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24

25 Abstract

26 Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid 

27 inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so 

28 that the inclusion probability of each tree included within each plot can be determined. A simulation 

29 study is performed to compare the TLS-based estimators corrected and uncorrected for non-detection 

30 with the Horvitz-Thompson estimator based on conventional plot sampling, in which all the trees 

31 within plots are recorded. Results show that single-scan TLS provides more efficient estimators with 

32 respect to those provided by the conventional plot sampling in the case of low density forests when no 

33 distance sampling correction is performed. In low density forests, uncorrected estimators lead to a 

34 small bias (1-6%), increasing with plot size. Therefore, care must be taken in enlarging the plot radius 

35 too much. The bias increases in forests with clustered spatial structures and in dense forests, where the 

36 bias levels (30-50%) deteriorate the performance of uncorrected estimators. Even if the bias-corrected 

37 estimators prove to be effective in reducing the bias (below 15%), these reductions are not sufficient to 

38 outperform conventional plot sampling. Therefore, there is no convenience in using TLS based 

39 estimation in high density forests.

40

41 Keywords: plot sampling; TLS-based detection; distance sampling; hybrid inference; simulation study.

42

43

44

45

46

47

Page 2 of 38

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

3

48

49

50 1. Introduction 

51 Terrestrial Laser Scanning (TLS) demonstrated to be a promising tool for plot-level field inventories 

52 (e.g. Liang et al. 2011, Moskal and Zeng 2012, Kankare et al. 2015, Liang et al. 2016). The main 

53 advantages of using TLS lie in its capability to document the forest details automatically and at very 

54 fine (millimeter) spatial scales (Fardusi et al. 2017). In particular, the main advantage is the possibility 

55 to record the exact three-dimensional forest stand structure at any inventory occasion. This fact enables 

56 subsequent measurements on structural attributes not even considered before and very accurate time-

57 series analyses. Two features particularly relevant for permanent survey programs like e.g. the National 

58 Forest Inventories.

59 In theory, several scans and high scanning resolution can provide complete information about the 

60 structure of the forest inventory plot. The statistical treatment of multi-scan data has been recently 

61 considered by Saarela et al. (2017).  On the other hand, in single-scan operations, the amount of data is 

62 small compared to multi-scan and the registration of different scans is not needed. Therefore, both 

63 measurement and processing operations are faster and fully automatic. For these reasons, the single-

64 scan approach is the most appealing in forest inventories, especially in those performed at large-scale 

65 (Liang et al. 2016).

66 TLS single location scans capture only a portion of the total tree volume, due to occlusion effects. 

67 However, the non-detection of trees by single-scan TLS can be accounted for under the statistical 

68 estimation framework of forest inventories by a hybrid inference approach (Corona et al. 2014). 

69 Distinctively, quoting from distance sampling, a detection function can be assumed to give the 

70 probability of detecting a tree as function of the distance from the point where TLS is located.
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71 Ducey and Astrup (2013) and Astrup et al. (2014) suggested the use of distance sampling (Buckland et 

72 al. 2001) to identify detection probabilities and developed adjusted estimates for tree abundance and 

73 stand basal area. Ducey and Astrup (2013) compared conventional and TLS-based plot sampling in 9 

74 forest stands that contained between 8 and 22 fixed radius plot, while Astrup et al. (2014) compared the 

75 two strategies in 166 plots in 12 mature stands. In both cases, conclusions were that TLS-based 

76 estimates are similar to those achieved by conventional plot sampling. However, because the 

77 comparisons were performed on sample data, unaware of the true number of trees and stand basal area, 

78 conclusions about the relative precision of the two estimation strategies are hard to reach. 

79 The purpose of this paper is to perform an artificial comparison of conventional plot sampling, in 

80 which all the trees within field plots are accurately recorded by forest crews, vs TLS-based sampling, 

81 that, being based on an automatic detection of trees, allows for the use of larger plots. The comparison 

82 is performed by means of a Monte Carlo study based on simulated forests with low and high densities 

83 and random, trended and aggregated spatial patterns. Considering the time saved when trees are 

84 automatically recorded by a TLS device, the plot radii here tested in the TLS-based sampling are two-

85 three times greater than those adopted in the standard estimation, in order to determine if: i) the 

86 information loss due to undetected trees can be compensated by the enlargement of the sampled area; 

87 ii) the non-detection adjustments performed by means of distance sampling technique provide 

88 improvements with respect to the non-adjusted estimates.  

89 For avoiding ambiguities, it is worth noting that this study is completely design-based, i.e. populations 

90 are fixed and the uncertainty of estimators only stems from the random selection of plots onto the study 

91 area.

92

93 2. Preliminaries on conventional plot sampling estimation 
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94 Denote by U a collection of trees of size greater than a pre-fixed threshold within a study region  of A

95 size A. Suppose that the abundance N, i.e. the number of stems in the study region, and the total basal 

96 area T are the attributes to be estimated. Denoting the basal area of a single tree , , the total jy Uj

97 basal area is obviously given by

98 



Uj

jyT

99 Moreover, it is worth noting that even the abundance N may be viewed as the total of a dummy variable 

100 such that  for each tree . Being both totals, T and N are usually estimated in forest surveys 1jy Uj

101 by using the plot sampling scheme joined with the well-known Horvitz-Thompson (HT) estimation 

102 criterion (Gregoire and Valentine 2008, chapter 7).  

103 Plot sampling is usually performed by randomly locating a point onto the study region  enlarged by A

104 a buffer of width equal or greater to the pre-fixed plot radius r. Then, a plot of radius r is centered at the 

105 random point and the sample  is the set of trees lying within the plot. The enlargement of the US 

106 study region eliminates any edge effects (Gregoire and Valentine 2008, section 7.5), because each tree 

107 within the study area has a fixed inclusion zone given by the field plot centered at the tree location, 

108 which is completely included within the enlarged area. Therefore, the first-order inclusion probability 

109 of each tree is , where is the plot size and  is the size of the enlarged region.*/ Aa 2ra  *A

110 From these inclusion probabilities, the HT estimator of abundance is 

111                                                                (1)
a
nAN HT

*ˆ 

112 where n is the number of trees observed within the plot, and the HT estimator of the total basal area is 

113                                                                (2)



Sj

jHT y
a
AT

*
ˆ
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114 From the general theory of the HT estimator (Gregoire and Valentine 2008, section 7.4.2), the two 

115 estimators are design-unbiased. The design-based variance of (1) is 

116                                             (3)2
2

**
2
ˆ 2 Na

a
AN

a
AV

jh
jhN  

 U

117 and the design-based variance of (2) is  

118                                              (4)2
2

*
2

*
2
ˆ 2 Tyya

a
Ay

a
AV

jh
hjjh

j
jT  

 UU

119 where  is the size of the intersection of the two plots of radius r centered at the trees j and h. jha

120 Obviously, any estimator based on a sole plot, even if unbiased, is destined to be highly imprecise. 

121 Usually, R plots are randomly and independently located within the enlarged study region in 

122 accordance with the sampling protocol usually referred to as uniform random sampling (URS). Under 

123 URS, the R plots give rise to R independent samples  that in turn give rise to R identically and RSS ,...,1

124 independent abundance estimates  each of them with expectation N and variance  as well RNN ˆ,...,ˆ
1

2
N̂V

125 as R identically and independent basal area estimates  each of them with expectation T and RTT ˆ,...,1̂

126 variance  . Accordingly, the arithmetic mean of the R estimates, 2
T̂V

127                                                  (5)    



R

i
iR N

R
N

1

ˆ1ˆ

128 and 

129                                                 (6)



R

i
iR T

R
T

1

ˆ1ˆ

130 are unbiased and consistent estimators of N and T, with variance  and , respectively. RVN /2
ˆ RVT /2

ˆ

131 Unbiased and consistent estimators of the variances of (5) and (6) are given by  and , RSN /2
ˆ RST /2

ˆ

132 respectively, where 
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133 






R

i
RiN NN

R
S

1

22
ˆ )ˆˆ(

1
1

134 and

135 






R

i
RiT TT

R
S

1

22
ˆ )ˆˆ(

1
1

136 Moreover, owing to the Central Limit Theorem,  and  approach normality as R increases. RN̂ RT̂

137 Therefore, for a sufficiently large R, the confidence intervals  and   have RSN NR /2ˆ
ˆ RST TR /2ˆ

ˆ

138 an approximate coverage of 0.95. 

139

140 3. TLS-based plot sampling estimation 

141 Plot sampling surveys are performed by forest crews travelling the selected plots, counting the trees 

142 within plots and measuring their basal areas as well as any other attribute of interest. An alternative 

143 way to perform plot-based surveys could be the placement of a TLS device in the plot centers to 

144 automatically count the trees within the plot and measure their basal area. However, owing to the 

145 shadow provided by trees located near the device, some trees, especially those far from the center, 

146 remain undetected. Therefore, the actual sample is constituted by the set  of the  detected SD  nm 

147 trees. Accordingly, the HT estimators of abundance and basal area would be 

148                                                                   (7)



Dj j

HTN

1~

149 and 

150                                                                    (8)



Dj j

j
HT

y
T


~

151 where  would represent the probability that tree j is detected by a TLS device randomly located over j

152 the enlarged area at a distance smaller than the plot radius r. Unfortunately, the occlusion provided by 
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153 the trees located near tree j renders very cumbersome the determination of this probability. Indeed, the 

154 inclusion zone of tree j, i.e. the region onto which the TLS device should be located to give rise to 

155 detection, is the circle of radius r centered at tree j (as in the conventional plot sampling scheme) minus 

156 the area shielded by the neighboring trees from which tree j cannot be detected by the device (see 

157 Figure 1). Therefore, the determination of the size of the inclusion zones is prohibitive, especially in 

158 the case of highly dense forest stands. This fact precludes the determination of the first order inclusion 

159 probability and the subsequent use of the HT estimators (7) and (8).   

Figure 1. Example of inclusion region for tree j when four neighboring trees are within the circle of 
radius r centered at tree j. The inclusion region is the whole circle minus the shaded areas.

  

160 When detection probabilities cannot be quantified, e.g. when sampling populations of elusive animals, 

161 a pure-design based approach cannot be pursued. In these cases, distance sampling may be a suitable 
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162 solution (Ducey and Astrup 2013, Astrup et al. 2014). When detections occur at points, as in the TLS 

163 case, distance sampling is referred to as point transect sampling (PTS). When detections occur along 

164 transects, distance sampling is referred to as line transect sampling. As pointed out by Thomas et al. 

165 (2010), distance sampling lies in the framework of the so-called composite or hybrid inference (see also 

166 Corona et al. 2014) in which the inclusion probabilities  are partially determined by the design, i.e., j

167 in this case, by the random location of the TLS device (that is real), and partially determined by some 

168 assumptions about the detection process.  

169 There are several versions of distance sampling. Probably, the most simple and familiar version is the 

170 so-called Conventional Distance Sampling (CDS), i.e. the approach performed by the CDS engine in 

171 the Distance 6 software (see Thomas et al. 2010). This approach simply assumes that detection only 

172 depends on distance. Even if the approach cannot be considered entirely design-based, Buckland et al. 

173 (2004, Section 10.3.3) point out that modeling “is kept to a minimum” by this approach. On the other 

174 hand, an extension of CDS allows inclusion of covariates (e.g. tree diameter) other than distance, thus 

175 involving a more complex modelling of the detection mechanism. The approach is performed by the 

176 so-called MCDS engine in the Distance 6 software (Thomas et al. 2010) and has been pursued by 

177 Ducey and Astrup (2013) and Astrup et al. (2014). However, stated the design-based nature of this 

178 study, the CDS approach seems to be the more appropriate, avoiding complex modelling of detection. 

179 Under CDS, the key assumption (Buckland et al. 2001, Chapter 2) can be rephrased in the TLS 

180 framework as: a) the detection probability of any tree only depends on its distance from the TLS 

181 device, i.e. there exists a detection function 

182 UD  jrxxXjxg j ,0)|Pr()(

183 that gives the probability of detecting any tree  when its distance  from the TLS device is Uj jX

184 equal to x; b) , i.e. if the tree location coincides with the TLS location, detection is sure.  0 1g 
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185 From assumptions a) and b) it follows that: i) the detection probability is equal for any tree, i.e. 

186  for any ; and ii) the probability density function of the areas of the circles 0 j Uj 2
jj XV 

187 having as radii the distances of the observed trees from TLS is equal for any observed tree  and is Dj

188 given by 

189     avvgAvh 
 0,/)( 1

0
* 

190 in such a way that  (e.g. Buckland et al. 2001, section 3.1). Accordingly,  can be   1*
0 )0( 

 hA )0(h

191 estimated from the s, where  and  is the set of the m observed distances. The jv 2
jj xv   Djx j ,

192 estimation can be performed in a parametric way, assuming an analytic form for  );()( θxgxg 

193 depending on a vector  of unknown parameters that will be estimated from the s, or in a θ jv

194 nonparametric way, without specifying the analytical form of . )(xg

195 Once an estimate  of  has been achieved, the HT estimators (7) and (8) reduce to the distance )0(ĥ )0(h

196 sampling estimators 

197                                                              (9)mhANHT )0(ˆ~ *

198 and

199                                                        (10)



Dj

jHT yhAT )0(ˆ~ *

200 respectively. It is worth noting that distance sampling estimators differ from genuine HT estimators. 

201 They are biased with cumbersome design-based variances, say  and , accomplishing the 2
~NV 2

~TV

202 uncertainty induced by the design plus the uncertainty induced by the estimation of .     )0(h

203 Under URS, R estimates of type (9) and (10) are achieved by estimating  from the sole trees )0(h

204 detected within the corresponding plot. Obviously, a more precise estimation of  would occur if it )0(h
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205 was based on the pooled set   of all the distances recorded within the R plots. Therefore, 
1

R

Rpool i
i

 UD D

206 denoting by  the estimate of  achieved from the pooled set of distances, any plot gives )0(ˆ
Rpoolh )0(h

207 rise to the following estimate of abundance 

208 RimhAN iRpooli ,...,1,)0(ˆ~ * 

209 and basal area  

210 * ˆ (0) , 1,...,


 %
i

i Rpool j
j D

T A h y i R

211 where  is the number of detected trees within the i-th plot. Therefore, the definitive distance im

212 sampling estimators of N and T based on the R plots are given by 

213                                                   (11) RRpool

R

i
iR mhAN

R
N )0(ˆ~1~ *

1
 



214 and 

215                                                               (12)RRpool

R

i
iR yhAT

R
T )0(ˆ~1~ *

1
 



216 where is the average number of trees detected within the R plots and Rm

217  
 


R

i j
jR

i

y
R

y
1

1
D

218  is the average amount of basal area recorded with the R plots.

219 Because any distance sampling estimator necessitates a model to assume how detections occur and 

220 because any model is invariably wrong in a design-based approach, where models are not allowed, any 

221 distance sampling estimator is invariably biased, i.e. the difference between the true total and the 

222 expectation of the estimator made with respect to all the possible samples generally differs from zero. 
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223 The bias is one of the main concern regarding distance sampling (see e.g. the recent paper by Prieto 

224 Gonzales et al. 2017). Indeed, as stated by Särndal and Lundström (2005, p. 98) “if an estimator is 

225 greatly biased, it is poor consolation that its variance is low”. Because it is impossible to know in 

226 advance if a biased estimator is heavily or slightly biased, mean squared error (MSE) rather than 

227 variance should be estimated in these cases.

228 Fortunately, URS ensures R independent samples of trees detected within the plots in such a way that a 

229 bootstrap estimator of the MSE can be attempted. From the set of the R plots, B bootstrap sets of R 

230 plots are selected with replacement and estimators (11) and (12) are computed, achieving B bootstrap 

231 estimates  . Then, in accordance with Shao and Tu (1995, chapter 3), the  BbBN bRbR ,...,1;
~

,
~ *

,
*

, 

232 bootstrap MSE estimators of (11) and (12) are given by 

233                                                    (13)



B

b
RbRN NN

B
ESM

1

2*
,~ )

~~
(1ˆ

234 and 

235                                                (14)



B

b
RbRT TT

B
ESM

1

2*
,~ )

~~
(1ˆ

236 respectively. Confidence intervals can also be derived from the appropriate quantiles of the bootstrap 

237 distributions.

238 Alternatively, a less cumbersome solution is obtained by neglecting tree occlusion within the plots, 

239 assigning to each detected tree the “pseudo” inclusion probability , as if detection within plots */ Aa

240 was perfect. In this case the estimation of abundance and total basal area proceeds as in the 

241 conventional plot sampling described in section 2, with the difference that  is used in (1) instead of  𝑚 𝑛

242 and the summand in (2) is extended to the set D of detected trees instead to the complete sample S. The 

243 estimators arising in this way from  plots will be denoted by  and  to avoid confusion with the 𝑅 𝑁𝑅 𝑇𝑅
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244 conventional plot sampling estimators  and . Obviously, the uncorrected estimators are likely to RN̂ RT̂

245 be highly biased, but probably with variances smaller than those of the distance sampling estimators 

246 that are inflated by the estimation of .  Therefore, MSE rather than variance should be estimated ℎ(0)

247 also in this case. That can be done, mutatis mutandis, by the same bootstrap procedure adopted for the 

248 distance-based estimators.         

249

250 4. Simulation study

251 In order to compare the estimators arising from conventional plot sampling with those arising from 

252 TLS-based surveys, corrected and uncorrected for non-detection, a simulation study was performed on 

253 a set of artificial populations depicting some realistic situations. Because the man-made recording and 

254 mensuration of trees within a plot may be time very consuming, especially in dense stands, usually in 

255 conventional plot sampling, plot radius is of about 10 m. On the other hand, when trees are 

256 automatically recorded by a TLS device, the plot radius can be increased relevantly, in order to 

257 compensate for the undetected trees near the edge of the plot obscured by those near the TLS device. 

258 Therefore, the purpose of the simulation was to assess if the enlargement of the plots allowed by the 

259 use of TLS devices may compensate the non-detection of some trees, especially those far from the 

260 device, and if the application of the distance-based procedure reduced the downward bias affecting the 

261 uncorrected estimators.    

262

263 4.1 Artificial populations 

264 A quadrat of size 100 ha was taken as the study area. Within the area, low density forests of 20 000 

265 trees (density of 200 trees per ha) and high density forests of 500 000 trees (density of 5 000 trees per 

266 ha) were generated. In order to consider several spatial patterns, the tree locations were distributed over 

267 the area: (I) completely at random; (II) in accordance with a spatially-trended process in which the 
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268 coordinates of tree locations were independent random variables of type   with u )1(100 2u

269 uniformly distributed on ; (III) in accordance with a clustered process in which 10 cluster centers )1,0(

270 were randomly distributed over the area and in each equal-sized cluster, tree locations were generated 

271 from a bivariate normal distribution centered at the cluster center and having independent marginal 

272 distributions with standard deviation 80 m in the case of low density forests and 100 m in the case of 

273 high density forests. 

274 Once a tree location was generated, the corresponding tree was determined by the circle centered at the 

275 location, with radius independently generated from a log-normal distribution with mean 15 cm and 

276 coefficient of variation of 55% in the case of low density forests and mean 4 cm and coefficient of 

277 variation of 75% in the case of high density forests. Circles/trees overlapping previously generated 

278 circles/trees were removed and the process was repeated. 

279 Figure 2 shows the resulting six forests for the two densities (low and high) and the three spatial 

280 patterns (random, trended, clustered). Trees with radius smaller than 2.25 cm were discarded from the 

281 target populations. Therefore, abundance and basal area vary throughout populations, with about 10 

282 trees discarded in the low density forests (0.05%) and about 150 000 in the high density forests (30%). 

283 It is worth noting that the trees with radius smaller than 2.25 cm were still considered in the simulations 

284 because they contribute to obscure the detection of those trees in the target populations.
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Figure 2. Graphic representations of the six forests adopted in the simulation study.

285

286 4.2 TLS-detection within circles

287 A first simulation step was performed to have insights on the shape of the detection function that may 

288 be supposed to rule the detection of threes within plots, that in turn determined the shape of . For )(vh

289 each combination of forest densities and spatial patterns,  plots of radius  00010M 10,15,20,30r 

290 m were replicated within the study area enlarged by a buffer equal to r. Within each plot , a Mi ,...,1

291 naive detection mechanism was supposed in order to simplify simulation, i.e. the trees detected by the 

292 TLS device were supposed to be those subtending cones (to the center of the plot) not completely filled 

293 by the others trees nearer to the device (see Figure 3). Notwithstanding the simplicity of the supposed 
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294 detection model, the computations adopted to analytically determine the detected trees were quite 

295 cumbersome and are reported in section S1 of the Supplementary material file. 

Figure 3. Example of TLS detection within a plot. The patterned tree is not detected because it 
subtends a cone completely occluded by a tree nearer to the TLS device; the plain gray one is detected 
because its cone is partially occluded by trees nearer to the TLS device.

296 For any simulated plot i, the set  of the  trees detected out of the  trees contained within the plot iD im in

297 was determined and the detection frequency  was computed, together with the  detected iii nmp / im

298 distances , that, in turn, determined the areas of the corresponding circles  , with  ij jx D,  ij jv D,

299 . The area range  was divided into 20 intervals of equal width and the frequencies  2
jj xv  ),0( a ihf

300  of the intervals were computed. Then, the average number and the average fraction of ( 1,..., 20)h 

301 trees detected within plots of radius r was empirically evaluated by means of 

302 
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
M

i
i
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303 respectively, while the probability density function  was empirically approximated by the average )(vh

304 interval frequencies 
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305 20,...,1,1
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 


lf
M
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M

i
ihl

306 For each combination of forest densities, spatial patterns, and plot radii, Table 1 reports the average 

307 fraction of detected trees, while Figure 4 reports the graphs of the average interval frequencies 

308 approximating .  )(vh
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Figure 4. Monte Carlo probability density functions of the areas of detected trees within plots of radius 
 m in low and high density forests with random, trended and clustered spatial patterns.30,20,15,10r

309 The interval frequencies in low density forests with random and trended spatial pattern resulted very 

310 similar to the uniform distribution in . That revealed a quite perfect detection within plots with ),0( a

311 fraction of detected trees near to one (see Section S2 of the Supplementary Material File). In the case of 

312 the low density forest with clustered pattern, detection was less good with fractions of detected trees of 

313 about 70-80%. On the other hand, in high density forests the frequencies of first intervals decreased 

314 with areas/distances and the decrease was more marked as the plot radius increased, especially under 

315 trended and clustered patterns.    

316 Based on this preliminary analysis of the detection frequencies, we opted for a nonparametric fitting 

317 performed by means of an orthogonal series approximation (Barabesi and Fattorini 1996), in order to 

318 provide a method likely to perform well under a wide range of situations. More precisely,  was )(vh

319 approximated by the first K terms of a Legendre polynomial series, i.e.
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323  was the central value of the l-th interval,  was the k-th shifted Legendre polynomial while K was lv k

324 the first integer such that  and  2)(1 KKK mE  
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326 (see section S3 of the Supplementary Material file for further details). The fitted distributions are 

327 reported in Figure 4 and are graphed by bold lines. The closeness of the interval frequencies with the 

328 bold lines evidenced the effectiveness of the orthogonal polynomial fitting. In most cases,  term 1K

329 was sufficient to provide the best fitting, with the exceptions of plots of radius  for the high 20,30r 

330 density forests. In these cases,  terms were necessary with 20 m-plot radius and  terms 2K 3K

331 were necessary for 30 m-plot radius. 

332 These results suggested the use of Legendre polynomial series to achieve the  estimates in )0(h

333 equations (11) and (12) as suitable alternative to more widely applied methodologies, such as the 

334 flexible, semi-parametric procedure performed by the CDS engine in the Distance 6 software, with a 

335 parametric key function chosen by the Akaike model selection criterion among uniform, half-normal, 

336 hazard rate and exponential detection functions, paired with zero or more series adjustment terms 

337 chosen among cosine, Hermite or simple polynomial series (Thomas et al. 2010). As opposite to CDS 

338 engine that adopts the maximum likelihood criterion to estimate the parameters of the key function and 

339 the coefficients of the series terms, giving rise to convergence problems in some cases (e.g. Ducey and 

340 Astrup 2013), the use of Legendre polynomial series only involves very simple moment estimates of 

341 the first polynomial coefficients. Therefore, it can be easily implemented in simulation saving much of 

342 the computational time that would be involved to automatically insert the use of Distance 6 in the 

343 simulation codes. 

344

345 4.3 Sampling and estimation 

346 To simulate conventional and TLS-based plot sampling,  simulation runs were performed 00010M

347 for each combination of the six artificial forests, plot radius m, and number of 10,15,20,30r 

348 replicated plots  for a total of 96 cases. At each simulation run, R plots were randomly 9,16,25,36R 
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349 and independently located within the quadrat of size 100 ha enlarged by a buffer of width equal to the 

350 plot radius (URS). In the case of plots of 10 m radius, the trees located within the plots were 

351 completely enumerated and estimators (5) and (6) were computed in accordance with the conventional 

352 plot sampling protocol. Moreover, for any of the four plot radii, the set of detected trees was 

353 determined within each plot by the steps delineated in section S2 of the Supplementary Material file 

354 and distance sampling estimators (11) and (12) were computed together with the uncorrected estimators 

355 performed as if detection was perfect. As already stated, Lagrange polynomials were adopted to 

356 estimate  in equations (11) and (12), i.e. )0(h

357

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360  was the total number of detected trees in the pooled sample, while K was the first integer such Rpoolm

361 that  where 2ˆ)1(ˆ
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363 (see section S3 of the Supplementary Material file for details).

364

365 4.4 Performance indicators

366 At the end of the simulation, ten thousand estimates of type (11) and (12) together with the 

367 corresponding uncorrected estimates were achieved for each of the 96 cases together, while ten 

368 thousand estimates of type (5) and (6) were achieved for each combination of forest types and R values 

369 when . These collections determined the Monte Carlo distributions from which the performance 10r
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370 of the estimators were empirically evaluated by means of the relative bias (RB=expectation minus true 

371 parameter value divided by the true parameter value) and the relative root mean squared error 

372 (RRMSE=square root of the mean squared error divided by the true parameter value). Because the 

373 conventional plot sampling gave rise to unbiased estimators, only the RRMSEs were considered in 

374 these cases.

375 It is worth noting that the design-based nature of the study is apparent from the simulation structure in 

376 which populations were kept fixed, thus univocally determining detection, which was established from 

377 the position of a tree with respect to its neighboring trees. In this way, uncertainty and estimator 

378 properties only stemmed from sampling, i.e. from the locations of sample plots that were newly 

379 generated at each run. 

380

381 5. Results and discussion

382 Tables 2, 3 and 4 report the percent values of RBs and RRMSEs for the three spatial patterns and any 

383 combination of density, number of plots (R) and plot radius (r). 

384 In low density forests, the use of uncorrected TLS-based estimators generated a downward bias that 

385 rapidly increased with plot radius and was not reduced by increasing the number of replicated plots. 

386 For forests with a random spatial pattern, the bias of abundance estimators increased from -1% with 

387 plot of 10 m radius to -7% with plots of 30 m radius. In the case of trended and clustered spatial 

388 patterns, the bias increased from -6% to -14% and from -5% to 16%. For basal area estimation, the 

389 results were very similar, even if bias levels were slightly smaller than that achieved for abundance. On 

390 the other hand, the use of corrected TLS-based estimators was effective in reducing the level of bias. In 

391 this case, bias increased from  to -2%, from -1% to -4% and from -1% to -5% for random, trended 1%

392 and clustered patterns, respectively. Even better results were achieved for basal area estimation, where 

393 bias was almost completely eliminated. Unfortunately, the estimation of the detection function involved 
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394 in distance sampling generated a further uncertainty that deteriorated the precision of the corrected 

395 estimator, providing RRMSEs that were invariably greater than those achieved with the uncorrected 

396 counterparts. Therefore, in low density forests, when the bias of the uncorrected estimators is small, 

397 there is little reason to adopt corrected estimators. Moreover, the TLS-based uncorrected estimators 

398 with enlarged plot radius compared favorably with respect to the (unbiased) plot sampling estimator 

399 with 10 m radius plots. RRMSE reductions were sometimes relevant, being in some cases greater than 

400 ten percentage points, and were more marked for basal area estimation. However, care must be taken in 

401 enlarging the plot radius too much in order to avoid unsuitable levels of bias over 5%. Practically 

402 speaking, in the case of low density forests, the use of uncorrected estimator with plot of radius two 

403 time greater than that adopted in the conventional plot sampling is the best option. Finally, a less than 

404 obvious result must be discussed. When conventional and TLS-based sampling were both performed at 

405 10 m radius plots, the conventional plot sampling estimators performed invariably worse than the 

406 uncorrected TLS-based estimators, even if all the trees were detected in the conventional plot sampling 

407 while some were lost in the TLS-based uncorrected case. It should be considered that when trees in the 

408 plot were few, few of them were undetected and both the estimators provided similar, low estimates of 

409 abundance and basal area. On the other hand, when trees in the plot were many, many of them, 

410 especially those at the edge of the plot, were undetected. In these cases, the conventional plot sampling 

411 provided high estimates of abundance and basal area, while the estimates provided by the uncorrected 

412 estimator were much smaller and nearer to those achieved when trees are few. This reduced the 

413 variance of the uncorrected estimator with respect to that provided by the conventional plot sampling. 

414 This reduction in variability was not compensated by the presence of bias that, in the case of low 

415 density forest, was not excessive, therefore providing values of RRMSE smaller than those achieved by 

416 conventional plot sampling.                   
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417 Regarding high density forests, the density of 500 000 trees per ha was very high, corresponding e.g. to 

418 young planted stand, where trees would often be so small that they would not be measured. Indeed, 

419 about the 30% of the generated trees were discarded from the target population. In these forests, the use 

420 of uncorrected TLS-based estimators generated inacceptable amounts of downward bias that rapidly 

421 increased with plot radius and did not reduce with the number of replicated plots. For abundance 

422 estimation, the bias increased from -13% with plot of 10 m radius to -37% with plots of 30 m radius for 

423 random spatial patterns, from -27% to -51% for trended patterns and from -27% to -59% for clustered 

424 patterns. The results for basal area estimation were similar even if the bias levels were slightly smaller. 

425 Also in this case, the use of corrected TLS-based estimators was effective in reducing the level of bias 

426 that in this case ranged from -3% to -6%, from -7% to -16% and from -5% to -12% under random, 

427 trended and clustered pattern, respectively. Better results were again achieved for basal area estimation, 

428 where bias ranged from 2% to -8% in the worst situations. Obviously, the presence of massive 

429 downward bias deteriorated the precision of the uncorrected TLS-based estimators, that resulted 

430 invariably worse that the corrected counterparts. Especially for plots of 20/30 m radius, the RRMSEs 

431 were sometimes two-three times greater than those achieved after the distance sampling corrections. 

432 However, also in this case, the estimation of the detection function involved in distance sampling 

433 generated a further uncertainty that makes the performance of corrected estimators comparable, but not 

434 generally better, than those arising from the use of conventional plot sampling with plots of smaller 

435 radius. Practically speaking, in the case of high density forests, there is no reason to adopt TLS based 

436 estimation.                   

437 The whole simulation study was repeated locating plots in accordance with the sampling scheme 

438 usually referred to as tessellation stratified sampling (TSS). To this purpose, the study area enlarged by 

439 a buffer of width equal to the plot radius was partitioned into  quadrats of equal size 9,16,25,36R 

440 and, at each simulation run, a plot was randomly located within each quadrat. Then, estimation was 
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441 performed repeating the same computations adopted in the URS case. The simulation results are 

442 reported in section S4 of the Supplementary Material file. The superiority of TSS with respect to URS 

443 was proven in several studies (Barabesi and Franceschi 2011, Barabesi et al. 2012, Barabesi and 

444 Fattorini 2013). Also in this case, TSS provided improvement in precision for both conventional and 

445 TLS-based plot sampling, but in relative terms the results were similar to the URS case: TLS-based 

446 plot sampling provided improvement with respect to conventional plot sampling only in the cases of 

447 low density forests, when no distance sampling correction was performed. 

448 It is worth noting that the estimation of the sampling variances was neglected in this study. While we 

449 recognized the importance of estimating variance, we avoided this step owing to the time consuming 

450 computations involved in performing the bootstrap estimation of variance in the case of TLS-based plot 

451 sampling (equations 13 and 14). These computations would have elongate the simulation time much 

452 beyond the two months that were necessary to achieve the present results. 

453

454 6. Conclusions

455 Forest inventories are rapidly evolving as novel approaches arise and new techniques and tools become 

456 available. However, implementation within operative processes should be evidence-based, i.e. based on 

457 objective, reliable assessment (Corona 2016, 2018). The results of the simulation study demonstrate 

458 that the use of single-scan TLS for the automatic detection of trees provides gains in estimation 

459 precision – with respect to the conventional plot sampling performed within plot of smaller size - only 

460 in the case of low density forests when no distance sampling correction is performed. Care must be 

461 taken in enlarging the plot radius too much in order to avoid unsuitable increases of bias over 5%. On 

462 the other hand, there is no convenience in using TLS-based estimation in high density forests.

463  It should be noticed that these conclusions must be viewed only as a first attempt for evaluating TLS-

464 based sampling. They are indeed obtained on the basis of an artificial simulation study in which the 
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465 process of tree detection has been necessarily simplified. First, it is assumed that a tree is detected even 

466 if just a small sliver of it is visible from the scan point: that represents an optimistic assumption given 

467 the current state of algorithms for this task. Second, it is assumed that only tree stems cause occlusion, 

468 that may be realistic only in stands with a relatively open understory and where the trees have no 

469 crowns in the horizontal plane where searching is performed. These simplifications constitute a 

470 significant limitation of the simulation study that may give rise to optimistic evaluation of TLS 

471 detection and hence of the performance of TLS-based estimators. However, on this issue it should be 

472 noticed that very similar simplifications are also adopted in two recent simulation studies on single-

473 scan TLS-based sampling (Olofsson and Olsson 2018, Kuronen et al. 2018) owing to the difficulties in 

474 simulating more realistic situations.        

475 In order to effectively exploit the advantage of TLS under permanent forest inventory applications, due 

476 to the possibility of a suitable monumentalization of the sample plots, advancement of multi-scan or 

477 mobile TLS approaches must be sought, in terms of both measurement and processing cost-

478 effectiveness. Distinctively, mobile TLS coupled by Simultaneous Localization and Mapping methods 

479 currently seems to be the most promising option (e.g. Ryding et al. 2015), whose potential needs to be 

480 properly investigated under a large-scale forest inventory framework.
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Table 1. Monte Carlo values of the average fraction of detected trees in the six 
forests.

Low density High densityPlot 
radius Random Trended Clustered Random Trended Clustered
10 97% 92% 68% 61% 62% 57%
15 96% 96% 73% 56% 58% 55%
20 95% 95% 77% 53% 54% 53%
30 93% 93% 80% 46% 49% 48%
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Table 2. Percent values of RB and RRMSE of TLS-based corrected (TLS C) and uncorrected (TLS U) 
estimators compared with those of the conventional plot sampling estimator (PLOT) in artificial forests 
with trees located in accordance with a random spatial pattern.

Low density High density
Abundance Basal area Abundance Basal area

No. 
of 
plots

Plot 
radius Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE

TLS C 1 36 1 41 -3 13 1 15
TLS U -1 15 0 24 -13 14 -10 13

10

PLOT 15 24 7 9
TLS C -1 25 0 28 -4 12 1 1315
TLS U -3 11 -2 16 -20 21 -15 17
TLS C -2 20 0 23 -5 12 2 1320
TLS U -4 11 -3 14 -26 27 -21 22
TLS C -2 17 0 19 -6 14 2 14

9

30
TLS U -6 12 -5 13 -37 38 -31 32
TLS C -1 26 0 30 -3 10 1 11
TLS U -2 11 -1 17 -13 14 -10 12

10

PLOT 11 18 5 7
TLS C -1 19 0 21 -4 10 2 1015
TLS U -3 9 -2 13 -20 20 -15 16
TLS C -1 16 0 18 -5 10 2 1020
TLS U -4 9 -3 11 -26 26 -21 21
TLS C -2 13 0 14 -6 11 3 11

16

30
TLS U -7 10 -5 10 -37 37 -31 32
TLS C 0 22 0 25 -3 8 1 9
TLS U -2 9 -2 14 -13 14 -10 11

10

PLOT 9 14 4 5
TLS C -1 15 0 17 -4 8 2 815
TLS U -3 7 -2 10 -20 20 -15 16
TLS C -1 13 0 14 -4 9 2 920
TLS U -4 7 -3 9 -26 26 -21 21
TLS C -2 11 0 12 -6 10 3 9

25

30
TLS U -7 9 -5 9 -37 37 -31 32
TLS C 0 17 0 20 -3 7 1 8
TLS U -2 7 -1 12 -13 13 -10 11

10

PLOT 7 12 3 4
TLS C -1 13 0 14 -4 7 2 715
TLS U -3 6 -2 9 -20 20 -15 15
TLS C -1 10 0 12 -4 8 3 720
TLS U -4 7 -3 7 -26 26 -20 21
TLS C -2 9 0 10 -5 8 3 8

36

30
TLS U -6 8 -5 8 -37 37 -31 31
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Table 3. Percent values of RB and RRMSE of TLS-based corrected (TLS C) and uncorrected (TLS U) 
estimators compared with those of the conventional plot sampling estimator (PLOT) in artificial forests 
with trees located in accordance with a trended spatial pattern. 

Low density High density
Abundance Basal area Abundance Basal area

No. 
of 
plots

Plot 
radius

Estimato
r RB RRMSE RB RRMSE RB RRMSE RB RRMSE
TLS C -1 65 1 69 -7 42 -1 44
TLS U -6 38 -4 42 -27 32 -23 29

10

PLOT 46 47 43 39
TLS C -3 54 -1 56 -9 37 -2 3915
TLS U -9 32 -7 34 -35 37 -30 33
TLS C -2 52 0 54 -12 35 -4 3620
TLS U -11 30 -8 31 -41 42 -36 38
TLS C -3 48 0 50 -16 33 -8 33

9

30
TLS U -14 28 -11 29 -51 51 -46 47
TLS C -1 49 1 52 -7 31 -1 33
TLS U -6 28 -4 31 -27 30 -23 27

10

PLOT 34 35 32 29
TLS C -3 41 0 44 -9 29 -3 3015
TLS U -9 25 -7 26 -35 36 -30 32
TLS C -3 39 0 40 -12 27 -4 2820
TLS U -11 24 -8 24 -41 42 -36 37
TLS C -4 36 0 38 -16 27 -8 25

16

30
TLS U -14 23 -11 23 -51 51 -46 46
TLS C -2 38 0 40 -7 25 -1 27
TLS U -6 23 -5 25 -27 29 -23 25

10

PLOT 28 29 25 23
TLS C -2 33 0 35 -9 24 -3 2415
TLS U -9 21 -7 22 -35 36 -30 31
TLS C -3 31 0 33 -11 23 -4 2220
TLS U -11 20 -8 20 -41 42 -36 37
TLS C -4 29 -1 30 -15 23 -7 21

25

30
TLS U -14 20 -11 19 -51 51 -46 46
TLS C -1 32 1 34 -7 22 -1 22
TLS U -6 20 -4 21 -27 28 -23 25

10

PLOT 24 24 21 19
TLS C -2 28 0 29 -9 21 -2 2015
TLS U -9 18 -6 18 -35 36 -30 31
TLS C -3 26 0 27 -11 20 -4 1920
TLS U -11 18 -8 17 -41 42 -36 37
TLS C -4 24 -1 25 -15 21 -7 18

36

30
TLS U -14 19 -11 17 -51 51 -46 46
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Table 4. Percent values of RB and RRMSE of TLS-based corrected (TLS C) and uncorrected (TLS U) 
estimators compared with those of the conventional plot sampling estimator (PLOT) in artificial forests 
with trees located in accordance with a clustered spatial pattern. 

Low density High density
Abundance Basal area Abundance Basal area

No. 
of 
plots

Plot 
radius Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE

TLS C -2 56 0 61 -6 38 1 41
TLS U -6 41 -5 46 -27 36 -23 34

10

PLOT 44 48 38 38
TLS C -2 49 0 52 -7 38 1 4115
TLS U -8 39 -6 42 -38 42 -33 39
TLS C -4 46 -1 48 -8 37 -1 4020
TLS U -11 37 -9 39 -46 49 -42 45
TLS C -3 45 0 48 -12 37 -4 38

9

30
TLS U -15 37 -12 37 -59 60 -55 56
TLS C -1 42 0 45 -5 29 1 32
TLS U -5 31 -4 34 -27 32 -23 30

10

PLOT 33 36 29 29
TLS C -3 36 -1 39 -6 29 1 3115
TLS U -8 30 -6 31 -38 40 -33 36
TLS C -3 35 0 37 -8 29 0 3020
TLS U -11 29 -8 30 -46 48 -42 44
TLS C -5 34 -1 36 -12 29 -4 29

16

30
TLS U -16 30 -13 29 -59 59 -55 56
TLS C -1 33 0 36 -5 24 1 25
TLS U -5 25 -4 28 -27 31 -23 27

10

PLOT 27 29 23 23
TLS C -2 29 0 31 -6 23 1 2515
TLS U -8 24 -6 25 -38 40 -33 35
TLS C -3 28 0 29 -8 23 0 2420
TLS U -10 24 -8 24 -47 47 -42 43
TLS C -4 28 0 30 -11 24 -4 23

25

30
TLS U -16 25 -12 25 -59 59 -55 56
TLS C -1 28 0 30 -5 20 1 21
TLS U -5 21 -4 23 -28 30 -23 26

10

PLOT 22 24 19 19
TLS C -3 25 -1 26 -6 20 1 21

36
15

TLS U -8 21 -6 21 -38 39 -33 35
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TLS C -3 24 0 25 -8 20 0 2020
TLS U -11 21 -8 21 -47 47 -42 43
TLS C -4 23 0 25 -11 21 -4 1930
TLS U -16 23 -12 22 -59 59 -55 56
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Figure 1. Example of inclusion region for tree j when four neighboring trees are within the circle of radius r 
centered at tree j. The inclusion region is the whole circle minus the shaded areas.   
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Figure 2. Graphic representations of the six forests adopted in the simulation study. 
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Figure 3. Example of TLS detection within a plot. The patterned tree is not detected because it subtends a 
cone completely occluded by a tree nearer to the TLS device; the plain gray one is detected because its cone 

is partially occluded by trees nearer to the TLS device. 
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Figure 4. Monte Carlo probability density functions of the areas of detected trees within plots of radius 
r=10,15,20,30  m in low and high density forests with random, trended and clustered spatial patterns. 
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