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Catalonia, Spain

Joan Gispert
Universitat de Barcelona

Catalonia, Spain

Abstract

In this paper we carry out an algebraic investigation of the Weak Nilpotent Minimum
logic (WNM) and its t-norm based axiomatic extensions. We consider the algebraic coun-
terpart of this logic, the variety of WNM-algebras (WNM) and we prove that it is locally
finite, so all its subvarieties are generated by finite chains. We give criteria to compare
varieties generated by finite families of WNM-chains, in particular varieties generated by
standard WNM-chains, or equivalently t-norm based axiomatic extensions of WNM, and
study their standard completeness properties. We also characterize the generic WNM-
chains, i.e. those that generate the variety WNM, and we give finite axiomatizations for
some t-norm based extensions of WNM.

Keywords: Algebraic Logic, Fuzzy logics, Left-continuous t-norms, Mathematical
Fuzzy Logic, MTL-algebras, Nilpotent Minimum Logic, Non-classical logics, Residuated
lattices, Substructural logics, Varieties, Weak Nilpotent Minimum Logic, WNM-algebras.

1 Introduction

The logic MTL (Monoidal Triangular norm based Logic) was introduced by Esteva and Godo
in [10] as a generalization of Hájek’s BL logic ([17]). They conjectured that it was the basic
fuzzy logic, i.e. the least logic complete with respect to a semantics given by a class of left-
continuous triangular norms (t-norms, for short) and their residua. Indeed, this was proved
to be true when Jenei and Montagna showed in [20] that MTL is complete with respect to
the semantics given by the class of all left-continuous t-norms and their residua.

Moreover, following [17] and [18], an algebraic semantics for MTL logic was given in [10],
the variety of bounded commutative integral residuated lattices satisfying the prelinearity
equation, (x → y) ∨ (y → x) ≈ 1. Those algebras were called MTL-algebras. In fact, this
variety, that we denote MTL, is an equivalent algebraic semantics for MTL logic, so MTL
turns out to be an algebraizable logic in the sense defined by Blok and Pigozzi in [2]. As a
consequence, there is a dual order isomorphism between the lattice of subvarieties of MTL and
the lattice of axiomatic extensions of MTL. Nevertheless, the whole structure of the lattice
of axiomatic extensions of MTL is very far from being known. Only some parts of the lattice
have been described so far.
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Among the well studied axiomatic extensions of MTL there is the Gödel-Dummett logic
G (see [15, 8, 17]). It can be seen as the extension of MTL obtained by adding the axiom
schema of contraction, ϕ → ϕ&ϕ. Its algebraic counterpart are the G-algebras (prelinear
Heyting algebras) and its latttice of subvarieties has been completely described (see e.g.
[16]). Moreover, G is complete with respect to the semantics given by the t-norm of the
minimum. The negation associated to this t-norm is the so-called Gödel negation that maps
every non-zero element to zero. Following the idea of considering fuzzy logics based on t-
norms related to the minimum operation, Esteva and Godo defined in [10] two new axiomatic
extensions of MTL: Nilpotent Minimum logic (NM, for short)1 and Weak Nilpotent Minimum
logic (WNM, for short). The first one is complete with respect to the semantics given by
Fodor’s nilpotent minimum t-norm (see [12]), which is a modification of the minimum t-norm
by making the negation involutive; more precisely, Fodor considers the standard involutive
negation n(x) = 1 − x, and keeps the value of the minimum t-norm in the region above its
graph while he forces the t-norm to be 0 under the graph. Weak Nilpotent Minimum logic is
a further generalization of the idea of considering t-norms related to the minimum, since it
is complete with respect all t-norms defined in the same way as Fodor’s t-norm but allowing
the negation to be any weak negation function (in the sense of [9]). Therefore, in order to
obtain these kind of t-norms that only take value 0 or the minimum, the required axiom to
define WNM from MTL is (ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ). NM is the extension of WNM
with the axiom schema of involution, ¬¬ϕ → ϕ. Their equivalent algebraic semantics are
the varieties of NM-algebras and WNM-algebras, NM and WNM, respectively. The lattice
of subvarieties of NM was completely described by the third author in [14], thus giving a
complete classification of the axiomatic extensions of NM.

In this paper we aim to extend the work done for NM-algebras and G-algebras by giving a
first approach to the classification of axiomatic extensions of WNM logic (i.e. a classification
of the subvarieties of WNM). Moreover, WNM can also be seen as an interesting subvariety of
both 3-contractive MTL-algebras (see [6, 19, 21]) and the variety BP+ω

0 generated by perfect
MTL-algebras plus ω points (studied in [23]). After some necessary logical and algebraic2

preliminaries in Section 2, we will survey the known results for varieties of G-algebras and
NM-algebras, and then in Section 3 we will describe the simple structure of WNM-chains
(focusing on WNM-chains satisfying the finite partition property) and we prove that WNM is
a locally finite variety, so, as in the case of NM, all subvarieties are generated by finite WNM-
chains. In Section 3.1 we will characterize the WNM-chains that generate the whole variety
WNM and among them we characterize the standard ones. In Section 3.2 we focus on varieties
generated by standard WNM-chains (i.e. t-norm based axiomatic extensions of WNM) and
study their standard completeness properties. In Section 3.3 we discuss the problem of giving
axiomatizations for the axiomatic extensions of WNM, with special attention to the extensions
given by standard WNM-chains. We will end with some concluding remarks.3

1According to [25], an equivalent system had been previously defined by G. J. Wang in a paper in Chinese.
2We need to assume some background in Universal Algebra. It can be found in a good reference book such

as [5].
3Preliminar versions of the results presented in this paper are available in [24, 21].
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2 Preliminaries

WNM is the logic introduced by Esteva and Godo in [10] by means of a Hilbert-style calculus
in the language L = {&,→,∧, 0} of type 〈2, 2, 2, 0〉, where the only inference rule is Modus
Ponens and the axiom schemata are the following (taking→ as the least binding connective):

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ&(ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ&ψ → χ)
(A7b) (ϕ&ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ
(A10) ¬(ϕ&ψ) ∨ (ϕ ∧ ψ → ϕ&ψ)

where ¬ and ∨ are following defined connectives:
¬ϕ := ϕ→ 0;
ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ).
Additional connectives are defined as:
1 := 0;
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ).
This calculus for WNM is actually the calculus for MTL extended with the axiom (A10).
We denote the set of L-formulae built over a denumerable set X of variables by FmL.

Given Γ∪{ϕ} ⊆ FmL, we write Γ `WNM ϕ if, and only if, ϕ is provable from Γ in the system
WNM. We write `WNM ϕ instead of ∅ `WNM ϕ.

The Nilpotent Minimum logic (NM, for short) is the axiomatic extension of WNM obtained
by adding the axiom schema of involution:

¬¬ϕ→ ϕ.

The Gödel-Dummett logic (G, for short) is the axiomatic extension of WNM obtained by
adding the axiom schema of contraction:

ϕ→ ϕ&ϕ.

A syntactical proof (analogous to the usual proof of the deduction theorem for classical
logic) shows that these three logics enjoy the following global forms of deduction-detachment
theorem.

Theorem 2.1. For every set of formulae Γ ∪ {ϕ,ψ} ⊆ FmL we have:

1. Γ, ϕ `WNM ψ if, and only if, Γ `WNM ϕ2 → ψ

2. Γ, ϕ `NM ψ if, and only if, Γ `NM ϕ2 → ψ

3. Γ, ϕ `G ψ if, and only if, Γ `G ϕ→ ψ

where ϕ2 is a shortcut for ϕ&ϕ.
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As it is proved in [10], an algebraic semantics for WNM is given by the class of WNM-
algebras.

Definition 2.2 ([10]). Let A =
〈
A,&A,→A,∧A,∨A, 0A, 1A

〉
be an algebra of type 〈2, 2, 2, 2, 0, 0〉.

We define a unary operation by ¬Aa := a→A 0A.4 Then, A is a WNM-algebra if, and only
if, it is a bounded commutative integral residuated lattice satisfying the following equations:

(x→ y) ∨ (y → x) ≈ 1,

¬(x&y) ∨ (x ∧ y → x&y) ≈ 1.

An element a ∈ A is involutive if, and only if, ¬A¬Aa = a.
A is an NM-algebra if, and only if, all elements are involutive, i.e. A satifies the equation

of involution: ¬¬x ≈ x.
An element a ∈ A is a negation fixpoint (or just fixpoint, for short) if, and only if,

¬Aa = a. In [18] Höhle proves that there exists at most one fixpoint.5

We will say that A is a WNM-chain (resp. NM-chain) if, and only if, the lattice order is
total.

We will denote by WNM and NM the classes of WNM-algebras and NM-algebras, re-
spectively. It can proved that both classes are varieties and, of course, NM ⊆ WNM. The
algebraic counterpart of G is the class of prelinear Heyting algebras and it is easy to prove
that they are termwise equivalent to WNM-algebras satisfying the equation of contraction:
x&x ≈ x, which are called G-algebras. The variety of G-algebras is denoted by G.

These classes of algebras allow to define a semantical consequence in the usual way. Indeed,
given Γ ∪ {ϕ} ⊆ FmL and K ⊆ WNM, the expression Γ |=K ϕ means that for every A ∈ K
and every evaluation v of the formulae in A, we have v(ϕ) = 1A whenever v(ψ) = 1A for every
ψ ∈ Γ. When K = {A}, we write Γ |=A ϕ instead of Γ |={A} ϕ. This semantical consequence
gives the first strong completeness result for the considered logics:

Theorem 2.3 ([10]). For every set of formulae Γ ∪ {ϕ} ⊆ FmL, we have:

1. Γ `WNM ϕ if, and only if, Γ |=WNM ϕ

2. Γ `NM ϕ if, and only if, Γ |=NM ϕ

3. Γ `G ϕ if, and only if, Γ |=G ϕ

However, this result can be strenghthened by realizing that WNM is actually an algebraiz-
able logic in the sense of Blok and Pigozzi [2] and WNM is its equivalent algebraic semantics.
This implies that every axiomatic extension of WNM is also algebraizable and there is the
following dual order isomorphism between the lattice of axiomatic extensions of WNM and
the lattice of subvarieties of WNM:

4The superscripts in the operations will be often omitted when they are clear from the context.
5Actually, Höhle states it for the involutive algebras but the same proof gives the result for the general

non-involutive case.
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• If L is the axiomatic extension of WNM obtained by adding as axiom schemata the set of
formulae Γ ⊆ FmL, then its equivalent algebraic semantics is the subvariety L ⊆WNM
axiomatized by the equations {ϕ ≈ 1 : ϕ ∈ Γ}.

• If K is the subvariety of WNM axiomatized by a set of equations6 Σ ⊆ EqL, then its
corresponding logic is the axiomatic extension of WNM obtained by adding {ϕ ↔ ψ :
ϕ ≈ ψ ∈ Σ} as axiom schemata.

The strong completeness result with respect to the variety of all WNM-algebras can be
refined to the class of WNM-chains by means of the following theorem:

Theorem 2.4 ([10]). Every WNM-algebra is representable as a subdirect product of WNM-
chains.

Corollary 2.5 ([10]). For every set of formulae Γ ∪ {ϕ} ⊆ FmL, we have:
Γ `WNM ϕ if, and only if, Γ |=A ϕ for every WNM-chain A.

The same results are true for every axiomatic extension of WNM, in particular for NM
and G.

Finally, the completeness of WNM, NM and G with respect to chains can be further refined
to the class of standard chains, i.e. chains defined over the real unit interval [0, 1]. Recall
from [10] that the operation & in WNM-chains defined over [0, 1] is given by a special kind
of left-continuous triangular norm. These triangular norms (t-norms, for short) are defined
in the following way. If n is a negation function (a function n : [0, 1] → [0, 1], such that
n(1) = 0, is order-reversing, and a ≤ n(n(a)) for every a, as defined in [9]) and a, b ∈ [0, 1],
the operation ∗n is defined as:

a ∗n b =
{

min{a, b} if a > n(b),
0 otherwise.

This operation ∗n is a left-continuous t-norm and its residuum is given for every a, b ∈ [0, 1]
by:

a→n b =
{

1 if a ≤ b,
max{n(a), b} otherwise.

It is straightforward that [0, 1]∗n := 〈[0, 1], ∗n,→n,min,max, 0, 1〉 is a WNM-chain, and all
WNM-chains over [0, 1] are of this form. We refer to these chains as standard WNM-chains.
Notice that a standard WNM-chain given by a negation function n is an NM-chain if, and
only if, n is involutive, i.e. n(n(a)) = a for every a ∈ [0, 1]. It follows from the study of
such negation functions in [26] that there is only one standard NM-chain up to isomorphism,
namely the one given by the negation n(x) = 1 − x. We will refer to it as [0, 1]NM. The
left-continuous t-norm corresponding to this algebra was introduced by Fodor in [12]. For G
the situation is similar: there is only one standard G-algebra and it is the one given by the
minimum t-norm. We will denote it by [0, 1]G.

Standard algebras provide an algebraic semantics for G, NM and WNM logics, as it was
proved in [8] for G, and in [9] for NM and WNM.

6Recall that given an algebraic language L and a set formulae in this language FmL over some set of
variables X, the equations are formally defined as the expressions of the form ϕ ≈ ψ, where ϕ,ψ ∈ FmL. The
set of all equations over X is denoted as EqL.

5



Theorem 2.6. Let Γ ∪ {ϕ} ⊆ FmL be a set of formulae. Then:

1. Γ `G ϕ if, and only if, Γ |=[0,1]G ϕ.

2. Γ `NM ϕ if, and only if, Γ |=[0,1]NM
ϕ.

3. Γ `WNM ϕ if, and only if, Γ |=[0,1]∗n
ϕ for every negation function n.

This kind of result is usual called a standard completeness theorem. There are several
standard completeness properties that have been already considered in several papers, spe-
cially in [7] where there is a general study of such properties for fuzzy logics from which we
follow the terminology and notation.

Definition 2.7. If L is an axiomatic extension of WNM and K is a set of L-chains, we say
that L has the strong K-completeness property, SKC for short, when for every set of formulae
T ⊆ FmL and every formula ϕ it holds that T `L ϕ iff T |=A ϕ for every L-chain A ∈ K.
We say that L has the finite strong K-completeness property, FSKC for short, when the
equivalence holds for every finite theory T . We say that L has the K-completeness property,
KC for short, when the equivalence is true for T = ∅. When K is the class of all standard L-
algebras, we just call the property strong standard completeness (resp. finite strong standard
completeness and standard completeness), and following [7] we use the notation SRC (resp.
FSRC and RC).

Therefore, the theorem above states that WNM and NM enjoy the strong standard com-
pleteness. Of course, the SKC implies the FSKC, and the FSKC implies the KC. They have
their equivalent algebraic property (see [7]).

Theorem 2.8. Let L be an axiomatic extension of WNM, let L be its equivalent variety
semantics and let K be a set of L-chains. Then:

1. L has the KC if, and only if, L = V(K),

2. L has the FSKC if, and only if, L = Q(K), and

3. L has the SKC if, and only if, L = ISPσ−f (K).

where V is the operator of generated variety, Q is the operator of generated quasivariety
and Pσ−f denotes the operator of reduced products over countably complete filters.

Therefore we have the following:

1. WNM = V({[0, 1]∗n : n is a negation function}) = Q({[0, 1]∗n : n is a negation
function}) = ISPσ−f ({[0, 1]∗n : n is a negation function}),

2. NM = V([0, 1]NM) = Q([0, 1]NM) = ISPσ−f ([0, 1]NM), and

3. G = V([0, 1]G) = Q([0, 1]G) = ISPσ−f ([0, 1]G).

Hence, there is a single NM-chain and a single G-chain that generate (by means of these
three algebraic operators) the whole variety of NM-algebras and the variety of G-algebras
respectively, while in the case of WNM-algebras we have an infinite class of generators. This
result will be improved in Section 3.1, where we will characterize the generic standard WNM-
algebras.

Among the lattice of axiomatic extensions of WNM that we intend to study there is a
subclass of particular interest: the logics associated to one concrete t-norm.
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Definition 2.9. Let ∗ be a WNM-t-norm and consider its corresponding standard WNM-
chain [0, 1]∗. The logic associated to ∗ is the axiomatic extension of WNM corresponding to
the variety V([0, 1]∗) and it will be denoted by L∗.

Given a WNM-t-norm ∗ it is obvious that L∗ enjoys the RC but in fact this can be said
in a more precise way: L∗ enjoys the KC with respect to the class K = {[0, 1]∗} (i.e. it is
not necessary to consider all the standard algebras in the variety). We will call this stronger
version of the RC, canonical RC. The canonical FSRC and the canonical SRC are defined
in the analogous way. Notice that G and NM enjoy the canonical SRC.

Finally, we need to recall some more usual algebraic notions.

Definition 2.10. Let A be a WNM-algebra. A filter is a set F ⊆ A such that:

• 1 ∈ F ,

• If a ∈ F and a ≤ b, then b ∈ F , and

• If a, b ∈ F , then a&b ∈ F .

F is proper iff 0 /∈ F .

The family of all filters of a WNM-algebra A is a closure system, i.e. it is a family of
subsets of A closed under arbitrary intersections and containing A. Therefore, it makes sense
to speak about the notion of generated filter. We will denote by F a the filter generated by an
element a.

As it happens in all bounded commutative integral residuated lattices, we have the fol-
lowing one-to-one correspondence between filters and congruences.

Proposition 2.11. Let A be a WNM-algebra. For every filter F ⊆ A we define Θ(F ) :=
{〈a, b〉 ∈ A2 : a ↔ b ∈ F}, and for every congruence θ of A we define Fi(θ) := {a ∈ A :
〈a, 1〉 ∈ θ}. Then, Θ is an order isomorphism from the set of filters onto the set of congruences
and Fi is its inverse.

By virtue of this correspondence, we will do a notational abuse by writing A/F instead
of A/Θ(F ). Given an element a ∈ A, [a]F will denote the equivalence class of a w.r.t. to the
congruence Θ(F ).

A class K of algebras is locally finite (LF, for short) if, and only if, for every A ∈ K and for
every finite set B ⊆ A, the subalgebra generated by B is also finite. Notice that this property
is inherited by the subclasses of K.

Let L be an algebraic language, let A = 〈A, {fA : f ∈ F}〉 be an algebra of type L and
let B ⊆ A be a non-empty set. The partial subalgebra B of A with domain B is the partial
algebra 〈B, {fB : f ∈ F}〉, where for every f ∈ F n-ary, and every b1, . . . , bn ∈ B,

fB(b1, . . . , bn) =
{
fA(b1, . . . , bn) if fA(b1, . . . , bn) ∈ B,
undefined otherwise.

We denote it by B ⊆p A.
Given two algebras A and B of the same language we say that A is partially embeddable

into B when every finite partial subalgebra of A is embeddable into B. Generalizing this
notion to classes of algebras, we say that a class K of algebras is partially embeddable into a
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class M if every finite partial subalgebra of a member of K is embeddable into a member of
M.

If the language is finite, this turns out to be equivalent to say that K belongs to the
universal class generated by M (see for instance [16]). That is, by recalling  Los’ theorem (see
[5]) of characterization of universal classes, we have the following equivalence.

Proposition 2.12 ([16]). Let K and M be classes of algebras of the same finite language.
Then the following conditions are equivalent:

• K is partially embeddable into M

• K ⊆ ISPU (M)

Given a class K of algebras, Kfin will denote the class of its finite members.
A class K of algebras has the finite embeddability property (FEP, for short) if, and only if,

it is partially embeddable into Kfin.
A class K of algebras of the same type has the strong finite model property (SFMP, for

short) if, and only if, every quasiequation that fails to hold in K can be refuted in some
member of Kfin.

A class K of algebras of the same type has the finite model property (FMP, for short) if,
and only if, every equation that fails to hold in K can be refuted in some member of Kfin.

It is clear that a variety has the FMP if, and only if, it is generated by its finite members
and a quasivariety has the SFMP if, and only if, it is generated (as a quasivariety) by its
finite members.

Theorem 2.13 ([4]). Let L be a finite algebraic language and let K be a class of algebras of
type L closed under finite products. Then, K has the FEP if, and only if, K has the SFMP.

Moreover, it is clear that for every class of algebras K, we have:

• If K is locally finite, then it has the FEP.

• If K has the FEP, then it has the SFMP.

• If K has the SFMP, then it has the FMP.

Theorem 2.14 ([1]). Let L be a finite algebraic language and let K be a variety of algebras
of type L enjoying the EDPC (equationally definable principal congruences property). Then,
the following are equivalent:

• K has the FEP,

• K has the SFMP,

• K has the FMP.

Since for every algebraizable logic whose equivalent algebraic semantics is a variety, the
EDPC of the equivalent algebraic semantics is equivalent to the deduction-detachment theo-
rem of the logic (see [3]) and these logics enjoy it (as stated in Theorem 2.1), we can conclude
that WNM and all its axiomatic extensions fall under the conditions of the last theorem.
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2.1 Varieties of G-algebras and NM-algebras

The structure of G-chains and the lattice of subvarieties of G are well known (see for instance
[16]). Indeed, if A =

〈
A,&A,→A,∧A,∨A, 0A, 1A

〉
is a G-chain, then for every a, b ∈ A:

a&Ab = a ∧A b

a→A b =

{
1A if a ≤ b,
b otherwise.

We can consider the following canonical finite G-chains. For every n ≥ 1 the canonical
G-chain of n elements is defined as Gn := 〈{0, . . . , n−1},&,→,∧,∨, 0, n−1〉, where for every
a, b ∈ {0, . . . , n− 1}, a&b = a ∧ b = min{a, b}, a ∨ b = max{a, b} and

a→ b =
{
n− 1 if a ≤ b,
b otherwise.

Every finite G-chain with exactly n elements is isomorphic to Gn.
It is straigthforward to check that G is a locally finite variety, thus all varieties of G-

algebras are generated by finite G-chains. Morever, since Gn ⊆ Gn+1 for every n ≥ 1, then
the varieties generated by a finite family of finite G-chains form the following chain: V(G1) ⊆
V(G2) ⊆ V(G3) ⊆ . . . ⊆ V(Gn) ⊆ V(Gn+1) ⊆ . . .. Finally, every infinite family of finite
G-chains generates the whole variety G, so there are no more subvarieties.

It is clear that V(G1) is the trivial variety and V(G2) is (termwise equivalent to) the
variety of Boolean algebras. For every n ≥ 3, an axiomatization (relative to G) for V(Gn) is
given by the equation:

∨
i<n(xi → xi+1) ≈ 1. This implies that the inclusions in the chain of

varieties are strict.
As regards to NM, its lattice of subvarieties has been completely described in [14]. We

will briefly present this description.
The structure of finite NM-chains is very simple. In fact, for every n ≥ 1 there is exactly

one, up to isomorphism, NM-chain with n elements. Therefore, we can also define canonical
finite NM-chains.

For every n ≥ 1 the canonical NM-chain of 2n elements is defined as N2n := 〈{−n,−(n−
1), . . . ,−1, 1, . . . , n− 1, n},&,→,∧,∨,−n, n〉 and the canonical NM-chain of 2n+ 1 elements
is defined as N2n+1 := 〈{−n,−(n− 1), . . . ,−1, 0, 1, . . . , n− 1, n},&,→,∧,∨,−n, n〉, where:

a&b :=
{

min{a, b} if a > −b,
−n otherwise.

a→ b :=
{
n if a ≤ b,
max{−a, b} otherwise.

a ∧ b := min{a, b} and a ∨ b := max{a, b}.
Recall also the definition of the unique (up to isomorphism) standard NM-chain, [0, 1]NM.
Given an NM-chain C with fixpoint, we denote by C− the subalgebra obtained by erasing

the fixpoint. With this notation, it is clear that N2n = N−2n+1 for every n ≥ 1.

Theorem 2.15 ([14]). A variety of NM-algebras is a proper subvariety of NM if, and only
if, it does not contain Nn for some n ≥ 1.
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Corollary 2.16 ([14]). If A is an infinite NM-chain with fixpoint, then V(A) = NM.

Theorem 2.17 ([14]). NM is locally finite.

This fact, as already discussed, implies the FMP and the decidability of NM. Thus, in
particular, we have that every variety of NM-chains is generated by its finite chains. It leads
to the following classification and axiomatization of the subvarieties of NM:

Theorem 2.18 ([14]). Consider the terms Bp(x) = (¬(¬x)2)2 ↔ ¬(¬x2)2 and Sn(x0, . . . , xn) =∧
i<n((xi → xi+1)→ xi+1)→

∨
i<n+1 xi. Every proper subvariety of NM is of one of the fol-

lowing types:

1. V([0, 1]−NM) = V({N2n : n ≥ 1}) and it is axiomatized by Bp(x) ≈ 1, or

2. V(N2n+1) for some n ∈ ω and it is axiomatized by Sn(x0, . . . , xn) ≈ 1, or

3. V(N2n) for some n ∈ ω and it is axiomatized by Sn(x0, . . . , xn) ≈ 1 and Bp(x) ≈ 1, or

4. V([0, 1]−NM,N2n+1) for some n ∈ ω and it is axiomatized by Bp(x)∨Sn(x0, . . . , xn) ≈ 1,
or

5. V(N2n,N2m+1), for some m,n ∈ ω such that m < n and it is axiomatized by (Bp(x) ∧
Sn(x0, . . . , xn)) ∨ Sm(x0, . . . , xm) ≈ 1.

Therefore, the paper [14] gives a complete description of all axiomatic extensions of NM.
The lattice of all these logics is depicted in Figure 1, where NM− denotes the logic corre-
sponding to V([0, 1]−NM), NMn denotes the logic corresponding to V(Nn), NMnm denotes
the logic corresponding to V(Nn,Nm), and NMn,NM− denotes the logic corresponding to
V(Nn, [0, 1]−NM).

3 Main results

3.1 General facts about WNM-chains

Starting from the results of the last section our aim now is to study the whole variety of
WNM-algebras and its subvarieties. First we need to study the WNM-chains, since they
generate all the subvarieties of WNM.

The operations in WNM-chains are quite simple as the following lemma states:

Lemma 3.1. Let A =
〈
A,&,→,∧,∨, 0, 1

〉
be a WNM-chain. Then for every a, b ∈ A:

a&b =
{
a ∧ b if a > ¬b,
0 otherwise.

a→ b =
{

1 if a ≤ b,
¬a ∨ b otherwise.

Notice that the previous lemma generalizes the structure of standard WNM-chains pre-
sented in the preliminaries. It turns out, that WNM-chains depend just on the order and the
negation operation, thus we need to recall some properties of such operations.

Lemma 3.2. Let A be a WNM-chain. Then for every a ∈ A:

10
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Figure 1: Lattice of axiomatic extensions of NM.

(i) ¬a = ¬¬¬a,

(ii) a ≤ ¬¬a,

(iii) a = ¬¬a if, and only if, there is b ∈ A such that a = ¬b, and

(iv) ¬¬a = min{b ∈ A : a ≤ b and b = ¬¬b}.

The negation operation determines two kinds of elements in a chain: the positive and the
negative, which are defined as follows.

Definition 3.3. Given a WNM-algebra A, the sets of positive and negative elements are
respectively defined as:

A+ := {a ∈ A : a > ¬a}
A− := {a ∈ A : a ≤ ¬a}

Consider the terms p(x) := x ∨ ¬x and n(x) := x ∧ ¬x. The next proposition gives a
useful way to describe these sets:

Proposition 3.4. Let A be a WNM-algebra. Then:

11



• A+ = {p(a) : a ∈ A,¬a 6= ¬¬a}.

• A− = {n(a) : a ∈ A}.

Next we will prove that the involutive elements of a WNM-chain form an NM-algebra.

Definition 3.5. Let A be a WNM-chain. N(A) will denote the set of involutive elements of
A, i.e. N(A) = {¬a : a ∈ A}.

Proposition 3.6. Let A be a WNM-chain. Then N(A) is the universe of the maximum
NM-subalgebra of A. We denote it by N (A).

Proof. We must prove that N(A) is closed under all operations. Obviously, 0 = ¬1 ∈ N(A)
and 1 = ¬0 ∈ N(A). Take ¬a,¬b ∈ N(A). Since A is linearly ordered, ¬a ∧ ¬b,¬a ∨ ¬b ∈
N(A), hence ¬a&¬b ∈ N(A). Finally, if ¬a ≤ ¬b, then ¬a → ¬b = 1 ∈ N(A); otherwise
¬a→ ¬b = ¬¬a ∨ ¬b ∈ N(A).

Proposition 3.7. Let K ⊆WNM be a variety. Then, K∩NM = V({N (A) : A chain of K}).

Proof. The inclusion from right to left is clear, since for every chain of K, A, we have that
N (A) is an NM-chain and it is a subalgebra of an algebra in K, soN (A) ∈ K∩NM. Conversely,
if C is a chain of K ∩ NM, then C = N (C) ∈ {N (A) : A chain of K}, and by the subdirect
representation theorem, we obtain the inclusion.

To deal with the non-involutive elements we will use the following definition.

Definition 3.8. Let A be a WNM-chain and let a ∈ A be an involutive element. We define
IAa := {b ∈ A : ¬b = ¬a} and we call it the interval associated to a, where the negation
function is constant with value ¬a. We say that a has a trivial associated interval when
IAa = {a}. When A is a standard WNM-chain given by a t-norm ∗, we will sometimes write
I∗a instead of IAa . We will write just Ia when the algebra is clear from the context.

Now we can define the finite partition property for WNM-chains.

Definition 3.9. Let A be a WNM-chain. We say that A enjoys the finite partition property
(FPP, for short) iff ¬A is constant in a finite number of intervals, i.e. the set {a ∈ A : Ia 6=
{a}} is finite. Let Ia1 , . . . , Ian be these intervals. In such a case we define the associated finite
partition P in the following way:

• Ia1 , . . . , Ian ∈ P .

• Consider the set X = A \ (Ia1 ∪ . . . ∪ Ian). It is clear that X ⊆ N(A). For every
connected component Y of X∩A−, consider the elements ¬ai1 < . . . < ¬aik ∈ Y (where
{i1, . . . , ik} ⊆ {1, . . . , n}), and add the following intervals to P :
Y ∩ [0,¬ai1 ], (¬ai1 ,¬ai2 ], . . . , (¬aik−1

,¬aik ], Y ∩ (¬aik , 1]. If there are no elements of the
form ¬ai in Y , we add Y to P . We do the same for every connected component Y of
X ∩A+.

Notice that this partition yields two kinds of intervals: those where the negation takes a
constant value, and those where all elements are involutive. As a matter of nomenclature, we
call them constant intervals and involutive intervals, respectively. Figure 2 shows an example
of a WNM-t-norm with negation fixpoint, a3, and satisfying the FPP where the constant

12



0           a1       a2     a3      a4      a5 a6     a7             1

1

x ∗ y = min(x, y)

x ∗ y = 0

Figure 2: An example of WNM-t-norm satisfying the FPP.

intervals are [a4, a5] and [a6, a7], while the involutive intervals are [0, a1], (a1, a2], (a2, a3],
(a3, a4), (a5, a6) and (a7, 1].

Figure 3 shows three families of WNM-t-norms enjoying the FPP parametrized with a
real number c: c ∈ [0, 1) for ⊗c, c ∈ [1/2, 1) for ?c and c ∈ [1/2, 1] for �c. Notice that
⊗0 = �1 = min and ?1/2 = �1/2 is the nilpotent minimum t-norm. Actually, these families
are the only WNM-t-norms having a finite partition of at most three intervals.

To refer to the class of WNM-t-norms and those satisfying the FPP we will use from now
on the following notations:

WNM = {∗ is a weak nilpotent minimum t-norm}

WNM-fin = {∗ ∈WNM | [0, 1]∗ enjoys the FPP}

Next we prove that the variety of WNM-algebras is locally finite.

Lemma 3.10. Let A be a WNM-chain. Then, every finite subset of A generates a finite
WNM-chain.

Proof. Take a finite subset B = {b0, . . . , bn} ⊆ A. Due to Lemma 3.1 and (i) of Lemma 3.2
it is obvious that the universe of the subalgebra generated by B is
{0, 1, b0, . . . , bn,¬b0, . . . ,¬bn,¬¬b0, . . . ,¬¬bn}, so it is finite.

Proposition 3.11. WNM is a locally finite variety.

Proof. Let A be a WNM-algebra and take a finite set B ⊆ A. Suppose that B = {b0, . . . , bn}.
We must prove that 〈B〉A is also finite. If A is a chain, we apply the previous lemma. Suppose
that A is not a chain. Then, due to the theorem of representation in subdirect products of
chains, we have an embedding α : A ↪→

∏
i∈I Ai, where for every i ∈ I, Ai is a WNM-chain.

13
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0

Figure 3: Three parametric families of WNM-t-norms enjoying the FPP.

Consider the images of the elements of B, α(bj) = (aji )i∈I , for every j ∈ {1, . . . , n}. We
have seen that for every i ∈ I, {a1

i , . . . , a
n
i } generates a finite chain Ci ⊆ Ai whose universe is

{0Ai , 1Ai , a1
i , . . . , a

n
i ,¬a1

i , . . . ,¬ani ,¬¬a1
i , . . . ,¬¬ani }. Notice that there is only a finite number

of such chains up to isomorphism, say {C0, . . . , Cn−1}, and 〈B〉A ∈ V({Ci : i < n}). Therefore,
using that every variety generated by a finite number of finite algebras is locally finite ([5],
Theorem 10.16), we obtain that 〈B〉A is finite.

We have the following easy consequences:

• WNM has the FEP.

• WNM has the FMP.

• WNM = V(WNMfin) = Q(WNMfin).

• Every subvariety of WNM is generated (as a variety and as a quasivariety) by its finite
chains.

• The quasiequational theory of every finitely axiomatizable subvariety of WNM is decid-
able.

• WNM and all its finitely axiomatizable extensions are decidable.7

Lemma 3.12. Let A be a WNM-chain, let F be a filter and consider the quotient algebra
A/F . Then:

• [1A]F = F

• [0A]F = {a ∈ A : ¬a ∈ F}

• For every a, b ∈ A \ ([1A]F ∪ [0A]F ) such that a 6= b, we have [a]F 6= [b]F .
7The decidability of WNM and some of its extensions (and expansions with truth-constants) was already

proved in [11] with a different reasoning which, in fact, proved that for these logics the tautology and the
consequence problems are coNP-complete while the satisfaction problem is NP-complete.

14



Proof. The first statement is trivial. As for the second, take an arbitrary a ∈ A. Then,
a ∈ [0A]F iff a → 0A ∈ F iff ¬a ∈ F . Now consider a pair of different elements a, b ∈
A \ ([1A]F ∪ [0A]F ). Suppose, for instance, that a > b. Then, a → b = ¬a ∨ b /∈ F , hence
[a]F 6= [b]F .

Roughly speaking the last lemma describes homomorphic images (i.e. quotients) of WNM-
chains as the result of identifying all the elements of a filter in the top of the resulting chain,
identifying the elements whose negation is in the filter in the bottom element, and leaving
the rest of the chain as it was. Figure 4 shows the quotient of a standard WNM-chain.

Lemma 3.13. Let A and B be WNM-chains and let f : A → B a surjective homomorphism.
Then:

(i) If I
1
B = {1B}, then B is embeddable into A.

(ii) If I
1
B 6= {1B}, then there is a ∈ N(A) ∩ A+ such that Ia 6= {a} and B is embeddable

into A/F a.

Proof. By the Homomorphism Theorem we know that A/Kerf ∼= B; thus, after the previous
lemma, we can assume that the universe of B is (A \ ([1A]Kerf ∪ [0A]Kerf )) ∪ {0A, 1A}. (i) is
obvious. Assume that I

1
B 6= {1B}. Take c ∈ I

1
B \ {1B}, then it is clear that B is embeddable

into A/F¬¬c.

Corollary 3.14. Let A be a WNM-chain. Then, H(A) = IS(A)∪IS({A/F a : a ∈ N(A)∩A+

and Ia 6= {a}}). Moreover, if there exists the maximum positive involutive element a with
Ia 6= {a} and such that for any other b ∈ N(A) ∩ A+, Ib is order-embeddable into Ia, then
H(A) = IS(A) ∪ IS(A/F a).

Proof. All the algebras of H(A) are a homomorphic image of A and thus, by the previous
lemma, they are embeddable into A or into A/F a for some a ∈ N(A)∩A+. Assume now that
there exists the maximum positive involutive element a with Ia 6= {a} and such that for any
other b ∈ N(A)∩A+, Ib is order-embeddable into Ia. According to the description of quotients
of WNM-chains given in Lemma 3.12, for every b ∈ N(A)∩A+ such that b < a, the assumption
implies that A/F b is embeddable into A/F a, and hence IS(A/F b) ⊆ IS(A/F a).

Notice that for every standard WNM-chain [0, 1]∗ whose t-norm is in WNM-fin, there is a
maximum positive involutive element a such that Ia 6= {a} (possibly a = 1) and, since all the
constant intervals have the same order-type, we have H([0, 1]∗) = IS([0, 1]∗)∪ IS([0, 1]∗/F a).
Actually, the algebra [0, 1]∗/F a can also be seen as a standard WNM-chain since it is clearly
isomorphic to a chain over [0, 1]. The reader can see an example of such situation in Figure
4.

Lemma 3.15. Let K be a class of WNM-chains closed under subalgebras. We have: H(K)fin =
H(Kfin).

Proof. One inclusion is trivial. As for the other one, take A ∈ H(K)fin, then A is a finite
chain and it is isomorphic to B/F for some B ∈ K and some filter F of B. Define F = {a ∈
A | ¬a ∈ F}. The subalgebra of B generated by B \ (F ∪ F ) is in K, thus A ∈ H(Kfin).

Lemma 3.16. Let A be a WNM-chain. Then ISPU (A)fin = IS(A)fin.
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•

Figure 4: A WNM-t-norm satisfying the FPP such that I1 = {1} (left) and its corresponding t-norm
on the quotient algebra [0, 1]∗/Fa (right).

Proof. One direction is obvious. Due to the local finiteness of WNM, to prove the other one is
equivalent to prove that ISPU (A) is partially embeddable into IS(A)fin, which is equivalent
by Proposition 2.12 to ISPU (A) ⊆ ISPU (IS(A)fin). Finally, the last inclusion is true because
A ∈ ISPU (IS(A)fin) (recall that a first-order structure is embeddable into an ultraproduct
of its finitely generated substructures, and in WNM finitely generated algebras are finite).

Proposition 3.17. Let A be a WNM-chain. Then HSPU (A)fin = IS(A)fin ∪ IS({A/F a :
a ∈ N(A) ∩A+ and Ia 6= {a}})fin.

Proof. HSPU (A)fin = H(ISPU (A))fin = [by Lemma 3.15] H(ISPU (A)fin) = [by Lemma
3.16] H(IS(A)fin) = H(IS(A))fin = HS(A)fin = SH(A)fin = SIS({A/F a : a = 1A or a ∈
N(A)∩A+ and Ia 6= {a}})fin = IS({A/F a : a = 1A or a ∈ N(A)∩A+ and Ia 6= {a}})fin.

Corollary 3.18. Let A be a WNM-chain such that it has the maximum positive involutive
element a with Ia 6= {a}, and for any other b ∈ N(A) ∩ A+, Ib is order-embeddable into Ia.
Then, HSPU (A)fin = IS(A)fin ∪ IS(A/F a)fin.

The description of the classes HSPU ( )fin leads to the following criterion to compare
varieties generated by a finite family of chains.

Theorem 3.19. Let n,m ≥ 1 be natural numbers and let A1, . . . ,An and B1, . . . ,Bm be
WNM-chains such that for every i there exists ai ∈ Ai and bi ∈ Bi, positive involutive
elements satisfying the conditions of the previous corollary. The following are equivalent:

(i) V(A1, . . . ,An) ⊆ V(B1, . . . ,Bm)

(ii) IS(A1, . . . ,An,A1/F
a1 , . . . ,An/F an)fin ⊆ IS(B1, . . . ,Bm,B1/F

b1 ,
. . . ,Bm/F bm)fin.

(iii) 1. For every i ∈ {1, . . . , n}, there is j ∈ {1, . . . ,m} such that IS(Ai)fin ⊆ IS(Bj)fin
or IS(Ai)fin ⊆ IS(Bj/F bj )fin, and

2. for every i ∈ {1, . . . , n}, there is k ∈ {1, . . . ,m} such that IS(Ai/F ai)fin ⊆
IS(Bk)fin or IS(Ai/F ai)fin ⊆ IS(Bk/F bk)fin.
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Proof. First observe that:
V(A1, . . . ,An) ⊆ V(B1, . . . ,Bm) if, and only if, V(A1, . . . ,An)FSI ⊆ V(B1, . . . ,Bm)FSI .
By Jónsson’s Lemma and being WNM locally finite, this is equivalent to:

HSPU (A1, . . . ,An)fin ⊆ HSPU (B1, . . . ,Bm)fin
By the previous corollary, this is equivalent to:

IS(A1, . . . ,An,A1/F
a1 , . . . ,An/F an)fin ⊆ IS(B1, . . . ,Bm,B1/F

b1 , . . . ,Bm/F bm)fin
Therefore, we have proved (i)⇔ (ii).
(iii)⇒ (ii) is trivial.

(ii) ⇒ (iii): Suppose that (iii) does not hold. Then, for instance, there exists i ∈
{1, . . . , n} such that for every j ∈ {1, . . . ,m}, IS(Ai)fin 6⊆ IS(Bj)fin and IS(Ai)fin 6⊆
IS(Bj/F bj )fin. Therefore, there exist C1, . . . , Cm,D1, . . . ,Dm ∈ IS(Ai)fin such that for every
j, Cj is not embeddable into Bj and Dj is not embeddable into Bj/F bj . Consider the subal-
gebra C ⊆ Ai generated by C1 ∪ . . . ∪ Cm ∪ D1 ∪ . . . ∪ Dm. Then, C is finite and it cannot
belong to IS(B1, . . . ,Bm,B1/F

b1 , . . . ,Bm/F bm)fin, so (ii) does not hold.

We know by the local finiteness that every subvariety of WNM is generated by its finite
chains; moreover, for every WNM-chain A we have described the class HSPU (A)fin which
is exactly the class of finite chains in V(A); and finally the previous theorem shows how
to compare varieties by using the finite subalgebras of their generators. Therefore, finite
WNM-chains will play a central role in the task of classifying varieties of WNM-algebras.

Given a WNM-chain A, the negation in A only depends on the negation in N (A), due
to the properties of Lemma 3.2. Therefore, every WNM-chain is characterized by the NM-
subalgebra defined by its involutive elements and by the number of non-involutive elements
in their associated intervals. As in the case of NM-chains, some canonical representatives
could be defined for the finite chains. Given n ≥ 1, l1, . . . , ln ≥ 0, Anl1,...,ln will denote the
WNM-chain that has n involutive elements and li non-involutive elements in the constant
interval of the (i + 1)-th involutive element. It is clear that these chains generate pairwise
different varieties. We can see an example in Figure 5.

3.2 Generic WNM-chains

In this section we will study the WNM-chains that generate the variety WNM, i.e. the generic
chains.

Definition 3.20. Let A be a WNM-chain. A is generic if, and only if, V(A) = WNM.

They can be characterized by using Theorem 2.8 and Proposition 3.17 in the following
way.

Theorem 3.21. Let A be a WNM-chain. The following are equivalent:

(1) A is generic.

(2) For every ϕ ∈ FmL, A |= ϕ ≈ 1 if, and only if, `WNM ϕ.

(3) For every finite WNM-chain C, either C is embeddable into A or there is a ∈ N(A)∩A+

such that Ia 6= {a} and C is embeddable into A/F a.

Some chains satisfy a condition stronger than (3), namely all finite chains are embeddable
into them. This situation is characterized in the next proposition.
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0 1a b c d

Figure 5: Example of a canonical finite WNM-chain, A6
0,3,1,2,1. Squares represent involutive

elements, while circles represent the non-involutive ones. b, c, d and 1 have some associated
non-involutive elements, while a (and, of course, 0) has a trivial associated interval.

Proposition 3.22. Let A be a WNM-chain. Then, all finite WNM-chains are embeddable
into A if, and only if, A satisfies the following conditions:

1. The set I
1
A is infinite,

2. A has a negation fixpoint f such that the set If is infinite, and

3. Either there is an increasing sequence 〈an : n ∈ ω〉 of involutive elements in A− such
that for every n, k ≥ 1 there is m ≥ n such that the sets Iam and I¬am have both more
than k elements,
or there is an increasing sequence 〈an : n ∈ ω〉 of involutive elements in A+ such that
for every n, k ≥ 1 there is m ≥ n such that the sets Iam and I¬am have both more than
k elements.

Proof. If A satisfies the conditions, it is obvious that every finite WNM-chain is embeddable
into A. In order to prove that the conditions are also necessary suppose that A satisfies
the first and the second condition but not the third (if the first or the second condition fail,
then it is easy to produce a finite chain that it is not embeddable into A). Consider the set
X = {a ∈ A− : a is involutive and | Ia |, | I¬a |≥ ω}. This set must be finite (otherwise
A would satisfy the third condition); suppose that X has m elements. For each involutive
element a ∈ A−, we define r(a) := min{| Ia |, | I¬a |}. If {r(a) : a ∈ A− \ X, a = ¬¬a} is
unbounded, we produce a sequence by choosing ak ∈ {a ∈ A− \X : a = ¬¬a and r(a) = k}
for every k ∈ ω such that {a ∈ A− \ X : a = ¬¬a and r(a) = k} 6= ∅. But then we would
have a sequence satisfying the third condition, contradicting our assumption. Hence, there
is an upper bound k of {r(a) : a ∈ A− \X, a = ¬¬a}. Then, it is clear that the finite chain
A2m+4
k+1,k+1,...,k+1 is not embeddable into A.

Figure 6 shows an example of a generic WNM-chain defined by a WNM-t-norm satisfying
this stronger condition.
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Figure 6: Example of a generic chain A defined by a WNM-t-norm over the real unit interval
[0, 1]. It has a decreasing sequence 〈an : n ∈ ω〉 of involutive elements in the negative part
such that Ian = (an+1, an] for every n, an increasing sequence 〈bn = ¬an : n ∈ ω〉 of involutive
elements in the positive part such that Ibn = (bn, bn+1] for every n, a fixpoint c with Ic 6= {c},
and I1 6= {1}.

Furthermore, we obtain the following characterization of generic standard WNM-chains.

Theorem 3.23. Let A be a standard WNM-chain. Then, A is generic if, and only if, it
satisfies the following conditions:

1. A has a negation fixpoint f such that the set If is non-trivial, and

2. There is a sequence, either increasing or decreasing, 〈an : n ∈ ω〉 of involutive elements
in A− such that for every n ≥ 0 there is m ≥ n such that the sets Iam and I¬am are
non-trivial.

Proof. Assume that A is generic. If there is a maximum constant interval Ia (with possibly
a = 1), then every finite WNM-chain is embeddable into A/F a. Hence, by Proposition 3.22,
A/F a satisfies the conditions, so also A satisfies them. Suppose now that the maximum
constant interval does not exist. Since all finite chains are embeddable into A/F a for some
suitable a, it is clear that A has a negation fixpoint f and the set If is infinite. If it would
not satisfy the other condition, then the set {a ∈ A− : Ia and I¬a are infinite} would be finite,
and then it would be possible to find a finite chain which we could not embed in any quotient
of A; a contradiction.

Conversely, suppose that A satisfies the two conditions. Then it is clear that every finite
WNM-chain is embeddable into some quotient of A.
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3.3 T-norm based axiomatic extensions of the Weak Nilpotent Minimum
logic and their standard completeness properties

In this section we focus on varieties generated by t-norm-algebras, i.e. standard WNM-chains.

Lemma 3.24. Let [0, 1]∗ be a standard WNM-chain. If I1 6= {1}, then HSPU ([0, 1]∗)fin =
IS([0, 1]∗)fin.

Proof. Just apply the Corollary 3.18 with a = 1.

This gives the following criterion to compare varieties generated by standard WNM-chains
such that I1 6= {1}.

Corollary 3.25. Let A and B be standard WNM-chains such that IA1 6= {1} and IB1 6= {1}.
Then the following are equivalent:

• V(A) ⊆ V(B)

• IS(A)fin ⊆ IS(B)fin.

We can obtain similar results for t-norms satisfying the FPP.

Lemma 3.26. Let [0, 1]∗ be a standard WNM-chain. If ∗ ∈WNM-fin and Ia is the maxi-
mum constant interval, then HSPU ([0, 1]∗)fin = IS([0, 1]∗)fin ∪ IS([0, 1]∗/F a)fin.

Proof. By Corollary 3.18.

Corollary 3.27. Let A and B be standard WNM-chains with finite partition such that IAa
and IBb are their maximum constants intervals respectively. Then the following are equivalent:

• V(A) ⊆ V(B)

• IS(A)fin ∪ IS(A/F a)fin ⊆ IS(B)fin ∪ IS(B/F b)fin.

Notice that corollaries 3.25 and 3.27 give a classification of varieties generated by a stan-
dard WNM-chain (when the chains have I1 6= {1} or satisfy the FPP). Indeed, if A and B
are standard WNM-chains under these conditions, the inclusion of the set of finite subalge-
bras of A into the set of finite subalgebras of B is easy to compute, since the possible finite
subalgebras only depend on the partitions of A and B. The results can be easily generalized
to varieties generated by a family of standard WNM-chains.

Remark 3.28. It is easy to see that if ∗ ∈ WNM-fin, then all the chains in the variety
V([0, 1]∗) enjoy the FPP. Indeed, we can equationally express the maximum number of con-
stant intervals that these chains can have in their partitions. Suppose, for instance, that [0, 1]∗
is the standard WNM-chain depicted in Figure 2 and consider the following equations (recall
the terms used in Proposition 3.4):

(E1) ¬¬n(x)→ n(x) ≈ 1

(E2) (¬¬x0 ↔ ¬x0) ∨ (¬¬x1 ↔ ¬x1) ∨ (¬¬x2 ↔ ¬x2) ∨ (¬¬p(x0) → p(x0)) ∨ (¬¬p(x1) →
p(x1)) ∨ (¬¬p(x2)→ p(x2)) ∨ (¬¬p(x0)→ ¬¬p(x1)) ∨ (¬¬p(x1)→ ¬¬p(x2)) ≈ 1
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It is not difficult to check that any WNM-chain satisfying (E1) has only involutive elements
in the negative part, and any WNM-chain satisfying (E2) has at most 2 constant intervals in
the positive part. Since these equations are valid in [0, 1]∗, they are also valid in all the chains
in V([0, 1]∗), and hence all of them enjoy the FPP.

Given any standard WNM-chain [0, 1]∗ it is obvious that the logic L∗, i.e. the logic
corresponding to the variety V([0, 1]∗), enjoys the canonical RC with respect to [0, 1]∗. Now
we will study in which cases this standard completeness result can be improved. We start
with t-norms satisfying the FPP.

Proposition 3.29. Let ∗ ∈WNM-fin, let Ia be its maximum constant interval (with possibly
a = 1) and let A be a countable L∗-chain. Then:

• If IA
1
A = {1A}, then there exists an embedding from A into [0, 1]∗.

• If IA
1
A 6= {1

A}, then there exists an embedding from A into [0, 1]∗/F a.

Proof. We are assuming that [0, 1]∗ has a finite partition. Let r and s be the number of
intervals in the negative part, and respectively in the positive part, of [0, 1]∗. Suppose that
IA
1
A = {1A}. By the last remark we know that the number of intervals in the negative part

(resp. in the positive part) of A is at most r (resp. s). Take a finite WNM-subchain B
satisfying the following construction rules:

1. Every unitary interval belonging to the partition of A is in B.

2. For every non-unitary constant interval of the partition of A, one interior element of
this interval and its upper bound belong to B.

3. For every involutive non-unitary interval in the negative part of the partition of A, two
different elements and their negations belong to B.

It is clear see that such a chain exists and it is a finite WNM-chain, subalgebra of A,
with the same number of intervals in the partition. By Lemma 3.26, there is an embedding
g : B ↪→ [0, 1]∗. Observe now that two different non-unitary intervals of the partition of
B must be embedded into two different intervals of the partition of [0, 1]∗ and also that as
subalgebra two different intervals of the partition of B are contained in two different intervals
of the partition of A. Thus, remembering that the non-unitary intervals of A are countable
and the ones in [0, 1]∗ are continuous, and using that A and B have the same partition, we
can define an embedding f : A ↪→ [0, 1]∗. Assume now that IA

1
A 6= {1

A}. This implies that
a is a positive element of [0, 1]∗ (otherwise all positive elements in [0, 1]∗ would be involutive
and, since this property is equationally expressable by ¬¬p(x) ≈ p(x) it would also be the
case in A – a contradiction with IA

1
A 6= {1

A}). Therefore, F a is a proper filter and we can
apply the previous reasoning to build an embedding from A into [0, 1]∗/F a.

Corollary 3.30. Let ∗ ∈WNM-fin and let Ia be its maximum positive constant interval, if
it exists. Then:

• If a = 1 or ∗ has no positive constant intervals, then the logic L∗ has the canonical SSC
with respect to [0, 1]∗.
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• If a 6= 1, then the logic L∗ has the SSC with respect to {[0, 1]∗, [0, 1]∗/F a}.

Now we turn to t-norms with an infinite partition.

Proposition 3.31. Given ∗ ∈WNM \WNM-fin, an L∗-chain C and a finite partial sub-
algebra B ⊆p C, we have:

• If I∗1 6= {1}, then B is partially embeddable into [0, 1]∗.

• If I∗1 = {1}, then B is partially embeddable into [0, 1]∗ or there is a positive involutive
element a ∈ [0, 1] with I∗a 6= {a} such that B is partially embeddable into [0, 1]∗/F a.

Proof. Since WNM is locally finite, the subalgebra of C generated by B is also finite. Then,
Proposition 3.17 gives the result.

Corollary 3.32. Given ∗ ∈WNM \WNM-fin, we have:

• If I∗1 6= {1}, then the logic L∗ has the canonical FSRC with respect to [0, 1]∗.

• If I∗1 = {1}, then the logic L∗ has the FSRC with respect to {[0, 1]∗} ∪ {[0, 1]∗/F a : a is
positive, involutive and Ia 6= {a}}.

Although in some cases the SRC holds for logics of WNM-t-norms with an infinite parti-
tion (for instance, when [0, 1]∗ is a generic WNM-chain), it is false in general as the following
examples show.

Example: Let [0, 1]∗ be a standard WNM-chain with an infinite partition such that the
number of positive constant intervals is finite, say I∗a1

, . . . , I∗an
. Assume that I∗1 6= {1}. For

every i, let Xi be the set of these discontinuity points of the negation between I∗ai
and I∗ai+1

,
let Yi1 be the set of accumulation points of Xi which are a limit of an increasing sequence
of elements of Xi, and let Yi2 be the set of accumulation points of Xi which are a limit
of a decreasing sequence of elements of Xi. Take a ∈ I∗1 \ {1} and let A be the countable
subalgebra of [0, 1]∗ generated by the rational numbers in [0, a]. It is clear thatA is subdirectly
irreducible. Assume that there is i such that Xi is infinite and Yi1 or Yi2 is finite. Then:

1. If Yi1 is finite, we can produce a new countable WNM-chain B by adding to A a new
accumulation point to Yi1.

2. If Yi2 is finite, we can produce a new countable WNM-chain B by adding to A a new
accumulation point to Yi2.

In both cases, B ∈ V([0, 1]∗), since every finite subalgebra of B is embeddable into [0, 1]∗,
but clearly B is not embeddable into [0, 1]∗. Therefore, L∗ has not the SRC.

An analogous reasoning is possible when the number of negative constant intervals is
finite.

Example: Let [0, 1]∗ be a standard WNM-chain with an infinite partition such that 1 is
the only accumulation point of positive constant intervals. Consider the formula ϕ>(x, y) :=
(y → x) ∧ ((x→ y)→ y). The following claim is easy to check.

Claim: For every WNM-chain A and every a, b ∈ A we have:
ϕA>(a, b) = 1A iff a > b or a = b = 1A.
Using this formula, we can formulate an infinite semantical derivation, {ϕ>(¬¬p(xi+1),¬¬p(xi)) :

i ≥ 1} ∪ {ϕ>(¬¬p(xi), p(xi)) : i ≥ 1} ∪ {ϕ>(¬¬p(x0),¬¬p(xi)) : i ≥ 1} |=[0,1]∗ ¬¬p(x0) ∨
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¬¬p(x1), but it is not valid if we consider only a finite subset of the premisses, so L∗ has not
the SRC.

An analogous reasoning is possible when the only accumulation point of positive constant
intervals is the infimum of the positive elements.

3.4 Axiomatization of some t-norm based extensions of the Weak Nilpotent
Minimum logic

In this section we give finite equational bases for some varieties generated by standard WNM-
chains, or equivalently finite axiomatizations for some t-norm based extensions of WNM. Since
every variety is generated by its finite chains, the equational base essentially has to describe
these finite chains. More precisely:

Lemma 3.33. Given a WNM-chain A, the following statements are equivalent:

1. The variety V(A) is axiomatized by the equations Σ ⊆ EqL.

2. For every finite WNM-chain C, C ∈ HSPU (A) iff C |= Σ.

3. For every finite WNM-chain C, C ∈ IS(A)∪IS({A/F a : a ∈ N(A)∩A+ and Ia 6= {a}})
iff C |= Σ.

We will focus on the last condition, which is the most descriptive.
First, we consider some easy observations on the equations in the language of WNM.

Lemma 3.34. Let A be a WNM-algebra, let ϕ ≈ ψ ∈ EqL be an equation and Σ = {ϕi ≈
ψi : i < n} ⊆ EqL be a finite set of equations. Then:

1. A |= ϕ ≈ ψ if, and only if, A |= ϕ↔ ψ ≈ 1, and

2. A |= Σ if, and only if, A |= (ϕ0 ↔ ψ0)& . . .&(ϕn−1 ↔ ψn−1) ≈ 1.

Therefore, every finite equational base can be reduced to one single equation whose second
member is the constant for the neutral element of the monoid. Using this and the following
lemma we can produce an equational base for the variety generated by a finite family of
WNM-chains, whenever we have an equational base for the variety generated by each chain
of the family.

Lemma 3.35. Let t0(x0), . . . , tn(xn) ∈ FmL, where x0, . . . , xn denote pairwise disjoint sets
of variables. Let A be a WNM-chain. Then, A |= t0(x0) ∨ . . . ∨ tn(xn) ≈ 1 if, and only if,
there exists i ≤ n such that A |= ti(xi) ≈ 1.

Proposition 3.36. Let {C1, . . . , Cn} be a finite set of WNM-chains. Suppose that for each i ∈
{1, . . . , n}, ti ≈ 1 is an equation axiomatizing V(Ci), in such a way that the sets of variables
of these equations are pairwise disjoint. Then, the equation t1 ∨ . . . ∨ tn ≈ 1 axiomatizes the
variety V({C1, . . . , Cn}).

Proof. It follows from the last results and the fact that HSPU (C1, . . . , Cn) = HSPU (C1) ∪
. . . ∪ HSPU (Cn).
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In the following we provide some examples of t-norm based axiomatic extensions of WNM
for which we are able to give efectively a finite axiomatization.

Examples: Let ∗ be a WNM-t-norm, let [0, 1]∗ be its corresponding standard WNM-
algebra and let L∗ be the axiomatic extension of WNM corresponding to the variety V([0, 1]∗).
Our aim is to find a set of axiom schemata such that, added to the Hilbert-style system for
WNM, give a calculus for L∗ (or equivalently, to find a set of equations such that, added to
the equational base for WNM, give an equational base for V([0, 1]∗)). We will use the terms
introduced in Proposition 3.4.

1. If [0, 1]∗ is a generic WNM-t-norm (i.e. it satisfies the conditions of Theorem 3.23), then
L∗ is just WNM, and hence there is no need for additional axioms.

2. Suppose that [0, 1]∗ satisfies the following conditions:

• The partition of [0, 1]∗ has no constant interval in the negative part.

• [0, 1]∗ has a negation fixpoint.

• The partition of [0, 1]∗ has infinitely many constant intervals in the positive part
(i.e. ∗ ∈WNM \WNM-fin).

It is clear that for every finite WNM-chain C, C ∈ IS([0, 1]∗) ∪ IS({[0, 1]∗/F a : a ∈
N([0, 1]∗) ∩ ([0, 1]∗)+ and Ia 6= {a}}) iff all the negative elements in C are involutive.
Therefore, the variety generated by [0, 1]∗ is axiomatized by the following equation:8

¬¬n(x) ≈ n(x)

Notice that the symmetric situation (no constant intervals in the positive part, while
infinitely many in the negative part) is axiomatized by:

¬¬p(x) ≈ p(x)

Of course, the two equations together would give the variety generated by [0, 1]NM,
which can be axiomatized just by:

¬¬x ≈ x

3. Suppose that [0, 1]∗ satisfies the following condition:

• There is a sequence, either increasing or decreasing, 〈an : n ∈ ω〉 of involutive
elements in A− such that for every n ≥ 0 there is m ≥ n such that the sets Iam

and I¬am are non-trivial.

i.e. just the second condition required for generic standard WNM-chains in Theorem
3.23. On the one hand, it is clear that for every finite WNM-chain C, C ∈ IS([0, 1]∗) ∪
IS({[0, 1]∗/F a : a ∈ N [0, 1]∗) ∩ ([0, 1]∗)+ and Ia 6= {a}}) iff C has no negation fixpoint.
On the other hand, in the papers [22, 23], while studying the varieties generated by

8Its associated logic has been already studied in [13] under with a different name, MTL[D∧], and a different
axiomatization. In particular, the authors proved the SRC for this logic.
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perfect IMTL-algebras and perfect MTL-algebras, the authors proved that a WNM-
chain is perfect iff it has no negation fixpoint. Therefore, the equation for perfect MTL-
chains will be enough to obtain an equational base for the variety we are considering
now:

(¬(¬x)2)2 ≈ ¬(¬x2)2

4. Take ∗ ∈ WNM-fin such that the partition of [0, 1]∗ has no involutive intervals. Let
r and s be respectively the number of constant intervals in the negative and in the
positive part. Then, due to the symmetry properties of negation functions, we obtain
that:

• If [0, 1]∗ has no negation fixpoint, then s = r + 1.

• If [0, 1]∗ has negation fixpoint, then s = r.

Observe that these chains (we can see two examples in Figure 7) have a finite number
of involutive elements: 0 and the right extreme of each constant interval:

• If [0, 1]∗ has no negation fixpoint, then it has 2r + 2 involutive elements.

• If [0, 1]∗ has negation fixpoint, then it has 2r + 1 involutive elements.

0 01 1

1 1

0 0

Min Min

Figure 7: Two examples of standard WNM-chains satisfying the FPP with no involutive
intervals. The chain on the left hand side has no negation point, while the chain on the right
hand side has it.

Therefore, in order to axiomatize this kind of varieties we only need an equation giving
an upper bound to the number of involutive elements. It is easy to check that a WNM-
chain A has at most k involutive elements if, and only if, the following equation is valid
in A: ∨

i<k

(¬xi → ¬xi+1) ≈ 1
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For instance, to axiomatize the varieties corresponding to the chains in Figure 7, we
would take the equation with k = 6 (for the chain on the left hand side) and the equation
with k = 7 (for the chain on the right hand side).

5. Finally, assume that ∗ ∈ WNM-fin and the partition of [0, 1]∗ has some involutive
intervals. We have not found an equational base for every WNM-t-norm under these
conditions. However, we will illustrate with some example how it could be done when
the partition has a small number of intervals. For instance, suppose that ∗ is the t-norm
depicted in Figure 2. In this case the equational base only needs to force the chains to
have no constant intervals in the negative part and at most 2 in the positive part. Thus
we take the equations:

¬¬n(x) ≈ n(x)

and ∨
i<3

(¬xi ↔ ¬¬xi) ∨
∨
i<3

(¬¬p(xi)→ p(xi)) ∨
∨
i<2

(¬¬p(xi)→ ¬¬p(xi+1)) ≈ 1

Consider now the chain in Figure 8 where some more restrictions must be described in
the equations.

0 1

1

0

Min

Figure 8: An example of a standard WNM-chain satisfying the FPP with involutive intervals.

In this case we take the following equational base:∨
i<3(¬¬n(xi)→ n(xi)) ∨

∨
i<2(¬¬n(xi)→ ¬¬n(xi+1)) ≈ 1

(there are at most two constant intervals in the negative part)∨
i<2(¬xi ↔ ¬¬xi) ∨

∨
i<2(¬¬p(xi)→ p(xi)) ∨ (¬¬p(x0)→ ¬¬p(x1)) ≈ 1

(there is at most one constant interval in the positive part)∨
i<2(¬¬n(xi) → n(xi)) ∨

∨
i<2(¬¬n(xi) → ¬¬n(xi+1)) ∨ (¬¬n(y) → ¬¬n(x1)) ∨

(¬¬n(x0)→ ¬¬n(y)) ≈ 1
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(if there are two constant intervals in the negative part, then there are no involutive
elements between them)∨
i<2(¬¬n(xi)→ n(xi)) ∨

∨
i<2(¬¬n(xi)→ ¬¬n(xi+1)) ∨ (¬¬n(x0)↔ ¬n(x0)) ≈ 1

(if there are two constant intervals in the negative part, then the right extreme of the
second one is the negation fixpoint)

(¬¬n(x0)→ n(x0)) ∨ (¬¬n(y0)→ ¬¬n(y1)) ∨ (¬¬n(y1)→ ¬¬n(x0)) ≈ 1

(if there is a constant interval in the negative part, then there is at most one negative
involutive element above it)

(¬x0 ↔ ¬¬x0) ∨ (¬¬p(x0)→ p(x0)) ∨ (¬y0 ↔ ¬¬y0) ∨ (¬¬p(x0)→ ¬¬p(y0)) ≈ 1

(if there is a constant interval in the positive part, then there are no positive involutive
elements below it)

4 Conclusions

In this paper we have studied a particular variety of MTL-algebras, WNM. After presenting
the description and axiomatization of the varieties formed by the involutive members obtained
in [14], we have achieved the following new results:

• WNM is a locally finite variety, so it has the FEP and the FMP and the corresponding
logic is decidable. Obviously, these properties are inherited by all the subvarieties and
axiomatic extensions, respectively.

• We have studied WNM-t-norms. In particular, we have characterized the generic t-
norms, we have given criteria to compare their generated varieties and we have studied
their standard completeness properties.

• We have given equational bases for some varieties generated by a finite family of standard
WNM-chains.

As a matter of future research it would be interesting to find a general method to axiom-
atize t-norm based extensions of WNM, or even all axiomatic extensions of WNM.
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