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Abstract

Stemming from the works of Petr Hájek on mathematical fuzzy logic, graded
model theory has been developed by several authors in the last two decades as
an extension of classical model theory that studies the semantics of many-valued
predicate logics. In this paper we take the first steps towards an abstract for-
mulation of this model theory. We give a general notion of abstract logic based
on many-valued models and prove six Lindström-style characterizations of max-
imality of first-order logics in terms of metalogical properties such as compact-
ness, abstract completeness, the Löwenheim–Skolem property, the Tarski union
property, and the Robinson property, among others. As necessary technical re-
strictions, we assume that the models are valued on finite MTL-chains and the
language has a constant for each truth-value.

Keywords: mathematical fuzzy logic, Lindström theorem, abstract model
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1. Introduction

First-order predicate logic is the best known example of a formal language
whose model theory had a great impact on 20th century mathematics, from
non-standard analysis to abstract algebra. The celebrated characterization of
classical first-order logic obtained by Per Lindström in the 60s (published as
[23]; a nice accessible exposition can be found in [20]) is a landmark in con-
temporary logic. The introduction of a notion of “extended first-order logic”,
that encompassed a great number of expressive extensions of first-order logic,
allowed Lindström to establish, roughly, that there are no extensions of classical
first-order logic that would also satisfy the compactness and Löwenheim–Skolem
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theorems, so this logic is maximal in terms of expressive power with respect to
these properties (other similar characterizations soon followed). Expressive ex-
tensions of first-order logic are commonly called “abstract logics”,1 giving rise
to the field of abstract or soft model theory (cf. [5, 6]). In this field, one uses
“only very general properties of the logic, properties that carry over to a large
number of other logics” ([5], p. 225). Common examples of such properties
are compactness or the Craig interpolation theorem. Abstract model theory is
concerned with the study of such properties and their mutual interaction.

In the context of mathematical fuzzy logic (MFL) the possibility of abstract
model-theoretic results was briefly considered by Petr Hájek in a technical report
from 2002 [21]. Later, two Lindström-style results for the important cases of
[0, 1]-valued  Lukasiewicz and rational Pavelka logics appeared in the literature
[8, 9]. However, this work was not meant to present a general framework for
other fuzzy logics, but rather ad hoc non-trivial results for particular systems.

Interestingly, Hájek had shown that the analogues of Lindström’s first the-
orem fail for some of the main first-order fuzzy logics (BL∀, Π∀, and G∀) with
their standard semantics (i.e. truth-values in the interval [0, 1]). Furthermore,
Hájek also established that the result cannot be obtained for any of BL∀,  L∀,
Π∀, or G∀ with their general semantics (the algebra of truth-values being al-
lowed to vary among the elements of the variety corresponding to the logic in
question). In fact, Hájek’s argument holds for any fuzzy logic w.r.t. its general
semantics if

� it satisfies the compactness and Löwenheim–Skolem theorems,

� it has the usual propositional connectives {∨,∧,&,→, 1, 0} and the quan-
tifiers ∃ and ∀, and

� the compactness and Löwenheim–Skolem theorems remain true when
adding the Baaz–Monteiro 4 connective.

Perhaps discouraged by these initial negative results, the MFL community has
not attempted again, to the best of our knowledge, to build a corresponding
abstract model theory.

In this paper we would like to show that such a theory is actually a viable
one, at least under certain technical conditions. In particular, we will give a
general framework (as general as we can see) in which the Lindström theorems
hold. This will lead to two main restrictions:

(1) our algebras of truth-values will be finite, and

(2) we will have a truth-constant for each element of the algebra (allowing for
the possibility that such constants be definable or, more generally, that
the language has the same expressive power, in the sense described below,
as the version with constants).

1In fact, probably the term “model-theoretic language” (see [19]) is more accurate, de-
pending on one’s views of what a “logic” is.
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Both conditions are necessary. We are led to (1) by a result from [21] and, given
(1), also (2) can be quickly seen to be necessary. The framework ends up being
the same recently used in [2] for some pure model-theoretic results and in [16]
for results connected to fuzzy constraint satisfaction.

We follow closely the classical arguments from [5], adapting the ideas and
techniques to the many-valued context. In [12], a translation into a two-sorted
first-order language provides a way to interpret formulas in the languages stud-
ied in this paper as making statements not about many-valued structures but
classical two-sorted structures. Even though we use this trick in Proposition 7,
we should stress here that the applicability of this translation is limited. Indeed,
the Lindström-style theorems in this paper are not immediate consequences of
the classical ones. For one thing, since the translation of atomic formulas into
the two-sorted languages are identity formulas, these languages have only one
relation symbol, namely equality. They may vary on the function symbols they
possess depending on the signature of the original language but they only require
one relation symbol. The definition of an abstract logic, however, allows for ar-
bitrary signatures. Moreover, observe that the classical Lindström theorems for
two-sorted first-order logic would consider arbitrary two-sorted structures (no
restrictions on the finiteness of the domain of one of the sorts, no algebraic struc-
ture imposed on said sort, etc). Hence, the framework of the classical Lindström
theorem is not ours and one cannot just apply it gratuitously; results have to
be established independently. A similar reason was mentioned in [1] as to why
the results there do not just follow from the classical Fräıssé theorem. In fact,
the limitations of the translation are also pointed out in [12].

The paper is organized as follows: In §2 we review the basic notions of graded
model theory, introduce the definition of an abstract graded logic, give some ex-
amples and present the key model-theoretic properties that will be involved in
our characterizations (abstract completeness, the Löwenheim-Skolem property,
compactness, the Karp property, and the Tarski union property among others).
In §3 we show that the first-order logic based on an arbitrary (but fixed) finite
MTL-chain has all the desired model-theoretic properties introduced in the pre-
vious section. In §4 we establish our six Lindström maximality results. Finally,
in §5 we end with some concluding remarks.

2. Theoretical framework

2.1. Graded model theory

In this section we introduce the basic notions of the standard graded model
theory framework which lies at the base of the abstract hierarchy that we will
later propose. Let us start with the syntax and semantics of graded predicate
logics, and recall the basic notions we will use in the paper. We (mostly) use
the notation and definitions of the Handbook of Mathematical Fuzzy Logic [11].

Syntax. The syntactical aspects of our logical setting are (almost) completely
classical. We start from a basic propositional language that contains the bi-
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nary connectives ∧ (lattice conjunction), ∨ (lattice disjunction), & (residu-
ated conjunction), and → (implication), and two truth-constants: 0 (falsum)
and 1 (verum). Two other connectives are defined: ¬ϕ = ϕ → 0 and
ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ). A signature (or predicate language) τ is a
triple 〈Predτ , Funcτ , Arτ 〉, where Predτ is a non-empty set of predicate sym-
bols, Funcτ is a set of function symbols (disjoint from Predτ ), and Arτ rep-
resents the arity function, which assigns a natural number to each predicate
symbol or function symbol. We call this natural number the arity of the sym-
bol. The function symbols with arity zero are named object constants (constants
for short). Object variables, τ -terms, τ -formulas, and the notions of free occur-
rence of a variable, open formula, substitutability, and sentence are defined as
in classical predicate logic. A theory is a set of sentences. When τ is clear
from the context, we will refer to τ -terms and τ -formulas simply as terms and
formulas. Also, when no confusion can arise, we will identify τ with the set of
its symbols (i.e. Predτ ∪Funcτ ) and write expressions such as τ ⊆ τ ′, meaning
that Predτ ⊆ Predτ ′ and Funcτ ⊆ Funcτ ′ and Arτ ′ agrees with Arτ in the
symbols of τ .

Semantics. The non-classicality appears on the semantical side. In graded
predicate logics we work with models based on an algebra of (possibly more
than two) truth-values. Propositional connectives are semantically interpreted
by the notion of an MTL-algebra [17], that is, a structure of the form A =

〈A,∧A,∨A,&A,→A, 0
A
, 1

A〉 such that

� 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice,

� 〈A,&A, 1
A〉 is a commutative monoid,

� for each a, b, c ∈ A, we have:

a&A b ≤ c iff b ≤ a→A c, (residuation)

(a→A b) ∨A (b→A a) = 1
A

(prelinearity)

A is called an MTL-chain if its underlying lattice is linearly ordered. Observe
that the two-element Boolean algebra, B2, can be seen, in particular, as an
MTL-algebra (identifying the operations & and ∧, and defining the complement
as ¬x = x→ 0). Typical examples of non-Boolean MTL-chains are the algebras
[0, 1]G, [0, 1]�, and [0, 1]Π, respectively used in the semantics of Gödel–Dummett,
 Lukasiewicz, and Product logics (three prominent examples of fuzzy logics; see
e.g. [11]). In all cases, ∧, ∨, 0, 1 are interpreted respectively as the minimum,
the maximum, the number 0, and the number 1, while the interpretations of the
other operations differ:
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a&[0,1]G b = min{a, b},
a&[0,1]� b = max{a+ b− 1, 0},
a&[0,1]Π b = ab (standard product of reals),

a→[0,1]G b =

{
1, if a ≤ b,
b, otherwise,

a→[0,1]� b =

{
1, if a ≤ b,
1−a+b, otherwise,

a→[0,1]Π b =

{
1, if a ≤ b,
b/a, otherwise.

The restriction to linearly-ordered algebras is common in the setting of math-
ematical fuzzy logic, particularly for the predicate case. In this article, linearity
will be used without special mention. For example, in the proof of Theorem 13,
we will assume that there is a co-atom a in the algebra A such that every element

of A is either 1
A

or ≤A a (ruling out the possibility of having some element
that is simply incomparable with a). It is possible, however, that our arguments
can be reframed in a general setting that does not impose linearity but instead
some weaker conditions. We leave the task of finding those conditions for future
study.

An MTL-chain A may sometimes be expanded, for greater expressive power
of the logic, with an operation for the Baaz–Monteiro unary connective 4 in
the following the way:

4A(a) =

{
1
A
, if a = 1

A
,

0
A
, otherwise.

Also, it may be expanded with truth-constants (i.e. 0-ary connectives) a, for
each a ∈ A, demanding that they denote their corresponding element, that is,
aA = a (see e.g. [18]).

Based on MTL-chains (and their expansions) as algebraic interpretations
of the propositional language, now we can give the semantics of first-order
predicate formulas. Given a signature τ = 〈Predτ , Funcτ , Arτ 〉, we define a
τ -structure as a pair M = 〈A,M〉 where A is an MTL-chain and

M = 〈M, (PM)P∈Predτ , (FM)F∈Funcτ 〉,

where M is a non-empty set (the domain), PM is an n-ary A-valued relation for
each n-ary predicate symbol P , i.e., a function from Mn to A, identified with an
element of A if n = 0; and FM is a function from Mn to M , identified with an
element of M if n = 0. We will call 〈A,M〉 an A-structure whenever we need to
stress its algebraic part. An M-evaluation of the object variables is a mapping
v assigning to each object variable an element of M . If v is an M-evaluation,
x is an object variable and d ∈ M , we denote by v[x 7→ d] the M-evaluation
defined as v[x 7→ d](x) = d and v[x 7→ d](y) = v(y) for y 6= x. We define the
values of terms and the truth values of formulas in M for an M-evaluation v
recursively as follows:
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‖x‖AM,v = v(x);

‖F (t1, . . . , tn)‖AM,v = FM(‖t1‖AM,v, . . . , ‖tn‖AM,v), for each F ∈ Funcτ ;

‖P (t1, . . . , tn)‖AM,v = PM(‖t1‖AM,v, . . . , ‖tn‖AM,v), for each P ∈ Predτ ;

‖ϕ ◦ ψ‖AM,v = ‖ϕ‖AM,v ◦A ‖ψn‖AM,v, for each binary connective ◦;

‖0‖AM,v = 0
A

;

‖1‖AM,v = 1
A

;

‖(∀x)ϕ‖AM,v = inf{‖ϕ‖AM,v[x 7→d] | d ∈M};

‖(∃x)ϕ‖AM,v = sup{‖ϕ‖AM,v[x 7→d] | d ∈M}.

If the infimum or the supremum does not exist, we take the truth value of
the formula to be undefined. A τ -structure 〈A,M〉 is said to be safe if the
value ‖ϕ‖AM,v is defined for each formula ϕ and each M-evaluation v. Certainly,
the semantics could be restricted to models based on completely ordered chains,
that is, chains with suprema and infima of all their subsets, which would ensure
that all models would be safe. However, in general, this gives rise to serious
drawbacks regarding the axiomatizability of the corresponding first-order logics
(see [11, Chapter XI]), which justifies the design choice of safe models instead.

For a set of formulas Φ, we write ‖Φ‖AM,v = 1
A

, if ‖ϕ‖AM,v = 1
A

for every

ϕ ∈ Φ. We denote by ‖ϕ‖AM = 1
A

the fact that ‖ϕ‖AM,v = 1
A

for all M-
evaluations v; analogously for sets Φ. We say that 〈A,M〉 is a model of a set of

formulas Φ, if ‖Φ‖AM = 1
A

(in symbols, 〈A,M〉 |= Φ).
Observe that in this general presentation we have not required yet the pres-

ence of an equality symbol in the language, but it can be added in the form of
a binary relational symbol ≈ which can be forced to be interpreted as (crisp)

equality in the models, i.e. ‖t1 ≈ t2‖AM,v = 1
A

if ‖t1‖AM,v = ‖t2‖AM,v, and

‖t1 ≈ t2‖AM,v = 0
A

otherwise.

We use the notation −→x for a finite sequence of variables x1, . . . , xn, and
−→
d

for a finite sequence of elements of a domain M (by a slight abuse of language,

we write
−→
d ⊆ M). Generalizing the previous notation, given an M-evaluation

v, we define v[−→x 7→
−→
d ] as the M-evaluation such that v[−→x 7→

−→
d ](xi) = di

for each i ∈ {1, . . . , n} and v[−→x 7→
−→
d ](y) = v(y) for each y /∈ −→x . We write

ϕ(−→x ) to indicate that the free variables of ϕ are among {x1, . . . , xn}. Given a

τ -structure 〈A,M〉 and a formula ϕ(−→x ), we say that
−→
d ⊆M satisfies ϕ(−→x ) (or

that ϕ(−→x ) is satisfied by
−→
d ) if ‖ϕ(−→x )‖A

M,v[−→x 7→
−→
d ]

= 1
A

for any M-evaluation

v (also written
∥∥∥ϕ[
−→
d ]
∥∥∥A
M

= 1
A

or 〈A,M〉 |= ϕ[
−→
d ]). Finally, we say that a

set of sentences Φ is satisfiable if there is a safe τ -structure 〈A,M〉 such that
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‖Φ‖AM = 1
A

, and we say that it is finitely satisfiable if each finite subset of Φ is
satisfiable.

Equivalent formulas, elementary equivalence, elementary diagrams, homo-
morphisms, embeddings, elementary chains, and (partial) isomorphisms. The
many-valued semantics brings forth an interesting increase of complexity of
basic notions of classical model theory, starting from the very notions of equiv-
alence of formulas and elementary equivalence of structures. Indeed, given two
formulas ϕ(−→x ) and ψ(−→x ), we can define their equivalence in two different ways:

� ϕ(−→x ) and ψ(−→x ) are 1-equivalent if for any safe τ -structure 〈A,M〉 and

any sequence of elements
−→
d ∈M : 〈A,M〉 |= ϕ[

−→
d ] iff 〈A,M〉 |= ψ[

−→
d ],

� ϕ(−→x ) and ψ(−→x ) are equivalent if for any safe τ -structure 〈A,M〉 and any

sequence of elements
−→
d ∈ M : 〈A,M〉 |= ϕ ↔ ψ[

−→
d ] (that is, for each v,

‖ϕ(−→x )‖A
M,v[−→x 7→

−→
d ]

= ‖ψ(−→x )‖A
M,v[−→x 7→

−→
d ]

).

Similarly, equivalence between two structures can be meaningfully defined
in two different ways. We say that two safe τ -structures 〈A,M〉 and 〈B,N〉
are elementarily equivalent (in symbols: 〈A,M〉 ≡ 〈B,N〉) if they are models

of the same sentences, i.e. for every τ -sentence σ, ‖σ‖AM = 1
A

if and only if

‖σ‖BN = 1
B

.
In case the two structures are based on the same algebra we can define a

stronger notion of equivalence by requiring sentences to take the exact same
values. More precisely, given safe τ -structures 〈A,M〉 and 〈A,N〉, we say that
they are strongly elementarily equivalent (in symbols: 〈A,M〉 ≡s 〈A,N〉) if for

every τ -sentence σ, ‖σ‖AM = ‖σ‖AN.
For classical structures, i.e. when A ∼= B2, these two definitions give the

classical notion of elementary equivalence. But, in general, they differ as shown
with counterexamples in [13].

Assume now that the propositional language has a truth-constant a for each
a ∈ A and the signature has an object constant cm for each m ∈M . We define
the elementary diagram of a τ -structure 〈A,M〉 as the following set of sentences:

ElDiag(A,M) = {σ ↔ a | σ is a τ -sentence, a ∈ A,

and ‖σ‖AM = a}.

Now, let us introduce the necessary notions of morphisms between structures.
Given τ -structures 〈A,M〉 and 〈B,N〉, a mapping f : A → B and a mapping
g : M → N , the pair 〈f, g〉 is said to be a strong homomorphism from 〈A,M〉 to
〈B,N〉 if f is an algebraic homomorphism and for every n-ary function symbol
F ∈ Funcτ and d1, . . . , dn ∈M ,

g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn))

and for every n-ary predicate symbol P ∈ Predτ and d1, . . . , dn ∈M,
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f(‖P (d1 . . . , dn)‖AM) = ‖P (g(d1), . . . , g(dn))‖BN .

A strong homomorphism 〈f, g〉 is said to be elementary if we have, for every
τ -formula ϕ(x1, . . . , xn) and d1, . . . , dn ∈M ,

f(‖ϕ(d1 . . . , dn)‖AM) = ‖ϕ(g(d1), . . . , g(dn)‖BN .

Let 〈f, g〉 be a strong homomorphism from 〈A,M〉 to 〈B,N〉, we say that
〈f, g〉 is an embedding from 〈A,M〉 to 〈B,N〉 if both functions f and g are
injective, and we say that 〈f, g〉 is an isomorphism from 〈A,M〉 to 〈B,N〉 if
〈f, g〉 is an embedding and both functions f and g are surjective. For a general
study of different kinds of homomorphisms and the formulas they preserve we
refer to [12].

An indexed family {〈Ai,Mi〉 | i < γ} of safe τ -structures is a called a chain
when for all i < j < γ we have that 〈Ai,Mi〉 is a substructure of 〈Aj ,Mj〉. If,
moreover, these substructures are elementary, we speak of an elementary chain.
The union of the chain is the τ -structure 〈A,M〉 where A is the classical union
of the chain of algebras {Ai | i < γ}, while M is defined by taking as its domain⋃
i<γMi, interpreting the symbols of the signature as they were interpreted in

each Mi.
Finally, we need to recall the notions of partial isomorphism and finitely

isomorphic structures studied in [13]. Let 〈A,M〉 and 〈B,N〉 be τ -structures,
p be a partial mapping from A to B, and r be a partial mapping from M to N .
We say that 〈p, r〉 is a partial isomorphism from 〈A,M〉 to 〈B,N〉 if

1. p and r are injective,

2. for every binary connective ◦, and every a1, a2 ∈ dom(p) such that a1 ◦A
a2 ∈ dom(p),

p(a1 ◦A a2) = p(a1) ◦B p(a2),

3. if 0
A ∈ dom(p), then p(0

A
) = 0

B
,

4. if 1
A ∈ dom(p), then p(1

A
) = 1

B
,

5. for every n-ary functional symbol F ∈ Funcτ and every d1, . . . , dn ∈ M
such that d1, . . . , dn, FM(d1, . . . , dn) ∈ dom(r),

r(FM(d1, . . . dn)) = FN(r(d1), . . . , r(dn)),

6. for every n-ary predicate symbol P ∈ Predτ and d1, . . . , dn ∈M such that
d1, . . . , dn ∈ dom(r),

p(PM(d1, . . . , dn)) = PN(r(d1), . . . , r(dn)).

Two τ -structures 〈A,M〉 and 〈B,N〉 are said to be finitely isomorphic, writ-
ten 〈A,M〉 ∼=f 〈B,N〉, if there is a sequence 〈In | n ∈ N〉 with the following
properties:

1. Every In is a non-empty set of partial isomorphisms from 〈A,M〉 to
〈B,N〉.
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2. For each n ∈ N, In+1 ⊆ In.

3. (Forth-property I) For every 〈p, r〉 ∈ In+1 and m ∈M , there is 〈p, r′〉 ∈ In
such that r ⊆ r′ and m ∈ dom(r′).

4. (Back-property I) For every 〈p, r〉 ∈ In+1 and n ∈ N , there is 〈p, r′〉 ∈ In
such that r ⊆ r′ and n ∈ rg(r′).

5. (Forth-property II) For every 〈p, r〉 ∈ In+1 and a ∈ A, there is 〈p′, r〉 ∈ In
such that p ⊆ p′ and a ∈ dom(p′).

6. (Back-property II) For every 〈p, r〉 ∈ In+1 and b ∈ B, there is 〈p′, r〉 ∈ In
such that p ⊆ p′ and b ∈ rg(p′).

If the propositional language is expanded with the unary connective 4
and/or with truth-constants, all the mentioned notions are extended in the
obvious way.

Observe that if the chosen MTL-algebras are (isomorphic to) the two-element
Boolean algebra B2, all the defined semantical notions turn out to be exactly
the usual classical definitions. Therefore, the presented graded model theory
contains classical model theory.

2.2. Model-theoretic logics

In this subsection we introduce the general framework for an abstract graded
model theory. As in the classical theory, we need a basic notion of “abstract
logic” that builds on the basic language seen above and, moreover, abstracts
away from any particular signature (i.e. includes all possible signatures), allows
for any additional syntactical devices one might want, and has a corresponding
semantical counterpart with enough corresponding interpretive devices. These
models will certainly need to include (and possibly expand) the kind of struc-
tures seen above (that is, safe τ -structures valued on an MTL-chain A), in order
to account for the basic propositional language, the quantifiers ∃,∀ and the crisp
equality ≈. We will call these expanded structures (A, τ)-models. However, we
cannot be completely general and allow for arbitrary MTL-chains. Instead,
henceforth, we will assume that we have fixed a finite MTL-chain A. The rea-
son for this restriction is that we have a compactness property for satisfaction
for first-order languages with semantics given over a fixed finite MTL-chain [14,
Theorem 4.4]). In fact, it is not too difficult to find examples of logics with an
infinite algebra of truth-values where compactness fails (for instance, with the
addition of the Baaz–Monteiro 4 connective—but this could be dispensed with
by having enough constants for the values of the algebra in the language—see
[13]). However, a more important case is [21, p. 2], where it is shown that Π∀
does not satisfy the compactness property for satisfaction over the standard
semantics [0, 1]Π. Note that in this example there is no extra expressive power
obtained by either the connective 4 or truth-constants. So we have that no
Lindström characterization involving compactness (or a stronger property) can
be obtained, in general, when A is an arbitrary infinite MTL-chain.

Let us proceed with the fixed finite MTL-chain A. We define an abstract
logic (or model-theoretic language) as a pair of the form L A = 〈LL , ‖·‖L 〉 such
that:
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� LL maps every signature τ to a set of L (τ)-formulas LL (τ) in such a
way that:

– (Monotonicity). If τ ⊆ τ ′, then LL (τ) ⊆ LL (τ ′).

– (Occurrence). If ϕ ∈ LL (τ), then there is a finite signature τϕ ⊆ τ
such that for every signature τ ′, ϕ ∈ LL (τ ′) iff τϕ ⊆ τ ′.

� ‖·‖L is a function that, given a signature τ , a formula ϕ ∈ LL (τ), and
an (A, τ)-model M, maps every pair 〈ϕ,M〉 to an element of A in such a
way that respects the interpretation of the basic connectives, the equality
≈, and the quantifiers ∀,∃ (as defined in the previous subsection), and, in
addition, the following conditions:

– (Isomorphism). If M and N are isomorphic safe (A, τ)-models, then
for every ϕ ∈ LL (τ)

‖ϕ‖ML = ‖ϕ‖NL .

– (Expansion). If τ ⊆ τ ′ and M is an (A, τ ′)-model, then

‖ϕ‖ML = ‖ϕ‖M�τ
L .

– (Renaming property). Let π : τ −→ σ be a renaming of signatures.
Then, for each ϕ ∈ L [τ ], there is a sentence ϕπ ∈ L [σ] such that
for each (A, τ)-model M and corresponding (A, σ)-model (M)π,

‖ϕ‖ML = ‖ϕπ‖(M)π

L .

We will write L A
1 ≤ L A

2 to mean that for every formula of the first abstract
logic there is a 1-equivalent formula in the second; in this case we say that L A

2

is an extension of L A
1 . Clearly, ≤ is a partial order. If both L A

1 ≤ L A
2 and

L A
2 ≤ L A

1 hold, then we say that L A
1 and L A

2 are expressively equivalent and
write L A

1 ' L A
2 .

This notion of expressive equivalence between abstract logics in terms of
1-equivalence was first proposed in the fuzzy and many-valued setting in [21].
It seems appropriate given that it connects to satisfaction and expressivity in a
natural way. Moreover, for the case of fuzzy predicate logics, Lindström theo-
rems showing equivalence in this sense are the only kind known in the literature
(for the particular example of  Lukasiewicz logic on the standard algebra in [0, 1];
see [9]).

In [9] this comparison between logics using the relation ≤ is said to refer to
their axiomatic strength. It is, of course, weaker than if we required that for any
formula of the weaker logic there should be a formula of the stronger logic that

would coincide on all values, not just on 1
A

. As we shall see, if we required this
stronger condition, the corresponding version of the first Lindström theorem in
this paper would be plainly false.

We denote by L A
ωω the abstract logic, lying at the bottom of the hierarchy,

obtained from considering the usual setting (with truth-constants and equality)

10



presented in the previous subsection. The subindexes represent the finitary
character of the quantifiers and the connectives ∨,∧,&.

By a crisp predicate we mean one that takes values only in the set {0A, 1A}.
In the presence of crisp equality, a function symbol f can be represented as a
crisp binary predicate which is functional.

Let us list the metalogical properties that we will use, in different combina-
tions, to characterize L A

ωω. For any abstract logic L A = 〈LL , ‖·‖L 〉, we define
the following (extending notions introduced above in the obvious way):

� Closure property: LL (τ) is closed under the MTL connectives.

� Finite occurrence property: whenever ϕ ∈ LL (τ), there is a finite τϕ ⊆ τ
such that for every signature τ ′, ϕ ∈ LL (τ ′) iff τϕ ⊆ τ ′.

� Effective abstract logic property: the set of all formulas of L A is recursive.

� Compactness property: every set of sentences of L A which is finitely sat-
isfiable is also satisfiable.

� Löwenheim–Skolem property: any countable set of sentences of L A which
is satisfiable in a model with an infinite domain, is satisfiable in a model
with a countable domain.

� Karp property: for every pair of models of L A, if they are finitely isomor-
phic, then they are strongly elementarily equivalent.

� Abstract completeness property: in any countable signature, the collection
of the validities of L A is recursively enumerable.

� Tarski union property: the Tarski–Vaught theorem on unions of chains,
i.e. if 〈A,M〉 is the union of an elementary chain {〈Ai,Mi〉 | i < γ},
then, for each sequence −→a of elements of Mi and each formula ϕ(−→x ),

‖ϕ(−→a )‖AM = ‖ϕ−→a )‖Ai

Mi
and, moreover, the union A = 〈A,M〉 is a safe

τ -structure.

� Robinson property: if τ1, τ2, τ3 are such that τ3 = τ1 ∩ τ2, ϕτ3 is a set of
L A[τ3] sentences, ϕτi (i = 1, 2) a set of L A[τi] sentences, if ϕτ3 contains
a formula of the form ϕ ↔ b (for some bA ∈ A) for each formula ϕ of
L A[τ3] and ϕτ3 ∪ ϕτi (i = 1, 2) is satisfiable, then ϕτ3 ∪ ϕτ1 ∪ ϕτ2 is also
satisfiable.

� κ-Omitting types property: if ∆ is a theory and Σ(x) a collection of for-
mulas, we say that Σ(x) is an unsupported κ-type of ∆ if |∆ ∪ Σ(x)| ≤ κ,
∆ has a model and for every set of formulas Θ(x) with cardinality < κ
for which a model of ∆ ∪ Θ(x) exists, we can find some σ ∈ Σ(x) such

that ∆ ∪Θ(x) ∪ {σ → a} (where a is the predecessor of 1
A

) has a model.
The κ-omitting types property is just that for every ∆ with a model and
every unsupported κ-type of ∆, there is model of ∆ omitting the type in
question.

11



In the next section, we will justify that these properties are good candidates
for characterizations of L A

ωω, since they are all satisfied at the bottom level of
the abstract hierarchy. Now we want to illustrate the hierarchy with some other
examples and describe how they stand with respect to some of these properties.

Example 1. We can close L A
ωω under infinitary lattice disjunctions and con-

junctions, e.g. by allowing formulas
∧
i∈I ϕi and

∨
i∈I ϕi (where |I| < ω1) with

the following semantics:∥∥∧
i∈I ϕi

∥∥A
M,v

= inf{‖ϕi‖AM,v | i ∈ I};∥∥∨
i∈I ϕi

∥∥A
M,v

= sup{‖ϕi‖AM,v | i ∈ I}.

We call the resulting abstract logic L A
ω1ω. In this setting, compactness and

the finite occurrence properties are clearly lost but we preserve others such as
the Tarski union property (easy exercise). The Löwenheim–Skolem property is
preserved at least for the case A ∼= B2 [24, Theorem 17].

Example 2. We can close L A
ωω under monadic second-order quantifiers

(∃X)ϕ(X) and (∀X)ϕ(X) with the following semantics:

‖(∀X)ϕ(X)‖AM,v = inf{‖ϕ‖AM,v[X 7→f ] | f : M −→ A};

‖(∃X)ϕ(X)‖AM,v = sup{‖ϕ‖AM,v[X 7→f ] | f : M −→ A}.

This way we obtain the abstract logic MSO(L A
ω1ω), which does not have the ab-

stract completeness property. To see this, consider the finite signature of Peano
arithmetic. Recall that equality is crisp, i.e. equality formulas only take val-

ues 1
A

or 0
A

. Now take the sentence σ := (∀X)(∀y)(Xy ∨ (Xy → 0)), which
expresses that every predicate has to be crisp. But then (σ → a) ∨ ψ is a va-
lidity of MSO(L A

ωω) only if ψ is a validity of MSO(L B2
ωω ) (any countermodel

based on the algebra B2 has an A counterpart satisfying the same formulas),
and the latter is just classical monadic second-order logic. Since the validities
of MSO(L B2

ωω ) in the signature of Peano arithmetic are not recursively enu-
merable (by Gödel’s incompleteness), neither are the validities of MSO(L A

ωω).
Furthermore, MSO(L A

ωω) does not satisfy compactness either in a signature
containing at least one binary relation R: one can adapt the typical example us-
ing a second-order formula which expresses that R is a well-founded relation in
terms of an induction property, since well-foundedness is equivalent the absence
of an infinitely descending chain in R, compactness would give a contradiction.

Example 3. We can take the monadic existential fragment of MSO(L A
ωω)

which consists of the formulas (∃X)ϕ(X) (where ϕ is an L A
ωω-formula) with the

following semantics:

‖(∃X)ϕ(X)‖AM,v = sup{‖ϕ‖AM,v[X 7→f ] | f : M −→ A}.

12



This way we obtain the abstract logic Σ1
1(L A

ωω). As in [9], the reason this fits our
notion of abstract logic is that we have not included Closure as one of the defining
properties, since Σ1

1(L A
ωω) is not closed under the MTL-connectives. Σ1

1(L A
ωω)

is compact: adapt the proof of [10, Corollary 4.1.14] to show that formulas of
Σ1

1(L A
ω1ω) are preserved under the ultraproduct construction and reproduce the

compactness argument from [14, Theorem 4.4]. Furthermore, Σ1
1(L A

ωω) has the
Löwenheim–Skolem property: take a countable set Φ of sentences of Σ1

1(L A
ωω)

which have an infinite model, and consider the set Φ∗ of sentences L A
ωω which

come from Φ by instantiating the second-order existential quantifiers to new
predicates in a uniform manner, so by the Löwenheim–Skolem property of L A

ωω

(see next section), Φ∗ has a countable model, which is also a model of Φ.

Example 4. We can close L A
ωω under the quantifier I with the following se-

mantics:

‖(Ixy)(ϕ(x), ψ(y))‖AM,v = sup{a ∈ A | |{d ∈ M | ‖ϕ‖AM,v[x 7→d] = a}| =

|{d ∈M | ‖ψ‖AM,v[x 7→d] = a}|}.

We call this abstract logic I(L A
ωω). We can observe that M |= (Ixy)(ϕ(x), ψ(y))

iff |{d ∈M |M |= ϕ[d]}| = |{d ∈M |M |= ψ[d]}|, which means that I is the so
called Härtig quantifier. For the case A ∼= B2, as observed in [22], I(L A

ωω) has
neither the Karp nor the Tarski union properties.

Example 5. We can close L A
ωω under the quantifier Q1 with the following

semantics:

‖(Q1x)ϕ(x)‖AM,v = sup{a ∈ A | |{d ∈M | ‖ϕ‖AM,v[x 7→d] = a}| ≥ ℵ1}.

We call this logic Q1(L A
ωω). Observe that M |= (Q1x)ϕ(x) iff |{d ∈ M | M |=

ϕ[d]}| ≥ ℵ1. It is obvious that Q1(L A
ωω) does not have the Löwenheim–Skolem

property. When A ∼= B2, Q1(L A
ωω) has compactness, abstract completeness and

the omitting types property [6, Chap. II, Example 1].

3. “Hard” graded model theory: properties of L A
ωω

In this section we collect several results of graded model theory, in the stan-
dard framework developed recently in the literature. We add the necessary
restrictions corresponding to the abstract logic L A

ωω, as defined in the previous
section. Because they are constrained to a particular level of the abstract hier-
archy (namely, the bottom level), these results may be seen as a “hard” graded
model theory, as opposed to the “soft” theory that in the next section will give
us results referring to unconstrained abstract logics. More precisely, we will
show (by calling the corresponding sources in the literature or by offering new
proofs when needed) that L A

ωω has all the metalogical properties introduced
above.

The closure, finite occurrence, and efectiveness properties hold simply by
the definition of the syntax in L A

ωω. In contrast, the compactness and the

13



Löwenheim–Skolem properties are non-trivial and have been studied in the lit-
erature. They hold in our setting of L A

ωω thanks to [14, Theorem 4.4] and [12,
Theorem 30].

The Karp property is obtained in the next proposition, which relies heavily
on the finiteness of the fixed MTL-chain A (cf. [13]).

Proposition 6. Consider the setting of L A
ωω with a finite signature τ . Then,

the following are equivalent:

(i) M ∼=f N, i.e., M and N are finitely isomorphic.

(ii) M ≡s N, i.e., M and N are strongly elementary equivalent.

Furthermore, (i) =⇒ (ii) does not depend on the finiteness of τ (so L A
ωω has

the Karp property).

Proof. (i) =⇒ (ii) : This follows from Theorem 14 (b) from [13].
(ii) =⇒ (i) : We start by defining inductively, for any model M and finite

sequence −→e of elements of M , the formulas ψm〈M,−→e 〉(
−→x ) (m < ω) as follows. As

the initial one, we take:

ψ0
〈M,−→e 〉 =

∧
{ϕ(−→x )↔ dϕ(−→e ) | ϕ(−→x ) is atomic and dϕ(−→e ) = ‖ϕ[−→e ]‖M},

and observe that this conjunction is finitary since the signature is finite. More-
over, since A is finite, we have only finitely many possibilities for ψ0

〈M,−→e 〉, that

is, when we allow to −→e to vary over all finite sequences of elements of M , we
obtain a finite number of formulas ψ0

〈M,−→e 〉 up to 1-equivalence. Then, assuming

that ψn
〈M,
−→
d 〉

is given for arbitrary finite sequences of elements
−→
d of M and that

there are only finitely many of them, we continue by defining

ψn+1
〈M,−→e 〉 =

∧
c∈M

(∃y)ψn〈M,−→e c〉(
−→x , y) ∧ (∀y)

∨
c∈M

ψn〈M,−→e c〉(
−→x , y).

Then, this is a finitary formula and, moreover, there are only finitely many
possibilities for it. We can easily observe that, for any n < ω,

M |= ψn〈M,−→e 〉[
−→e ],

ψn〈M,−→e c〉 |= ψn〈M,−→e 〉,

and, from the latter fact, it also follows that

ψn+1
〈M,−→e 〉 |= ψn〈M,−→e 〉.

To show that M ∼=f N, we define the following system 〈Im | m < ω〉 of sets
of partial isomorphisms:

Im = {〈Id, p〉 | 〈Id, p〉 is a partial isomorphism from M into N,dom(p) =
{e0, . . . , ek},N |= ψm〈M,−→e 〉[p(

−→e )]}.

14



Note that the Ims are non-empty since at least they contain 〈Id, ∅〉.
Next, we check the forth property. Suppose that 〈Id, p〉 ∈ Im+1,

dom(p) = {e0, . . . , ek} and let ek+1 be an arbitrary element of M . Then,
N |= ψm+1

〈M,−→e 〉[p(
−→e )], so N |= ∃yψm〈M,−→e ,ek+1〉(

−→x , y)[p(−→e )]. Hence, say that

N |= ψm〈M,−→e ,ek+1〉[p(
−→e ), e′k+1], so also, N |= ψ0

〈M,−→e ,ek+1〉[p(
−→e ), e′k+1], and, con-

sequently, 〈Id, p ∪ {〈ek+1, e
′
k+1〉}〉 is a partial isomorphism in Im.

Finally, we check the back property. Suppose that 〈Id, p〉 ∈ Im+1, dom(p) =
{e0, . . . , ek} and let e′k+1 be some new element of N . Then, N |= ψm+1

〈M,−→e 〉[p(
−→e )],

so N |=
∨
c∈M ψm〈M,−→e ,c〉[p(

−→e ), e′k+1], and hence for some ek+1 ∈ M , N |=
ψ0
〈M,−→e ,ek+1〉[p(

−→e ), e′k+1], and, consequently, 〈Id, p ∪ {〈ek+1, e
′
k+1〉}〉 is a partial

isomorphism in Im.

Recall that, for an abstract logic, the abstract completeness property simply
says that the collection of its validities is recursively enumerable.

Proposition 7. L A
ωω has the abstract completeness property.

Proof. The cheap way to establish this without any syntactic calculus makes
a detour through a translation into a two-sorted first-order language. In [12],
a translation is defined such that for each formula ϕ of L A

ωω, we assign a for-
mula Eϕ in an appropriate two-sorted first-order language (one sort for the el-
ements of A, another sort for the individuals of the domain of an A-valued
model) such that for any model M and b ∈ A, ‖ϕ(d1, . . . , dn)‖M = b iff
M |= Eϕ(d1, . . . , dn, b) when seen as a classical two-sorted model. In general,
this translation is not a very precise surgical tool and hence we make limited
use of it (see [12] for some commentary), but it suffices for our current purposes.
In classical two-sorted first-order logic we can write a sentence ψA axiomatizing
the isomorphism type of A by standard methods, since only finitely many ele-
ments and relations are involved. Note that only variables of the sort used for
the elements of the algebra will be involved. Then, it is clear that ψA → Eϕ(1)
is a validity of classical two-sorted first-order logic iff ϕ is a validity of L A

ωω.
Consequently, by the recursive enumerability of the theorems of multi-sorted
first-order logic, we obtain the abstract completeness of L A

ωω.

Finally, we focus on the three remaining metalogical properties of L A
ωω.

Proposition 8. ( [4, Theorem 2]) L A
ωω has the Tarski union property.

Lemma 9. Let 〈A,M1〉 and 〈A,M2〉 be two structures of signatures τ1 and τ2
with a common part 〈A,M〉 of signature τ3 = τ1 ∩ τ2 with domain generated by

a sequence of elements
−→
d . Moreover, suppose that

〈A,M2,
−→
d 〉|τ3 ≡s 〈A,M1,

−→
d 〉|τ3.

Then, there is a structure 〈A,N〉 in the signature τ1 into which the restriction
of 〈A,M2〉 to the signature τ3, 〈A,M2〉|τ3, can be elementarily embedded by
〈f, g〉, while 〈A,M1〉 is (taking isomorphic copies) an elementary substructure
in the signature τ1. The situation is described by the following picture:

15



〈A,N〉

〈A,M〉

〈A,M2,
−→
d 〉|τ3 〈A,M1,

−→
d 〉|τ3

〈f, g〉 4

≡s

⊆⊆

Proof. It is not difficult to show that ElDiag(A,M1)∪ElDiag(A,M2|τ3) (where
we let the elements of the domain serve as constants to name themselves) has
a model, which suffices for the purposes of the result. Suppose otherwise, that
is, for some finite ElDiag0(A,M2|τ3) ⊆ ElDiag(A,M2|τ3), we have that

ElDiag(A,M1) � (
∧

ElDiag0(A,M2|τ3))→ a,

where a is the immediate predecessor of 1
A

in the lattice order of A .
Quantifying away the new object constants, we have

ElDiag(A,M1) � (∃−→x )((
∧

ElDiag∗0(A,M2|τ3)))→ a,

where ElDiag∗0(A,M2|τ3) is the result of substituting the constants by variables

in ElDiag0(A,M2|τ3). Since 〈A,M2,
−→
d 〉|τ3 ≡s 〈A,M1,

−→
d 〉|τ3, then

〈A,M2〉 6|= (∃−→x )(
∧

ElDiag∗0(A,M2|τ3)),

which is a contradiction.

Corollary 10. Let 〈A,M1〉 and 〈A,M2〉 be two structures of signatures τ1, τ2
with a common part 〈A,M〉 of signature τ3 = τ1 ∩ τ2 with domain generated by

a sequence of elements
−→
d . Moreover, suppose that

〈A,M2,
−→
d 〉|τ3 ≡s 〈A,M1,

−→
d 〉|τ3.

Then, there is a structure 〈A,N〉 in the signature τ1∪τ2 into which 〈A,M2〉 can
be elementarily embedded by 〈f, g〉 in the signature τ2 while 〈A,M1〉 is (taking
isomorphic copies) an elementary substructure in the signature τ1.

Proof. We will build simultaneously two elementary chains:

〈A,Mi〉i<ω 〈A,Si〉i<ω.

First, let 〈A,M0〉 = 〈A,M〉 and 〈A,S0〉 = 〈A,S〉.
Now, given 〈A,Mi+1〉 and 〈A,Si〉 with the property that 〈A,Mi+1〉|τ3 ≡s

〈A,Si〉|τ3, we use Lemma 9 to obtain a τ2-structure 〈A,Si+1〉 into which 〈A,Si〉
is elementarily embedded while 〈A,Mi+1〉|τ3 is elementarily embedded into
〈A,Si+1〉|τ3.
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On the other hand, given 〈A,Mi〉 and 〈A,Si〉 with the property that
〈A,Mi)〉τ3 ≡ 〈A,Si〉|τ3, we use Lemma 9 to obtain a τ1-structure 〈A,Mi+1〉
into which 〈A,Mi〉 is elementarily embedded while 〈A,Si〉|τ3 is elementarily
embedded into 〈A,Mi+1〉|τ3.

By the elementary chain construction, we have that indeed

〈
⋃
i<ω

A,
⋃
i<ω

Mi〉|τ3 = 〈
⋃
i<ω

A,
⋃
i<ω

Si〉|τ3.

Then, we can use the τ2-structure 〈
⋃
i<ωA,

⋃
i<ω Si〉 as a template to expand

the τ1-structure 〈
⋃
i<ωA,

⋃
i<ωMi〉 to a (τ1∪τ2)-structure. By the Tarski union

property, we have our result.

Proposition 11. L A
ωω has the Robinson property.

Proof. Immediate from Corollary 10.

Proposition 12. L A
ωω has the κ-omitting types property.

Proof. Here once more we will apply the cheap trick of the translation. It will
work because we have constants for the values of the algebra and the algebra is
finite. The possibility to express the classical Boolean negation of our metathe-
ory in L A

ωω (since we have a constant for the co-atom of the algebra) is what
makes the difference and why this translation trick does not work in [3]. It
suffices to establish that if Σ(x) is an unsupported κ-type of ∆, then Σ∗(x) is
an unsupported κ-type of ∆∗ ∪ {ψA}, where ψA is as in Proposition 7, Σ∗(x)
is {Eϕ(x, 1) | ϕ(x) ∈ Σ(x)} and similarly for ∆∗. It is enough to observe that
for every formula θ(x) of the two-sorted language such that x is a variable of
the element sort (note that we have no way of translating formulas with free
variables of the algebra sort!), there is a formula θ∗(x) of L A

ωω with the same
models of ψA.

4. “Soft” graded model theory: Lindström theorems for L A
ωω

After the preliminary presentation of “hard” graded model theory and the
introduction of the our setting for a “soft” or abstract graded model theory,
we can finally start substantiating it with results. As promised, we will offer
several Lindström-style theorems that characterize L A

ωω as the maximal abstract
logic based on a finite MTL-chain with certain (combinations of) metalogical
properties. It is important to observe that our theorems could not be obtained
without the expressive power of having truth-constants in our language. By this
we mean that the considered combinations of properties can only characterize
languages that are expressively identical to their own expansions with truth-
constants for all the elements of the algebra. This is because said language
expansions also satisfy the model-theoretic properties that we are discussing
and, hence, if they increase the expressive power of the original language, the
original language cannot be maximal with respect to the properties in question.

17



4.1. Löwenheim–Skolem property + compactness property

Our first result is a generalization of the classical Lindström theorem that
characterizes the standard first-order language as the maximal abstract logic
with the compactness and Löwenheim–Skolem properties.

Theorem 13. (First Lindström theorem) Let L A be an abstract logic such
that L A

ωω ≤ L A. If L A is closed under the connectives of L A
ωω, it has the

Löwenheim–Skolem property, and the compactness property for countable sets
of formulas, then L A ≤ L A

ωω.

Proof. We start by showing that any formula ϕ of a signature τ in L A depends
only on a finite subset τ0 ⊆ τ ; in other words, for any two (A, τ)-models M and

N, we have that M � τ0 ∼= N � τ0 implies ‖ϕ‖M = ‖ϕ‖N. In order to see this,
consider the following collection Γ of formulas in the signature τ ∪ τ ′ (where τ ′

is a disjoint copy of τ , that is, it has a symbol λ′ of the corresponding arity for
any symbol λ of τ):

{(∀−→x )(R(−→x )↔ R′(−→x )) | R ∈ Predτ}
∪ {(∀−→x )(f(−→x ) ≈ f ′(−→x )) | f ∈ Funcτ}
∪ {c ≈ c′ | c ∈ Funcτ , Arτ (c) = 0}.

It is clear that Γ � ϕ↔ ϕ′ (where ϕ′ is the result of replacing the non-logical
symbols from τ in ϕ by their corresponding copies from τ ′). This follows by
standard substitution properties. Observe the essential use of crisp equality in
this step.

For the remainder of the proof let a be the immediate predecessor of 1
A

in the lattice order of A. Now, there must be some finite Γ0 ⊆ Γ such that
Γ0 � ϕ ↔ ϕ′. This follows by compactness, for suppose otherwise, that is, for
every finite Γ0 ⊆ Γ, Γ0 2 ϕ↔ ϕ′, i.e., Γ0∪{(ϕ↔ ϕ′)→ a} has a model. Hence,
Γ ∪ {(ϕ↔ ϕ′)→ a} would also have a model, which is a contradiction.

Suppose now, by the way of contradiction, that the conclusion of our theorem
does not hold. This means that there is a formula ϕ of L A which is not 1-
equivalent to any formula from L A

ωω. Let τ0 be the finite signature ϕ depends
on.

We enumerate the formulas from L A
ωω in the signature τ0 as ψ1, ψ2, . . . and

then we define a list of L A-formulas (ϕi)i∈ω such that for any n,

n∧
i=0

ϕi

is not 1-equivalent to any L A
ωω-formula as follows. First, ϕ0 = ϕ. Now, suppose

that
k∧
i=0

ϕi
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is not 1-equivalent to any L A
ωω-formula. Then, either

(

k∧
i=0

ϕi) ∧ ψk+1

or

(

k∧
i=0

ϕi) ∧ (ψk+1 → a)

is not 1-equivalent to any L A
ωω-formula. For otherwise,

(

k∧
i=0

ϕi) ∧ ψk+1

is 1-equivalent to an L A
ωω-formula θ0, and

(

k∧
i=0

ϕi) ∧ (ψk+1 → a)

is 1-equivalent to an L A
ωω-formula θ1. But � ψk+1 ∨ (ψk+1 → a). Hence,

k∧
i=0

ϕi � θ0 ∨ θ1.

Moreover, it is easy to see that

θ0 ∨ θ1 �
k∧
i=0

ϕi.

Then, we would have that
k∧
i=0

ϕi

is 1-equivalent to an L A
ωω-formula, which is a contradiction. Finally, let ϕk+1 =

ψk+1 or ϕk+1 = (ψk+1 → a) according to which alternative holds (if both, then
make an arbitrary choice).

We observe that

(ϕ→ a) ∧ (

n∧
i=1

ϕi)

is satisfiable. Otherwise, every model M of (
∧n
i=1 ϕi) would be one in which

‖ϕ‖ML A 6≤A a, and, by linearity, a <A ‖ϕ‖ML A so that 1
A

= ‖ϕ‖ML A , that is,
M |=L A ϕ. And, hence, ϕ ∧ (

∧n
i=1 ϕi) is 1-equivalent to (

∧n
i=1 ϕi), which is a

contradiction.
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Then, for any n,

ϕ ∧ (

n∧
i=1

ϕi) and (ϕ→ a) ∧ (

n∧
i=1

ϕi)

both have models. For if the first conjunct does not have a model, it would be
1-equivalent to 0. Hence, by compactness, we can obtain models M and N of
the sets {ϕi | 1 ≤ i}∪{ϕ} and {ϕi | 1 ≤ i}∪{ϕ→ a} respectively. Moreover, by
the Löwenheim–Skolem property for countable sets of formulas, we can assume
that the domains of M and N are countable.

Furthermore, M � τ0 ≡s N � τ0 since there are formulas of L A
ωω in the

signature τ0 expressing that a given formula ψ takes a value b in the algebra A,
namely ψ ↔ b. Now, also we must have that M � τ0 6∼= N � τ0 since otherwise,
the models could not differ on the value for ϕ. Moreover, these models cannot
be finite (since given the presence of crisp equality we could axiomatize the
isomorphism type of the model with one formula of L A

ωω; we leave this as a
simple exercise for the reader). Hence, we might assume that both have the
same infinite domain.

Consider now the signature τ∗ = τ ∪ τ ′ ∪ {fn, gn | n ∈ ω}, where fn(gn)
are new 2n + 1-ary function symbols. Take enumerations, for every n ∈ ω,
{χi(x1, . . . , xn, x) | i ∈ ω} of all L A

ωω-formulas in τ0 with variables among
x1, . . . , xn, x.

Now we consider the collection Σ = Γ ∪∆ where Γ is

ϕ,ϕ′ → a

ψ ↔ ψ′ for every L A
ωω-formula in the signature τ0,

whereas ∆ is the set having for every n, k ∈ ω (letting −→x ,−→y be n-tuples of
variables) the formulas:

(∀−→x ,−→y , x)(((∃y)(
∧k
i=0(χi(

−→x , x)↔ χ′i(
−→y , y)))→ a)∨

(
∧k
i=0(χi(

−→x , x)↔ χi(
−→y , fn(−→x ,−→y , x))))),

(∀−→x ,−→y , y)(((∃x)(
∧k
i=0(χi(

−→x , x)↔ χ′i(
−→y , y)))→ a)∨

(
∧k
i=0(χi(

−→x , gn(−→x ,−→y , y))↔ χi(
−→y , y)))).

Take any finite subset ∆0 ⊆ ∆, we can observe that we can expand any τ∪τ ′
model to a model of ∆0. Take any fn (the case for gn is analogous) appearing

in ∆0 and a τ ∪τ ′ model M. We define fn(−→e ,
−→
d , c) for arbitrary n-tuples −→e ,

−→
d

and element c of the domain of M as follows. Let k be the biggest index of
conjunctions appearing in the formulas of ∆0. If,

M |= (∃y)(

k∧
i=0

(χi(
−→e , c)↔ χ′i(

−→
d , y))),

then for some element c′ of M,

20



∥∥∥∥∥
k∧
i=0

(χi(
−→e , c)↔ χ′i(

−→
d , c′))

∥∥∥∥∥
M

= 1
A
.

And we can set fn(−→e ,
−→
d , c) = c′. Alternatively, if

M 6|= (∃y)(

k∧
i=0

(χi(
−→e , c)↔ χ′i(

−→
d , y))),

we let fn(−→e ,
−→
d , c) be arbitrary.

Hence, with the models M and N of the sets {ϕi | 1 ≤ i} ∪ {ϕ} and {ϕi |
1 ≤ i} ∪ {ϕ → a} that we obtained above, we can observe that, in fact, every
finite subset Σ0 ⊆ Σ has a model. By compactness, we might take a model M′

of Σ. Now we may consider M′ � τ and (M′ � τ ′)h
−1

(where h : τ −→ τ ′ is the
renaming sending every symbol λ of τ to the corresponding symbol λ′ of τ ′).

Then, M′, M′ � τ and (M′ � τ ′)h
−1

all have the same domain, M′ � τ |= ϕ, and

(M′ � τ ′)h
−1 |= ϕ→ a, i.e., (M′ � τ ′)h

−1 6|= ϕ. Moreover,

(M′ � τ) � τ0 ≡s (M′ � τ ′)h
−1

� τ0.

The goal is to show that

(M′ � τ) � τ0 ∼= (M′ � τ ′)h
−1

� τ0,

contradicting the fact that ϕ depends only on the signature τ0.
Enumerate the elements of the common domain of these three models as

e1, e2, . . . From the fact that

(M′ � τ) � τ0 ≡s (M′ � τ ′)h
−1

� τ0,

taking e1 and arbitrary r, letting for each χi(x) (0 ≤ i ≤ r), dχi[e1] be

‖χi[e1]‖(M
′�τ)�τ0 , we have that

(M′ � τ ′)h
−1

� τ0 |= ∃y(χi(y)↔ dχi[e1]).

Then, we must also have that

M′ |= ∃y(

k∧
i=0

(χi(e1)↔ χ′i(y))),

which means that

M′ |=
k∧
i=0

(χi(e1)↔ χi(f0(e1))).

Then,

〈(M′ � τ) � τ0, e1〉 ≡s 〈(M′ � τ ′)h
−1

� τ0, f0(e1)〉.
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Proceeding in a similar way we can establish that

〈(M′ � τ) � τ0, e1, g1(e1, f0(e1), e1)〉 ≡s 〈(M′ � τ ′)h
−1

� τ0, f0(e1), e1〉

〈(M′ � τ) � τ0, e1, g1(e1, f0(e1), e1), e2〉 ≡s 〈(M′ � τ ′)h
−1

� τ0, f0(e1), e1, f1(. . . )〉 . . .

This way we have enumerated, possibly with repetitions, the elements of
(M′ � τ) � τ0 and (M′ � τ ′)h

−1

� τ0 respectively as c1, c2, . . . and d1, d2, . . . in
such a way that

〈(M′ � τ) � τ0, c1, c2, . . .〉 ≡s 〈(M′ � τ ′)h
−1

� τ0, d1, d2, . . .〉.

We can define an isomorphism 〈Id, i〉 where

i : (M′ � τ) � τ0 −→ (M′ � τ ′)h
−1

� τ0

as i(ck) = dk. This function is well defined given that we have crisp equality
in the language. For if ck = cm, then by strong elementarity, also dk = dm, so
i(ck) is indeed unique. A similar argument shows injectivity.

By examining the proof above, let us see where the argument breaks downs
if we wanted to obtain the result using a stronger notion ≤′ of inclusion between
logics requiring that, for any ϕ in the weaker logic, we find a ϕ′ in the stronger
one such that ϕ↔ ϕ′ holds in every model.

We begin by supposing, by the way of contradiction, that the conclusion
of the new version of the theorem does not hold, i.e., there is a formula ϕ of
L A such that there is no ϕ′ from L A

ωω which is equivalent to it. Let τ0 be the
finite signature ϕ depends on. We enumerate the formulas from L A

ωω in the
signature τ0 as ψ1, ψ2, . . . and then we can define a list of L A-formulas 〈ϕi〉i∈ω
with ϕ = ϕ0 such that for any n,

n∧
i=0

ϕi

is not equivalent to any L A
ωω-formula.

However, this is as far as we can go, for now the fact that
∧n
i=0 ϕi is not

equivalent to any formula of L A
ωω, does not guarantee that there is a model

where
∧n
i=0 ϕi. It only tells us that there is a model where the value of

∧n
i=0 ϕi

is certainly not 0
A

, but then it could be anything between the successor of 0
A

and 1
A

. Hence, the proof breaks apart.
Indeed, it seems that the strategy of this kind of result where from the fact

that a formula is not equivalent (in some sense) to a formula in another logic
we construct a couple of models that are used to derive a contradiction is not
going to work here.

In fact, we can show that this stronger version of the theorem cannot be
obtained. So, in a sense, our result is the best possible. To see this we can adapt
an argument suggested to the first author by Xavier Caicedo in the context of
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many-valued modal logics2 showing that, in general, constants do not suffice to
make the Baaz–Monteiro 4 connective definable.

Consider a three-element Gödel chain Gc
3 with constants and say the domain

is {0, a, 1} with the obvious order. In an arbitrary L
Gc

3
ωω -structure M = 〈Gc

3,M〉
we can check that M |= (1 ↔ a) → (ϕ(1) ↔ ϕ(a)) for any ϕ(·) of L

Gc
3

ωω and
where ϕ(a) comes from replacing 1 wherever it appears in ϕ(1) by a. This can
be established by induction on the complexity of ϕ. We check some cases and
leave the rest to the reader. Suppose that ϕ(1) does not contain any appear-

ances of 1. Then,
∥∥1↔ a

∥∥M = min{1, a} = a, and ‖ϕ↔ ϕ‖M = min{1, 1} = 1.

Suppose that ϕ(1) = ψ(1) & χ(1). Then,
∥∥ψ(1) & χ(1)↔ ψ(a) & χ(a)

∥∥M =

min{
∥∥ψ(1) & χ(1)→ ψ(a) & χ(a)

∥∥M ,
∥∥ψ(a) & χ(a)→ ψ(1) & χ(1)

∥∥M}. By in-
ductive hypothesis

a ≤ min{
∥∥ψ(1)→ ψ(a)

∥∥M ,
∥∥ψ(a)→ ψ(1)

∥∥M}
a ≤ min{

∥∥χ(1)→ χ(a)
∥∥M ,

∥∥χ(a)→ χ(1)
∥∥M}.

But then
a ≤ min{

∥∥ψ(1)→ ψ(a)
∥∥M ,

∥∥χ(1)→ χ(a)
∥∥M}

and, similarly,

a ≤ min{
∥∥ψ(a)→ ψ(1)

∥∥M ,
∥∥χ(a)→ χ(1)

∥∥M}.
Since ((ϕ1 → ψ1) & (ϕ2 → ψ2)) → ((ϕ1 & ϕ2) → (ψ1 & ψ2)) is a logical truth,
we see that

a ≤ min{
∥∥ψ(1) & χ(1)→ ψ(a) & χ(a)

∥∥M ,
∥∥ψ(a) & χ(a)→ ψ(1) & χ(1)

∥∥M}.
Suppose that ϕ(1) = ψ(1)→ χ(1). Then,∥∥(ψ(1)→ χ(1))↔ (ψ(a)→ χ(a))

∥∥M =

min{
∥∥(ψ(1)→ χ(1))→ (ψ(a)→ χ(a))

∥∥M,∥∥(ψ(a)→ χ(a))→ (ψ(1)→ χ(1))
∥∥M}.

But observe that (ψ1 → ϕ1) & (ϕ2 → ψ2) → ((ϕ1 → ϕ2) → (ψ1 → ψ2)) is a
logical truth and, reasoning as in the case of &, we get what we desire.

Suppose that ϕ(1) = (∀x)ψ(1). Then,
∥∥(∀x)ψ(1)↔ (∀x)ψ(a)

∥∥M =

min{
∥∥(∀x)ψ(1)→ (∀x)ψ(a)

∥∥M ,
∥∥(∀x)ψ(a)→ (∀x)ψ(1)

∥∥M}. Furthermore,
(∀x)(ψ(1) → ψ(a)) → ((∀x)ψ(1) → (∀x)ψ(a)) and (∀x)(ψ(a) → ψ(1)) →
((∀x)ψ(a) → (∀x)ψ(1)) are logical truths. Using the inductive hypothesis for
ψ, we can conclude that

a ≤
∥∥(∀x)(ψ(1)→ ψ(a))

∥∥M
2The original example is for the context of the many-valued modal logic S5 on crisp frames

evaluated on a finite Gödel chain Gc
3. Then, the formula �(p ↔ q) → (ϕ(p) ↔ ϕ(q)) is valid

but �(1 ↔ a) → (4(1) ↔ 4(a)) is not.
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and
a ≤

∥∥(∀x)(ψ(a)→ ψ(1))
∥∥M ,

and this suffices to give us what we want.
On the other hand,

M 6|= (1↔ a)→ (4(1)↔4(a))

because
∥∥1↔ a

∥∥M = min{1, a} = a. However,
∥∥4(1)

∥∥M = 1 and ‖4(a)‖M =

0, so
∥∥4(1)↔4(a)

∥∥M = min{1, 0} = 0. And clearly, a 6≤ 0.
Hence, the Baaz–Monteiro 4 is not equivalent in the sense of ↔ to any

combination of connectives from L
Gc

3
ωω , and, therefore, the logic L

Gc
3

ωω +4 would

give a proper expressive extension of L
Gc

3
ωω (in terms of ↔) which would also

satisfy the compactness and Löwenheim–Skolem properties. So our Lindström
theorem in this section would be false. However, in its current form this causes
no problem since, clearly, a formula 4(ϕ) is 1-equivalent to ϕ.

4.2. Löwenheim–Skolem property + abstract completeness property

In this subsection, we will obtain a second Lindström-style theorem by using
abstract completeness in place of the compactness property (in the presence of
the necessary syntactic requirements). To this end, we will need two interesting
auxiliary facts. The first one follows from the results in [7]:

Theorem 14. (Trakhtenbrot’s theorem) There is a finite signature δ such that
the collection Fmla<ωδ of all formulas of L A

ωω in the signature δ true in all finite
models is not recursively enumerable.

Given a crisp predicate P in a given structure M (i.e., a predicate P such
that (∀−→x )((P (−→x ) → 0) ∨ P (−→x )) holds in M) and a first-order formula ϕ we
define the relativization of ϕ to P , in symbols ϕP , inductively as follows:

� ϕP is just ϕ if ϕ is atomic.

� ϕP = ◦(ψP0 , . . . , ψPn ) when ϕ = ◦(ψ0, . . . , ψn) for an n-ary connective ◦.

� ϕP = (∃−→x )(P (−→x ) ∧ ψP (−→x )) if ϕ = (∃−→x )ψ(−→x ).

� ϕP = (∀−→x )((P (−→x )→ 0) ∨ ψP (−→x )) if ϕ = (∀−→x )ψ(−→x ).

Lemma 15. (Separation Lemma) Let L A be an abstract logic with the finite
occurrence property such that L A

ωω ≤ L A. If L A is closed under the connec-
tives of L A

ωω, it has the Löwenheim–Skolem property, and for some τ0 there are
disjoint classes Mod(ϕ),Mod(χ) (for ϕ, χ formulas in τ0 of L A) such that there
is no Mod(ψ) (ψ a formula in τ0 of L A

ωω) separating Mod(ϕ) and Mod(χ), i.e.,

Mod(ϕ) ⊆ Mod(ψ) and Mod(χ) ∩Mod(ψ) = ∅.

Then, for some signature δ containing at least a unary predicate U , there is a
formula θ in δ of L A such that:
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(i) for any M |= θ we have that UM is crisp and finite with cardinality > 1.

(ii) for every n > 1 we can find M |= θ and |{a ∈M |M |= U [a]}| = n.

Proof. Suppose, by the way of contradiction, that the conclusion of the lemma
does not hold having assumed the hypothesis. So there is no θ as described
above.

We can show that for any χ which is a formula of L A and not 1-equivalent
to a formula of L A

ωω, there is a countable (infinite) model N |= χ. For either (1)
χ has an infinite model or (2) it has no infinite models. If (1), then add a new
function symbol f and note that the infinite model N′ |= χ can be expanded
to a model of the lattice conjunction of the following formulas (recall that ≈ is
crisp)

χ,

(∀x, y)((f(x) = f(y)→ 0) ∨ x = y),

(∃y)((∃x)(y = f(x))→ 0).

All that we need is to pick some bijection of the infinite domain of N′ with one of
its proper subsets (Dedekind’s definition of infinity). Now, by the Löwenheim–
Skolem property, we can take a countable infinite model N of said lattice con-
junction. On the other hand, if (2) holds, take a finite τ containing all the non-
logical symbols appearing in χ. One can observe that since both the algebra A
and τ are finite, there will be only finitely many structures for any given finite
cardinality k that we can construct (up to isomorphism). If χ only has models up
to some finite cardinality m, then we can write a lattice disjunction (a formula
of L A

ωω) which will be 1-equivalent to χ (just list the formulas describing the
isomorphism types of each model of χ), which would contradict our assumption.
Then, χ must have models of arbitrary finite cardinality. Then, introducing a
new unary predicate U , the formula χ∧ (∃x)Ux∧ (∀x)((Ux→ 0)∨Ux) satisfies
the properties (i) and (ii), which we have assumed do not hold. This is because
we can interpret U as the crisp set {1, . . . , n} in a sufficiently large model (by
taking isomorphic copies if need be).

Now, ϕ and χ as in the statement of the theorem defined disjoint classes of
models that cannot be separated by a class definable by a formula of L A

ωω. Let
τ0 be the finite signature ϕ and χ depend on.

We enumerate the formulas from L A
ωω in the signature τ0 as ψ1, ψ2, . . . and

then we define inductively a list of L A-formulas (ϕi)1≤i<ω such that for any n,

ϕ ∧
n∧
i=1

ϕi and χ ∧
n∧
i=1

ϕi

are not separable by an L A
ωω-formula.

Now, suppose that

ϕ ∧
k∧
i=1

ϕi and χ ∧
k∧
i=1

ϕi
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are not separable by an L A
ωω-formula. Then, either

ϕ ∧ (

k∧
i=1

ϕi ∧ ψk+1) and χ ∧ (

k∧
i=1

ϕi ∧ ψk+1)

are not separable or

ϕ ∧ (

k∧
i=1

ϕi ∧ (ψk+1 → a)) and χ ∧ (

k∧
i=1

ϕi ∧ (ψk+1 → a))

are not separable. For otherwise,

ϕ ∧ (

k∧
i=1

ϕi ∧ ψk+1) and ψ ∧ (

k∧
i=1

ϕi ∧ ψk+1)

are separable by an L A
ωω-formula θ0, and

ϕ ∧ (

k∧
i=1

ϕi ∧ (ψk+1 → a)) and ψ ∧ (

k∧
i=1

ϕi ∧ (ψk+1 → a))

are separable by an L A
ωω-formula θ1. But

� ψk+1 ∨ (ψk+1 → a)

and
� ((ψk+1 → a)→ a) ∨ (ψk+1 → a).

Hence,

ϕ ∧
k∧
i=1

ϕi � θ0 ∨ θ1.

Moreover, notice that

θ0 ∨ θ1 � ((χ ∧
k∧
i=1

ϕi ∧ ψk+1)→ a) ∨ ((χ ∧
k∧
i=1

ϕi ∧ (ψk+1 → a))→ a)

� ((χ ∧
k∧
i=1

ϕi)→ a) ∨ (ψk+1 → a) ∨ ((χ ∧
k∧
i=1

ϕi)→ a) ∨ ((ψk+1 → a)→ a)

� (χ ∧
k∧
i=1

ϕi)→ a.

Then, we would have that

Mod(χ ∧
k∧
i=1

ϕi) ∩Mod(θ0 ∨ θ1) = ∅
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which implies that

ϕ ∧
k∧
i=1

ϕi and χ ∧
k∧
i=1

ϕi

are indeed separable by an L A
ωω-formula, contradicting our assumption.

Then, for any n,

ϕ ∧
n∧
i=1

ϕi and χ ∧
n∧
i=1

ϕi

both have infinite countable models M and N (so, M |= ϕi iff N |= ϕi, 1 ≤ i ≤ n)
using the first part of the proof of the theorem. For otherwise, one of them

would be 1-equivalent to 0
A

, and then they would be trivially separable by an
L A
ωω-formula.

Then, looking at the proof of Proposition 6, for each k < ω, we can pick
n large enough in our enumeration ψ1, ψ2, . . . and countable models M and N
with

M = N M |= ϕi iff N |= ϕi (1 ≤ i ≤ n) M |= ϕ N |= χ

such that there is a sequence 〈Ii | 0 ≤ i ≤ k〉 of sets of partial isomorphisms from
M into N with the back-and-forth property defined as follows:

I0 = {〈Id, ∅〉}

Ii = {〈Id, p〉 | 〈Id, p〉 is a partial isomorphism from M into N,dom(p) =
{e1, . . . , ek−i},N |= ψi〈M,−→e 〉[p(

−→e )]}.

The trick is to pick n large enough so that all the finitely many formulas needed
to define the sequence 〈Ii | 0 ≤ i ≤ k〉 appear in the first n formulas of the
enumeration.

We may assume that
⋃

0≤i≤k Ii is countable, and moreover, taking isomor-
phic copies, that {0, . . . , k},

⋃
0≤i≤k Ii ⊆ M (the domain of the model M).

Expand the signature τ0 ∪ τ ′0 (where τ ′0 is renaming of τ0) by adding the set
of symbols {<,U,B, I,G}, where B and U are unary predicates, < and I are
binary predicates, while G is a ternary predicate. Call the new signature δ.
Then, consider the model M∗ for δ where

M∗ � τ0 = M, M∗ � τ ′0 = N′ (where N′ is the renaming of N for the
signature τ ′0),

‖U [a]‖M
∗

=

{
1
A

if a ∈ {0, . . . , k}
0
A

otherwise.

‖a < b‖M
∗

=

{
1
A

if a, b ∈ {0, . . . , k}, a < b

0
A

otherwise.
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‖B[a]‖M
∗

=

{
1
A

if a ∈
⋃

0≤i≤k Ii

0
A

otherwise.

‖I[m, y]‖M
∗

=

{
1
A

if m ≤ k, y ∈ Im
0
A

otherwise.

‖G[dab]‖M
∗

=

{
1
A

if d = 〈Id, p〉 ∈
⋃

0≤i≤k Ii, p(a) = b

0
A

otherwise.

Take the formula θ to be the lattice conjunction of the following (for sim-
plicity we assume that all symbols in Predτ0 are binary):

ϕ, χ′

“G, I,B,<,U are all crisp”

(∀x)(x < x→ 0), (∀x, y, z)(((x < y ∧ y < z)→ 0) ∨ x < z)

(∀x)(∃y)(x < y ∧ ((∃z)(x < z < y)→ 0)), (∀x, y)(x < y ∨ y < x ∨ x = y)

(∃x)(∀y)((x = y → 0) ∨ x < y)

(∃x)(∀y)((x = y → 0) ∨ y < x)

(∀x, y)((x < y → 0) ∨ (Ux ∧ Uy))

(∀x)((Bx→ 0) ∨ (∀y, z, v, w)(((Gxyz ∧Gxvw)→ 0) ∨ (y = v ↔ z = w)))

(∀x)((Ux→ 0) ∨ (∃y)(By ∧ Ixy))

(∀x)((Bx → 0) ∨ (∀y, z, v, w)(((Gxyz ∧ Gxvw) → 0) ∨ (Ryv ↔
Rzw))) (R ∈ Predτ0)

(∀u, v)((v < u → 0) ∨ (∀p)((Iup → 0) ∨ (∀x)(∃q, y)(Ivq ∧ Gqxy ∧
(∀z, w)((Gpzw → 0) ∨Gqzw)))) (forth property)

(∀u, v)((v < u → 0) ∨ (∀p)((Iup → 0) ∨ (∀x)(∃q, y)(Ivq ∧ Gqyx ∧
(∀z, w)((Gpzw → 0) ∨Gqzw)))) (back property)

M∗ is a model of θ, so putting everything together, θ satisfies property (ii).
Now, for the property (i), suppose that it does not hold. Then, there is a model
M∗∗ of θ such that |{a ∈M |M |= U [a]}| is infinite. Add a new function symbol
f to our signature and consider the formula θ′ which is the lattice conjunction
of the following:

θ,

(∀x, y)((f(x) = y → 0) ∨ (Ux ∧ Uy)),

(∀x, y)((f(x) = f(y)→ 0) ∨ x = y),
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(∃y)(Uy ∧ ((∃x)((Ux ∧ y = f(x))→ 0)).

We can expand M∗∗ to a model of θ′ by interpreting f as any injection of {a ∈
M |M |= U [a]} into a proper subset of itself. Hence, by the Löwenheim–Skolem
theorem, we can assume that M∗∗ is countable and |{a ∈M |M |= U [a]}| = ω.
Hence, {〈a, b〉 ∈ M∗∗ ×M∗∗ | M∗∗ |= a < b} contains an infinitely descending
sequence (since it has a last element). Then, we observe that we can build
a sequence of sets of partial isomorphisms from M∗∗ � τ0 into (M∗∗ � τ ′0)−

′

such that M∗∗ � τ0 ∼=f (M∗∗ � τ ′0)−
′
. But since M∗∗ � τ0 and (M∗∗ � τ ′0)−

′

are countable, then they are, in fact, isomorphic. But M∗∗ � τ0 |= ϕ and
(M∗∗ � τ ′0)−

′ |= ψ, contradicting the hypothesis of the theorem.

Theorem 16. (Second Lindström theorem) Let L A be an effective abstract
logic with the finite occurrence property such that L A

ωω ≤ L A. If L A is closed
under the connectives of L A

ωω, it has the Löwenheim–Skolem property, and the
abstract completeness property, then L A ≤ L A

ωω.

Proof. Once more, we take a ∈ A as the immediate predecessor of 1
A

in the
lattice order of A. Suppose, by the way of contradiction, that there is some
ϕ ∈ L A which is not 1-equivalent to any formula of L A

ωω. This means that there
is no Mod(ψ) (for any formula ψ ∈ L A

ωω) separating Mod(ϕ) and Mod(ϕ→ a),
i.e.,

Mod(ϕ) ⊆ Mod(ψ) and Mod(ϕ→ a) ∩Mod(ψ) = ∅.

But then, by the Separation Lemma, there is a θ ∈ L A as in the lemma. From
Trakhtenbrot’s theorem for this context, for some finite signature τ (that we
may assume disjoint from the signature in our use of the Separation Lemma),
the collection Fmla<ωτ of all formulas of L A

ωω in the signature τ true in all finite
models is not recursively enumerable. Then,

χ ∈ Fmla<ωτ iff � (θ → a) ∨ χU

where χU is the relativization of χ to the crisp predicate U introduced in the
Separation Lemma. The left-to-right direction is as follows: let χ ∈ Fmla<ωτ
and suppose that in an arbitrary model M, we have M |= θ. Then, M is finite
with size > 1, and then, in particular, the restriction of M to the extension of

the crisp predicate U is finite, and, hence, χ takes value 1
A

there, so M |= χU ,
as desired. On the other hand, the right-to-left direction is as follows: suppose
that � (θ → a)∨χU , by property (ii) of θ in the Separation Lemma and the fact
that the relevant signatures are disjoint, every finite structure for τ can be seen
as the restriction to the crisp extension of U of an expansion to the signature τ
of some model of θ, and, hence, in every such finite structure, χ must hold.

Finally, together with our assumptions, this would imply that Fmla<ωτ is
recursively enumerable, which is a contradiction.
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4.3. Compactness property + Karp property

It is natural to ask whether a characterization of maximality can be obtained
without reference to the Löwenheim–Skolem property. The next theorem shows
that it is indeed possible if we use instead the Karp property and recover com-
pactness.

Theorem 17. (Third Lindström theorem) Let L A be an abstract logic such
that L A

ωω ≤ L A. If L A is closed under the connectives of L A
ωω, it has the

compactness property, and the Karp property, then L A ≤ L A
ωω.

Proof. Suppose, by the way of contradiction, that the conclusion of the theorem
does not hold. This means that there is a formula ϕ of L A such that there
is no ϕ′ from L A

ωω which is 1-equivalent to it. Let τ0 be the finite signature ϕ
depends on (by the compactness argument used in the proof of Theorem 13).

We enumerate the formulas from L A
ωω in the signature τ0 as ψ1, ψ2, . . . and

then we define a list of L A-formulas (ϕi)i∈ω such that for any n,

n∧
i=0

ϕi

is not 1-equivalent to any L A
ωω-formula as before.

Then, for any n,

ϕ ∧ (

n∧
i=1

ϕi) and (ϕ→ a) ∧ (

n∧
i=1

ϕi)

both have models.
This can be rewritten as saying that, for each n < ω, we can pick models

Mn and Nn such that

Mn |= ϕi iff Nn |= ϕi (1 ≤ i ≤ n) Mn |= ϕ Nn 6|= ϕ.

As before, this means that for each n < ω, we can pick models M and N such
that

(+) Mn ∼n Nn Mn |= ϕ Nn 6|= ϕ.

Expand the signature τ0 ∪ τ ′0 (where τ ′0 is renaming of τ0) by adding the set
of symbols {<,U, P, I,G, V,W}, where P and U are unary predicates, <, V,W ,
and I are binary predicates, while G is a ternary predicate. We now consider the
sentence ϕ(<,U, P, I,G, V,W ) formed by the lattice conjunction of the following
elements (for simplicity we assume that all symbols in Predτ0 are binary):

“G, I,<,U, P are all crisp”

(∀x)(ϕ{y|V xy}), (∀x)((ϕ→ a)′{y|Wxy})

“The crisp extensions of U,P, as well as {y | V xy}, {y | Wxy} (for every
x) are all disjoint”
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(∀x, y)(((V xy ∨Wxy)→ a) ∨ Ux)

(∀x, y)((Ux→ a) ∨ (∃y, z)(V xy ∨Wxz))

(∀x)(x < x→ 0), (∀x, y, z)(((x < y ∧ y < z)→ 0) ∨ x < z)

(∀x)(∃y)(x < y ∧ ((∃z)(x < z < y)→ 0)), (∀x, y)(x < y ∨ y < x ∨ x = y)

(∃x)(∀y)((x = y → 0) ∨ x < y)

(∃x)(∀y)((x = y → 0) ∨ y < x)

(∀x, y)((x < y → 0) ∨ (Ux ∧ Uy))

(∀x, v, w)(((Px ∧ ((∀y)((v = y → 0) ∨ v < y) → a) ∧ w < v ∧ Iwx) →
a) ∨ ∀y, z((Gxyz → a) ∨ (V vy ∧Wvz)))

(∀x, v)(((Px ∧ (∀y)((v = y → 0) ∨ v < y) ∧ Ivx)→ a) ∨ (∀y, z)((Gxyz →
a) ∨ (V vy ∧Wvz)))

(∀x, v)((Px ∧ Ivx)→ (∀y, z)((Gxyz → 0) ∨ (V vy ∧Wvz)))

(∀x)((Px→ 0) ∨ (∀y, z, v, w)(((Gxyz ∧Gxvw)→ 0) ∨ (y = v ↔ z = w)))

(∀x)((Ux→ 0) ∨ (∃y)(Py ∧ Ixy))

(∀x)((Px → 0) ∨ (∀y, z, v, w)(((Gxyz ∧ Gxvw) → 0) ∨ (Ryv ↔
Rzw))) (R ∈ Predτ0)

(∀u, v)((v < u → 0) ∨ (∀p)((Iup → 0) ∨ (∀x)(∃q, y)(Ivq ∧ Gqxy ∧
(∀z, w)((Gpzw → 0) ∨Gqzw)))) (forth property)

(∀u, v)((v < u → 0) ∨ (∀p)((Iup → 0) ∨ (∀x)(∃q, y)(Ivq ∧ Gqyx ∧
(∀z, w)((Gpzw → 0) ∨Gqzw)))) (back property)

The above sentence ϕ(<,U, P, I,G, V,W ) can be seen to have a model, using
(+). First, observe that from (+) we obtain a union

⋃
i∈ω Ii of collections of

partial isomorphisms. To see this, we consider the following structure M∗:

For very n + 1 ∈ ω, M∗ � τ0|{y | VM∗n + 1y} = Mn+1, M∗ � τ ′0|{y |
WM∗n+1y} = N′n+1 (where N′n+1 is the renaming of Nn+1 for the signa-

ture τ ′0), whereas M∗ � τ0|{y | VM∗0y} = M0, M∗ � τ ′0|{y | WM∗0y} =
N′0,

‖U [a]‖M
∗

=

{
1
A

if a ∈ ω
0
A

otherwise.

‖a < b‖M
∗

=

{
1
A

if a, b ∈ ω, a < b

0
A

otherwise.
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‖P [a]‖M
∗

=

{
1
A

if a ∈
⋃
i∈ω Ii

0
A

otherwise.

‖I[m, y]‖M
∗

=

{
1
A

if m < ω, y ∈ Im
0
A

otherwise.

‖G[dab]‖M
∗

=

{
1
A

if d = 〈Id, p〉 ∈
⋃
i∈ω Ii, p(a) = b

0
A

otherwise.

If a structure M is a model of ϕ(<,U, P, I,G, V,W ), 〈ω,<〉 (seen as a crisp
A-structure, namely, the A-structure where ω is the domain and< is interpreted
as the obvious crisp relation) is isomorphic to M � {<}|UM, and then we get
a contradiction with the compactness of L A. To see this, suppose that 〈ω,<〉
were not isomorphic to M � {<}|UM, this would mean that the latter would
contain a non-standard element c. So we can construct an infinite sequence

e0 < e1 < e2 < · · · < eω = c.

In the model M , if IMxp, we can define a relation p∗ = {〈a, b〉 | GMpab}.
Then, M � τ0|{y | VMcy} and (M � τ ′0|{y | WMcy})−′ are seen to be partially
isomorphic by considering

I = {p∗ | IMeαp for some α ≤ ω}.

However,
M � τ0|{y | VMcy} |= ϕ

whereas
(M � τ ′0|{y |WMcy})−′ 6|= ϕ.

But this is a contradiction with the Karp property.

4.4. Löwenheim–Skolem property + Robinson property

In the proof of the last result, Theorem 17, if, instead of the Karp property,
we had used the Löwenheim–Skolem property as a hypothesis, we could have
produced an argument to the effect that the structure 〈ω,<〉 (seen as a crisp
A-structure) can be axiomatized by a sentence ϕ(<,P, I,G, V,W ) instead of
ϕ(<,P, I, U,G, V,W ). That is, we do not need a predicate to pick out the field
of <, we can simply let < crisply order the domain of our model. This is so
because in (+) we may assume that the given structures are countable. And
hence, in deriving the contradiction in the theorem with the Karp property, we
can argue instead with the Löwenheim–Skolem theorem by recalling that the
existence of a system of partial isomorphisms between two countable structures
gives us an isomorphism in our setting. This gives us the following form of
Lindström theorem:
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Theorem 18. (Fourth Lindström theorem) Let L A be an abstract logic with
the finite occurrence property such that L A

ωω ≤ L A. If L A is closed under
the connectives of L A

ωω, it has the Löwenheim–Skolem property, the Robinson
property, and for every model M, ThL A(M) is a set, then L A ≤ L A

ωω.

Proof. Suppose that, in fact, L A
ωω < L A, so there is ϕ in L A which is not 1-

equivalent to any formula ψ of L A
ωω. But then, by the remark at the beginning

of this section, 〈ω,<〉 (again seen as crisp A-structure) can be axiomatized by
a sentence ϕ(<,P, I,G, V,W ) in an expanded signature.

By the assumption that L A has the Löwenheim–Skolem property and the
finite occurrence property, by a reasoning that should be familiar by now, we
can observe that it must have the Karp property. The idea is to argue for a
contradiction and find models which are isomorphic but differ on the value of
some formula. The isomorphism is built from a system of partial isomorphisms
between two countable models (which we obtain by the Löwenheim–Skolem
property).

Now let M1 be a model of ϕ(<,P, I,G, V,W ), M2 have no relations (other
than ≈) and only ω1-many individual constants with its domain having cardi-
nality ω1. Next, let M1

3 be just an A-structure with domain M1
3 = ω and no

other relations, constants or functions other than =, and M2
3 be defined similarly

with M2
3 = ω1. We can form the disjoint unions of the models [M1,M2,M

i
3]

(i = 1, 2) by taking isomorphic copies in the, by now, usual way.
Clearly, one can build a system of partial isomorphisms between

[M1,M2,M
1
3] and [M1,M2,M

2
3]. Now, we let

ϕ = ThL A([M1,M2,M
1
3]) = ThL A([M1,M2,M

2
3]).

The equalities hold because of the Karp property. Using the techniques from the
proof of the Separation Lemma we can write down a sentence θi that expresses
of a new function symbol fi (i = 1, 2) defines a bijection between Mi and
Mi

3. It is not difficult to see that both ϕ ∪ {θ1} and ϕ ∪ {θ2} have models
(we can expand [M1,M2,M

1
3] and [M1,M2,M

2
3] to models of the former and

the latter. respectively). However, ϕ ∪ {θ1, θ2} cannot have a model since by
ϕ(<,P, I,G, V,W ), M1 is countable whereas M2 is, by definition of its signature,
uncountable. Hence, the Robinson property fails.

4.5. Compactness property + Tarski union property

In this subsection, we present yet another variation of the classical Lindström
characterization in which, instead of the Löwenheim–Skolem property, we use
the Tarski union property.

Theorem 19. (Fifth Lindström theorem) Let L A be an abstract logic such that
L A
ωω ≤ L A. If L A is closed under the connectives of L A

ωω, it has the compact-
ness property, the Tarski union property, and for every model M, ElDiagL A(M)
is a set, then L A ≤ L A

ωω.
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Proof. Note that if the following property holds

(#) For all M,N, M ≡sL A
ωω

N =⇒ M ≡sL A N,

then L A ≤ L A
ωω follows. This is because under the assumption that (#),

any formula ϕ of L A[τ ] is 1-equivalent to a formula (of an abstract infinitary
language) ∨

M|=ϕ

∧
ψ∈LA

ωω
M|=ψ

ψ.

With compactness, we can bring down this second formula to a finitary one.
Suppose now that L A 6≤ L A

ωω. Then, we have an L A-formula ϕ, a pair of
models M and N, and a ∈ A such that

M ≡sL A
ωω

N M |= ϕ↔ a N 6|= ϕ↔ a.

By compactness, there is a strong L A
ωω-elementary extension M1 6|= ϕ ↔ a

of M = M0. Assuming Mn is defined, by another compactness argument, we
obtain Mn+1 as a strong L A

ωω-elementary extension of Mn and a strong L A-
elementary extension of Mn−1. Simply show that the theory

ElDiagL A
ωω

(Mn)
⋃

ElDiagL A(Mn−1)

has a model, but if this were not the case we would obtain a contradiction
with the fact that Mn is a strong L A

ωω-elementary extension of Mn−1. After
countably many steps, we take the union M′ =

⋃
n∈ωM2n =

⋃
n∈ωM2n+1. But

with the Tarski union property this gives the contradiction that M′ |= ϕ ↔ a
and M′ 6|= ϕ↔ a.

4.6. κ-omitting types property

Finally, we will prove a last characterization in terms of the omitting types
property. A version of this result was already known for a particular setting of
fuzzy logic: rational Pavelka logic (see [8]).

Theorem 20. (Sixth Lindström theorem) Let L A be an abstract logic such that
L A
ωω ≤ L A and is closed under the connectives of L A

ωω. For every uncountable
regular cardinal κ, if L A has the κ-omitting types property, then L A ≤ L A

ωω.

Proof. Suppose, by the way of contradiction, that L A < L A
ωω. By inspecting

the proof of our Theorem 17, if we know there is a structure M which is a
model of ϕ(<,P, I, U,G, V,W ) but fails to be such that 〈ω,<〉 is isomorphic to
M � {<}|UM, the Karp property must fail for L A.

Take a list of new constants {cα | α < κ}. We can observe that Σ(x), where

Σ(x) = {Ux} ∪ {cα ≤ x | α < κ},
is an unsupported κ-type of the theory S where

S = {ϕ(<,P, I, U,G, V,W )} ∪ {cα ≤ cβ | α < β < κ}.
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To see this suppose that |∆(x)| < κ and, moreover, that ∆(x) ∪ S has
a model. Either ∆(x) ∪ S ∪ {Ux} has a model, or not. If the second, then
∆(x) ∪ S ∪ {Ux → a} has a model. So suppose that ∆(x) ∪ S ∪ {Ux} has a
model. Now, choose α such that for every cβ not appearing in ∆(x), we have
that β > α. Then, all the cβs can be interpreted by some element bigger than
the interpretation of x. Hence, ∆(x) ∪ S ∪ {cα+1 ≤ x → a} has a model. But
then, by the κ-omitting types property, we have a model M of S which omits
the above described type, and this forces the cofinality of the ordering

〈{d ∈M |M |= U [d]}, {〈d, e〉 ∈M2 |M |= d < e}〉

to be κ, since for every d such that M |= U [d] there will be a cα such that
M |= d < cα. Hence, we have the model M of ϕ(<,P, I, U,G, V,W ) that fails
to be such that 〈ω,<〉 is isomorphic to M � {<}|UM.

Then, the Karp property must fail, so we have models M,N such that

M ∼=f N M |= ϕ↔ a N 6|= ϕ↔ a.

Expand the signature by adding the set of symbols {P,G, V,W}, where
P, V and W are unary predicates, while G is a ternary predicate, and constants
pα, dα, cα for all α < κ. We now consider the theory ∆, defined as follows (for
simplicity we assume that all symbols in Predτ0 are binary):

“P,G, V,W are all crisp”

ϕ{y|V y}, (ϕ→ a){y|Wy}

“The crisp extensions of V,W are disjoint”

Ppα, for all α < κ.

(∃v, w)(Gpαcαv ∧Gpαwdα), for all α < κ.

(∀y, z, v, w)((Px→ 0) ∨ (((Gxyz ∧Gxvw)→ 0) ∨ (y = v ↔ z = w)))

(∀y, z)((Gpαyz → 0) ∨ (V y ∧Wz))), for all α < κ.

(∀y, z, v, w)(((Gpαyz∧Gpαvw)→ 0)∨(Ryv ↔ Rzw)) (R ∈ Predτ0 , α <
κ)

(∀p)((Pp→ 0)∨ (∀x)(∃q, y)(Pq ∧Gqxy ∧ (∀z, w)((Gpzw → 0)∨Gqzw))
(forth property)

(∀p)((Pp→ 0)∨ (∀x)(∃q, y)(Pq ∧Gqyx∧ (∀z, w)((Gpzw → 0)∨Gqzw))
(back property)

(∀z, w)((Gpαzw → 0) ∨Gpβzw)) for all α < β < κ.
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Consider the collection of formulas Σ(x):

{V x ∨Wx} ∪ {(x = cα → 0) ∧ (x = dβ → 0) | α, β < κ}.

We observe that Σ(x) is an unsupported κ-type of ∆. Suppose that |Γ(x)| < κ
and Γ(x)∪∆ is satisfied by an element d in a model M. Consider the case that
d /∈ {e ∈M |M � V [e]}∪{e ∈M |M �W [e]}, so Γ(x)∪∆∪{(V x∨Wx)→ a}
has a model. Otherwise, if d ∈ {e ∈M |M � V [e]}∪{e ∈M |M �W [e]}, then
we can see that either Γ(x)∪∆∪{x = cα} or Γ(x)∪∆∪{x = dα} have models
for some α < κ. Simply pick β < κ such that for any α > β neither pα, cα,
nor dα appear in Γ(x). By the description of ∆ above (particularly, by the
back-and-forth properties), we can find some partial isomorphism q extending
pβ such that either d is in its domain or in its range, depending on whether
d ∈ {e ∈ M | M � V [e]} or d ∈ {e ∈ M | M � W [e]}. Hence, we can change
the interpretations of every pα, cα, and dα (α > β) using q, d and q(d) in a way
that either Γ(x)∪∆∪ {x = cα} or Γ(x)∪∆∪ {x = dα} will be satisfied. Then,
by the κ-omitting types property applied to Σ(x) and ∆, we can conclude that
there is a model M such that M|{d | M |= V [d]} and M|{d | M |= W [d]} are
isomorphic while one of them satisfies ϕ whereas the other does not.

5. Conclusion

In this paper we have shown that an abstract model theory in the context
of mathematical fuzzy logic is perfectly viable, at least under certain necessary
technical restrictions. It should be stressed once more that all the notions used
in this line of research are generalizations of the classical ones, in the precise
sense that when restricted to the case A ∼= B2 all definitions turn out to coincide
with their classical counterparts. However, one should realize that this is neither
unmotivated nor a straighforward exercise in generalization. Indeed, on the one
hand, there is a whole industry of non-classical predicate logics (not only in
the literature of mathematical fuzzy logic, but also in other families of logics)
that can benefit from systematical, unified and abstract approaches like the
one proposed here. On the other hand, as argued above, the generalization of
classical definitions and results to wider frameworks is far from easy, as different
formulations of one classical notion (i.e. properties that were equivalent for
classical logic) may give rise to non-equivalent notions when considered in a
general setting. Choosing the right definitions and convenient design choices is
a crucial delicate task for the success of this enterprise. Moreover, as illustrated
by this paper, general results may require new mathematically involved proofs.

Since, classical logic and its (abstract) model theory always remain under
the scope of our results, we regard this investigation as a contribution to the
classical theory too, for it shows how much of the classical assumptions (logical
and metalogical) are actually needed for important well-known results to hold.
Moreover, we hope to have contributed to showing that mathematical fuzzy
logic and many-valued logics in general provide a rich mathematical domain of
inquiry where a classical model-theorist could also feel at home.
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orems for non-classical first-order algebraizable logics. Logic Journal of the
IGPL, 24(3):321–345 (2016).

37
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