, only the last 100 graphs
are fed to the test Sequencer, while the others are used for feeding
the training Sequencer.

Dataset
graphs = [GraphObject (nodes=n , arcs=e , targets =t ,

focus=focus ,
aggregation_mode=aggregation_mode)

for e , n , t in zip (arcs , nodes , targs)]
5

Niccolò Pancino, Pietro Bongini, Franco Scarselli et al. SoftwareX 18 (2022) 101061

#

c
r
m
c

r
l
i
s
l
b
r
b
o
a

#

#

a
v
t

#

#

r
r
c
e
o
p
l
d
w
d
p
o
s
t
i

Sequencer f o r t r a in ing and t e s t s e t
gTr_Sequencer = MultiGraphSequencer (graphs [:−100] ,

focus ,
aggregation_mode)

gTe_Sequencer = MultiGraphSequencer (graphs [−100:] ,
focus ,
aggregation_mode)

Since the GNN and LGNN models belong to the Keras.Model
lass, they need to be compiled: for both models, the parameter
un_eagerly=True should be set, as the TensorFlow graph
ode is not available in this software version. The LGNN model
an be compiled with a special parameter training_mode, which
affects its learning behavior. In particular, it can be set to se-
ial, residual or parallel. In serial mode, each GNN
ayer is trained separately, one by one, as described in the orig-
nal paper [16]; in parallel mode, GNN layers are trained
imultaneously, by considering a loss which is the sum of the
osses between the target and the output of each GNN layer, and
ackpropagating the error throughout all the GNN layers; finally,
esidual mode allows to train the GNN layers simultaneously,
y considering the loss between the target and the sum of the
utputs of all GNNs, and backpropagating the error throughout
ll the GNN layers.

GNN model
gnn = GNNgraphBased(net_state=net_state , net_output=net_output ,

state_vect_dim=state_dimension ,
max_iteration=max_iteration ,
state_threshold=state_threshold)

gnn . compile (optimizer=optimizer , loss = loss_funct ion , run_eagerly=True)

LGNN model
gnnLayers = [GNNgraphBased(net_state=s , net_output=o ,

state_vect_dim=state_dimension ,
max_iteration=max_iteration ,
state_threshold=state_threshold)

for s , o in zip (nets_state , nets_output)]

lgnn = LGNN(gnns=gnnLayers , get_state=get_state , get_output=get_output)
lgnn . compile (optimizer=optimizer , loss = loss_funct ion ,

run_eagerly=True , training_mode=training_mode)

The models are defined and compiled: the learning and evalu-
tion procedures can take place. For illustrative purposes only, no
alidation data or TensorFlow callbacks are provided during the
raining process.

Learning procedure
gnn . f i t (gTr_Sequencer , epochs=epochs)
lgnn . f i t (gTr_Sequencer , epochs=epochs)

Evaluat ion procedure
gnn . evaluate (gTe_Sequencer)
lgnn . evaluate (gTe_Sequencer)

4. Impact

Graph data are nowadays ubiquitous, allowing to represent
elational information between data entities in many different
esearch domains. Furthermore, the importance of graphs is in-
reasing as they permit to directly merge information from differ-
nt sources, which is very natural in modern applications. On the
ne hand, graphs are a powerful form of data representation, in
articular for relational information, and applications of machine
earning techniques in this domain become more important every
ay. On the other hand, standard machine learning methods
ere based on flat vectorial data, thus their application on graph
omains was difficult. This implied that graph data had to be
reprocessed, losing relevant pieces of information, in particular
n the relational side. This limit stimulated the proposal and the
uccess of GNNs, which are a class of machine learning models
hat can process graph data directly. In the last few years, the
nterest of researchers in the field has known a recent and steady

increase, leading to the development of a large number of new
models [15], several theoretical studies [20,21], so as a huge
number of real-world applications [13,22].

GNNkeras has been designed in this context with the aim of
simplifying the use of the GNNs. Graph-based networks can be
classified into two broad classes, recurrent and convolutional [15].
GNNkeras is focused on the former class of GNNs, on which
our group has accumulated long expertise. As far as we know,
this software is the first solution for TensorFlow 2.x specifically
designed for recurrent GNNs. The main difference between these
two kinds of models is the way they operate directly on graphs. In
the Convolutional case, the graph is processed by means of convo-
lutional and pooling techniques, which are carried out by a fixed
number of stacked layers, using independent parameters in the
various layers. Instead, in the recurrent case, the MLP units share
the architecture and parameters, and the state computation can
be carried out for a fixed number of times or until convergence
to a steady state.

The characteristics of GNNkeras are many and can be summa-
rized in the following points.

• GNNkeras allows to develop and deploy GNN models easily,
in a few lines of code, and with high versatility. Representing
a GNN as a GNNkeras model gives a considerable advan-
tage compared to previous common solutions, which were
manually written from scratch with TensorFlow.

• All the three different types of deep learning problems on
graphs are implemented: node-based, edge-based, graph-
based.

• GNNs can be layered, implementing the LGNN version for
more complex problems.

• GNNs and LGNNs can be applied to heterogeneous graphs.
• All the three super-categories of deep learning tasks can be

tackled with GNNs: regression, classification, and genera-
tion.

• Inductive and mixed inductive–transductive learning can be
adopted.

The expected impact of GNNkeras is mainly related to its
capability of helping its users in speeding up the proposal of new
research and the development of advanced software. We think
that, due to the mentioned characteristics, GNNkeras is a flexible
and suitable tool to exploit ML for graph data. The library can
be used by researchers in ML to test new models and to design
new applications. It can be also used by software developers from
companies and organizations designing applications for relational
data. Finally, it is worth noting that the exceptional interest in ML
for graphs is a measure of the size and growth of the community
operating in the sector and for which GNNkeras can be useful.

5. Conclusions

In this paper, a new general GNN framework has been pre-
sented, which provides multiple Keras-based GNN models for
homogeneous and heterogeneous graph processing for both in-
ductive and transductive learning approaches. It was developed
to help the research and the development of software applica-
tions in the field of ML for graphs, to simplify the approach to
this kind of machine learning models for those who are already
familiar with Keras models as well as for those who want to enter
the graph domain of Artificial Intelligence.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
6

Niccolò Pancino, Pietro Bongini, Franco Scarselli et al. SoftwareX 18 (2022) 101061

R
eferences

[1] Grindley Helen M, Artymiuk Peter J, Rice David W, Willett Peter. Identifica-
tion of tertiary structure resemblance in proteins using a maximal common
subgraph isomorphism algorithm. J Mol Biol 1993;229(3):707–21.

[2] Gardiner Eleanor J, Artymiuk Peter J, Willett Peter. Clique–detection
algorithms for matching three–dimensional molecular structures. J
Mol Graph Model 1997;15(4):245–53. http://dx.doi.org/10.1016/S1093-
3263(97)00089-2.

[3] Pancino Niccolò, Rossi Alberto, Ciano Giorgio, Giacomini Giorgia,
Bonechi Simone, Andreini Paolo, Scarselli Franco, Bianchini Monica,
Bongini Pietro. Graph Neural Networks for the Prediction of Protein–
Protein Interfaces. In: Proceedings of the 28th european symposium
on artificial neural networks, computational intelligence and machine
learning, ESANN 2020, Bruges, Belgium, October 2–4; 2020, pp. 127–32.

[4] Zitnik Marinka, Agrawal Monica, Leskovec Jure. Modeling polyphar-
macy side effects with graph convolutional networks. Bioinformatics
2018;34(13):i457–66.

[5] Scarselli Franco, Gori Marco, Tsoi Ah-Chung, Hagenbuchner Markus, Mon-
fardini Gabriele. The graph neural network model. IEEE Trans Neural Netw
2009;20:61–80.

[6] Kipf Thomas N, Welling Max. Semi–supervised classification with graph
convolutional networks. 2016, arXiv preprint arXiv:1609.02907.

[7] Hamilton William L, Ying Rex, Leskovec Jure. Inductive representation
learning on large graphs. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems; 2017, pp. 1025–35.

[8] Veličković Petar, Cucurull Guillem, Casanova Arantxa, Romero Adriana,
Liò Pietro, Bengio Yoshua. Graph attention networks. 2017, arXiv preprint
arXiv:1710.10903.

[9] Battaglia Peter W, Hamrick Jessica B, Bapst Victor, Sanchez-Gonzalez Al-
varo, Zambaldi Vinicius, Malinowski Mateusz, Tacchetti Andrea, Ra-
poso David, Santoro Adam, Faulkner Ryan, Gulcehre Caglar, Song Francis,
Ballard Andrew, Gilmer Justin, Dahl George, Vaswani Ashish, Allen Kelsey,
Nash Charles, Langston Victoria, Dyer Chris, Heess Nicolas, Wierstra Daan,
Kohli Pushmeet, Botvinick Matt, Vinyals Oriol, Li Yunjia, Pascanu Razvan.
Relational inductive biases, deep learning, and graph networks. 2018, arXiv
preprint arXiv:1806.01261.

[10] Hsieh Kanglin, Wang Yinyin, Chen Luyao, Zhao Zhongming, Savitz Sean,
Jiang Xiaoqian, Tang Jing, Kim Yejin. Drug repurposing for covid–19
using graph neural network and harmonizing multiple evidence. Sci Rep
2021;11:23179.

[11] Sanchez-Gonzalez Alvaro, Godwin Jonathan, Pfaff Tobias, Ying Rex,
Leskovec Jure, Battaglia Peter. Learning to simulate complex physics with
graph networks. In: Daumé Hal, Singh Aarti, editors. Proceedings of the
37th international conference on machine learning. Proceedings of machine
learning research, 119, PMLR; 2020, p. 8459–68.

[12] Ying Rex, He Ruining, Chen Kaifeng, Eksombatchai Pong, Hamil-
ton William L, Leskovec Jure. Graph convolutional neural networks for
web–scale recommender systems. In: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining; 2018, pp.
974–83.

[13] Zhou Jie, Cui Ganqu, Hu Shengding, Zhang Zhengyan, Yang Cheng,
Liu Zhiyuan, Wang Lifeng, Li Changcheng, Sun Maosong. Graph neural
networks: A review of methods and applications. AI Open 2020;1:57–81.

[14] Bacciu Davide, Errica Federico, Micheli Alessio, Podda Marco. A gen-
tle introduction to deep learning for graphs. Neural Netw 2020;129:
203–21.

[15] Wu Zonghan, Pan Shirui, Chen Fengwen, Long Guodong, Zhang Chengqi,
Yu Philip S. A comprehensive survey on graph neural networks. IEEE Trans
Neural Netw Learn Syst 2021;32(1):4–24. http://dx.doi.org/10.1109/TNNLS.
2020.2978386.

[16] Bandinelli Niccolo, Bianchini Monica, Scarselli Franco. Learning long–
term dependencies using layered graph neural networks. In: The 2010
International Joint Conference on Neural Networks (IJCNN). IEEE; 2010,
p. 1–8.

[17] Rossi Alberto, Tiezzi Matteo, Dimitri Giovanna Maria, Bianchini Monica,
Maggini Marco, Scarselli Franco. Inductive–transductive learning with
graph neural networks. In: IAPR Workshop on Artificial Neural Networks
in Pattern Recognition. Springer; 2018, p. 201–12.

[18] Ciano Giorgio, Rossi Alberto, Bianchini Monica, Scarselli Franco. On
inductive–transductive learning with graph neural networks. IEEE Trans
Pattern Anal Mach Intell 2022;44(2):758–69. http://dx.doi.org/10.1109/
TPAMI.2021.3054304.

[19] Abadi Martín, Agarwal Ashish, Barham Paul, Brevdo Eugene, Chen Zhifeng,
Citro Craig, Corrado Greg S, Davis Andy, Dean Jeffrey, Devin Matthieu,
Ghemawat Sanjay, Goodfellow Ian, Harp Andrew, Irving Geoffrey, Is-
ard Michael, Jia Yangqing, Jozefowicz Rafal, Kaiser Lukasz, Kudlur Man-
junath, Levenberg Josh, Mané Dandelion, Monga Rajat, Moore Sherry,
Murray Derek, Olah Chris, Schuster Mike, Shlens Jonathon, Steiner Benoit,
Sutskever Ilya, Talwar Kunal, Tucker Paul, Vanhoucke Vincent, Vasude-
van Vijay, Viégas Fernanda, Vinyals Oriol, Warden Pete, Wattenberg Mar-
tin, Wicke Martin, Yu Yuan, Zheng Xiaoqiang. TensorFlow: Large-Scale
Machine learning on heterogeneous systems, Software available from
tensorflow.org. 2015, https://www.tensorflow.org/.

[20] Sato Ryoma. A survey on the expressive power of graph neural networks.
2020, arXiv preprint arXiv:2003.04078.

[21] D’Inverno Giuseppe Alessio, Bianchini Monica, Sampoli Maria Lucia,
Scarselli Franco. An unifying point of view on expressive power of GNNs.
2021, arXiv preprint arXiv:2106.08992.

[22] Bongini Pietro, Bianchini Monica, Scarselli Franco. Molecular gen-
erative graph neural networks for drug discovery. Neurocomputing
2021;450:242–52.
7

http://refhub.elsevier.com/S2352-7110(22)00048-6/sb1
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb1
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb1
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb1
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb1
http://dx.doi.org/10.1016/S1093-3263(97)00089-2
http://dx.doi.org/10.1016/S1093-3263(97)00089-2
http://dx.doi.org/10.1016/S1093-3263(97)00089-2
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb5
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1806.01261
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb14
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb17
http://dx.doi.org/10.1109/TPAMI.2021.3054304
http://dx.doi.org/10.1109/TPAMI.2021.3054304
http://dx.doi.org/10.1109/TPAMI.2021.3054304
https://www.tensorflow.org/
http://arxiv.org/abs/2003.04078
http://arxiv.org/abs/2106.08992
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00048-6/sb22

	GNNkeras: A Keras-based library for Graph Neural Networks and homogeneous and heterogeneous graph processing
	Motivation and significance
	Software description
	Definitions
	Software architecture
	Software functionalities
	Graph data type
	Graph Sequencer
	GNN models

	Illustrative examples
	Impact
	Conclusions
	Declaration of competing interest
	References

