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Abstract

The majority of works on modal many-valued logics consider Kripke-style possible worlds frames as the principal
semantics despite their well-known axiomatizability issues when considering non-Boolean accessibility relations. The
present work explores a more general semantical picture, namely a many-valued version of the classical neighborhood
semantics. We present it in two levels of generality. First, we work with modal languages containing only the
two usual unary modalities, define neighborhood frames over algebras of the logic FLew with operators, and show
their relation with the usual Kripke semantics (this is actually the highest level of generality where one can give a
straightforward definition of the Kripke-style semantics). Second, we define generalized neighborhood frames for
arbitrary modal languages over a given class of algebras for an arbitrary protoalgebraic logic and, assuming certain
additional conditions, axiomatize the logic of all such frames (which generalizes the completeness theorem of the
classical modal logic E with respect to classical neighborhood frames).

Keywords: mathematical fuzzy logic, modal fuzzy logics, neighborhood frames, Kripke semantics, many-valued
logics
2010 MSC: 03B45, 03B52, 03G27, 03B47, 03B50

1. Introduction1

The study of many-valued propositional logics expanded with modal operators was started by Melvin Fitting2

in [15, 16] and later continued by Petr Hájek and others in the field of Mathematical Fuzzy Logic [19, 8] resulting in3

an active field research (see e.g., [3, 4, 7, 6, 5, 20, 21, 23, 24, 29, 30]). In many of these works, since the initial propo-4

sitional logic may lack an involutive negation, the extended modal system is endowed with two non-interdefinable5

modal operators, � and ^, or alternatively one may restrict to the fragment given by only one of these operators.6

Another peculiarity of the syntax of these systems is that, for technical reasons related to the proof of completeness7

already encountered in Fitting’s seminal papers, it often includes truth-constants to denote each element of the in-8

tended algebraic semantics. On the other hand, modal fuzzy logics are typically endowed with a relational semantics9

that generalizes the classical Kripke semantics by allowing a many-valued scale for either (or for both) the truth-10

values of propositions at each possible world and for the degree of accessibility from one world to another. However,11
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despite its very natural definition, such semantics brings forth serious technical difficulties. Indeed, axiomatizing the12

Kripke-style semantics over a given algebra (or class of algebras) of truth-values can be in general a complex problem13

(for instance, no simple axiomatic presentation is known for modal extensions of product logic and one has to resort14

to the use of truth-constants, 4 projection, and infinitary rules [30], or for the modal logic over the standard finitary15

Łukasiewicz logic, which has been axiomatized with an infinitary rule [21]). Conversely, already in the classical case,16

proof systems with natural syntactic conditions may fail to be complete with any such Kripke-style semantics.17

In modal extensions of classical logic, the Scott–Montague neighborhood semantics [25, 28] has been used as a18

more general framework than Kripke frames where, instead of using an accessibility relation, each world is mapped to19

a set of sets of worlds known as its neighborhood. It allows to prove completeness for non-normal modal logics, where20

the Kripke-style semantics would not work. For analogous reasons, recently some authors have started introducing21

some notions of neighborhood semantics for modal fuzzy logics. It has been studied in particular settings in [26, 27]22

and in a general framework of fuzzy logics extending MTL (the basic t-norm-based logic [14, 22]) in the conference23

paper [11].24

The aim of this paper is to introduce neighborhood semantics for the widest possible class of modal many-valued25

logics (building on the partial results of [11]) to fulfill the following goals: (1) show the exact relation between26

the new neighborhood semantics and the usual Kripke-style semantics used so far in modal many-valued logics, (2)27

assume only the necessary conditions to obtain a semantics that naturally generalizes the classical Scott–Montague28

semantics and the previous particular proposals for a neighborhood semantics of modal fuzzy logics, and (3) obtain an29

axiomatization, and the corresponding completeness theorem, of the global consequence given by the neighborhood30

frames defined over an arbitrary class of algebras. Unlike in classical logic, there is no straightforward relationship31

between the global and the local consequence and, hence, the study of the latter is left for a future investigation.32

To achieve the first goal it suffices to formulate our new notions in the usual framework of modal many-valued33

logics with Kripke frames, that is, modal extensions of logics with an algebraic counterpart composed by a class of34

(expansions of) bounded complete lattice-ordered residuated commutative integral monoids, that is, FLew-algebras35

(possibly with operators). In this setting each frame, be it neighborhood or Kripke, is defined over a fixed algebra36

used as scale to measure both degrees of truth in each possible world and degrees of accessibility.1 We show that,37

as in classical logic, Kripke frames correspond to a particular kind of neighborhood frames, namely, the augmented38

frames. Then, a natural question arises: how can one axiomatize the (global) logic of all neighborhood frames?39

We propose an axiomatization and obtain a corresponding completeness theorem for finitary expansions of the logic40

FLew. However, in order to prove such a result, we move to a higher level of abstraction, capable of including possible41

future developments of modal non-classical logics with much more general algebraic semantics. To this end, we42

consider arbitrary classes of algebras, arbitrary sets of designated elements in these algebras, and arbitrary modalities43

of arbitrary arities in the language. In this general setting, neighborhood frames are allowed to use different algebras44

of truth-values in each world to evaluate propositions. We demonstrate that such level of abstraction not only does not45

add much conceptual difficulty, but it actually simplifies the presentation and reduces the proof of the completeness46

theorem to its essential components.47

The paper is organized as follows. Section 2 recalls the usual algebraic framework for many-valued logics based48

on FLew-algebras, introduces some useful notation for fuzzy sets evaluated on these algebras, recalls the Kripke-style49

semantics of modal many-valued logics and the classical Scott–Montague semantics. In Section 3 we introduce our50

neighborhood semantics for modal many-valued logics based on FLew-algebras, we describe its relationship with the51

usual Kripke-style semantics, and formulate an axiomatization for the global consequence of all neighborhood frames52

based on a FLew-algebra. Finally, Section 4 generalizes the neighborhood semantics to arbitrary classes of algebras53

and arbitrary modal languages, proposes a simple axiomatization and proves a completeness theorem for the global54

consequence relation that, in particular, entails the completeness results of the previous section.55

1For the sake of subsuming the previous works, we define the semantics for a language with both of the usual modal operators � and ^ (the
description of the relationship between the neighborhood and the Kripke style semantics for a language with only one of these modalities can be
easily obtained by restricting all the notions to the corresponding fragment of the language).
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2. Preliminaries56

2.1. FLew-algebras with operators and finitary expansions of FLew57

We start by recalling a common algebraic and logical framework that covers most modal many-valued logics58

studied in the literature. We use the same notation for equivalent algebraic and logical notions (e.g., algebraic type59

= propositional language, operations = connectives, propositional atoms = object variables, terms = formulas). Our60

basic language, denoted asLFLew , is that of the Full Lambek logic with exchange and weakening (see e.g., [18]), which61

contains binary connectives ∧, ∨, &, and →, and two constants 0 and 1. Throughout the paper we make use of the62

following derived connectives: ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ) and ¬ϕ = ϕ → 0. As mentioned in the introduction,63

we want to prove our results not only for logics/algebras in the language of FLew, but also for those with greater64

expressive power. Therefore, we define:65

Definition 1. Let L be an algebraic type extending LFLew . We say that an algebra A of type L with domain A is an66

FLew-algebra with operators, (if L = LFLew we drop the suffix ‘with operators’) whenever67

• 〈A,∧A,∨A, 0
A
, 1

A
〉 is a bounded lattice68

• 〈A,&A, 1
A
〉 is a commutative monoid69

• &A and→A form a residuated pair, i.e., a &A b ≤ c iff a ≤ b →A c, for all a, b, c ∈ A, where ≤ is the induced70

lattice order.71

We say that an FLew-algebra with operators A is complete if its lattice reduct is a complete lattice, i.e.,
∨

B and
∧

B72

exist in A, for each subset B ⊆ A.73

The two-element Boolean algebra can be seen as an FLew-algebra: 2 = 〈{0, 1},∧,∨,∧,→, 0, 1〉, where ∧, ∨, and74

→ are the usual Boolean operations. Other special cases are the so-called t-algebras, i.e., FLew-algebras of the form75

〈[0, 1],min,max, ∗,⇒, 0, 1〉, where ∗ is a left-continuous t-norm and⇒ its residuum. Note that FLew-algebras are also76

known under a systematic name: integral commutative bounded residuated lattices; let FLew denote the class of all77

FLew-algebras.78

Next, we list a few simple and well-known properties of FLew-algebras that we need throughout this paper.79

Lemma 2. The following properties hold in all FLew-algebras:80

• x ≤ y→ z iff y ≤ x→ z81

• 0 & x = 082

• x→ y = 1 iff x ≤ y83

• 1→ x = x.84

Let us now introduce the necessary logical notions. First, we fix a propositional language L extending LFLew . We
denote by Fm

L
the set of formulas (terms) in L and by Fm

L
the absolutely free algebra of type L. Given any class

K of FLew-algebras with operators of type L we define a structural consequence relation |=K on Fm
L

in the following
way: if Γ ∪ {ϕ} ⊆ Fm

L
,

Γ |=K ϕ iff for each A ∈ K and each homomorphism e : FmL → A we have:

if e[Γ] ⊆ {1
A
}, then e(ϕ) = 1

A
.

Then |=FLew is a finitary logic, i.e., a structural consequence relation on Fm
L

such that if Γ |=FLew ϕ, then there is85

a finite Γ′ ⊆ Γ such that Γ′ |=FLew ϕ. Let us denote this logic as FLew. It is well known that FLew is axiomatizable by86

several axioms and one deduction rule of modus ponens (from ϕ and ϕ→ ψ infer ψ), see [18] for details.87
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Definition 3. Let L be a propositional language extending LFLew . A finitary expansion of FLew is any logic L ax-
iomatizable by adding axioms and finitary rules to the axiomatic system of FLew such that for any additional n-ary
connective c ∈ L \ LFLew and formulas ϕ1, . . . , ϕn, ψ1, . . . , ψn ∈ Fm

L
we have:

ϕ1 ↔ ψ1, . . . , ϕn ↔ ψn `L c(ϕ1, . . . , ϕn)↔ c(ψ1, . . . , ψn).

We say that A is an L-algebra if `L ⊆ |={A}, i.e., for each Γ ∪ {ϕ} ⊆ Fm
L

and each homomorphism e : Fm
L
→ A we88

have: if Γ `L ϕ and e[Γ] ⊆ {1
A
}, then e(ϕ) = 1

A
. We denote by L the class of all L-algebras.89

The following theorem summarizes the well-known relationship between quasivarieties FLew-algebras and finitary90

expansions of FLew.91

Theorem 4. Let Q be a quasivariety of FLew-algebras with operators and L a finitary expansion of FLew.92

• L = |=L and L is a quasivariety.93

• |=Q is a finitary expansion of FLew.94

Actually, the connection is much stronger but the formulation above is sufficient for our needs.95

2.2. A-valued sets and their notation96

The formulation of Kripke and neighborhood semantics for usual many-valued logics is obtained by substituting97

the two-element Boolean algebra by an FLew-algebra with operators. To this end, we need to refer to many-valued98

sets of worlds and many-valued sets of many-valued sets of worlds. We introduce a convenient notation inspired by99

the syntax of fuzzy class theory (FCT), see e.g., in [1].100

Given a complete FLew-algebra with operators A and a non-empty set of worlds W, we use upper case letters101

(X,Y,Z, . . .) to denote A-valued sets of worlds (i.e., mappings W → A or elements of AW ) and calligraphic letters102

(X,Y,Z, . . .) to denote the A-valued sets of A-valued sets of worlds (i.e., mappings AW → A or elements of AAW
).103

Given an A-valued set X we sometimes follow the usual set-theoretic notation and write X = {w | X(w)} (and
analogously with A-valued sets of A-valued sets). This notation is useful when X is described in a complex way; for
example, consider an A-valued binary relation R (i.e., a mapping W ×W → A or an element of AW×W ) and define for
any w ∈ W the A-valued set of worlds R[w] to which each v ∈ W belongs to the degree Rwv, in symbols:

R[w] = {v ∈ W | Rwv}.

We denote by {w} the A-valued set to which w belongs in degree 1 and all other worlds belong in degree 0. The next104

subsection contains more illustrations of this kind of definition.105

We also use the set theoretic notation w ∈ X (instead of X(w)) to denote the degree to which w belongs to X,
and analogously for X ∈ Y. This convention makes the following two crucial notions syntactically identical to their
classical analogues:

X ⊆ Y =
∧
w∈W

(w ∈ X → w ∈ Y) degree of subsethood

X G Y =
∨
w∈W

(w ∈ X & w ∈ Y) degree of overlap

Note the above defined notions can be seen as functions assigning to each pair of A-valued sets an element of A.106

We conclude this subsection by a list of simple and well-known properties of A-valued sets that we need throughout107

this paper.108

Lemma 5. For each w ∈ W and A-valued sets X,Y we have:109

• X ⊆ X = 1110

• X ⊆ Y = 1 and Y ⊆ X = 1 iff X = Y111

• {w} G X = w ∈ X.112
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2.3. Kripke semantics for modal many-valued logics113

Let us fix a propositional language L, recall that we denote by Fm
L

the corresponding set of formulas. We denote114

by Fm�,^
L

the set of formulas in the language L expanded with two unary modalities � and ^. Analogously we define115

the sets Fm�
L

and Fm^
L

when we consider only one modality.116

Definition 6. Let A be a complete FLew-algebra with operators. An A-Kripke frame (K(A)-frame, for short) is a pair117

〈W,R〉 such that W is a non-empty (classical) set of worlds while R is a binary A-valued relation.118

An A-Kripke model (K(A)-model, for short) is a tripleM = 〈W,R,V〉, where 〈W,R〉 is a K(A)-frame and V is an
evaluation V : Var → AW , i.e., a mapping assigning to each variable an A-valued set to which each world belongs to
the degree to which the given variable is true in that world. The evaluation is then extended to all formulas, i.e., it is
extended to a mapping VM : Fm�,^

L
→ AW inductively defined in the following way:

VM(p) = V(p)

VM(c(ϕ1, . . . , ϕn) = {w | cA(w ∈ VM(ϕ1), . . . ,w ∈ VM(ϕn))} for any n-ary c ∈ L

VM(�ϕ) = {w | R[w] ⊆ VM(ϕ)}

VM(^ϕ) = {w | R[w] G VM(ϕ)}.

Note that, when A = 2, this yields the classical definition of Kripke semantics. Let us now introduce the notions119

of validity and global consequence for many-valued Kripke semantics.120

Definition 7. Given a complete FLew-algebra with operators A and a K(A)-model M = 〈W,R,V〉, a formula ϕ ∈121

Fm�,^
L

is valid inM,M |= ϕ in symbols, if VM(ϕ) contains each world in degree 1.122

Let F be a class of Kripke frames (possibly over different algebras). For a subset Γ ∪ {ϕ} ⊆ Fm�,^
L

, we say that ϕ
is an F-consequence of Γ, Γ |=F ϕ in symbols, if for each modelM over any frame from F:

ifM |= ψ for each ψ ∈ Γ, then alsoM |= ϕ.

Let us denote by K(A) the class of all K(A)-frames. Note that |=K(2) is the global variant of the classical modal123

logic K.124

2.4. Classical neighborhood semantics125

Introduced independently by Scott [28] and Montague [25], neighborhood semantics is a kind of possible worlds126

semantics for modal logics, similar in spirit to the well-known Kripke semantics, but resulting in a weaker logic. A127

good overview of these semantics can be found in [13].128

A neighborhood frame, or shortly SM(2)-frame, is a tuple M = 〈W,N〉, where W is a non-empty set of worlds129

while N is a function N : W → 22W
(2 = {0, 1} denotes the domain of the two-element Boolean algebra 2) that assigns130

to each world w a set of subsets of W, called the neighborhood of w.131

A neighborhood model, or shortly SM(2)-model, is a triple M = 〈W,N,V〉, where 〈W,N〉 is an SM(2)-frame and
V is an evaluation V : Var → 2W that is extended to all formulas similarly to the Kripke case, defining the value of
formulas starting with modalities in the following way:

VM(�ϕ) = {x | VM(ϕ) ∈ N(x)}

VM(^ϕ) = {x | VM(¬ϕ) < N(x)}.

Observe that, thanks to the classical interdefinability of modalities, one neighborhood function is enough to define132

their semantics.133

It is not hard to see that, given any K(2)-model M = 〈W,R,V〉, we obtain an SM(2)-model M = 〈W,NR,V〉 by
setting for all w ∈ W,

NR(w) = {X | R[w] ⊆ X},

and the truth values of formulas are preserved in all worlds.134

5



Conversely, given any SM(2)-model M = 〈W,N,V〉, we can define a K(2)-modelM = 〈W,RN ,V〉 by setting for
all w, v ∈ W,

RNwv iff for each X ∈ N(w), we have v ∈ X.

Note that this entails that RN[w] =
⋂

X∈N(w)X. However, in order to preserve the truth of all formulas in each world,135

we need the original SM-modelM to satisfy the following two additional conditions for each w ∈ W:136

• N(w) contains its core, i.e., the set
⋂

X∈N(w) X,137

• N(w) is closed under taking supersets, i.e., if X ∈ N(w) and X ⊆ Y , then Y ∈ N(w).138

In this case, M (or more precisely, its underlying SM(2)-frame) is called augmented. Note that we could use the139

following equivalent definition: for each w ∈ W there is a set Cw such that, for each X ∈ N(w), X ∈ N(w) iff Cw ⊆ X.140

The following results about these translations can be found for example in [13].141

Theorem 8.142

(a) Let M = 〈W,R,V〉 be a K(2)-model. Then, RNR = R, M = 〈W,NR,V〉 is an augmented SM(2)-model, and143

VM = VM.144

(b) Let M = 〈W,N,V〉 be an augmented SM(2)-model. Then, NRN = N, M = 〈W,RN ,V〉 is a K(2)-model, and145

VM = VM.146

Let us denote by SM(2) (or ASM(2) resp.) the class of all (resp. augmented) neighborhood frames. Validity and147

global consequence, w.r.t. a class of frames, is defined as in the Kripke case. Therefore, from the previous theorem,148

we know that |=ASM(2) coincides with |=K(2), i.e., the global variant of the logic given by augmented neighborhood149

frames is the classical global modal logic K.150

Finally, let CL denote any Hilbert-style axiomatization of classical propositional logic in a language L.151

Theorem 9. Let Γ ∪ {ϕ} ⊆ Fm�,^
L

. Then, the following are equivalent152

• Γ |=SM ϕ153

• there is a proof of ϕ from Γ using axioms and rules of CL plus the rule E:

ϕ↔ ψ ` �ϕ↔ �ψ.

3. Neighborhood semantics for modal many-valued logics154

In this section we introduce a neighborhood semantics for modal many-valued logics and show its relationship155

with the Kripke-style semantics as a natural generalization to the many-valued setting of the constructions and the156

results seen in Theorem 8. A previous investigation in [26, 27] addresses the same problem in a more restricted157

framework, focusing on the relationship between models of the two kinds. In constrast, in this section we study the158

relation between frames and only later we add evaluations and obtain the desired result for models (Theorem 17).159

Let us start with the definition of neighborhood frame where, unlike in the classical case, we need two neighbor-160

hood functions to take care of the two non-interdefinable modalities. If one is interested in the fragment with only one161

of these modalities, then the whole section should be read disregarding the notions for the excluded modality and all162

results would still hold.163

Throughout this section we fix A to be a complete FLew-algebra with operators.164

Definition 10. An A-neighborhood frame (SM(A)-frame, for short) is a tuple 〈W,N�,N^〉 such that165

• W is a non-empty (classical) set of worlds166

• N�,N^ : W → AAW
, i.e., functions that assigns to each world w ∈ W an A-valued set of A-valued subsets of W.167
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Furthermore, an A-neighborhood model (SM(A)-model, for short) is a tupleM = 〈W,N�,N^,V〉, where 〈W,N�,N^〉
is an SM(A)-frame and V is an evaluation V : Var → AW that is extended to all formulas similarly to the Kripke case,
defining the value of formulas starting with modalities in the following way:

VM(�ϕ) = {w | VM(ϕ) ∈ N�(w)}

VM(^ϕ) = {w | VM(ϕ) ∈ N^(w)}.

Let us now introduce the notions of validity and global consequence for the neighborhood semantics.168

Definition 11. Given an SM(A)-modelM = 〈W,N�,N^,V〉, a formula ϕ ∈ Fm�,^
L

is valid inM, M |= ϕ in symbols,169

if VM(ϕ) contains each world in degree 1.170

Let F be a class of neighborhood frames (possibly over different algebras). For a subset Γ ∪ {ϕ} ⊆ Fm�,^
L

, we say
that ϕ is an SM-consequence of Γ, Γ |=F ϕ in symbols, if for each modelM over any frame from F:

if M |= ψ for each ψ ∈ Γ, then alsoM |= ϕ.

We denote by SM(A) the class of all SM(A)-frames.171

As in the classical case one could define as well a notion of local consequence for both the neighborhood and the172

Kripke-style semantics, but in this paper we keep the focus on the global consequence.173

Our next goal is to demonstrate that the relationship between the neighborhood and the Kripke-style semantics is174

analogous to the classical case. In particular, we need a suitable notion of augmented frame, for which we use the175

following lemma.176

Lemma 12. Let 〈W,N�,N^〉 be an SM(A)-frame, w ∈ W a world, and C,C′ ∈ AW such that one of the following two177

conditions holds for each X ∈ AW :178

C ⊆ X = X ∈ N�(w) = C′ ⊆ X (1)
C G X = X ∈ N^(w) = C′ G X. (2)

Then, C = C′.179

Proof. Assume the first condition. From C ⊆ C = 1, we obtain that C ∈ N�(w) = 1 and, analogously, we get180

C′ ∈ N�(w) = 1. Thus also C ⊆ C′ = 1 and C′ ⊆ C = 1, i.e., C = C′.181

Assume now the second condition. Then, for each v ∈ W, we have: v ∈ C = C G {v} = {v} ∈ N^(w) = C′ G {v} =182

v ∈ C′, and hence C = C′.183

This lemma allows to define the following notion of core of a frame.184

Definition 13. Given an SM(A)-frame 〈W,N�,N^〉 is augmented if for each w ∈ W there is (a unique) Cw ∈ AW such
that for each X ∈ AW the following hold:

Cw ⊆ X = X ∈ N�(w)

Cw G X = X ∈ N^(w).

The set Cw is called the core of N� and N^. We denote by ASM(A) the class of all augmented SM(A)-frames.185

Observe that we have just generalized the notion of augmented SM(2)-frame seen in the previous section.186

Now we are ready to define the general translations between both semantics. First, given K(A)-frame 〈W,R〉, we
define an SM(A)-frame 〈W,N�R ,N

^
R 〉, where for each w ∈ W:

N�R (w) = {X ∈ AW | R[w] ⊆ X}

N^R (w) = {X ∈ AW | R[w] G X}.

7



Conversely, given an SM(A)-frame 〈W,N�,N^〉, we consider two, in principle different, ways to define the acces-
sibility relation of the corresponding Kripke frame:

RN�wv =
∧

X∈AW

(X ∈ N�(w)→ v ∈ X)

RN^wv =
∧

X∈AW

(v ∈ X → X ∈ N^(w)).

We start by showing that in augmented frames both definitions coincide.187

Lemma 14. Let 〈W,N�,N^〉 be an augmented SM(A)-frame. Then, for each w ∈ W, we have:

Cw = RN� [w] = RN^ [w].

Therefore, RN^ = RN^ .188

Proof. It suffices to check the following inequalities for arbitrary w, v ∈ W (note that we use properties of FLew-189

algebras from Lemmas 2 and 5):190

• v ∈ Cw ≤ RN�wv: From X ∈ N�(w) = Cw ⊆ X ≤ (v ∈ Cw → v ∈ X), we obtain v ∈ Cw ≤ X ∈ N�(w)→ v ∈ X.191

• v ∈ Cw ≤ RN^wv: From v ∈ Cw & v ∈ X ≤ Cw G X = X ∈ N^(w), we obtain v ∈ Cw ≤ v ∈ X → X ∈ N^(w).192

• RN�wv ≤ v ∈ Cw: Clearly RN�wv ≤ Cw ∈ N�(w)→ v ∈ Cw = Cw ⊆ Cw → v ∈ Cw = v ∈ Cw.193

• RN^wv ≤ v ∈ Cw: Clearly RN^wv ≤ v ∈ {v} → {v} ∈ N^(w) = {v} G Cw = v ∈ Cw.194

Next, we show that the neighborhood frame built from a Kripke frame is always augmented and, moreover, when195

we apply both constructions consecutively we retrieve the original Kripke frame.196

Lemma 15. If 〈W,R〉 is a K(A)-frame, then the SM(A)-frame 〈W,N�R ,N
^
R 〉 is augmented and R = RN�R = RN^R

.197

Proof. 〈W,N�R ,N
^
R 〉 is augmented because for each world w ∈ W we know, from the definition of N�R (w) and N�R (w),198

that we can take Cw = R[w] as the core.199

From the previous lemma we know that, for each w ∈ W, Cw = RN� [w] = RN^ [w] and so the claim follows.200

Moreover, we can prove that the augmented property is both a sufficient and necessary condition in order for201

retrieving the original neighborhood frame when consecutively applying both constructions.202

Lemma 16. An SM(A)-frame 〈W,N�,N^〉 is augmented iff N�RN�
= N�, N^RN^

= N^ and RN� = RN^ .203

Proof. For the left-to-right direction, for each X ∈ AW , we check the following:204

X ∈ N�RN�
= RN� [w] ⊆ X
= Cw ⊆ X
= X ∈ N�(w)

X ∈ N^RN^
= RN^ [w] G X
= Cw G X
= X ∈ N^(w).

205

For the right-to-left direction, for each w ∈ W, we define the set Cw = RN� [w] = RN^ [w] and show that it is the core
of N�(w) and N^(w). Indeed, for each X ∈ AW , we know that

X ∈ N�(w) = X ∈ N�RN�
(w) = RN� [w] ⊆ X = Cw ⊆ X,

X ∈ N^(w) = X ∈ N^RN^
(w) = RN^ [w] G X = Cw G X.

After showing this tight connection between A-Kripke frames and augmented A-neighborhood frames, we can extend206

it to models.207
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Theorem 17. Let A be a complete FLew-algebra with operators.208

(a) Given a K(A)-modelM = 〈W,R,V〉, define the SM(A)-modelM = 〈W,N�R ,N
^
R ,V〉. Then, VM = VM.209

(b) Given an SM(A)-modelM = 〈W,N�,N^,V〉 over an augmented frame, define the K(A)-modelM = 〈W,RN ,V〉.210

Then, VM = VM.211

Proof. We proceed by induction over the complexity of a formula ϕ ∈ Fm�,^
L

. For (a) and (b), the case where ϕ ∈ Var212

or it is a constant follows by the definition of V , while the case where ϕ is not a formula starting with box or diamond213

follows trivially from the induction hypothesis (since only formulas starting with a modal operator depend on R or N�214

and N^). Let ϕ = �ψ for some ψ ∈ Fm�,^
L

(for ϕ = ^ψ it is analogous).215

For (a), note that by the induction hypothesis, for any w ∈ W:

w ∈ VM(�ψ) = R[w] ⊆ VM(ψ)

= R[w] ⊆ VM(ψ)

= VM(ψ) ∈ N�R (w)

= w ∈ VM(�ψ) .

For (b), using that the frame in M is augmented and thus, for any w ∈ W, RN� [w] is the core of N�(w) by
Lemma 14, we have:

w ∈ VM(�ψ) = VM(ψ) ∈ N�(w)

= Cw ⊆ VM(ψ)

= RN� [w] ⊆ VM(ψ)

= RN� [w] ⊆ VM(ψ)

= w ∈ VM(�ψ).

Therefore, we obtain that the logic given by the global consequence of Kripke frames coincides with that given by216

augmented neighborhood frames.217

Corollary 18.218

1. Let F be a class of augmented neighborhood frames and let FK the class of their corresponding Kripke frames.219

Then, for each Γ ∪ {ϕ} ⊆ Fm�,^
L

,220

Γ |=F ϕ iff Γ |=FK ϕ.

2. Let F be a class of Kripke frames and let FSM the class of their corresponding augmented neighborhood frames.221

Then, for each Γ ∪ {ϕ} ⊆ Fm�,^
L

,222

Γ |=F ϕ iff Γ |=FSM ϕ.

In particular, given a complete algebra A, for each Γ ∪ {ϕ} ⊆ Fm�,^
L

,223

Γ |=K(A) ϕ iff Γ |=ASM(A) ϕ.

It is easy to check that this corollary would also hold if we considered the local instead of the global consequence.224

However, the proofs of the results in the rest of the paper work only for the global case.225

We have established that the Kripke semantics only can capture a part of the neighborhood semantics, namely that226

given by augmented frames. The next natural step is to investigate weaker modal many-valued logics given by bigger227

classes of neighborhood frames.228
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In the rest of this section we axiomatize the weakest logic in this setting, that is, the logic of all neighborhood229

frames, i.e., we want to formulate and prove an analog of Theorem 9. We have two possible formulations: (1) starting230

from a complete FLew-algebra with operators, or (2) starting from a finitary expansion FLew. The classical formulation231

was based on the fact that CL = |=2. Accordingly, our two formulations will be determined by possible answers to the232

following two questions:233

Q1 Given a complete FLew-algebra A with operators, is there a finitary expansion L of FLew such that L = |=A?234

Q2 Given a finitary expansion L of FLew, is there a complete FLew-algebra A with operators such that L = |=A?235

Using Theorem 4 it is easy to see that the answer to the first question is YES, whenever |=A = |=Q(A), where Q(A)
is the quasivariety generated by A (because we know that |=Q(A) is always a finitary expansion of FLew). Interestingly
enough, the equality always holds if we restrict to derivations from finite sets of premises i.e., for each finite set
Γ ∪ {ϕ} ⊆ Fm

L
we have:

Γ |=A ϕ iff Γ |=Q(A) ϕ.

Thus given a complete FLew-algebra A with operators, let us denote by LA the logic |=Q(A). Now we are ready to236

formulate the promised analogs of Theorem 9: the former is formulated semantics-first, the latter is logic-first. Both237

theorems will be obtained as corollaries of Theorem 25 which we prove in the next section in a much wider syntactical238

and semantical framework.239

Theorem 19. Let A be a complete FLew-algebra with operators and Γ ∪ {ϕ} ⊆ Fm�,^
L

be a finite set. Then, the240

following are equivalent:241

• Γ |=SM(A) ϕ242

• there is a proof of ϕ from Γ using axioms and rules of LA plus the following rules:

ϕ↔ ψ ` �ϕ↔ �ψ

ϕ↔ ψ ` ^ϕ↔ ^ψ.

If furthermore LA = |=A, the equivalence holds for all sets of formulas.243

Theorem 20. Let L be a finitary expansion of FLew and A ∈ L such that L = LA. Then, the following are equivalent244

for each finite Γ ∪ {ϕ} ⊆ Fm�,^
L

:245

• Γ |=SM(A) ϕ246

• there is a proof of ϕ from Γ using axioms and rules of L plus the following rules:

ϕ↔ ψ ` �ϕ↔ �ψ

ϕ↔ ψ ` ^ϕ↔ ^ψ.

If furthermore L = |=A, the equivalence holds for all sets of formulas.247

Observe that the classical Completeness Theorem 9 follows as a corollary when A = 2.248

4. An axiomatization of the global logic of neighborhood frames249

The goal of this section is to prove the last two theorems of the previous section about the axiomatization of the250

global modal logic of all neighbourhood frames over a given FLew-algebra with operators. Without much extra effort251

we can prove a more general result that entails the desired two theorems. In this way, we manage to cover a natural252

wider class of logics, arbitrary sets of modalities of arbitrary arity, and a more general notion of frame.253
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First, we need to recall a few notions of algebraic logic (see e.g., [17]). We no longer assume languages L to
contain LFLew . Recall that we denote by Fm

L
the set of all formulas and by Fm

L
the absolutely free algebra of type

L. An L-matrix is a tuple A = 〈A, F〉, where A is algebra of type L and F ⊆ A is called the filter of the matrix (a
set of designated elements used to define logical consequence). Each matrix has the largest congruence compatible
with F (i.e., such that no element from F is congruent with an element outside F); it is called the Leibniz congruence.
A matrix is reduced if its Leibniz congruence is the identity. Given any class K of (reduced) L-matrices we define a
structural consequence relation |=K on Fm

L
:

Γ |=K ϕ iff for each 〈A, F〉 ∈ K and each homomorphism e : FmL → A we have:
if e[Γ] ⊆ F, then e(ϕ) ∈ F.

A logic L in a language L is a structural consequence relation on Fm
L

. We write Γ `L ϕ to signify that the formula ϕ
follows from the set of formulas Γ in the logic L. We say that L is finitary if, whenever Γ `L ϕ, there is a finite subset
Γ′ ⊆ Γ such that Γ′ `L ϕ. For each logic L there is the largest class of reduced matrices, denoted as MOD∗(L), such
that `L = |=MOD∗(L). We say that L is protoalgebraic if there is a set of formulas⇔ (called an equivalence) in variables
p, q, r1, r2, . . . , such that for each n-ary c ∈ L:2

`L ϕ⇔ ϕ ϕ, ϕ⇔ ψ `L ψ ϕ⇔ ψ, ψ⇔ χ `L ϕ⇔ χ ϕ⇔ ψ `L ψ⇔ ϕ

ϕ1 ⇔ ψ1, . . . , ϕn ⇔ ψn `L c(ϕ1, . . . , ϕn)⇔ c(ψ1, . . . , ψn).

For each 〈A, F〉 ∈MOD∗(L) and each a, b ∈ A, we have a = b iff ⇔A(a, b) ⊆ F.254

It is easy to see that any (finitary) expansion L of FLew is protoalgebraic,↔ is the equivalence, and MOD∗(L) =255

{〈A, 1
A
〉 | A ∈ L}.256

In order to distinguish modalities from the remaining connectives, we start from a propositional language L of257

connectives that are not regarded as modalities and add a disjoint set Λ of modalities of arbitrary arities. The set of all258

formulas is denoted by FmΛ
L

(which is actually the same as FmL∪Λ, but keeping the intended distinction).259

We work with a generalized notion of A-valued set that allows us to define a more general notion of neighborhood260

frame using different algebras (from different matrices) to evaluate formulas at each world. To this end, instead of261

elements of AW we consider elements of
∏

w∈W AW , where Aws areL-algebras. We call these objects 〈Aw〉w∈W -valued262

sets. As before we write w ∈ X instead of X(w) and use comprehension terms {w | w ∈ X}.263

Definition 21. Given a class K of L-matrices and a set of modalities Λ, we define an SM(K,Λ)-frame as a tuple264

〈W, 〈Aw〉w∈W , 〈N♥〉♥∈Λ〉 such that265

• W , ∅ (worlds)266

• Aw = 〈Aw, Fw〉 ∈ K for each w ∈ W (scales)267

• for each n-ary ♥ ∈ Λ, N♥ is a neighborhood function assigning to each world w an Aw-valued set of n-tuples of268

〈Aw〉w∈W -valued sets, in symbols: N♥(w) : (
∏

v∈W
Av)n → Aw.269

Furthermore, we define an SM(K,Λ)-model as a tupleM = 〈W, 〈Aw〉w∈W , 〈N♥〉♥∈Λ,V〉, where 〈W, 〈Aw〉w∈W , 〈N♥〉♥∈Λ〉
is an SM(K,Λ)-frame and V : Var →

∏
w∈W

Aw (evaluation), i.e., a mapping assigning to each variable an 〈Aw〉w∈W -

valued set to which each world belongs to the degree to which the given variable is true in that world. The evaluation
is extended to all formulas, i.e., it is extended to a mapping VM : Var →

∏
w∈W

Aw inductively defined in the following
way:

VM(p) = V(p)

VM(c(ϕ1, . . . , ϕn) = {w | cA(w ∈ VM(ϕ1), . . . ,w ∈ VM(ϕn))} for n-ary c ∈ L

VM(♥(ϕ1, . . . , ϕn)) = {w | 〈VM(ϕ1), . . .VM(ϕn)〉 ∈ N♥(w)} for n-ary ♥ ∈ Λ.

2We write Γ `L ∆ if Γ `L ψ for each ψ ∈ ∆. Also we define ϕ⇔ ψ = {χ(ϕ, ψ, χ1, . . . , χn) | χ(p, q, r1, . . . , rn) ∈ ⇔ and χ1, . . . , χn ∈ Fm
L
}.
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This semantics gives rise to its corresponding notion of global consequence, in which we need to refer to filters of270

the matrices to represent truth in each world.271

Definition 22. Given an SM(K,Λ)-model M = 〈W, 〈〈Aw, Fw〉〉w∈W , 〈N♥〉♥∈Λ,V〉, a formula ϕ ∈ FmΛ
L

is valid in
M, M |= ϕ in symbols, if VM(ϕ)(w) ∈ Fw for each w ∈ W. Let F be a class of SM(K,Λ)-frames. For a subset
Γ ∪ {ϕ} ⊆ FmΛ

L
, we say that ϕ is an SM-consequence of Γ, Γ |=F ϕ in symbols, if for each model M over any frame

from F:
if M |= ψ for each ψ ∈ Γ, then alsoM |= ϕ.

To fulfill our aim of describing syntactically the logic given all the neighborhood frames over a given class of272

matrices, we introduce the following simple axiomatization for the expansion of an arbitrary protoalgebraic logic with273

arbitrary modalities requiring only that they preserve the congruence property with respect to⇔. This axiomatization274

generalizes that shown in Theorem 9 for the expansion of classical logic with � and ^.275

Definition 23. Let L be a protoalgebraic logic in a language L and let Λ be a disjoint language (modalities). We
define LΛ as the expansion of L obtained by adding the following rule for each ♥ ∈ Λ:

(E♥) ϕ1 ⇔ ψ1, . . . , ϕn ⇔ ψn ` ♥(ϕ1, . . . , ϕn)⇔ ♥(ψ1, . . . , ψn).

Observe that the expanded logic remains protoalgebraic with the same equivalence set ⇔. Moreover, this logic276

always enjoys completeness with respect to a semantics of neighborhood frames, in a rather trivial way, if we consider277

frames with only one world over any reduced model of the initial logic.278

Proposition 24. Let L be a protoalgebraic logic in a language L and let Λ be a disjoint language (modalities). Then,
for each Γ ∪ {ϕ} ⊆ FmΛ

L
, we have:

Γ `LΛ
ϕ iff Γ |=SM(MOD∗(L),Λ) ϕ.

The same result holds when restricting the semantics to frames with only one world.279

Proof. For the soundess, we only need to check the validity of the rules E♥. Let us assume that, for an SM(MOD∗(L),Λ)-280

model M and formulas ϕ1, . . . , ϕn, ψ1, . . . , ψn ∈ FmΛ
L

, we have M |= ϕi ⇔ ψi for each i. Then, VM(ϕi) = VM(ψi) for281

each i and hence, for each w ∈ W, we have: 〈VM(ϕ1), . . . ,VM(ϕn)〉 ∈ N♥(w) = 〈VM(ψ1), . . . ,VM(ψn)〉 ∈ N♥(w).282

Therefore,M |= ♥(ϕ1, . . . , ϕn)⇔ ♥(ψ1, . . . , ψn), as we wanted.283

To prove completeness, assume that Γ 0LΛ
ϕ. Since we can see LΛ as a protoalgebraic logic in the language L∪Λ,284

we know that there exist 〈A, F〉 ∈ MOD∗(LΛ) and an A-evaluation e such that e[Γ] ⊆ F and e(ϕ) < F. We define the285

following SM(MOD∗(L),Λ)-model: M = 〈{w}, 〈A, F〉, 〈N♥〉♥∈Λ,V〉, where286

• N♥(w) : 〈{a1}, . . . , {an}〉 7→ ♥
A(a1, . . . , an)287

• V(p) = {e(p)}.288

It is easy to see that for each ψ ∈ FmΛ
L

, we have VM(ψ) = {e(ψ)}. ThusM |= ψ for each ψ ∈ Γ, whileM 6|= ϕ.289

A more interesting question is whether one can restrict the completeness to a more meaningful class of neigh-290

borhood frames based on a family of matrices that already provides a complete semantics for the initial logic. This291

is achieved in the following theorem. The completeness properties of the starting logic are typically found in the292

literature in at least two different versions, namely, given a logic L and a class of models K ⊆ MOD∗(L), we say that293

L has the property of:294

• Strong K-completeness, SKC for short, if L and |=K coincide, i.e, for every set of formulas Γ ∪ {ϕ}: Γ `L ϕ if,295

and only if, Γ |=K ϕ.296

• Finite strong K-completeness, FSKC for short, if finitary companions of L and |=K coincide, i.e., when for every297

finite set of formulas Γ ∪ {ϕ}: Γ `L ϕ if, and only if, Γ |=K ϕ.298
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Theorem 25. Let L be a finitary protoalgebraic logic in a countable language L, let Λ be a countable language299

(modalities), and K ⊆MOD∗(L). Then:300

1. If L has the SKC, then for each Γ ∪ {ϕ} ⊆ FmΛ
L

we have:

Γ `LΛ
ϕ iff Γ |=SM(K,Λ) ϕ.

2. If L has the FSKC and L and Λ are finite, then, for each finite Γ ∪ {ϕ} ⊆ FmΛ
L

, we have:

Γ `LΛ
ϕ iff Γ |=SM(K,Λ) ϕ.

Proof. The left-to-right directions follow from Proposition 24.301

For the reverse implication in the finite strong completeness case assume that, for a finite set Γ ∪ {ϕ} ⊆ FmΛ
L

, we302

have Γ 0LΛ
ϕ. Since LΛ is a protoalgebraic logic, we know that there exist 〈B, F〉 ∈ MOD∗(LΛ) and an evaluation303

e : FmΛ
L
→ B such that e[Γ] ⊆ F and e(ϕ) < F. Taking the restriction B�L of the algebra to the original language304

L without the modalities and factorizing by the Leibniz congruence, we obtain the reduced model 〈B�L, F〉∗ ∈305

MOD∗(L); let π be the projection to such reduction. Since L is finitary, 〈B�L, F〉∗ is representable as the subdirect306

product of a family of relatively subdirectly irreducible models {〈Bw,Gw〉 | w ∈ W} ⊆ MOD∗(L)RSI (see e.g., [12,307

Theorem 1.3.5]); we denote by πw the projection to the component indexed by w.308

Let S be the finite set of the subformulas of Γ∪ {ϕ}. Therefore, for each w ∈ W, the set (πw ◦π ◦ e)[S ] ⊆ Bw is also309

finite. Since we are assuming that the language L is finite and L has the FSKC, by [10, Theorem 6], for each w ∈ W310

we have a partial embedding gw : (πw ◦ π ◦ e)[S ]→ Aw for some 〈Aw, Fw〉 ∈ K. For each w ∈ W, we take an arbitrary311

Aw-evaluation ew such that ew(ψ) = (gw ◦ πw ◦ π ◦ e)(ψ) for each ψ ∈ S .312

Now we are ready to define the needed SM(K,Λ)-model: M = 〈W, 〈Aw〉w∈W , 〈N♥〉♥∈Λ,V〉, where V(p) = {w |
ew(p)} and

〈X1, . . . , Xn〉 ∈ N♥(v) =


ev(♥(ψ1, . . . , ψn)) if there are ψ1, . . . , ψn ∈ S

such that for each i ≤ n, Xi = {w | ew(ψi)}

bw ∈ Aw \ Fw otherwise.

Then, one can prove, by induction on the complexity of the formula, that for each ψ ∈ S we have VM(ψ) = {w | ew(ψ)}.313

Therefore,M is a model of Γ; indeed for each ψ ∈ Γ we have e(ψ) ∈ F and so for each w ∈ W: w ∈ VM(ψ) = ew(ψ) =314

(gw ◦ πw ◦ π ◦ e)(ψ), which is a value in Fw. ButM is not a model of ϕ; indeed e(ϕ) < F, so there has to be a w ∈ W315

such that (πw ◦ π ◦ e)(ϕ) < Gw and hence w ∈ VM(ϕ) = ew(ϕ) = (gw ◦ πw ◦ e)(ϕ), which is not a value in Fw.316

The proof of the reverse implication in the case of strong completeness is similar and a bit simpler. Since the
language is countable we can start from a countable 〈B, F〉 ∈ MOD∗(LΛ) and, reasoning as before, obtain countable
models {〈Bw,Gw〉 | w ∈ W} ⊆ MOD∗(L)RSI. Since L has the SKC we obtain that, by [10, Corollary 4], for each
w ∈ W there is an embedding gw : 〈Bw,Gw〉 → 〈Aw, Fw〉 for some 〈Aw, Fw〉 ∈ K. For each w ∈ W, we take the
Aw-evaluation ew = gw ◦ πw ◦ π ◦ e and define as before an SM(K,Λ)-model: M = 〈W, 〈Aw〉w∈W , 〈N♥〉♥∈Λ,V〉, where
V(p) = {w | ew(p)} and

〈X1, . . . , Xn〉 ∈ N♥(v) =


ev(♥(ψ1, . . . , ψn)) if there are ψ1, . . . , ψn ∈ FmΛ

L

such that for each i ≤ n : Xi = {w | ew(ψi)}

bw ∈ Aw \ Fw otherwise.

Similarly to the previous case, the proof is concluded by showing that for each ψ ∈ FmΛ
L

we have VM(ψ) = {w | ew(ψ)}317

andM is a model of Γ but not of ϕ.318

Theorems 19 and 20 are a corollary of the previous theorem. Indeed, given any complete FLew-algebra with319

operators A, the logic LA is finitary and protoalgebraic with equivalence↔ in a countable language and, thus, we can320

apply the theorem with K = {〈A, {1
A
}〉} and Λ = {�,^}. In particular, we have obtained an alternative algebraic proof321

of the classical completeness result (Theorem 9).322
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5. Conclusion and further work323

In this paper we have studied neighborhood semantics for modal many-valued logics. More precisely, we have324

• defined it for a very wide class of logics given algebras and matrices,325

• described its relation with the Kripke-style semantics,326

• axiomatized global consequence relations (w.r.t. all models).327

With this proposal, in particular, we have further expanded the realm of fuzzy logics, understood as the logics of328

chains [2]. A previous proposal in [9] introduced semilinear logics (that is, logics strongly complete w.r.t. linearly329

ordered matrices) as an attempt to capture this intuition in a mathematical definition. In the present paper we have330

dealt with modal logics that are not semilinear in that sense, but yet, when built upon a fuzzy logic, they enjoy a331

neighborhood semantics where in each world truth is evaluated over a chain of truth values.332

Future work will focus mainly on other elements of the usual agenda of modal logics: axiomatizing global conse-333

quence relations w.r.t. classes of models (i.e., extensions with modal axioms), studying the local consequence relation,334

canonical models, solving related decidability and complexity issues, etc.335
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