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Abstract

In this paper, we address a problem arising in a manufacturing environment
concerning the joint scheduling of multiple jobs and a maintenance activity on a
single machine. Such activity must be processed within a given time window and
its non-deterministic duration takes values in a given interval.

We seek job schedules which are robust to any possible changes in the mainte-
nance activity duration. We consider makespan and total completion time objec-
tives under four different robustness criteria. We discuss a few properties and the
complexity of finding robust schedules for the resulting eight problem scenarios.

For the case of total completion time objective and maximum absolute regret
criterion, we design and test exact and heuristic algorithms. The results of an
extensive computational campaign, performed for assessing the performance of the
proposed solution approaches, are reported.
Keywords: Scheduling, flexible maintenance, robust optimization.

1 Introduction

In this paper, we address a relevant problem arising in a manufacturing environment
concerning the joint scheduling of multiple jobs and of a maintenance activity on a single
machine [18, 27]. The maintenance activity is flexible, meaning that it must be performed
within a given time window. Furthermore, while the processing times of the jobs are
deterministic, the maintenance duration is uncertain and can only be estimated at the
time when the scheduling of the jobs is planned. Hence, possible deviations from its
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nominal value may occur and the resulting schedule depends on the time span attained
by the maintenance task.

The above situation may naturally arise, for instance, in manufacturing plants where
a machining center requires the jobs to be processed in a given predefined sequence and a
maintenance intervention has been planned in advance. Typically, such intervention has
to be executed by an external service-company in a certain time-interval. The duration
of the maintenance activity is not known until the service will release an estimate (based
on monitoring the state of the production resource and/or a site inspection). In this
case, the time required by the maintenance activity becomes apparent only after the job
sequence has been set and, as a consequence, the actual schedule may be established
only as a result of the latter time value. In this context, the problem is to determine a
job sequence which is robust to any possible change in the duration of the maintenance
activity. Two standard objectives are considered for our scheduling problem: makespan
and total completion time of the jobs.

Several different versions of scheduling problems considering maintenance activities,
which are usually modelled as machine unavailability, have been addressed in the litera-
ture. For a survey see [18]. For the total completion time objective function, deterministic
versions of the problem, i.e., in which the maintenance duration is known, have been con-
sidered in, e.g., [1], [24] and [27]. In [1], the problem is proven to be NP-hard. In [27],
a dynamic programming and a branch-and-bound algorithms are proposed. The authors
also show that the SPT (Shortest Processing Time) sequence1 has a worst-case approx-
imation ratio of 9/7. Recently, the problem solved in [27] has been addressed in [24],
assuming a maintenance period related to the machine workload. In [4], the single ma-
chine scheduling problem with an operator non-availability period is considered, where
the objective is to minimize the total completion time. The operator non-availability
period is an open time interval in which a job may neither start nor complete. The prob-
lem is proven to be NP-hard, and an algorithm with a tight worst-case ratio of 20/17 is
presented.

For the makespan objective function, the deterministic version has been proven to be
NP-hard in [16]. Furthermore, Lee [16] showed that the Longest Processing Time rule has
a tight worst-case ratio of 4/3, and He et al. [10] presented a FPTAS (Fully Polynomial
Time Approximation Scheme).

A variant of the deterministic problem has been addressed in [3, 23], in which the
machine is assumed to be stopped periodically for maintenance for a constant time during
the scheduling period. More precisely, in [3], exact mixed integer programming models and
a heuristic algorithm are provided, and in [23], it is shown that the worst-case performance
bound of the heuristic algorithm presented in [3] is 2 and that there is no polynomial
time approximation algorithm with a worst-case performance bound less than 2 unless
P = NP .

In this paper, we focus on a robust scheduling problem in which the duration of the
single maintenance activity is not known in advance. Many authors have addressed robust
optimization problems in several fields in the last twenty years, in order to take care of
incomplete or erroneous data through a proactive approach. In [20] a general framework

1In an SPT sequence the jobs are ordered according to non-decreasing values of their processing times.
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for explicitly incorporating conflicting objectives and model robustness is proposed, while
in [14] several robustness criteria are discussed.

In robust discrete optimization problems, usually one assumes that, due to the vari-
ability of some parameters, a set of possible scenarios is defined. The robust approach
consists of minimizing the worst case “performance” of a solution over all scenarios. The
performance, in turn, may be evaluated considering the actual value f(x, s) of a solution
x in scenario s or, its regret i.e., its deviation from an optimal solution value in that
scenario.

On these grounds, different robustness measures have been proposed in the literature.
Kouvelis and Yu [14] defined the following three measures to minimize: (1) the maxi-
mum absolute cost over all scenarios (min-max criterion), (2) the maximum deviation
from optimality, i.e., maximum absolute regret criterion, and (3) the maximum relative
deviation from optimality (maximum relative regret criterion). This is the case of [26],
where the authors consider those three criteria for robustness in the context of single-
machine scheduling. Moreover, in [25], Yager introduced the Ordered Weighted Averaging
aggregation measure (OWA). Assigning weights to scenarios, OWA generalizes the tradi-
tional criteria used in decision making under uncertainty such as the maximum, minimum,
average, median, or Hurwicz criterion.

Several works address robustness issues in scheduling problems. In [6], one of the
first papers on this topic, the authors study the problem of minimizing the total comple-
tion time on a single machine, when processing times may vary in given intervals, and
established several properties of robust schedules. Two alternative criteria of schedule
robustness are considered focusing on a given schedule worst-case absolute or relative
deviation from the optimum over all scenarios. For the same problem, a Mixed Integer
Linear (MILP) formulation is proposed in [19] and exact solution methods are analyzed.
The problem of finding the schedule minimizing the maximum regret on a single machine,
with processing times varying in given intervals, has been shown to be NP-hard in [15],
while in [11] approximation algorithms achieving a constant approximation ratio are pro-
posed for the same problem. More recently, the above problem is considered in the more
general setting of total weighted completion time metric: the author proposes an exact
algorithm for this case [22]. A slightly different single machine scheduling problem is
addressed in [17], where job processing times are uncertain, there are sequence-dependent
family setup times and the objective is to obtain robust sequences of job families and
jobs so as minimize the absolute deviation of total completion time from the optimal
solution under the worst-case scenario. The problem of finding the schedule minimizing
the maximum regret on unrelated machines is also considered in [5]. The author proposes
a polynomial time algorithm for determining the regret given a schedule and uses this
result for deriving a MILP formulation for the general problem.

Differently from most of the robust scheduling problems addressed in the literature,
in this paper the processing times of the jobs are deterministic and the uncertainty is
relative to the duration of the maintenance activity, while the objective functions (i.e.,
makespan or total completion time minimization) only depend on the completion times
of the jobs and not on that of the maintenance activity. Preliminary results of this work
have been presented in [7] where the same model is used to describe an analogous problem
in a multi-agent scheduling scenario, similar to, e.g., that in [2].
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The article is organized as follows. In Section 2, we formally define the addressed
robust scheduling problem and give a summary of the results. Sections 3 and 4 are devoted
to present properties of robust schedules when minimizing the makespan and the total
completion time objectives, respectively. Section 5 presents approximation results for the
problem. In Section 6, exact and heuristic algorithms for the robust scheduling problem
of minimizing the total completion time with the maximum absolute regret criterion
are proposed and evaluated through an extensive computational campaign. Conclusions
follow in Section 7.

2 Problem statement

Let J = {1, 2, . . . , n} be a set of n non-preemptive jobs with processing times pj, j =
1, . . . , n, available at time zero to be processed on a single machine. The machine cannot
process any of the jobs during the execution of a maintenance activity, hereafter denoted as
M , which must be performed within a predefined time window [r, d]. The duration of the
maintenance activity M is uncertain and can be regarded as a random variate of a discrete
aleatory variable P . A scenario s corresponds to one realization of P and we denote by
P (s) the realization of P in the scenario s. Clearly, in any feasible schedule of our problem
the maintenance activity can be seen as a single task with processing time P (s). In
particular, we assume a discrete finite set of scenarios S = {smin = s1, s2, . . . , sk = smax}
ordered according to increasing durations of maintenance activity, i.e.,

P (si) < P (si+1) i = 1, . . . , k − 1. (1)

We are interested in scheduling the n jobs together with the maintenance activity so that,
taking into account a given objective function, a certain robustness criterion is minimized.
Two objective functions are considered, namely makespan and total completion time of
the jobs. A formal definition of the four criteria used in this work requires some additional
notation presented hereafter.

In our problem, a solution is just a sequence π of jobs in J . However, in order to define
the performance of a particular solution π, we look at the realization of the random
variable P . More precisely, for all possible scenario s ∈ S, we evaluate the objective
(makespan or total completion time) in the so called realization schedule σ(π, s) which
is built as follows. For a certain duration of the maintenance activity, the realization
schedule processes the jobs in the order specified by π while M is executed at the latest
available time so that: (1) it does not violate the given deadline d and (2) it does not
introduce any unnecessary idle time in the schedule after its release time. In the following
a formal definition of a realization schedule is given.

Definition 1 Given a scenario s ∈ S, the realization P (s) for the maintenance activity
duration, and a sequence π = 〈π1, π2, . . . πn〉 of the jobs in J , let k(s) be the index of the
critical job in π such that∑k(s)−1

i=1
pπi ≤ d− P (s)

∑k(s)

i=1
pπi > d− P (s),
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then the realization schedule σ(π, s) is obtained by scheduling the maintenance activity at
the earliest possible time between jobs πk(s)−1 and πk(s). Hence, the resulting sequence of
jobs in σ(π, s) is 〈π1, . . . πk(s)−1,M, πk(s), . . . πn〉.
See for instance the schedules depicted in Figure 1 The first and fourth Gantt diagrams
represent two realizations schedules corresponding to a sequence π = SPT . Note that
job 2 is processed before or after M depending on the realization value P (s), however
the job sequence remains unchanged. (Similar considerations hold for the two schedules
illustrated in the same figure corresponding to sequence π2.)

For a realization schedule σ(π, s), the completion time Ci(π, s) of the i-th job is

Ci =

{ ∑i
`=1 pπ` i < k(s)∑i
`=1 pπ` + P (S) + max

{
0, r −

∑k(s)−1
`=1 pπ`

}
k(s) ≤ i ≤ n

(2)

The term max
{

0, r −
∑k(s)−1

i=1 pπi

}
measures a possible idle time before the earliest pos-

sible start of the maintenance activity.
The values of the makespan Cmax(π, s) and of the total completion time

∑
Cj(π, s)

are then:

Cmax(π, s) = max
i∈J
{Ci} = Cπn (3)

∑
j∈J

Cj(π, s) =
∑n

j=1
(n− j + 1)pπj+

+ (n− k(s) + 1)

[
P (s) + max{0, r −

∑k(s)−1

j=1
pπj}

]
. (4)

Observe that, since the realization of P is not known a priori, the index of the critical
job and therefore the resulting realization schedule σ(π, s) is not known in advance, too.
The problem consists in finding the sequence π in which the jobs of J will be processed so
that, whatever the duration of the maintenance activity would be, the resulting schedule
is satisfactory in terms of either total completion time or makespan of jobs. In other
words, π must be robust with respect to the variations of P .

Robustness criteria. We are now in the position to give a formal definition of the four
robustness criteria that have been introduced in Section 1. Given a job sequence π, let us
indicate by f(π, s) the value, according to objective function f (i.e., Cmax or

∑
Cj), of a

realization schedule σ(π, s). Moreover, let f ∗(s) be the optimal solution value in scenario
s. We have:

ABS(π) = max
s∈S
{f(π, s)− f ∗(s)} (maximum absolute regret); (5)

REL(π) = max
s∈S

f(π, s)

f ∗(s)
(maximum relative regret); (6)

MM(π) = max
s∈S

f(π, s) (min-max); (7)

OWA(π) =
∑k

i=1
wif(π, s[i]) (ordered weighted averaging); (8)
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where, in (8), s[i] ∈ S is the scenario producing the i-th largest value of the objective
function f , i.e., f(π, s[i]) ≥ f(π, s[i+1]), i = 1, . . . , k−1, and wi is a given weight assigned
to scenario s[i].

For the developments to follow, it is also useful to highlight a general property that
holds for any fixed solution sequence (independently on the objective function and the
objective criterion.)

Observation 2 For any given solution sequence π̄ and scenarios s, s′ ∈ S, if P (s) <
P (s′), then Cj(σ(π̄, s)) ≤ Cj(σ(π̄, s′)), for any job j ∈ J .

The above observation can be easily shown by considering that, in the scenario s, it is
always possible to schedule the jobs in the same positions as in σ(π̄, s′) by introducing a
suitable idle time having duration P (s′)−P (s). Hence, the jobs completion times cannot
be worse in σ(π̄, s) than in σ(π̄, s′). This in turn implies that f(π̄, s) ≤ f(π̄, s′) for any
regular objective function f (as, in particular, Cmax and

∑
Cj).

A straightforward consequence of the above arguments is that s[i] = sk−i+1 for i =
1, . . . , k and therefore Equation (8) can be rewritten as follows:

OWA(π) =
k∑
i=1

wif(π, s[i]) =
∑
s∈S

wsf(π, s). (9)

Given an objective function f depending on the job completion times, a job sequence,
i.e., a solution π, and a certain criterion c ∈ {ABS,REL,MM,OWA}, among those in
Equations (7)–(9), we indicate by cf (π) (or simply, by c(π)) the value of the selected
criterion c corresponding to solution π. As a consequence, we may formally define the
addressed robust scheduling problem as follows.

Robust single-machine Scheduling with Maintenance activity
Problem (RSMP (f, c)):
Given a set J of n jobs with deterministic processing times pj, j = 1, . . . , n,
and a set S of discrete scenarios, corresponding to |S| possible values of the
duration of a maintenance activity M ;
find a sequence π of the jobs such that cf (π) is minimized.

We denote by πROB(f, c) an optimal solution of the above problem RSMP (f, c) with
value c∗ = c(πROB). Whenever it is clear from the context which objective function f and
robustness criterion c we are considering, we use πROB to denote such solution.

Approximation. Also in the context of robust optimization, it is reasonable to inves-
tigate the performance of an algorithm that does not guarantee to find the best robust
solution compared to optimality. In order to properly define the approximation ratio of
an algorithm, we restrict ourselves to consider the set I>0 of instances I of RSMP (f, c)
such that the the value c∗(I) of an optimal solution of I is strictly positive. Then the
approximation ratio ε(A) of algorithm A is given by

ε(A) = sup
I∈I>0

c(π, I)

c∗(I)
(10)
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in which c(π, I) is the value of the sequence determined by algorithm A on instance I.
Clearly, ε(A) > 1.

Summary of results. In this work, for each of the two objective functions and each of
the four robustness measures, we derive several properties.

Scenario Optimality The first one addresses an issue present in several papers in robust
optimization, namely whether the robust solution is also an optimal solution of a
given scenario. In this case we say that our problem has the scenario optimality
property. For makespan minimization, we show that the answer is yes for all four
robustness criteria (see Theorems 7, 9), while when the objective is total completion
time, this is only true if c = MM, i.e., we are looking at a min-max robustness
criterion (see Theorems 11, Observation 14, and, also the discussions in Sections 4.2
and 4.4).

Extremality Another typical assumption in several robust optimization problems is that
uncertain data take values in a given interval. This is the case, for instance, in [6]
where a single machine scheduling problem is addressed with aleatory job processing
times that may assume real values in given intervals (no maintenance activity has
to be performed). The authors consider the total completion time objective (f =∑
Cj) and maximum absolute regret criterion for robustness (c = ABS). They show

that, for any solution sequence, such a maximum regret occurs in special “extreme
point” scenarios. More explicitly, the maximum value of the deviation from the
optimum, for any solution, takes place when all processing times values are equal
either to their minimum or their maximum feasible values.

By slightly extending this concept, in this paper we address the question whether the
worst-case value of the quantity measuring the robustness occurs in correspondence
of an extreme point scenario (in our case, s1 = smin and sk = smax where the duration
of the maintenance M is at its minimum and maximum values, respectively). If it is
the case, we refer to such a situation by saying that the problem has the extremality
property. Clearly, extremality makes sense for c = ABS,REL,MM, while it does
not for the OWA robustness criterion, which is a linear combination of values taken
by the objective in the various scenarios.

We show that for the absolute and relative regret the extremality property does not
hold in general, independently on the makespan or total completion time objective
(see Theorems 10 and 12). On the other hand, for the min-max criterion, the
maximum value for any objective occurs when s = smax and hence the property is
always verified (see Observations 5 and 14).

Approximation The third issue we address regards approximation. In particular in
Section 5, we discuss both the existence of approximation algorithms and whether a
given sequence (i.e., a solution to RSMP (f, c)) can provide good quality solutions
for our problems. We do not address this issue for the case of the maximum absolute
regret criterion (c = ABS). In this case, inapproximability directly follows from the
NP-hardness of the corresponding deterministic problem, as observed in [12].
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Cmax ABS REL MM OWA

Scenario Opt. yes (Thm. 9) yes (Thm. 9) yes (Thm. 7) yes (Thm. 9)

Extremality no (Thm. 10) no (Thm. 10) yes (Obs. 8) —
Approximation not approx. 2 (Cor. 17) FPTAS (Cor. 19) 2 (Cor. 17)

Table 1: Summary of results for Cmax objective.∑
Cj ABS REL MM OWA

Scenario Opt. no (Thm. 11) no (Obs. 13) yes (Obs. 14) no (Obs. 15)

Extremality no (Thm. 12) no (Obs. 13) yes (Obs. 14) —
Approximation not approx. 9/7 (Cor. 20) 9/7 (Cor. 20) 9/7 (Cor. 20)

Table 2: Summary of results for
∑
Cj objective.

Tables 1 and 2 summarize the obtained results.

Complexity and general results. The deterministic problem of scheduling a flexible
maintenance activity with the objective of minimizing the makespan is trivially NP-hard
and this can be easily shown by a reduction from Partition [8]. Furthermore, as shown
in [1], the deterministic problem of scheduling a flexible maintenance activity with the
objective of minimizing total completion time of the jobs is binary NP-hard.

Since the deterministic problem coincides with RSMP (f, c) with a single scenario,
RSMP (f, c) is NP-hard, too, for any robustness criterion c given in (5)–(9) and any
objective function f (i.e., Cmax or

∑
Cj).

Yet, there are a number of polynomially solvable cases. In particular, it is quite easy to
show that the problem of scheduling a flexible maintenance activity within a given due date
with the objective of minimizing jobs total completion time can be solved to optimality by
a SPT-sequence of the jobs (this is also mentioned by [27]). A straightforward consequence
of this fact is the following result.

Observation 3 If the release date of the maintenance activity is r = 0 then, for any
robustness criterion c ∈ {ABS,REL,MM,OWA} and objective function f =

∑
Cj or

f = Cmax, RSMP (f, c) is polynomially solvable and πROB(f, c) = SPT .

3 Makespan minimization

In the following, we study the robustness properties of RSMP (Cmax, c).
We first show that, for any robust criterion c, the robust solution of RSMP (Cmax, c)

belongs to the set of extreme point scenarios. With this aim, in the following we present
some useful observations that allow to characterize the optimal solutions in each scenario.

Recalling that the duration of M increases with the scenario indices (see Equation (1)),
it is straightforward to see that the following observation holds for any job sequence π.

Observation 4 Given a job-sequence π, if the realization schedule σ(π, sj) contains no
idle time then: (1) neither do the realization schedules σ(π, si) in all scenarios si, with i <
j; (2) π is an optimal sequence (i.e., minimizes the makespan) in scenarios sj, sj−1, . . . , s1.

8



An obvious consequence of Observation 4 is that, if the realization schedule σ(π, smax)
does not contain an idle time (in scenario smax), then the realization schedules σ(π, s) are
optimal and do not contain idle times in any scenario s ∈ S.

Observation 5 Suppose, in scenario si, a realization schedule σ(π, si) contains idle time.
Recalling the definition of critical job k(s) for s ∈ S (see Definition 1), one has:

1.
∑k(si)−1

h=1 pπh < r, since otherwise, in σ(π, si), M might start immediately after the
jobs π1, . . . πk(si)−1, without idle time;

2. the maintenance activity starts at time r in σ(π, si);

3. all realization schedules σ(π, sj) for any scenario sj with j > i contain an idle time

of the same duration r −
∑k(si)−1

h=1 pπh.

A consequence of the above observation is Observation 6.

Observation 6 For any job-sequence π, an index i exists, with 0 ≤ i ≤ |S|, such that

σ(π, sj) has no idle2 for any scenario sj with j ≤ i and has idle r−
∑k(smax)−1

h=1 pπh for any
scenario sj with j > i.

Let us consider now RSMP (Cmax, c) with the min-max criterion (7), i.e., c = MM .
When looking at an optimal sequence π∗s for a given scenario s, we note that any solution
minimizing the machine idle minimizes the schedule makespan as well. Let J∗(v) indi-
cate a subset of jobs of maximum total processing time such that

∑
j∈J∗(v) pj ≤ v (i.e.,∑

j∈J∗(v) pi ≥
∑

j∈J ′ pj for all J ′ ⊆ J such that
∑

j∈J ′ pj ≤ v). Let us consider now the set

J∗(d−P (smax)), i.e., a subset of jobs of maximum total processing time that can be sched-
uled before M in scenario smax. When s = smax, let π be a sequence that sequences first a
set of jobs of total processing time

∑
i∈J∗(d−P (smax))

pi and let τ = r −
∑

i∈J∗(d−P (smax))
pi,

that is the idle time of the realization schedule σ(π, smax). Since σ(π, smax) minimizes
the machine idle in scenario smax, then it is optimal in this scenario (i.e., minimizes the
makespan).

In the following theorem, we show that for RSMP (Cmax,MM) there exists a robust
solution minimizing the machine idle in scenario smax.

Theorem 7 A robust solution π exists for RSMP (Cmax,MM), that sequences first a set
of jobs of total processing time

∑
i∈J∗(d−P (smax))

pi, i.e., that is optimal in scenario smax.

Proof. We first observe that if
∑

i∈J∗(d−P (smax))
pi ≥ r the thesis trivially holds. In this

case, by Observation 4, in any scenario s, π is optimal since the realization schedule does
not contain idle times and Cmax(π, s) =

∑
j∈J pj + P (s).

Suppose then τ = r −
∑

i∈J∗(d−P (smax))
pi = r −

∑
i∈J∗(r) pi > 0. Then, by definition

of J∗(d − P (smax)), an optimal sequence in scenario smax has an idle time of τ , and by
definition, the robust solution π is optimal in this scenario.

2If i = 0 then idle time exists in all scenarios.
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Note that, by Observation 6, π has an idle smaller than or equal to τ in any scenario,
and, consequently, the scenario with the maximum makespan is always smax. Since π is
optimal in scenario smax (as it minimizes the idle time), we have that, π minimizes the
robustness criterion (7) for the makespan objective. �

Observation 8 A straightforward consequence of Theorem 7, that the extremality prop-
erty holds for RSMP (Cmax,MM), i.e., the scenario maximizing the absolute deviation
from the optimum belongs to the set of extreme point scenarios (in our problem, smin or
smax). In this case, for any solution sequence π, the min-max robustness measure always
takes its value from the makespan of the realization schedule in the extreme scenario smax.

Let us consider now the absolute regret (5), the relative regret (6) and the OWA (9)
criteria. In these cases, a solution minimizing the machine idle in scenario smax could
not be a robust solution. On the other hand, the next Theorem 9 shows that a robust
solution of RSMP (Cmax, c), with c ∈ {ABS,REL,OWA}, either minimizes the machine
idle in scenario smax, i.e., is optimal in scenario smax, or it is optimal in scenario smin.

Theorem 9 There is a robust solution π of RSMP (Cmax, c) that is optimal in scenario
smax or in scenario smin, for any given criterion c ∈ {ABS,REL,OWA}.

Proof. Given any robust criterion c in (5)–(9), let us suppose, by contradiction, that the
robust solution πROB of problem RSMP (Cmax, c) is optimal neither in scenario smax nor
in scenario smin.

As a consequence, πROB yields a strictly positive idle time τ > 0 in scenario smin (or,
in other words, the realization schedule σ(π′, smin) causes a machine idle before the main-
tenance activity), otherwise πROB would be optimal in that scenario. By Observation 6,
it follows that πROB is such that σ(πROB, s) has a machine idle equal to τ for any scenario
s ∈ S.

Let 0 ≤ τ ∗ ≤ τ be the minimum machine idle time in scenario smax, that is, the
machine idle time in the realization schedule of an optimal sequence π∗smax

in scenario
smax. Again, by Observation 6, π∗smax

has an idle not larger than τ ∗ ≤ τ in all the
scenarios in S. Hence, the makespan of π∗smax

is not worse than those of πROB in all
scenarios, i.e., Cmax(σ(π∗, s)) ≤ Cmax(σ(πROB, s)) for all s in S, and strictly better in at
least one (otherwise πROB would be optimal in smax), which contradicts that πROB is a
robust solution. �

In conclusion, Theorems 7 and 9 imply the scenario-optimality property when the
objective funtion is the makespan minimization under any robustness criterion (5)–(9).

Let us consider now the extremality property. Recall that such a property holds when
the worst-case value of the quantity measuring the robustness occurs in correspondence of
an extreme scenario, that is smin or smax. As already stated, extremality makes sense only
for the ABS, REL andMM robustness criteria. Note that Theorem 9 does not imply any-
thing about the extremality property for RSMP (Cmax, ABS) and RSMP (Cmax, REL).
In fact, the following theorem shows that the extremality property does not hold when
the robustness criterion is ABS or REL.
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Theorem 10 For RSMP (Cmax,ABS) and RSMP (Cmax,REL), the extremality property
does not hold.

Proof. To prove the thesis, we are showing that there is an instance having a solution3

in which the maximum value of the (absolute or relative) regret occurs in a scenario
s such that the maintenance activity has not its maximum or minimum duration (i.e.,
s 6∈ {smin, smax}).

Consider the following instance of RSMP (Cmax, c) with n = 3 jobs having processing
times p1 = 7, p2 = 8 and p3 = 11. Assume there are 3 scenarios with the following
maintenance activity durations P (s1) = 1, P (s2) = 7, and P (s3) = 10. Moreover, let
r = 10 and d = 20. The optimal makespan values in the three scenarios s1, s2, and s3 are
27, 33, and 38, respectively. There are two robust solutions for criteria ABS and REL,
namely, πROB ∈ {〈2, 3, 1〉, 〈2, 1, 3〉}, which are also optimal in scenarios s1 and s3 (with
no idle times). The maximum absolute regret value is therefore ABS = 2 obtained in
scenario s2. In fact, in this scenario, the makespan of πROB is Cmax(σ(πROB, s2)) = 35,
while an optimal solution π∗s2 schedules job 3 in the first position, in order to generate no
idle time, and produce a makespan of 33.

Also for REL criterion, πROB has its maximum relative regret value in scenario s2,
which is equal to 35

33
. �

Observe that, for the OWA criterion, the distribution of weights may be such that
the optimal solution in a single scenario, say s′, prevails over any other choice; while
the optimal sequence for scenario s′ does not minimize the idle times in other scenarios.
Hence, the extremality property does not hold for OWA, too.

4 Total Completion time minimization

In this section, we study the robustness properties of RSMP (
∑
Cj, c).

4.1 Absolute Regret

In order to characterize a robust solution of RSMP (
∑
Cj,ABS), we observe that some

natural properties that hold for several robust optimization problems similar to ours do
not apply to the present setting. In this regard, we present two negative results in the
theorems hereafter.

When there is a limited number of scenarios, it comes natural to use as a robust
solution a sequence which is optimal in at least one scenario. This could be pursued
by iteratively applying the pseudopolynomial dynamic program proposed in [27]. Unfor-
tunately, this approach, in general, does not yield a solution minimizing the maximum
regret as shown below.

Theorem 11 A robust solution of RSMP (
∑
Cj,ABS) may not correspond to the opti-

mal solution of any of the scenarios in S.

11
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Figure 1: The realization schedules in the proof of Theorem 11.

Proof. The following example proves the thesis. Consider an instance with four jobs
J = {1, 2, 3, 4} with processing times p1 = 4, p2 = 5, p3 = 7, and p4 = Q with Q > 10.
Let the release time of the maintenance activity be r = 7 and its deadline d = 13. There
are two scenarios and the two possible values for P (s) are: P (s1) = 4 and P (s2) = 6.

First note that job 4 cannot be processed before the maintenance activity in both
scenarios, so, since it is also the longest job, it is always beneficial to schedule it as the
last job. By simple enumeration we may observe that there are only three nondominated
sequences which are: π1 =< 1, 2, 3, 4 >, π2 =< 2, 1, 3, 4 >, and π3 =< 3, 1, 2, 4 >.
In scenario s1 in which P (s1) = 4, the realization schedules for the above three sequences
(see Figure 1) have value:

∑
Cj(π

1, s1) = 4 + 9 + 20 + 20 +Q = 53 +Q,
∑
Cj(π

2, s1) =
5 + 9 + 20 + 20 +Q = 54 +Q, and

∑
Cj(π

3, s1) = 7 + 15 + 20 + 20 +Q = 62 +Q. Hence
in this scenario, the optimal sequence is π1 and the absolute regret of π2 equals 1, while
the regret of π3 is 9.
Consider now the second scenario with P (s2) = 6. Any feasible schedule permits at most
one job before the maintenance activity. The realization schedules are depicted in Figure
1 and their total completion time values are:

∑
Cj(π

1, s2) = 4+18+25+25+Q = 72+Q,∑
Cj(π

2, s2) = 5 + 17 + 24 + 24 +Q = 70 +Q, and
∑
Cj(π

3, s2) = 7 + 17 + 22 + 22 +Q =
68 + Q. So in this case, the optimal sequence is π3 and the absolute regret of π1 is 4,
while the absolute regret of π2 is equal to 2.

Summarizing, the maximum regret of π1 in the two scenarios is 4, that of π2 is 2, and
π3 is 9. So, in this case, c∗ = 2 and πROB(

∑
Cj,ABS) = π2, which is not optimal in any

of the two scenarios. �

From Section 2, we recall that the extremality property holds for a certain robust
problem, if the scenario maximizing the absolute deviation from the optimum belongs to
the set of extreme point scenarios, i.e., those with minimum or maximum processing times
values, in our case smin and smax. It is possible to show that for RSMP (

∑
Cj,ABS) this

property does not hold.

3In our example, we are considering solutions which are—incidentally—robust, although this is not
required to prove the result.
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Theorem 12 There exist an instance I of RSMP (
∑
Cj,ABS) and a sequence π of the

jobs such that the maximum absolute regret does not correspond to an extreme value of
the maintenance activity duration.

Proof. Consider an instance of RSMP (
∑
Cj,ABS) with 5 jobs having processing times

p1 = 1, p2 = 3, p3 = 4, p4 = 10, p5 = 12, and let r = 0, d = 17 and P ∈ [8, 10] ∩ Z. Since
r = 0 the optimal solution for any scenario can be obtained by sequencing the jobs in
SPT order, that is in the given order. In interval [8, 10] there are three (integer) scenarios:
s1 and s3 correspond to the extreme point scenario, namely P (s1) = 8 and P (s3) = 10,
while s2 is an intermediate scenario with P (s2) = 9.

Consider now the sequence π = 〈1, 2, 4, 3, 5〉. The total completion times for π in the
three scenarios are

∑
Cj(σ(π, s1)) = 91,

∑
Cj(σ(π, s2)) = 94, and

∑
Cj(σ(π, s3)) =

97, while the optimal solutions π∗1, π∗2 and π∗3 in the three scenarios have values∑
Cj(σ(π∗1, s1)) = 77,

∑
Cj(σ(π∗2, s2)) = 79, and

∑
Cj(σ(π∗3, s3)) = 91.

It is easy to see that the maximum (absolute) regret for π corresponds to the inter-
mediate scenario s2 thus proving the thesis. �

4.2 Relative Regret

In this section we are looking at RSMP (
∑
Cj,REL), the problem in which we are inter-

ested in minimizing the maximum relative regret as defined by Equation (6) with total
completion objective.

By using the same instances in the proofs of Theorem 11 and Theorem 12, we may
easily extend those negative results to the case of the maximum relative regret criterion,
i.e, for RSMP (

∑
Cj,REL) there is no correspondence between robust and scenario-

optimal solutions and the extremality property does not hold.
In fact, as for Theorem 11, considering the relative deviations from the optima, we have

that (for any positive M) the maximum relative regrets of π1, π2, and π3 are REL(π1) =
72+M
68+M

, REL(π2) = 70+M
68+M

, and REL(π3) = 62+M
53+M

, respectively. As a consequence, since

REL(π2) = min{REL(π1),REL(π2),REL(π3)}, πROB = π2 is the min-max relative regret
solution.

Analogously, in the proof of Theorem 12, it is not hard to to verify that both the
maximum values of absolute and relative regret for π correspond to the intermediate
scenario s2 thus proving the thesis. In conclusion, we have the following:

Observation 13 Theorems 11 and 12 extend to problem RSMP (
∑
Cj, REL).

4.3 Min-max criterion

Consider now criterion (7) and problem RSMP (
∑
Cj,MM). By Observation 2, we have

that the maximum value of the objective function is attained when the flexible mainte-
nance activity M has a duration equal to P (smax).

Hence, the following observation is straightforward.

Observation 14 For RSMP (
∑
Cj,MM):
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1. For any fixed job sequence π, if i < h (and hence si < sh) then
∑

j∈J Cj(σ(π, si)) ≤∑
j∈J Cj(σ(π, sh)), i.e., the maximum value of the total completion time is obtained

in the extreme scenario smax.

2. Hence, a robust solution πROB corresponds to an optimum in scenario smax, i.e.,
c∗ =

∑
j∈J Cj(σ(πROB, smax)).

In other words, the extremality property holds for RSMP (
∑
Cj,MM) (and this can be

done in pseudopolynomial time as described in [27]).

4.4 Ordered Weighted Average

Let us consider now RSMP (
∑
Cj,OWA). First, recall that, with this robustness crite-

rion, there is no point in considering the extremality property.
Furthermore, by using the same instance of the proof of Theorem 11 and by weighting

the two scenarios with the same weight, i.e. w1 = w2 = 1/2 it is quite easy to show that
the robust solution may not correspond to the optimal solution of one of the scenarios.
Summarizing, we have the following:

Observation 15 Theorems 11 and 12 extend to problem RSMP (
∑
Cj,OWA).

5 Approximation Properties

In this section, approximation results for RSMP (f, c) are reported. Note that, here, as
observed in Section 2, we do not consider approximation properties for RSMP (f,ABS),
since—as observed in [12]—when the deterministic (single-scenario) problem is NP-hard
the corresponding robust version with c = ABS is not at all approximable unless P =
NP .

We first prove a general approximation result holding for RSMP (f, c) for any regular
objective function f . It states that if we are able to find a fixed sequence π̄ which is
a ε-approximate solution for the (deterministic) single-scenario version of the problem,
in all scenarios s ∈ S, then π̄ is also a ε-approximate solution of the robust problem
RSMP (f, c). This is the case when the algorithm provides a sequence based on a priority
rule independent on the duration of the maintenance activity, such as, for instance, the
SPT rule.

Theorem 16 Let f be a regular objective function and c ∈ {REL,MM,OWA} a robust-
ness criterion. If algorithm A is an ε-approximation algorithm for the (deterministic)
single-scenario version of RSMP (f, c) that returns the same sequence π̄ for all scenarios
s ∈ S, then π̄ is also an ε-approximate solution of the robust problem RSMP (f, c).

Proof. Let us consider the robust problem RSMP (f, c), and let c̄ denote the value of
the solution returned by π̄ in the worst scenario, while πROB and c∗ are, respectively, the
robust solution and its value according to the considered robustness criterion c. Hereafter,
we show that, for each c ∈ {REL,MM,OWA}, c̄ ≤ εc∗ and hence the thesis holds.
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Case (1): c = MM. Let us first consider the min-max robustness criterion. Then,

πROB = arg min
π

max
s∈S
{f(π, s)}

and, since in the case of minimax criterion, c∗ is given by the measure of the objective in
the worst possible scenario we have: c∗ = maxs∈S

{
f(πROB, s)

}
. Hence

c̄ = max
s∈S
{f(π̄, s)} = f(π̄, s′) ≤ εf ∗s′ ≤ εf(πROB, s′) ≤ εmax

s∈S

{
f(πROB, s)

}
= εc∗.

Case (2): c = REL. For the relative regret robustness criterion we have

πROB = arg min
π

max
s∈S

{
f(π, s)

f ∗s

}
and c∗ = max

s∈S

{
f(πROB, s)

f ∗s

}
.

Clearly c∗ ≥ 1 and therefore, if ŝ ∈ S is a scenario corresponding to the worst case
objective ratio, the following inequalities hold:

z̄ = max
s∈S

{
f(π̄, s)

f ∗s

}
=
f(π̄, ŝ)

f ∗ŝ
≤ ε ≤ εc∗.

Case (3): c = OWA. In this case, we have

πROB = arg min
π

{∑
s∈S

λsf(π, s)

}
and c∗ =

∑
s∈S

λsf(πROB, s).

Therefore
z̄ =

∑
s∈S

λsf(π̄, s) ≤
∑
s∈S

λsεf
∗
s ≤ ε

∑
s∈S

λsf(πROB, s) = εc∗.

�

5.1 Makespan Minimization

Recall that, in RSMP (Cmax, c), whatever the solution sequence π, the maximum among
the makespan values of the realization schedules corresponds to Cmax(σ(π, smax)), i.e.,
the solution value for the scenario smax, when the maintenance activity has the largest
duration. As a consequence, under the min-max robustness criterion, any sequence π̃
within a constant ratio α > 1 from an optimal solution for scenario smax is also an α-
approximating solution of RSMP (Cmax,MM), i.e.,

MM(π̃) = Cmax(σ(π̃, smax)) ≤ αCmax(σ(π∗smax
, smax)) = αc∗ (11)

It is easy to observe that an arbitrary sequence always produces a makespan not larger
than twice the optimal solution. As a consequence, a corollary of Theorem 16 is that:

Corollary 17 For c ∈ {REL,MM,OWA}, RSMP (Cmax, c) admits a 2-approximation
algorithm.
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For RSMP (Cmax,MM), we are able to obtain a better approximation ratio by using
any ε-approximate algorithm4 A for Subset Sum [9]. Indeed, in the proof of the following
theorem, we show that, by exploiting an ε-approximate algorithm A for the Subset Sum
problem it is possible to obtain an ε approximation for our problem, where ε ≤ min{1 +
θ, 2− ε} and θ ≤ 1, defined below, is roughly the ratio between the total processing time
of the jobs processed before the maintenance activity and the maximum makespan in an
optimal solution.

Theorem 18 For problem RSMP (Cmax,MM) there is a ε-approximate algorithm, where
ε = 1 + (1 − ε)θ}, θ = (d − P (smax)/(P (smax) +

∑
j∈J pj), and ε is the best (largest)

approximation ratio for Subset Sum.

Proof. In its optimization format, a generic instance Subset Sum is defined as follows:
Given a set N of n positive integers a1, a2, . . . , an and a bound B > 0, define a subset
N∗ ⊆ N whose sum is as large as possible but not greater than B. Suppose there is an
algorithm A that, for any instance of Subset Sum, always returns a subset NA ⊆ N
such that ∑

j∈NA

aj ≥ ε
∑
j∈N∗

aj (12)

for some fixed ε ≤ 1.
Consider now an optimal solution π∗ for the problem of minimizing Cmax in the sce-

nario smax. Denote by C∗max the value of such a minimum makespan. The associated
optimal realization schedule σ(π∗, smax), schedules a set N∗ ⊆ J of jobs before M and N∗

corresponds to an optimal solution set of the above mentioned Subset Sum problem,
with aj = pj and B = d− P (smax). Let p(N∗) be the total processing time of the jobs in
N∗. Then C∗max = max{r, p(N∗)} + P (smax) + (p(J) − p(N∗)), where p(J) =

∑
j∈J pj is

the total processing time of all jobs.
Consider now another solution πA obtained by sequencing first the jobs in a set

NA ⊆ J returned by Algorithm A, where again B = d − P (smax). Let p(NA) be the
total processing time of the jobs in NA and let CA

max be the makespan Cmax(σ(πA, smax))
of the realization schedule obtained by πA. Clearly, p(NA) ≥ ε p(N∗) and CA

max =
max{r, p(NA)}+ P (smax) + (p(J)− p(NA)).

Assume first p(N∗) < r, as p(NA) ≤ p(N∗) then

CA
max − C∗max = p(N∗)− p(NA) ≤ (1− ε)p(N∗). (13)

As p(N∗) ≤ C∗max, there exists θ ≤ 1 such that p(N∗) ≤ θ C∗max. Letting ε = 1 + θ − θε,
we have

CA
max ≤ (1− ε)p(N∗) + C∗max ≤ εC∗max. (14)

4Different from Equation (10), since we are dealing with a maximization problem, here ε < 1 indicates
a lower bound on the ratio between the value of the solution obtained by an approximation algorithm
and the optimum.
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If p(NA) ≤ r < p(N∗)(≤ r′), we have that Equation (13) becomes CA
max − C∗max =

r−p(NA) ≤ p(N∗)−p(NA) and Equation (14) still holds. The remaining case p(NA) > r
is trivial: the sequence p(NA) is in fact an optimal one.

In conclusion, due to (11), there is an ε-approximation algorithm for
RSMP (Cmax,MM). �

Note that ε ≤ min{1+θ, 2−ε} so, if θ is small (for instance when r << p(J)+P (smax))
or if ε is close to 1 (e.g., A is good approximation algorithm for Subset Sum), then there
is a good approximation ratio for the robust problem.

So, due to the above theorem and the fact that Subset Sum problem admits a
Fully Polynomial Time Approximation Scheme (FPTAS) [9], the following corollary is
immediate.

Corollary 19 Problem RSMP (Cmax,MM) admits a FPTAS.

Note that Corollary 19 is also implied by the results provided in the paper by He et al. [10]
(dealing with the deterministic version of the problem). However we point out that the
computational complexity O(kn2/ε) derived by using their approach is larger than the
one we can obtain running the fastest FPTAS for Subset Sum as illustrated in the proof
of Theorem 18, with final complexity smaller than O(n/ε) [13].

5.2 Total Completion Time Minimization

When r > 0, as shown in [27], SPT is a 9/7-approximation algorithm for the deterministic
problem of scheduling a maintenance activity of a fixed duration, with the objective of
minimizing the total completion time. Clearly, in the robust version of the same problem,
SPT produces a sequence not larger than 9/7 of the scenario optimum, for all the scenarios.
Hence, by Theorem 16, the following corollary holds:

Corollary 20 SPT is a 9/7-approximation algorithm for RSMP (
∑
Cj, c) when c ∈

{REL,MM,OWA}.

6 Solution algorithms for RSMP (
∑
Cj,ABS)

In this section, we are dealing with computing a robust solution for RSMP (
∑
Cj,ABS).

To this purpose we designed exact and heurisic algorithms, whose performance are assessed
through a computational study. We focus on this special problem since, as discussed in the
preceding sections, it is apparently the hardest one among those illustrated above: Indeed,
when considering other robustness criteria, namely, relative regret, min-max, and OWA,
there are simple algorithms guaranteeing a-priori small errors (and achieving outstanding
results in the average case).

Hereafter, we first present a Mixed Integer Linear Programming formulation of the
problem and simple heuristic algorithms. Then, in order to compare the exact and the
heuristic approaches a computational campaign is performed.
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6.1 A Mixed Integer Linear Programming formulation

A Mixed Integer Linear Programming formulations of the problem can be written by
explicitly considering all possible scenarios in the finite set S, i.e., all possible realizations
P (s) and the values

∑
C∗j (s) of the corresponding optimal solutions (i.e., minimum total

completion time of the jobs in the scenario s).
Hereafter, we present a MILP model for RSMP (

∑
Cj,ABS) in which the

∑
C∗j (s)

are considered as input data. A second MILP, that can be found in [7], is here omitted
since it is outperformed by the one described below.

Binary variable xjh, defined for all jobs j ∈ J , indicates whether job j is the h-th
job in the sequence π. Note that, if such a job is preceded by the maintenance activity
in a scenario s, then it is actually in the (h + 1)-th position of the realization schedule
σ(π, s). We use an additional set of binary variables, defined for all s ∈ S, to control
the position of the maintenance activity M : In particular, yh(s) indicates whether M is
scheduled between the (h− 1)-th and h-th jobs in σ(π, s), for all h = 2, . . . , n, while y1(s)
and yn+1(s) are equal to 1 if M is scheduled before and after all the jobs, respectively.
Note that, differently from x ∈ {0, 1}n2

, these variables depend on the realization of P
and therefore, in general, they take different values depending on the particular scenario
s. Variables x ∈ {0, 1}n2

, together with the position of the maintenance activity, actually
define our solution schedule.

Variable Ch(s) is defined for all positions h = 1, . . . , n and all scenarios s ∈ S, and
denotes (an upper bound on) the completion times of the job in position h in π. Similarly,
variable CM(s), defined for all scenarios, indicates the completion time of the maintenance
activity, in σ(π, s).

In the following model we also use

θh(s) =
∑
j∈J

pjxjh h = 1, . . . , n, s ∈ S (15)

αh(s) =
h∑
i=1

yi(s) h = 1, . . . , n, s ∈ S (16)

θh(s) refers to the processing time of the job in position h of π while, αh(s) takes value 1
if the maintenance activity is placed before the h-th job in σ(π, s). The absolute regret
value corresponding to the solution given by sequence π in the scenario s ∈ S is then∑n

h=1Ch(s) − C̄∗(s), where C̄∗(s) =
∑

j∈J C
∗
j (s) is the optimal solution value of the

problem in the scenario s ∈ S.
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Hence, the proposed MILP model is the following:

min max
s∈S

{
n∑
h=1

Ch(s)− C̄∗(s)

}
(17)

n∑
h=1

xjh = 1 j ∈ J (18)∑
j∈J

xjh = 1 h = 1, . . . , n (19)

n+1∑
h=1

yh(s) = 1 s ∈ S (20)

Ch(s) ≥ Ch−1(s) + θh(s) h = 1, . . . , n, s ∈ S (21)

Ch(s) ≥ CM(s) + θh(s)−Q(1− αh(s)) h = 1, . . . , n, s ∈ S (22)

CM(s) ≥ Ch(s) + P (s)−Qαh(s) h = 1, . . . , n, s ∈ S (23)

CM(s) ≥ r + P (s) s ∈ S (24)

CM(s) ≤ d s ∈ S (25)

xjh ∈ {0, 1} j ∈ J, h = 1, . . . , n (26)

yh(s) ∈ {0, 1} and Ch(s) ≥ 0 h = 1, . . . , n, s ∈ S (27)

CM(s) ≥ 0 s ∈ S (28)

Being θh(s) and αh(s) quantities dependent on xjh and yh(s) according to (15) and
(16), to improve readability we omit their definition as variables in program (17)–(28).

The first three constraints are standard assignment constraints. Additional constraints
rule the values Ch(s) of the completion times, in the different scenarios. Constraints (21)
and (22) define a lower bound on the completion times of jobs (C0 is set equal to zero). In
constraints (22), Q is a suitable large number that can be set equal to the total processing
time of the jobs (including the processing time of the maintenance activity). Constraints
(23) and (24) define a lower bound on the completion time of the maintenance activity,
and constraints (25) set the maximum completion time of the maintenance activity. The
objective function, i.e. the maximum regret, can be easily linearized.
The number of variables and constraints in the above MILP formulation is O(n2 + n|S|)
and O(n|S|), respectively.

6.2 Heuristic algorithms

In this section, we present some simple heuristic algorithms for RSMP (
∑
Cj,ABS),

which have been implemented and tested as illustrated in Section 6.3. We know from [7]
that the worst case approximation ratio of the SPT algorithm may be arbitrarily large,
however it is expected that SPT performs well in the average case and therefore it is
worth to assess its performance in practice. Moreover, two of the proposed procedures are
based on a local search mechanism which takes the SPT ordering as an initial solution.
Together with SPT and the local search procedures, we also considered the additional
solution provided by πA, i.e., the optimal sequence for one scenario which minimizes the
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worst-case absolute regret. More precisely, let π∗s be an optimal solution sequence for the
(deterministic) problem associated to scenario s ∈ S, i.e.

∑
Cj(σ(π∗s , s)) = C̄∗(s). Then

we use the sequence πA = π∗ς , where

ς = arg min
s∈S

{
max
s′∈S

{∑
j∈J

Cj(σ(π∗s , s
′))− C̄∗(s′)

}}
. (29)

For the sake of shortness, in Section 6.3, the solution πA is referred to as BS (Best
Scenario-optimum).

Hereafter, the two simple local search algorithms, called LS1 and LS2, are described.

6.2.1 Heuristic LS1

Starting from an initial solution, Algorithm LS1 is a local search algorithm that changes,
if it is beneficial, the positions of two jobs scheduled after and before the maintenance
activity M .

More precisely, for a given scenario s ∈ S and the corresponding realization schedule
σ(SPT, s), we evaluate the following solution sequences: For each job j, scheduled before
M in σ(SPT, s), we consider the sequence obtained by exchanging the positions of j and
the first job k placed immediately after the maintenance activity M .

Eventually, the local search algorithm outputs the best sequence π (i.e., the one min-
imizing ABS(π)) among those obtained by applying the above local search phase to all
possible realization schedules σ(SPT, s), for each scenario s ∈ S.

6.2.2 Heuristic LS2

Starting from an initial solution, Algorithm LS2 also tries to change the positions of two
jobs, but in a “symmetric way” with respect to LS1.

For a given scenario s ∈ S and the corresponding realization schedule σ(SPT, s), the
last job k placed before the maintenance activity M is moved right after M , and a job j
that was placed after M in σ(SPT, s) is moved to the original position of k. As for LS1,
the actual job j which is eventually assigned to the former position of k is selected by a
similar local search phase which evaluates, one by one, the sequences obtained exchanging
j (scheduled after the maintenance activity M in σ(SPT, s)) and k.

The heuristic returns the best sequence π (i.e., the one minimizing ABS(π)) obtained
by applying the above local search phase to the realization schedules σ(SPT, s) of all
possible scenarios s ∈ S.

6.3 Computational results

In order to assess the quality of the proposed MILP formulation and the heuristic algo-
rithms, we performed a number of tests on several pseudo-randomly generated instances.
We generated 96 classes of 20 instances each, varying the following parameters:

• The number of jobs: n ∈ {25, 50, 75, 100}.
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s ∈ S1: s11 s12 s13
P (s): 12 25 50

s ∈ S2: s21 s22 s23
P (s): 100 125 150

Table 3: Test instances: description of the scenarios.

• The processing times of the jobs: uniformly distributed in interval [1, 25].

• The scenario sets S: two sets of different scenarios have been considered for the du-
ration of the maintenance activity, denoted as S1 = {s11, s12, s13} and S2 = {s21, s22, s23}.
The corresponding durations for the maintenance activity M are given in Table 3.
Those values have been chosen in such a way that, in S1 the durations of M have
similar order of magnitude to the jobs processing times, while in S2 M is much
longer than the jobs.

• The left boundary r of the allotted time window for M : In each instance, it is
computed as follows,

r =

⌊
α

n∑
i=1

p(i)

⌋
,

with four different values for α, namely α ∈ {0.1, 0.25, 0.5, 0.75}. Therefore the
values taken by α indicate the location of the maintenance time window within the
schedule: at the very beginning, in the first quarter, in the middle of the schedule,
or in the last quarter.

• The right boundary d of the maintenance time window is set as follows

d = r + P (smax) + bβP (smax)c ,

with four different values for β: β ∈ {0, 0.01, 0.025, 0.05}. Hence, a larger value
of β indicates a greater allowance of the maintenance time window, i.e., larger
intervals available for scheduling M . The slack time bβP (smax)c for M , is therefore
proportional to β.

All the heuristic algorithms described above were run on a laptop equipped with 2.2
Ghz processor and 8 Gb of RAM. The MILP formulation has been solved by Cplex 12.5
running on a PC, equipped with Intel i7 processor and 64 Gb of RAM.

Tables 4–6 illustrate the experimental results on the two sets of scenarios S1 and
S2. In Tables 4 and Tables 5, the objective function values obtained by the different
algorithms are reported. There, the first three columns refer to the instance parameters;
more precisely, column 1 indicates the number of jobs n, while the information on the
maintenance activity time window are in columns 2 (the position of the window in the
overall schedule depends on α) and 3 (the slack with respect to the value of Mdepends on
β). Column 4 reports the optimal solution obtained by the MILP formulation presented
in Section 6.1, columns 5–6 respectively are the solution attained by the SPT rule and
the Best Scenario-optimum (as defined in (29)), and columns 7–8 show the worst case
absolute regret attained by the heuristic algorithms, LS1 and LS2, introduced in Section

21



n α β Opt SPT BS LS1 LS2

25 0.1 0 6.90 52.95 9.45 10.20 14.35
25 0.1 0.01 4.55 34.35 9.75 6.20 7.60
25 0.1 0.025 3.30 27.25 7.85 4.45 5.95
25 0.1 0.05 2.95 23.70 7.50 3.85 5.05
25 0.25 0 13.70 71.60 18.55 24.45 24.15
25 0.25 0.01 10.50 57.85 16.10 18.20 18.45
25 0.25 0.025 5.20 32.80 9.40 7.90 7.75
25 0.25 0.05 3.80 24.40 4.25 5.45 5.50
25 0.5 0 19.50 54.20 43.80 28.35 33.40
25 0.5 0.01 14.55 44.05 34.20 22.8 25.90
25 0.5 0.025 13.25 39.00 30.75 20.15 22.70
25 0.5 0.05 8.15 24.00 15.50 11.75 13.05
25 0.75 0 4.40 9.65 9.65 4.80 4.80
25 0.75 0.01 3.90 8.70 8.30 4.20 4.20
25 0.75 0.025 3.35 7.90 7.85 3.65 3.50
25 0.75 0.05 3.35 7.90 7.45 3.65 3.50
50 0.1 0 11.70 129.50 36.65 24.30 30.65
50 0.1 0.01 10.70 120.30 32.55 19.70 25.25
50 0.1 0.025 8.85 98.75 24.85 14.50 21.50
50 0.1 0.05 4.45 57.45 16.70 7.65 11.35
50 0.25 0 25.40 164.80 44.80 54.20 63.60
50 0.25 0.01 16.20 106.45 33.50 30.75 37.30
50 0.25 0.025 14.10 95.90 27.15 27.05 32.90
50 0.25 0.05 11.00 76.15 19.10 20.90 27.15
50 0.5 0 22.35 81.90 41.55 43.00 42.65
50 0.5 0.01 19.75 72.15 33.50 35.70 36.70
50 0.5 0.025 19.05 72.15 35.40 35.65 36.55
50 0.5 0.05 17.20 65.20 30.95 31.30 33.45
50 0.75 0 12.05 28.40 27.95 18.00 19.15
50 0.75 0.01 11.70 28.45 27.40 18.00 19.45
50 0.75 0.025 11.65 28.45 27.40 18.00 19.00
50 0.75 0.05 10.85 26.40 25.60 16.45 17.75
75 0.1 0 14.75 186.85 67.75 31.10 43.00
75 0.1 0.01 9.50 134.75 37.85 18.55 27.90
75 0.1 0.025 5.55 91.65 27.20 11.05 15.15
75 0.1 0.05 3.45 63.50 23.55 6.85 9.45
75 0.25 0 25.90 202.30 77.25 61.45 65.20
75 0.25 0.01 15.90 142.30 43.40 36.00 35.45
75 0.25 0.025 15.85 142.30 43.15 36.00 34.20
75 0.25 0.05 13.70 125.30 40.45 30.45 28.30
75 0.5 0 22.95 107.30 43.55 47.00 50.30
75 0.5 0.01 23.90 107.30 43.30 47.00 49.75
75 0.5 0.025 25.95 107.30 49.70 47.00 50.75
75 0.5 0.05 26.00 107.30 49.05 47.00 51.75
75 0.75 0 23.65 57.05 53.05 40.10 39.80
75 0.75 0.01 23.35 57.05 52.30 40.10 39.90
75 0.75 0.025 21.15 53.30 48.75 37.25 36.90
75 0.75 0.05 18.20 45.20 40.65 31.00 30.65
100 0.1 0 19.70 281.70 110.65 45.90 61.65
100 0.1 0.01 15.75 230.85 85.40 33.90 47.30
100 0.1 0.025 12.50 195.80 76.00 27.20 37.45
100 0.1 0.05 3.20 66.90 21.10 6.40 7.95
100 0.25 0 18.55 189.40 72.65 51.60 53.00
100 0.25 0.01 18.70 189.40 63.90 51.60 52.35
100 0.25 0.025 13.55 144.60 45.05 34.45 35.30
100 0.25 0.05 10.35 123.50 40.40 24.40 26.30
100 0.5 0 46.15 197.00 80.55 119.10 110.85
100 0.5 0.01 35.65 161.25 59.30 92.50 87.40
100 0.5 0.025 20.75 103.10 31.95 51.80 49.10
100 0.5 0.05 22.10 103.10 34.45 51.80 50.00
100 0.75 0 27.75 70.75 55.50 50.70 50.25
100 0.75 0.01 21.60 59.85 41.90 41.80 41.85
100 0.75 0.025 21.70 59.85 41.55 41.80 42.60
100 0.75 0.05 20.05 54.50 37.25 37.50 38.05

Averages 15.10 89.61 36.94 30.09 32.41

Table 4: Maximum regret values for the different algorithms on instances with scenario
set S1.
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n α β Opt SPT BS LS1 LS2
25 0.1 0 6.90 52.95 12.75 10.20 14.80
25 0.1 0.01 3.30 27.25 5.10 4.45 5.95
25 0.1 0.025 2.35 20.70 3.00 3.10 3.45
25 0.1 0.05 0.20 0.65 0.20 0.20 0.20
25 0.25 0 13.70 71.60 21.35 24.45 26.25
25 0.25 0.01 5.20 32.80 8.80 7.90 7.15
25 0.25 0.025 3.00 19.80 3.25 3.95 3.55
25 0.25 0.05 1.70 13.10 1.80 2.15 2.00
25 0.5 0 19.35 54.20 46.45 28.35 35.10
25 0.5 0.01 13.25 39.00 33.10 20.15 23.20
25 0.5 0.025 8.30 24.00 17.45 11.75 13.55
25 0.5 0.05 5.25 16.30 12.50 7.15 9.55
25 0.75 0 4.40 9.65 9.50 4.80 4.80
25 0.75 0.01 3.35 7.90 7.90 3.65 3.50
25 0.75 0.025 2.80 6.35 6.35 3.00 2.95
25 0.75 0.05 2.05 5.10 5.05 2.15 2.20
50 0.1 0 11.70 129.50 34.30 24.3 47.45
50 0.1 0.01 8.85 98.75 25.75 14.5 23.80
50 0.1 0.025 3.60 49.05 9.70 6.15 11.00
50 0.1 0.05 0.00 0.00 0.00 0.00 0.00
50 0.25 0 25.45 164.80 51.90 54.20 76.40
50 0.25 0.01 14.10 95.90 30.85 27.05 39.85
50 0.25 0.025 7.75 54.65 15.70 14.80 19.00
50 0.25 0.05 2.20 19.25 5.70 3.70 3.95
50 0.5 0 21.95 81.95 63.25 43.00 48.10
50 0.5 0.01 18.90 72.15 43.95 35.65 39.60
50 0.5 0.025 16.65 65.20 49.50 31.30 38.70
50 0.5 0.05 10.65 44.55 23.35 19.20 23.55
50 0.75 0 12.05 28.45 27.85 18.00 19.50
50 0.75 0.01 11.65 28.40 27.65 17.95 19.35
50 0.75 0.025 10.60 24.20 23.35 15.00 17.00
50 0.75 0.05 7.65 17.70 16.95 10.70 12.95
75 0.1 0 14.60 186.85 63.20 31.10 69.65
75 0.1 0.01 5.55 91.50 27.30 11.05 22.80
75 0.1 0.025 2.50 47.65 10.95 4.60 8.20
75 0.1 0.05 0.05 2.60 0.05 0.05 0.05
75 0.25 0 25.90 202.30 87.95 61.45 77.25
75 0.25 0.01 15.85 142.30 45.90 36.00 42.15
75 0.25 0.025 12.30 109.90 42.30 26.20 38.25
75 0.25 0.05 2.30 22.80 7.55 3.70 4.00
75 0.5 0 23.10 107.30 71.60 47.00 61.35
75 0.5 0.01 25.15 107.30 76.95 47.00 63.30
75 0.5 0.025 24.10 107.30 79.50 47.00 62.15
75 0.5 0.05 13.40 70.25 32.25 26.50 34.05
75 0.75 0 24.00 57.05 51.65 40.10 41.55
75 0.75 0.01 21.50 53.35 47.40 37.30 37.35
75 0.75 0.025 19.25 45.20 40.25 31.00 33.65
75 0.75 0.05 13.00 30.00 25.35 20.40 21.70
100 0.1 0 19.65 281.70 94.55 45.90 76.20
100 0.1 0.01 12.50 195.80 76.70 27.20 68.15
100 0.1 0.025 2.35 53.95 14.50 4.90 6.55
100 0.1 0.05 0.00 0.00 0.00 0.00 0.00
100 0.25 0 18.60 189.40 85.95 51.60 67.25
100 0.25 0.01 13.35 144.60 54.15 34.45 46.55
100 0.25 0.025 11.20 123.50 44.80 24.40 35.95
100 0.25 0.05 3.30 51.95 20.85 6.10 9.20
100 0.5 0 49.85 197.00 112.40 119.10 121.30
100 0.5 0.01 19.75 103.10 52.75 51.80 52.20
100 0.5 0.025 17.05 86.85 48.90 41.20 48.65
100 0.5 0.05 10.00 60.95 31.05 23.65 31.05
100 0.75 0 27.90 70.75 52.30 50.70 51.65
100 0.75 0.01 21.80 59.85 44.85 41.80 42.25
100 0.75 0.025 21.85 54.50 41.45 37.50 39.85
100 0.75 0.05 14.30 37.10 27.85 24.15 27.05

Averages 12.26 69.85 33.71 23.87 30.31

Table 5: Maximum regret values for the different algorithms on instances with scenario
set S2.

23



6.2. The results of each row are average values over the 20 instances. The values in bold
correspond to the best average results obtained by one of the heuristics. The last row of
each table reports the overall average results. The results of Table 4 are also illustrated
through Figure 2, where we present four charts showing how the optimal regret values
vary depending on the maintenance window position.
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Figure 2: Variations of the optimal regret values depending on the maintenance time-
window position (α) and slack (β).

A few comments are in order. A first observation on the presented results is that
the solution value (i.e., the minmax regret) decreases as β increases, i.e. when the [r, d]
window becomes larger. This is quite natural, since a larger slack allows to better schedule
M and therefore avoid possible idle times. For the same reason, the regret values of the
instances of the scenario set S2 are, most of the times, smaller than those of scenarios in
S1, since the [r, d] window allowance is proportional to the M length which is larger in
those instances. However, when β = 0 the maintenance window equals the duration of
M in the scenario smax. For this reason, in this case, the maximum regret values for the
scenario sets S1 and S2 are often identical.

Looking at Figure 2, it is immediate to note that when β and n are fixed, the highest
regret values—most of the times—correspond to α = 0.5 (and in some cases, when β = 0,
the maximum regret is attained for α = 0.25).

As one may notice by looking at Table 4, the optimal absolute regret values are slightly
sensitive to the number of jobs. Indeed, those values are larger when the number of jobs
increases (the highest regret values correspond, depending on the β values, to the instances
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n α β CPU times on set S1 CPU times on set S2

25 0.1 0 532 482
25 0.1 0.01 470 460
25 0.1 0.025 464 485
25 0.1 0.05 459 411
25 0.25 0 466 431
25 0.25 0.01 508 429
25 0.25 0.025 443 435
25 0.25 0.05 428 448
25 0.5 0 464 589
25 0.5 0.01 491 587
25 0.5 0.025 454 497
25 0.5 0.05 452 444
25 0.75 0 460 510
25 0.75 0.01 461 460
25 0.75 0.025 470 470
25 0.75 0.05 460 440
50 0.1 0 1931 1941
50 0.1 0.01 1535 2008
50 0.1 0.025 1681 2187
50 0.1 0.05 1498 1421
50 0.25 0 1930 2329
50 0.25 0.01 2028 2086
50 0.25 0.025 1673 1899
50 0.25 0.05 1580 2417
50 0.5 0 1616 1835
50 0.5 0.01 1635 1872
50 0.5 0.025 1712 1880
50 0.5 0.05 2308 1632
50 0.75 0 1150 1220
50 0.75 0.01 1191 1291
50 0.75 0.025 1180 1331
50 0.75 0.05 1230 1390
75 0.1 0 6491 8898
75 0.1 0.01 5475 5420
75 0.1 0.025 5003 4922
75 0.1 0.05 3467 3993
75 0.25 0 5211 7480
75 0.25 0.01 5668 8115
75 0.25 0.025 4139 7106
75 0.25 0.05 4448 4395
75 0.5 0 5384 6023
75 0.5 0.01 4919 7180
75 0.5 0.025 4568 5601
75 0.5 0.05 4140 5966
75 0.75 0 3680 2690
75 0.75 0.01 3481 3370
75 0.75 0.025 2921 2880
75 0.75 0.05 3030 2740
100 0.1 0 13427 14180
100 0.1 0.01 16265 13965
100 0.1 0.025 11292 12480
100 0.1 0.05 8878 10801
100 0.25 0 10037 17134
100 0.25 0.01 10296 15896
100 0.25 0.025 10815 16288
100 0.25 0.05 9391 10758
100 0.5 0 11637 17432
100 0.5 0.01 9263 12320
100 0.5 0.025 11085 11205
100 0.5 0.05 11060 9709
100 0.75 0 8650 9030
100 0.75 0.01 6610 5970
100 0.75 0.025 5910 7551
100 0.75 0.05 7790 6370

Table 6: Computation times required by the MILP formulation on both instance sets (in
ms).
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with 100 and 75 jobs). However, comparing the optimal regret values to the average values
of total completion times, it is clear that the regrets grow at a lower rate. For instance,
for β = 0, the largest average value (ABS = 46.15), attained at n = 100 is around an
order of magnitude larger than the smallest value (ABS = 4.4) at n = 25, while the actual
total completion time values range between 6 · 103 and 3.5 · 105. As a consequence, the
ratio between the values maximum regret and actual objective (total completion time) is
decreasing when the number of jobs becomes larger. The latter ratio is related to the so
called maximum relative regret which is shortly discussed in Section 4.2.

As for the instances in the second scenario set S2 (Table 5) the trends of the optimal
regret values are quite similar to those described above for the first set S1.

Since LS1 and LS2 are local search procedures starting from the SPT solution, then—
as expected—the latter one always attains the worst results among the heuristic algo-
rithms. From Tables 4 and 5, we note that heuristics LS1 and LS2 perform better than
BS. Furthermore, in most of the cases, LS1 attains the best performance (best average
values in 35 out of 64 instance classes for scenarios in S1, 55 out of 64 instance classes
for scenarios in S2). On the other hand, BS has the best performances on the instances
with scenario set S1, for n ∈ {50, 100} and α = 0.5 (see Table 4).

In scenario set S1, the relative error of heuristic LS1 with respect to the optimal regret

ε =
ABSLS1−ABS∗

ABS∗
(where ABS∗ and ABSLS1 are, for a given instance, the optimal regret

and the value provided by the heuristic algorithm) ranges between 7.7% and 178.2%.
Such an error remains below 10% in around 6% of the instances (when n = 25 and
α = 0.75). The improvement of the local search algorithms, with respect to the value
provided by SPT, can be quantified comparing the entries of columns 5 and 7. Such
an improvement rises up to more than 900% (see instances of scenario set S1, n = 100,
α = 0.1 and β = 0.05) and it is more evident for those classes with α = 0.1, i.e., when
the maintenance interval is positioned early in the schedule. It is also worth to note that
the values of the absolute regret obtained by the algorithms (including SPT), are always
two or more orders of magnitude smaller than the values of the actual objective, i.e., total
jobs completion time.

In scenario set S2, (see Table 5) the performance of the heuristics shows a slight
improvement: the local search algorithms find an optimal solution for all instances with
α = 0.1 and β = 0.05. Furthermore, in 13% of the instances the relative error is not
larger than 10%.

All the heuristics are very fast, requiring less than 1 millisecond per instance, on a
standard laptop. Table 6 reports the average computational times in milliseconds required
by Cplex on the all instances. Observe that, Cplex requires less than 20 seconds for all
instances.

7 Conclusions

In this paper, a problem arising in a manufacturing environment concerning the joint
scheduling of multiple jobs and of a maintenance activity on a single machine has been
addressed. The maintenance activity must be processed within a given time window and
its duration is not known a-priori, though it takes values in a given interval.
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In this context, the problem of finding jobs schedules which are robust to any possible
change in the maintenance activity duration has been addressed. We investigate properties
of robust schedules when minimizing makespan and total completion time of the jobs,
under four different standard robustness criteria. In addition, for the seemingly hardest
problem in which the objective is the total completion time and the maximum absolute
regret criterion is adopted, a mixed integer linear program and a number of heuristic
algorithms have been evaluated. The results of an extensive computational campaign
show the efficiency and effectiveness of the proposed solution approaches.

Future research directions include a theoretical study to characterize properties of the
robust schedules, an extension of the results to the case in which precedence among jobs
are given (see, for instance [21]), possible development of solution algorithms based on
a dynamic programming approach similar to that of [27], the design of new heuristic
algorithms based on metaheuristic techniques.
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