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On varieties generated by Weak Nilpotent Minimum t-norms

Carles Noguera
IITA-CSIC
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Abstract

In this paper we study Weak Nilpotent Minimum
t-norms and their associated algebraic structures,
the standard WNM-chains. We classify all the
varieties generated by one standard WNM-chain,
obtaining all the axiomatic extensions of WNM
logic that are complete with respect to the seman-
tics given by a left-continuous t-norm. To this
end, we define a set of canonical standard WNM-
chains and we prove that they generate pairwise
different varieties and there are no other varieties
generated by a standard WNM-chain.

Keywords: Fuzzy logics, Left-continuous t-
norms, Nilpotent Minimum Logic, MTL-algebras,
NM-algebras, Residuated lattices, Varieties,
Weak Nilpotent Minimum Logic, Non-classical
logics, WNM-algebras.

1 Introduction

In the foundational paper of Fuzzy Sets [7], Zadeh
uses the t-norm of the minimum to deal with in-
tersection. Fodor defined in [3] a left-continuous
but non-continuous t-norm *pypas that he called
Nilpotent Minimum t-norm (combining minimum
with an involutive negation) defined by:

min{a,b} ifa >1—0b,

b= )
@*NM { 0 otherwise.

The associated negation function is n(a) =1 — a,
i.e. the standard involutive negation. Esteva and
Godo generalized Fodor’s construction in [2] us-
ing any (possibly non-involutive) weak negation
function to define what they called Weak Nilpo-
tent Minimum t-norms. Namely, given a weak
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negation function n, they defined the correspond-
ing t-norm x*,, as:

[ min{a,b} if a > n(b),
@ b= { 0 otherwise.

for every a,b € [0,1].

This is a generalization of both Zadeh’s and
Fodor’s approaches by allowing any negation
function. Moreover, in the same paper new fuzzy
logics, Nilpotent Minimum logic and Weak Nilpo-
tent Minimum logic (NM and WNM respectively,
for short) were defined in order to capture the
semantics given by Fodor’s t-norm and by all
Weak Nilpotent Minimum t-norms respectively.
They also proposed an algebraic semantics for
those logics based on the so-called NM-algebras
1 and WNM-algebras, particular kinds of residu-
ated lattices. These classes of algebras contain,
of course, those defined by a t-norm, which are
called standard NM-algebras and standard WNM-
algebras respectively.

There is up to isomorphism only one standard
NM-algebra, the one defined by Fodor’s t-norm,
but this is not the case of standard WNM-
algebras. Indeed there are infinitely-many non-
isomorphic WNM-algebras given by Weak Nilpo-
tent t-norms. In this paper we aim to classify
them attending to the logic that they define or
equivalently to the variety of WNM-algebras that
they generate. We begin with some necessary al-
gebraic and logical preliminaries. Then we define
several kinds of weak negation functions obtaining
thus several families of standard WNM-algebras;

!The lattice of varieties of NM-algebras is fully de-
scribed in [4].



we consider the varieties of WNM-algebras gen-
erated by them. This yields a complete classi-
fication of all varieties generated by a standard
WNDM-algebra. Due to the lack of space the re-
sults are presented here without proofs. The de-
tailed version will be available in a forthcoming

paper.
2 Preliminaries

WNM is the logic introduced by Esteva and Godo
in [2] by means of a Hilbert style calculus in
the language £ = {*,—, A, 0} of type (2,2,2,0),
where the only inference rule is Modus Ponens
and the axiom schemata are the following (taking
— as the least binding connective):

(A1) (p =) = (¥ = x) = (¢ = x))

(A2)  @*9 — o

(A3)  @x9p = xyp

(Ad)  oAYp =

(A5) @AY —=PAyp

(A6) o*x(p—=9Y) =AY

(A7a) (= (¥ = x)) = (p*9 = x)

(ATb)  (p*x9y = x) = (¢ = (¥ = x))

(A8) (v —=9) = x) = (¥ = ¢) = x) = X)
(A9) 0— o

(ox ) V(oA = px1p)
being — and V the following defined connectives:

= =0
V= ((p—=9P) =) A (P = 9) = ).

We denote the set of L-formulas built over a
countable set of variables by Fmg. Given I' U
{¢} C Fmg we write I' Fyynar @ if, and only if,
@ is provable from I in the system WNM.

NM logic is the axiomatic extension of WNM by
adding the axiom ——¢ — ¢ (involution).

As is proved in [2], algebraic semantics for those
logics are given by the classes of WNM-algebras
and NM-algebras.

Definition 1 ([2]). Let A = (A,*,—,A,V,0,1)
be an algebra of type (2,2,2,2,0,0). We define a
unary operation by —a := a — 0. Then, A is a
WNM-algebra if, and only if, it is a bounded resid-
uated lattice satisfying the following equations:

(z =y Vy—=z) =1,
(z*xy)V(zAy > zxy) =1

A is a NM-algebra if, and only if, in addition sat-
ifies the equation of involution: ——x =~ x.

An element a € A is positive (resp. negative)
w.r.t. lattice order if a > —a (resp. a < —a).
We will say that A is a WNM-chain (resp. NM-
chain) if the lattice order is total, and we will say
that the chain is standard if A = |0, 1].

We will denote by WNM and NM the classes of
WNM-algebras and NM-algebras, respectively. It
can proved that both classes are varieties and, of
course, NM C WNM.

Recall from [2] that the operation # in standard
WNM-chains is given by a special kind of left-
continuous t-norm. These t-norms are defined in
the following way. If n is a negation function (see
[1]) and a,b € [0,1], the operation %, is defined

as:
_ | min{a,b} if a > n(b),
@k b= { 0 otherwise.

x5, 18 a left-continuous t-norm and its residuum is
given by:
1 if a <0,
@ b= { max{n(a),b} otherwise.

for every a,b € [0,1]. It is straightfoward
that [0, 1], := ([0, 1], %, —p, min, max, 0,1) is a
WNM-chain, and all WNM-chains over [0, 1] are
of this form. Notice that a standard WNM-chain
given by a negation function n is an NM-chain
if, and only if, n is involutive, i.e. n(n(a)) = a
for every a € [0,1]. It follows from the study of
such negations in [6] that there is only one stan-
dard NM-chain up to isomorphism, namely the
one given by the negation n(z) =1 — z. We will
refer to it as [0, 1] as.

Standard algebras provide a semantics for WNM
and NM logics. This result is known as strong
standard completeness theorem:

Theorem 1 ([2]). Let TU{¢} C Fm, be a (pos-
sibly infinite) set of formulas. Then:

o I' twnm ¢ if, and only if, I Fo1y, ¢ for

every negation function n.

o I'tnup ¢ if, and only if, I Fig 114, ¢-
This theorem has these interesting algebraic con-
sequences: V([0,1]xas) = NM) and V({[0, 1], :
n is a negation function}) = WNM).



We need also to recall some properties of the nega-
tion operation in WNM-chains.?

Lemma 1. Let A be a WNM-chain.
every a € A:

Then for

(7’) na = mmha,
(1) a < ——a,
(113) a = ——a if, and only if, there is b € A such
that a = —b, and
(iv) =—a = min{b € A:a < b and b = —-—b}.

The last one gives rise to the following notation:

Definition 2. Let A be a WNM-chain and a € A
an involutive element. We define I, := {b € A :
—=b = a} and we call it the interval associated to
a. We say that a has a trivial associated interval
when I, = {a}; in this case we also say that a is
an isolated involutive element.

3 Main results

Given a class K of algebras, K¢;, will denote the
class of its finite members.

Proposition 1. Let A and B be WNM-chains.
Then, V(A) C V(B) if, and only if, IS(A)pin C
IS(B) fin-

In particular, we obtain that two standard WNM-
chains generate the same variety if, and only if|
they have the same (up to isomorphism) finite
subalgebras. This will be the criterion to give a
classification of all varieties generated by a stan-
dard WNM-chain. Recall that those chains essen-
tially depend only on a weak negation function.
Therefore, taking into account the possible forms
of those weak negation functions we will obtain
the desired classification.

Definition 3. Given a weak negation function, f,
consider a non-isolated involutive point a € [0, 1]
and its non-trivial associated interval I,. We say
that 1, is of type 1 if a is a discontinuity point of
f, otherwise we say that 1, is of type 2.

Lemma 2. Let f be a weak negation function and

a € [0,1] a non-isolated involutive point. Then the
following are equivalent:

o [, is of type 1.
e —a 18 non-isolated.

2 All the relevant properties of negations in MTL-chains
can be found in the appendix of [2].

o[ is of type 1.

First we define negation functions with a finite
number of intervals:

Definition 4. (i) Given n € w \ {0},
mi,me € w (with n = my + my) and
10y -y tmys S0y -+, Smy, € {0,00}, we define
h?(;T-lerf,SO,--~7sm2 as a weak negation function
such that it has my intervals in the negative
part with ty solated involutive elements
before the first one, t,, isolated involutive
elements after the last one and t; isolated
involutive elements between the i-th and the
(¢ +1)-th interval; and there are my intervals
in the positive part with sy isolated involutive
elements before the first one, s isolated
involutive elements after the last one and s;
1solated involutive elements between the i-th
and the (i + 1)-th interval. The associated
standard WNM-chain is By ™

t0seestmy 5805+ +5Smy °

And now we define negation functions with an
infinite number of intervals:

Definition 5. Given m € w and
L0y s tmy S0s--sSm € w U {oo}, we define
the following weak negation functions:

(it) fE" 4 son.sm 05 G negation function such
that it has no fixpoint, it has m intervals of
type 1 in the negative part with ty intervals of
type 2 before the first one, t,, intervals of type
2 after the last one and t; intervals of type 2
between the i-th and the (i + 1)-th interval of
type 1; and there are m intervals of type 1
in the positive part with sg intervals of type
2 before the first one, sy, intervals of type 2
after the last one and s; intervals of type 2
between the i-th and the (i + 1)-th interval of
type 1, and I, = {1}.

D), ??:l...,tm,so,...,sm is a negation function such
that it has no fixpoint, it has m intervals of
type 1 in the negative part with ty intervals of
type 2 before the first one, t,, intervals of type
2 after the last one and t; intervals of type 2
between the i-th and the (i + 1)-th interval of
type 1; and there are m intervals of type 1
in the positive part with sg intervals of type
2 before the first one, sy, intervals of type 2



after the last one and s; intervals of type 2
between the i-th and the (i + 1)-th interval of
type 1, and I; # {1}.

(i) G2 o eorisy 05 G megation function such
that it has a fixzpoint which is isolated, it has
m intervals of type 1 in the negative part with
to intervals of type 2 before the first one, ty,
intervals of type 2 after the last one and t;
intervals of type 2 between the i-th and the
(1 + 1)-th interval of type 1; and there are m
intervals of type 1 in the positive part with
sg intervals of type 2 before the first one, sp,
intervals of type 2 after the last one and s;
intervals of type 2 between the i-th and the
(i + 1)-th interval of type 1, and I; = {1}.

(v) ggg’:..,tm,sm...,sm is a negation function such
that it has a fixpoint which is isolated, it has
m intervals of type 1 in the negative part with
to intervals of type 2 before the first one, ty,
intervals of type 2 after the last one and t;
intervals of type 2 between the i-th and the
(i + 1)-th interval of type 1; and there are m
intervals of type 1 in the positive part with
sg intervals of type 2 before the first one, sy,
intervals of type 2 after the last one and s;
intervals of type 2 between the i-th and the
(i + 1)-th interval of type 1, and Iy # {1}.

(vi) gfxtimﬁo,---,sm is a mnegation function such
that it has a fizpoint ¢ which is non-isolated,
there are m intervals of type 1 in the nega-
tive part whose right extreme is not c, with
to intervals of type 2 before the first one, ty,
intervals of type 2 after the last one and t;
intervals of type 2 between the i-th and the
(i + 1)-th interval of type 1; and there are m
intervals of type 1 in the positive part with
sg intervals of type 2 before the first one, sp,
intervals of type 2 after the last one and s;
intervals of type 2 between the i-th and the
(i + 1)-th interval of type 1, and I; = {1}.

(vii) gg{)ﬂf-t%m,mw-,sm is a negation function such
that it has a fixpoint ¢ which is non-isolated,
there are m intervals of type 1 in the nega-
tive part whose right extreme is not c, with
to intervals of type 2 before the first one, ty,
intervals of type 2 after the last one and t;
intervals of type 2 between the i-th and the

(ziii) §

(i + 1)-th interval of type 1; and there are m
intervals of type 1 in the positive part with
sg intervals of type 2 before the first one, sy,
intervals of type 2 after the last one and s;
intervals of type 2 between the i-th and the
(i + 1)-th interval of type 1, and I; # {1}.

(viii) f*° is a negation function such that it has no

fizpoint, it has intervals [0,a] and [f*°(a), 1]
of isolated involutive elements, it has w in-
tervals of type 1 in the negative part and w
intervals of type 1 in the positive part and
nothing else.

(iz) T is a negation function such that it has no
fixpoint, it has w intervals of type 1 in the
negative part and w intervals of type 1 in the
positive part and nothing else.

(z) g° is a negation function such that it has a
fixpoint ¢ which is isolated, it has intervals
[0,al, [g7°(a), 1] and [d,g*°(d)] (with d < ¢ <
9°(d)) of isolated involutive elements, it has
w intervals of type 1 in the negative part and
w intervals of type 1 in the positive part and
nothing else.

(xi) g is a negation function such that it has a
fixpoint ¢ which is isolated, it has an interval
[d,g*°(d)] (with d < ¢ < §*>®(d)) of isolated
imwvolutive elements, it has w intervals of type
1 in the negative part and w intervals of type
1 in the positive part and nothing else.

(zii) g®°T' is a negation function such that it has
a fizpoint ¢ which is non-isolated, it has in-
tervals [0,a] and [g°t1(a), 1] of isolated in-
volutive elements,it has w intervals of type 1
in the negative part and w intervals of type 1
in the positive part and nothing else.

o+l is 4 negation function such that it has

a fizpoint ¢ which is non-isolated, it has w
intervals of type 1 in the negative part and
w intervals of type 1 in the positive part and
nothing else.

The standard WNM-algebras defined by those

weak mnegation functions will be denoted re-

. 2m =2m
Spect'l/Uely by Cto,...,tm750,...,sm7 Cto,...,tm,SO,...,Sm7
p2m 72m 2m+-1

£0ye-estm 380,038 m 7 €05 tm 505 58Sm 7 £0yeeesbm 380, ySm.?



—2m+1

£0yeostm 380,e-+sSm ?

>, C*, D>®, D™, D! gnd
5OOH. We call them canonical standard WNM-
chains.

Figure 1: Two examples of canonical standard
WNM-chains: 8252,(’;,0700700 and 500—'—1.
Theorem 2. Let A be a standard WNM-chain.
Then:

1. If all the elements are involutive, then A =2
[0,1]nar and V(A) = NM.

2. Suppose that A has an finite number n €
w \ {0} of non-isolated involutive elements.
Let mq be the number of intervals in the neg-
ative part and let mo be the number of in-
tervals in the positive part. Then, there are

10y -y tmysS0s---sSmy, € {0,00} such that
~ 7,11, M2
‘A - Bto,oo,tl,oo...,tml,so,oo,sl,oo,...,sm27 and Of
— 70,111,112
course, V(A) — V(Bto,...,tml,so,...,sm2)'

3. Suppose that A has an infinite number of
non-isolated involutive elements but the num-
ber of intervals of type 1 s finite. Let m € w
be the number of intervals of type 1 in the
positive part.

3.1. Suppose that A has no mnegation fiz-
point. It has m intervals of type 1
in the negative part. Then, there are

to,--ytm, S0, -, Sm € w such that:
3.1.1.if I, = {1}, then V(A) =
V(CEOT..,tm,so,...,sm)'
3.1.2.if I # {1}, then V(A) =
V(Ciyr 50,5

3.2. Suppose that A has a negation fixpoint
which s isolated. It has m intervals of

type 1 in the negative part. Then, there

are tg, ..., tm, S0y ---,Sm € w such that:

3.2.1.if I, = {1}, then V(A) =

V(,D?(:?..,tm,so,...,sm)'
3.2.2.4f I # {1},

V(D ..

3.3. Suppose that A has a negation fixpoint

¢ which is non-isolated. It has m inter-

vals of type 1 in the negative part whose

right extreme is not c. Then, there are

then V(A) =

tm,SO,...,sm)'

to,..-ytm,S0,--.,Sm € w such that:
3.3.1.4f I = {1}, then V(A) =
V(DR )
3.8.2.4f I # {1}, then V(A) =
V(Dig b s00mm)-

4. Suppose that A has an infinite number of in-
tervals of type 1.

4.1. Suppose that A has no negation fizpoint.
4.1.1. if I = {1}, then V(A) = V(C™).
4.1.2. if I} # {1}, then V(A) = V(C™).

4.2. Suppose that A has a negation fizpoint

which is isolated.

4.2.1. if I = {1}, then V(A) = V(D>).
4.2.2. if I, # {1}, then V(A) = V(D).
4.8. Suppose that A has a negation fizpoint

which is not isolated.
4.8.1. if L = {1}, then V(A) = V(D>*1).
4.8.2. if I # {1}, then V(A) = V(D).

Moreover, all canonical standard WNM-chains
generate pairwise different varieties.

In [5] the subvarieties BPg, BP{! of MTL are stud-
ied and axiomatized. Inside WNM we obtain the
following:

e WNM N BP, is the variety generated by
all WNM-chains without negation fixpoint
and it is axiomatized by: (—(-z)%)? <
—(—z?)? = 1.

o WNM N IB%IPE')'I is the variety generated by all
WNDM-chains with an isolated negation fix-
point and it is axiomatized by:

1. (=(-2)?)? & =(-22)? V (-7 < -—2) =~
17



2. (xV-z = yV-yV(yV-y—-yA
—=y) = yV-y)V((zV-2)? = yV-y) —

Therefore, by Proposition 1 we obtain: V(™) =
WNM N BPy, V(D) = WNM N BP;! and

V(D®) = WNML

Finally, we study the relations of inclusion be-
tween these varieties.

Proposition 2. Let A be a canonical standard
WNM-chain. Then:

e If A has no fizpoint, then V(A) C V(C™).

o If A either has no fizpoint or the fizpoint is
isolated, then V(A) C V(D™).

o V(A C V(D).

Proposition 3. Let A and A’ be canonical stan-
dard WNM-chains both defined from a negation
function of type (i), (i), (i1d), (iv), (v), (vi)
or (vii). Then, V(A) C V(A') if, and only if,
A e IS(A).

Therefore, given two canonical standard WNM-
chains defined from a negation of the same type
it is easy to check whether there is some inclusion
between the varieties generated by them.

To compare the varieties generated by chains de-
fined from negations of different type, we use
again Proposition 1 and the following criteria:

Proposition 4. Let A and A’ be canonical stan-
dard WNM-chains defined from negations of dif-
ferent type. Then:

o If A’ has a finite number of non-isolated in-
volutive elements (i.e. its negation is of type
(27)) and A has an infinite number of non-
isolated involutive elements, then V(A) ¢
V(A').

o If A’ has I} = {1} and A has I, # {1}, then
V(A) Z V(A).

o If A’ has no fizpoint and A has fixpoint, then
V(A) Z V(A).

e If A" has an isolated fizpoint and A has a
non-isolated fixpoint, then V(A) € V(A').

4 Concluding remarks

By defining a collection of canonical standard
WNM-chains, we have classified all the varieties
generated by one standard WNM-chain. Some of
them have been identified and axiomatized. In a
forthcoming paper we will give equational bases
for all varieties generated by a finite family of
WNM-chains with finitely-many non-isolated in-
volutive points, so, in particular, we can axioma-
tize the varieties of the form V(BZ)’T}iZLLf:SO;m,Sm2 ).
Nevertheless, the axiomatization of the remaining
varieties studied here is still an open problem.
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