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Abstract: The effectiveness of control measures against the diffusion of the COVID-19
pandemic is grounded on the assumption that people are prepared and disposed to cooperate.
From a strategic decision point of view, cooperation is the unreachable strategy of the prisoner’s
dilemma game, where the temptation to exploit the others and the fear to be betrayed by them
drives the people behavior, which eventually results fully defective. In this work, we integrate the
SIRS epidemic model with the replicator equation of evolutionary games in order to study the
interplay between the infection spreading and the propensity of people to become cooperative
under the pressure of the epidemic. We find that the developed model possesses several steady
states, including fully or partially cooperative ones and that the presence of such states allows
to take the disease under control. Moreover, assuming a seasonal variation of the infection rate,
the system presents rich dynamics, including chaotic behavior and epidemic extinction.

Keywords: Game Theory, Replicator Equation, Epidemic Models, SIRS, Bifurcations, Chaotic
behavior, COVID-19.

1. INTRODUCTION

The recent world coronavirus pandemic enforced the ap-
plication of control measures for restraining the virus dif-
fusion. Although the most effective measure is recognized
to be vaccinating people, additional behavioral measures
have been shown to be successful for weakening and re-
ducing the infection, such as social distancing, movement
reduction, mask wearing, and so on. The application of
control measures requires the organization of suitable in-
formation campaigns aimed at inducing people to adopt
correct behaviors against the pandemic. To make these
campaigns effective, people must behave cooperatively
with respect to the limitations imposed by the govern-
ments. Unfortunately, more often, when taking decisions
under strong pressure, such as in the initial phases of
the pandemic, the requested efforts may activate in the
population selfish mechanisms, such as the temptation to
exploit the others and the fear to be betrayed. An example
of these mechanisms is represented by the panic buying
arisen at the beginning of the COVID-19 pandemic (see,
for example, Stiff (2020)). Preventing these mechanisms
requires fostering altruistic and cooperative feelings.

Nowadays, cooperation is recognized to be a crucial factor
for successfully promoting the achievement of sustainable
development in self-interested societies (Pennisi (2009);
Hofman (2011)). The Evolutionary Game Theory (EGT)
represents a natural mathematical framework to deal with
this problem. Indeed, EGT provides a rigorous method-
ology for studying strategic interactions among people
evolving over time (Hofbauer (2003); Nowak (2004)). The

influence of networks on the dynamics of evolutionary
games has been also investigated recently (Madeo (2019)).

The emergence of cooperation has been analyzed deeply
in the framework of EGT, where the evident drawbacks of
selfish behavior are highlighted in the defective prisoner’s
dilemma game (Killingback (2001); Boyd (2010)). The
influence of structured populations has also been inves-
tigated (Otsuki (2006); Madeo (2020)) by taking into ac-
count the people interactions in a social dilemma context.

After the emergence of COVID-19 epidemic, the integra-
tion of the standard (Hethcote (2000)) or adapted (Gatto
(2020); Calafiore (2020)) SIR and SIRS models of epi-
demics, with suitable control measures for contrasting the
pandemic has started to be studied from different points of
view. For example, in Della Rossa (2020) optimal control
measures are identified by assuming networked popula-
tions, while in McAdams (2020) an analysis of strategic
behavior during the COVID-19 pandemic has been devel-
oped from the economic perspective.

In this paper, we propose a model which integrates a stan-
dard SIRS epidemic model with the replicator equation
(SIRS-RE) describing the evolution over time of the coop-
eration in large populations. The two models are joined in
two ways. First of all, the SIRS epidemic rate is assumed to
depend on the propensity to cooperate by respecting the
control measures taken by the governments, represented
by the state variable of the replicator equation (RE). On
the other hand, the parameters of the game payoff matrix
depend on the strength of the epidemic at any time, thus



the higher is the gravity of the epidemic, the higher is the
propensity to cooperate.

The main findings of the study concern the evidence that
cooperation is effective in contrasting the epidemic spread-
ing. Indeed, cooperative behavior reduces the asymptotic
level of infection. Moreover, the strength of the disease
activates, as expected, the propensity of people to be more
cooperative despite the limitations and sacrifices imposed
by the government directives. Indeed, the switch from the
prisoner’s dilemma game to the fully cooperative harmony
game is observed.

From the dynamical point of view, in the integrated model
the infection peaks are reduced and delayed with respect
to the natural ones, thus inducing transitory oscillating
behaviors. By further assuming seasonal changes of the
infection rate, as it is reasonably expected (Augeraud
(2014)), a sequence of period doubling bifurcations is ob-
served, eventually giving rise to chaotic behavior. However,
as long as the strength of the seasonality is increased, a
drastic reduction of the pandemic is observed, leading to
its extinction.

2. THE MODEL

We consider a population of N individuals, composed of
the standard three classes of the SIRS dynamics. Specifi-
cally, S, I and R are the number of susceptible, infected
and recovered individuals, respectively. The equations of
the model are the following (Hethcote (2000)):


Ṡ = −βSI + αR

İ = +βSI − γI
Ṙ = −αR+ γI

, (1)

where β > 0 is the infection rate, γ > 0 is the recovery rate
and α > 0 is the proportion of people who lose immunity
and go back to vulnerable population.

We also assume that people can cooperate or defect.
In particular, their behavior will change according to
the observed pandemic status. We denote by x ∈ [0, 1]
the share of population cooperating by respecting the
restrictions imposed by government for contrasting the
spread of the disease, and by y = 1 − x the share
of defective individuals. The behavior of people with
respect to the diseases can be assumed to be ruled by
the following payoff matrix, describing the outcome of the
interaction between two players randomly chosen within
the population:

B =

[
1 S
T 0

]
, (2)

where T represents the temptation to defect and S is the
“sucker’s payoff”, embodying the fear of an individual to
be betrayed by the opponent. More specifically, rows of
B correspond to the strategy of player 1 (to cooperate
is the first row, to defect is the second), while columns
correspond to the choice of player 2. Players 1 earns 1 if
both players cooperate, T if he defects and the opponent
cooperates, S if he cooperates and the opponent defects,
or 0 if both players defect. It is worthwhile to remark

that, for T > 1 and S < 0, the payoff matrix (2)
represents a prisoner’s dilemma game, where defection is
dominant, while for T < 1 and S > 0, the game switches
to a harmony game, where cooperation is dominant. The
corresponding RE (Hofbauer (2003); Nowak (2004)) reads
as follows:

{
ẋ = x(π1 − φ)

ẏ = y(π2 − φ)
, (3)

where:

[
π1
π2

]
= B ·

[
x
y

]
=

[
x+ Sy
T x

]
represent the average payoffs π1 and π2 collected by the
share of cooperative and defective individuals, respec-
tively, while

φ = xπ1 + yπ2 = x2 + (T + S)xy,

is the average payoff of the whole population.

Coherently with the payoff matrix (2), the evolution of the
cooperation over time represented by the RE (3) can show
full defection (x = 0 and y = 1) for the prisoner’s dilemma
case or full cooperation (x = 1 and y = 0) for the harmony
game.

If we assume that the RE (3) describes the cooperation
dynamics within a population experiencing a pandemic,
then it is natural to assume that the ruling parameters
T and S vary with respect to the perception of people
regarding the strength of the infection measured by the
state variable I of the SIRS model. In this regard, we
can assume that the payoff matrix (2) depends on I, i.e.
B = B(I), and that it switches from a prisoner’s dilemma
game to a harmony one when the value of I exceeds a
given threshold θ, according to the following definitions of
the temptation and of the sucker’s payoffs:

T (I) = 1− T 0(I − θ),S(I) = −S0(I − θ),

where T 0 > 0, S0 < 0 and 0 < θ < N . In general, for
I < θ, B represents a prisoner’s dilemma game, since
T (I) = 1−T 0(I − θ) > 1 and S(I) = −S0(I − θ) < 0. On
the other hand, for I > θ, B(I) turns to a harmony game
since T (I) = 1−T 0(I−θ) < 1 and S(I) = −S0(I−θ) > 0.

As already said, cooperation corresponds to the adoption
of good practices, aimed at the reduction of the disease
spread, e.g. limitation of social interactions. Since in the
general epidemic SIR/SIRS model, the parameter β rep-
resents the infection rate, it can be assumed to vary ac-
cording to the behavior of people. More specifically, coop-
eration produces a reduction of the infection rate, while
defection leads to an increase of it. Hence, the infection
rate β depends on the cooperation x as follows:

β(x) = β0(1−mx),

where β0 represents the natural infection rate of the
disease, while m ∈ (0, 1) weights the influence of the
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Fig. 1. Schematic representation of the proposed model.
Two feedback mechanisms are at work coupling the
SIRS and the RE: 1) the number of infected I in-
fluences the cooperation dynamics by changing the
payoff matrix B(I) (blue arrows); 2) the cooperation x
influences the infection rate β(x) (dark green arrow).

cooperation on the infection rate. Notice that m ∈ (0, 1)
guarantees that β(x) > 0 ∀x ∈ [0, 1]. In this case, the basic
reproduction number is defined as follows:

RG0 (x) =
β0(1−mx) ·N

γ
= R0(1−mx),

where the superscript G denotes the presence of the game,
and R0 = β0N

γ represents the natural basic reproduction

number of the disease. The maximum of RG0 (x) is reached
for no cooperation (x = 0), thus reducing to R0, while the
minimum of RG0 (x) is attained in presence of maximum
cooperation (x = 1), when countermeasures against the
disease are effective at the highest level.

In order to couple systems (1) and (3), we start by noticing
that S can be omitted in system (1) since S + I +R = N ,
and y can be omitted in system (3), since x + y = 1.
Then, the coupled model, hereafter called SIRS-RE, is the
following:


İ = (β(x)(N − I −R)− γ)I

Ṙ = −αR+ γI

ẋ = x(1− x)((T 0 + S0)x− S0)(I − θ)
. (4)

According to the properties of SIRS and of RE, the set
F =

{
[I,R, x] ∈ R3

+ : I +R ≤ N, x ≤ 1
}

is an invariant
set of system (4).

Fig. 1 reports a pictorial representation of the SIRS-RE
model (4).

3. ANALYSIS OF THE SIRS-RE MODEL

For the analysis of the SIRS-RE model, we assume that
the natural basic reproduction number R0 is bigger than
1, thus investigating the case for which the disease is
spreading in the population without any active control
measure. The system (4) has 7 steady states:

• E1 = [0, 0, 0]. This is always feasible.
• E2 = [0, 0, 1]. This is always feasible.

• E3 =
[
0, 0, S0

T 0+S0

]
. This is unfeasible since

S0 < 0 and T 0 > 0 implies that S0

T 0+S0 6∈ [0, 1].

• E4 =
[
θ, θ γα , 0

]
, where θ = N α

α+γ

(
1− 1

R0

)
. This is

feasible when R0 > 1.

• E5 =
[
N α
α+γD,N

γ
α+γD,

S0

T 0+S0

]
, where D =(

1− T 0+S0

R0(S0(1−m)+T 0)

)
. This is unfeasible since

S0 < 0 and T 0 > 0 implies that S0

T 0+S0 6∈ [0, 1].

• E6 =
[
θ, θ γα , 1

]
, where θ = N α

α+γ

(
1− 1

R0(1−m)

)
.

This is feasible when R0(1−m) > 1, or equivalently
when m < m = 1− 1

R0
.

• E7 =
[
θ, θ γα ,

Nα+R0((γ+α)θ−Nα)
mR0((γ+α)θ−Nα)

]
. This is feasible

when θ ≤ θ ≤ θ. Notice that the previous is a well-
posed interval, since m > 0 and R0 > 1 imply that
the lower bound is less than the upper one, and the
upper one is positive.

Both steady states E1 and E2 represent the disappearing
of the pandemic. Moreover, steady state E7 is the only one
having the x component in the set (0, 1), thus showing an
intermediate level of cooperation.

Collision of steady states

• E1 and E4 coincide for R0 = 1.
• E2 and E6 coincide for R0(1−m) = 1, or equivalently,

for m = m.
• E4 and E7 coincide for θ = θ.
• E6 and E7 coincide for θ = θ.

Stability of steady states

E1 and E2 are unstable for any combination of the param-
eters since R0 > 1. For E4 and E6, the following Theorems
on their stability hold.

Theorem 1. IfR0 > 1 and θ > θ, then E4 is asymptotically
stable.

Proof. The first eigenvalue of the Jacobian matrix of
system (4) evaluated in E4 is:

λ1 =
S0γ (θR0(α+ γ)−Nα(R0 − 1))

R0(α+ γ)
.

Since θ > θ, S0γ < 0 and R0(α+ γ) > 0, then:

θ > N
α

α+ γ

(
1− 1

R0

)
⇒

θR0(α+ γ)−Nα(R0 − 1) > 0 ⇒
S0γ (θR0(α+ γ)−Nα(R0 − 1))

R0(α+ γ)
< 0 ⇒

λ1 < 0.

In addition, λ2,3 = (−δ ±
√
δ2 − η)µ−1, where:

δ = α

(
R0

γ
+ α

)
, (5)

η =
4α

γ
(R0 − 1)(α+ γ)2, (6)

and µ = 2(α+ γ).



δ and µ are always positive, and η is positive since R0 > 1.
Hence there are two cases:

• if δ2 − η ≥ 0, then
√
δ2 − η < δ. Hence λ2,3 are both

real and less than 0.
• if δ2−η < 0, then the real part of λ2 and λ3 is− δ

µ < 0.

Summarizing, all eigenvalues of the Jacobian matrix eval-
uated in E4 have negative real part, thus E4 is asymptot-
ically stable. 2

Theorem 2. If R0(1 − m) > 1 and θ < θ, then E6 is
asymptotically stable.

Proof. The first eigenvalue of the Jacobian matrix of
system (4) evaluated in E6 is:

λ1 =
T0γ (θR0(1−m)(α+ γ)−Nα(R0(1−m)− 1))

R0(1−m)(α+ γ)
.

Since θ < θ, T0γ > 0 and R0(1−m)(α+ γ) > 0, then:

θ < N
α

α+ γ

(
1− 1

R0(1−m)

)
⇒

θR0(1−m)(α+ γ)−Nα(R0(1−m)− 1) < 0 ⇒
T0γ (θR0(1−m)(α+ γ)−Nα(R0(1−m)− 1))

R0(1−m)(α+ γ)
< 0 ⇒

λ1 < 0.

The values of λ2 and λ3 are the same as in Theorem 2,
provided that in the terms δ and η (equations (5) and
(6)) one must replace R0 with R0(1 −m). Recalling that
by hypothesis R0(1 −m) > 1, then E6 is asymptotically
stable. 2

In the following, we complete the stability analysis of
steady states by studying the stability of E7 in its feasible
region with respect to the parameters m and θ. In this
region, E1, E2 and E4 are feasible, while E6 is feasible
only for m < m. We recall that E1 and E2 are unstable.
Moreover, thanks to Theorems 1 and 2, E4 and E6 (when
feasible) are also unstable. Due to the boundedness of the
solution (F is bounded and is an invariant set of system
(4)), then the only candidate to be a stable steady state
is E7. Nevertheless, steady state solutions can converge
also to attractive limit cycles. In subplot (a) of Fig. 2,
we report the maximum real part among all eigenvalues
of the Jacobian matrix evaluated at the steady state E7

as a function of parameters θ and m. Other parameters
have been set as follows: N = 104, β0 = 1

N
365
5 year−1 =

7.3 · 10−3 year−1, γ = 365
14 year−1 = 26.1 year−1, α =

365
365 year−1 = 1 year−1, T 0 = 1.5 and S0 = −2. β0
and γ have been set according to the values reported in
(Della Rossa (2020)). With this setup, the natural basic
reproduction number is R0 = 2.8. The reported value are
always negative, thus ensuring the asymptotic stability
of E7 in its feasible region. Some eigenvalues with null
real part are present in the left border (θ = 0), where
E7 becomes unfeasible or possibly bifurcates with other
unfeasibile steady states. Both cases fall out of the scope
of this study, and hence are not investigated. In addition,
several simulations of system (4) have been performed by
randomly choosing initial conditions in the interior of F .
The average values of the mean square error between the

Fig. 2. (a) Maximum value of the real part of the eigen-
values of the Jacobian matrix evaluated at the steady
state E7 as a function of parameters θ and m. The
value of other parameters is reported in the main text.
(b) Feasibility and stability regions for each steady
state. Steady states reported in black are only feasible,
while stability is denoted by blue font color. The full
black lines are θ = θ and θ = θ, while the dashed line
is m = m.

equilibrium E7 and the asymptotic values of the numerical
solution in the feasible region of E7 is about 10−10.
This fact shows numerically that there are no attracting
limit cycles in this region, and thus the solutions always
converges to E7. Summarizing, subplot (b) of Fig. 2 reports
the feasibility and stability regions for all studied steady
state. More specifically, steady states depicted in black are
feasible and unstable, while the stable ones are highlighted
in blue.

Fig. 3. Comparison of SIRS (1) and SIRS-RE (4) models.
(a) Dynamics of the infected individuals I(t). The
inset shows a detail of the initial dynamics. (b)
basic reproduction number RG0 (x). (c) propensity to
cooperate x. (d) T (I) and S(I).



It is interesting to notice that equilibria E6 and E7

arise thanks to the presence of the game. Moreover, their
I component is lower than the corresponding one of
equilibrium E4, which is a non null equilibrium also for
the SIRS model. Indeed, E6,1 = θ < θ = E4,1, and

E7,1 ≤ θ. Thus, the effect of the cooperation on the
pandemic corresponds to a reduced number of infected
individuals at steady state. Additionally, the effect of the
game can be observed also at the level of the maximum
peak reached by I,

Î = N −R− γ

β(x)
≤ N −R− γ

β0
,

where the last term corresponds to the peak value reached
without game, or equivalently when all members of the
population defect.

In subplot (a) of Fig. 3 the time evolution of I(t) for the
SIRS (dashed line) and for the SIRS-RE (solid line) are
reported. As aforementioned, the first peak (see inset)
and the asymptotic value are smaller in the SIRS-RE
case, while the frequency of pandemic waves increases.
Subplot (b) of Fig. 3 reports the time evolution of the
basic reproduction number in both models. It can be
appreciated that the oscillating behavior produces time
intervals in which the basic reproduction number is smaller
than 1, and hence there are time ranges in which the
strength of the infection is strongly reduced. Accordingly,
subplot (c) of Fig. 3 depicts the time evolution of the
cooperation x(t) for the SIRS-RE model. Also in this case,
we observe alternating cooperative and defective behaviors
in the population. Finally, in subplot(d) of Fig. 3 we report
the evolution of the payoff parameters T (I) and S(I),
showing the succession of phases where the population
plays a prisoner’s dilemma game, and phases where the
game played is the harmony one. The inset reports a
zoom on the first year of simulation, allowing to better
appreciate the variations of these quantities.

Bifurcations The findings of this study can be summarized
as follows:

• A transcritical bifurcation occurs between E4 and E7

for θ = θ.
• A transcritical bifurcation occurs between E6 and E7

for θ = θ.

4. THE SIRS-RE MODEL WITH SEASONALITY

It is reasonable to assume that the contagion follows a
seasonal behavior. This can be embedded in the SIRS-
RE model by introducing a periodic forcing of period
T = 1 year. Since there exists the internal steady state
E7, nearby which oscillations are formed, it is interesting
to check whether any limit cycle is present under the effect
of a seasonally changing parameter RG0 .

A forcing function, modeling a time varying infection
rate according to a seasonal periodicity, is introduced as
follows:

β(x) = β0(1−mx)

(
1− ε sin

(
2πt

T
+ φ

))
. (7)

An extensive simulation analysis of the forced systems
has been carried out, by setting the model parameters

as in Section 3. Specifically, we set φ = 0 and we vary
ε ∈ [0.005, 0.15].

As the effect of the seasonality on the infection rate
increases, period doubling bifurcations of period T , 3T ,
6T , . . . , are observed, as reported in subplots (a)-(c) of
Fig. 4. For ε = 0.119 a chaotic strange attractor is also
present (subplot (d)). These findings suggest that, when
dealing with seasonal epidemic, the onset of new infections
in future years must be expected. Moreover, when the
periodicity is strong enough, predicting the timing of re-
infections may be difficult due to the presence of chaotic
dynamics in the system.

Fig. 4. Route to chaos in the seasonal system (4)-(7) for
N = 104, β0 = 7.3 · 10−3 year−1, γ = 26.1 year−1,
α = 0.33 year−1, T 0 = 1.5, S0 = −2, φ = 0, m = 0.9
and θ = 75. The red points represents steady state
E7. (a) ε = 0.02: limit cycle of period T . (b) ε = 0.09:
limit cycle of period 3T . (c) ε = 0.11: limit cycle of
period 6T . (d) ε = 0.119: chaotic attractor.

Stronger values of the parameter ε may induce the ex-
tinction of the virus, thus destroying the pandemic. Fig.
5 reports the simulation of the variables I(t) and x(t)
for ε = 0.6 and θ = 50. It can be noticed that after
some epidemic peaks the disease is fully wiped out. The
mechanism explaining the phenomenon is the interplay
between the propensity towards cooperation (x(t)) and
the strength of the infection (I(t)) over time. Indeed,
significantly high values of I foster the cooperation and a
successive reduction of the infection itself. The mechanism
repeats four times, corresponding to two infection peaks
per year, before the convergence of the variables towards
vanishing epidemic steady states.

5. CONCLUSION

This paper presents an extended model, called SIRS-RE,
which integrates a standard epidemic SIRS model and
the evolutionary game equation RE, which describes the
propensity of people to be cooperative with the measures
taken to control the pandemic. The resulting model as-
sumes that the infection rate of the SIRS decreases when
the cooperation rises, while the propensity to cooperate
is favoured by strong infection levels. The obtained model
shows that the interplay between control measures and



Fig. 5. Defeating the pandemic. Strong values of the
seasonality in the SIRS-RE system (4)-(7) induce the
extinction of the virus. The parameters setting is the
same as in Fig. 4, except for θ = 50 and ε = 0.6.

infection gravity produce transitory oscillating behavior
converging asymptotically towards low infection values.
The succession of epidemic peaks are due to the potential
side effects of the introduction of the control measures.
Moreover, the introduction of seasonality in the epidemic
rate induces chaos, thus showing rich aperiodic behavior
in the long run. Finally, for larger values of the parameters
defining the seasonal function, the epidemic is also seen to
coalesce.
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