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Abstract
In this paper we study Weak Nilpotent Minimumt-norms and their associated algebraic structures,the standard WNM-chains. We classify all thevarieties generated by one standard WNM-chain,obtaining all the axiomatic extensions of WNMlogic that are complete with respect to the seman-tics given by a left-continuous t-norm. To thisend, we de�ne a set of canonical standard WNM-chains and we prove that they generate pairwisedi�erent varieties and there are no other varietiesgenerated by a standard WNM-chain.
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1 Introduction
In the foundational paper of Fuzzy Sets [7], Zadehuses the t-norm of the minimum to deal with in-tersection. Fodor de�ned in [3] a left-continuousbut non-continuous t-norm �NM that he calledNilpotent Minimum t-norm (combining minimumwith an involutive negation) de�ned by:

a �NM b = � minfa; bg if a > 1� b;0 otherwise:
The associated negation function is n(a) = 1� a,i.e. the standard involutive negation. Esteva andGodo generalized Fodor's construction in [2] us-ing any (possibly non-involutive) weak negationfunction to de�ne what they called Weak Nilpo-tent Minimum t-norms. Namely, given a weak

negation function n, they de�ned the correspond-ing t-norm �n as:
a �n b = � minfa; bg if a > n(b);0 otherwise:

for every a; b 2 [0; 1].
This is a generalization of both Zadeh's andFodor's approaches by allowing any negationfunction. Moreover, in the same paper new fuzzylogics, Nilpotent Minimum logic and Weak Nilpo-tent Minimum logic (NM and WNM respectively,for short) were de�ned in order to capture thesemantics given by Fodor's t-norm and by allWeak Nilpotent Minimum t-norms respectively.They also proposed an algebraic semantics forthose logics based on the so-called NM-algebras
1 and WNM-algebras, particular kinds of residu-ated lattices. These classes of algebras contain,of course, those de�ned by a t-norm, which arecalled standard NM-algebras and standard WNM-algebras respectively.
There is up to isomorphism only one standardNM-algebra, the one de�ned by Fodor's t-norm,but this is not the case of standard WNM-algebras. Indeed there are in�nitely-many non-isomorphic WNM-algebras given by Weak Nilpo-tent t-norms. In this paper we aim to classifythem attending to the logic that they de�ne orequivalently to the variety of WNM-algebras thatthey generate. We begin with some necessary al-gebraic and logical preliminaries. Then we de�neseveral kinds of weak negation functions obtainingthus several families of standard WNM-algebras;

1The lattice of varieties of NM-algebras is fully de-
scribed in [4].



we consider the varieties of WNM-algebras gen-erated by them. This yields a complete classi-�cation of all varieties generated by a standardWNM-algebra. Due to the lack of space the re-sults are presented here without proofs. The de-tailed version will be available in a forthcomingpaper.
2 Preliminaries
WNM is the logic introduced by Esteva and Godoin [2] by means of a Hilbert style calculus inthe language L = f�;!;^; 0g of type (2; 2; 2; 0),where the only inference rule is Modus Ponensand the axiom schemata are the following (taking! as the least binding connective):
(A1) ('!  )! (( ! �)! ('! �))(A2) ' �  ! '(A3) ' �  !  � '(A4) ' ^  ! '(A5) ' ^  !  ^ '(A6) ' � ('!  )! ' ^  (A7a) ('! ( ! �))! (' �  ! �)(A7b) (' �  ! �)! ('! ( ! �))(A8) (('!  )! �)! ((( ! ')! �)! �)(A9) 0! '(A10) :(' �  ) _ (' ^  ! ' �  )

being : and _ the following de�ned connectives:
:' := '! 0;' _  := (('!  )!  ) ^ (( ! ')! ').
We denote the set of L-formulas built over acountable set of variables by FmL. Given � [f'g � FmL we write � `WNM ' if, and only if,' is provable from � in the system WNM.
NM logic is the axiomatic extension of WNM byadding the axiom ::'! ' (involution).
As is proved in [2], algebraic semantics for thoselogics are given by the classes of WNM-algebrasand NM-algebras.De�nition 1 ([2]). Let A = hA; �;!;^;_; 0; 1ibe an algebra of type (2; 2; 2; 2; 0; 0). We de�ne aunary operation by :a := a ! 0. Then, A is aWNM-algebra if, and only if, it is a bounded resid-uated lattice satisfying the following equations:

(x! y) _ (y ! x) � 1;
:(x � y) _ (x ^ y ! x � y) � 1:

A is a NM-algebra if, and only if, in addition sat-i�es the equation of involution: ::x � x.
An element a 2 A is positive (resp. negative)w.r.t. lattice order if a > :a (resp. a � :a).We will say that A is a WNM-chain (resp. NM-chain) if the lattice order is total, and we will saythat the chain is standard if A = [0; 1].
We will denote by WNM and NM the classes ofWNM-algebras and NM-algebras, respectively. Itcan proved that both classes are varieties and, ofcourse, NM �WNM.
Recall from [2] that the operation � in standardWNM-chains is given by a special kind of left-continuous t-norm. These t-norms are de�ned inthe following way. If n is a negation function (see[1]) and a; b 2 [0; 1], the operation �n is de�nedas:

a �n b = � minfa; bg if a > n(b);0 otherwise:
�n is a left-continuous t-norm and its residuum isgiven by:

a!n b = � 1 if a � b;maxfn(a); bg otherwise:
for every a; b 2 [0; 1]. It is straightfowardthat [0; 1]�n := h[0; 1]; �n;!n;min;max; 0; 1i is aWNM-chain, and all WNM-chains over [0; 1] areof this form. Notice that a standard WNM-chaingiven by a negation function n is an NM-chainif, and only if, n is involutive, i.e. n(n(a)) = afor every a 2 [0; 1]. It follows from the study ofsuch negations in [6] that there is only one stan-dard NM-chain up to isomorphism, namely theone given by the negation n(x) = 1 � x. We willrefer to it as [0; 1]NM .
Standard algebras provide a semantics for WNMand NM logics. This result is known as strongstandard completeness theorem:
Theorem 1 ([2]). Let �[f'g � FmL be a (pos-sibly in�nite) set of formulas. Then:� � `WNM ' if, and only if, � �[0;1]�n ' forevery negation function n.� � `NM ' if, and only if, � �[0;1]NM '.This theorem has these interesting algebraic con-sequences: V([0; 1]NM ) = NM) and V(f[0; 1]�n :n is a negation functiong) =WNM).



We need also to recall some properties of the nega-tion operation in WNM-chains.2
Lemma 1. Let A be a WNM-chain. Then forevery a 2 A:
(i) :a = :::a,(ii) a � ::a,(iii) a = ::a if, and only if, there is b 2 A suchthat a = :b, and(iv) ::a = minfb 2 A : a � b and b = ::bg.
The last one gives rise to the following notation:
De�nition 2. Let A be a WNM-chain and a 2 Aan involutive element. We de�ne Ia := fb 2 A :::b = ag and we call it the interval associated toa. We say that a has a trivial associated intervalwhen Ia = fag; in this case we also say that a isan isolated involutive element.
3 Main results
Given a class K of algebras, Kfin will denote theclass of its �nite members.
Proposition 1. Let A and B be WNM-chains.Then, V(A) � V(B) if, and only if, IS(A)fin �IS(B)fin.
In particular, we obtain that two standard WNM-chains generate the same variety if, and only if,they have the same (up to isomorphism) �nitesubalgebras. This will be the criterion to give aclassi�cation of all varieties generated by a stan-dard WNM-chain. Recall that those chains essen-tially depend only on a weak negation function.Therefore, taking into account the possible formsof those weak negation functions we will obtainthe desired classi�cation.
De�nition 3. Given a weak negation function, f ,consider a non-isolated involutive point a 2 [0; 1]and its non-trivial associated interval Ia. We saythat Ia is of type 1 if a is a discontinuity point off , otherwise we say that Ia is of type 2.
Lemma 2. Let f be a weak negation function anda 2 [0; 1] a non-isolated involutive point. Then thefollowing are equivalent:
� Ia is of type 1.�:a is non-isolated.

2All the relevant properties of negations in MTL-chains
can be found in the appendix of [2].

� I:a is of type 1.
First we de�ne negation functions with a �nitenumber of intervals:
De�nition 4. (i) Given n 2 ! n f0g,m1;m2 2 ! (with n = m1 + m2) andt0; : : : ; tm1 ; s0; : : : ; sm2 2 f0;1g, we de�nehn;m1;m2t0;:::;tm1 ;s0;:::;sm2

as a weak negation functionsuch that it has m1 intervals in the negativepart with t0 isolated involutive elementsbefore the �rst one, tm isolated involutiveelements after the last one and ti isolatedinvolutive elements between the i-th and the(i+1)-th interval; and there are m2 intervalsin the positive part with s0 isolated involutiveelements before the �rst one, sm isolatedinvolutive elements after the last one and siisolated involutive elements between the i-thand the (i + 1)-th interval. The associatedstandard WNM-chain is Bn;m1;m2t0;:::;tm1 ;s0;:::;sm2
.

And now we de�ne negation functions with anin�nite number of intervals:
De�nition 5. Given m 2 ! andt0; : : : ; tm; s0; : : : ; sm 2 ! [ f1g, we de�nethe following weak negation functions:
(ii) f2mt0;:::;tm;s0;:::;sm is a negation function suchthat it has no �xpoint, it has m intervals oftype 1 in the negative part with t0 intervals oftype 2 before the �rst one, tm intervals of type2 after the last one and ti intervals of type 2between the i-th and the (i+1)-th interval oftype 1; and there are m intervals of type 1in the positive part with s0 intervals of type2 before the �rst one, sm intervals of type 2after the last one and si intervals of type 2between the i-th and the (i+1)-th interval oftype 1, and I1 = f1g.
(iii) f2mt0;:::;tm;s0;:::;sm is a negation function suchthat it has no �xpoint, it has m intervals oftype 1 in the negative part with t0 intervals oftype 2 before the �rst one, tm intervals of type2 after the last one and ti intervals of type 2between the i-th and the (i+1)-th interval oftype 1; and there are m intervals of type 1in the positive part with s0 intervals of type2 before the �rst one, sm intervals of type 2



after the last one and si intervals of type 2between the i-th and the (i+1)-th interval oftype 1, and I1 6= f1g.
(iv) g2mt0;:::;tm;s0;:::;sm is a negation function suchthat it has a �xpoint which is isolated, it hasm intervals of type 1 in the negative part witht0 intervals of type 2 before the �rst one, tmintervals of type 2 after the last one and tiintervals of type 2 between the i-th and the(i+ 1)-th interval of type 1; and there are mintervals of type 1 in the positive part withs0 intervals of type 2 before the �rst one, smintervals of type 2 after the last one and siintervals of type 2 between the i-th and the(i+ 1)-th interval of type 1, and I1 = f1g.
(v) g2mt0;:::;tm;s0;:::;sm is a negation function suchthat it has a �xpoint which is isolated, it hasm intervals of type 1 in the negative part witht0 intervals of type 2 before the �rst one, tmintervals of type 2 after the last one and tiintervals of type 2 between the i-th and the(i+ 1)-th interval of type 1; and there are mintervals of type 1 in the positive part withs0 intervals of type 2 before the �rst one, smintervals of type 2 after the last one and siintervals of type 2 between the i-th and the(i+ 1)-th interval of type 1, and I1 6= f1g.
(vi) g2m+1t0;:::;tm;s0;:::;sm is a negation function suchthat it has a �xpoint c which is non-isolated,there are m intervals of type 1 in the nega-tive part whose right extreme is not c, witht0 intervals of type 2 before the �rst one, tmintervals of type 2 after the last one and tiintervals of type 2 between the i-th and the(i+ 1)-th interval of type 1; and there are mintervals of type 1 in the positive part withs0 intervals of type 2 before the �rst one, smintervals of type 2 after the last one and siintervals of type 2 between the i-th and the(i+ 1)-th interval of type 1, and I1 = f1g.
(vii) g2m+1t0;:::;tm;s0;:::;sm is a negation function suchthat it has a �xpoint c which is non-isolated,there are m intervals of type 1 in the nega-tive part whose right extreme is not c, witht0 intervals of type 2 before the �rst one, tmintervals of type 2 after the last one and tiintervals of type 2 between the i-th and the

(i+ 1)-th interval of type 1; and there are mintervals of type 1 in the positive part withs0 intervals of type 2 before the �rst one, smintervals of type 2 after the last one and siintervals of type 2 between the i-th and the(i+ 1)-th interval of type 1, and I1 6= f1g.
(viii) f1 is a negation function such that it has no�xpoint, it has intervals [0; a] and [f1(a); 1]of isolated involutive elements, it has ! in-tervals of type 1 in the negative part and !intervals of type 1 in the positive part andnothing else.
(ix) f1 is a negation function such that it has no�xpoint, it has ! intervals of type 1 in thenegative part and ! intervals of type 1 in thepositive part and nothing else.
(x) g1 is a negation function such that it has a�xpoint c which is isolated, it has intervals[0; a], [g1(a); 1] and [d; g1(d)] (with d < c <g1(d)) of isolated involutive elements, it has! intervals of type 1 in the negative part and! intervals of type 1 in the positive part andnothing else.
(xi) g1 is a negation function such that it has a�xpoint c which is isolated, it has an interval[d; g1(d)] (with d < c < g1(d)) of isolatedinvolutive elements, it has ! intervals of type1 in the negative part and ! intervals of type1 in the positive part and nothing else.
(xii) g1+1 is a negation function such that it hasa �xpoint c which is non-isolated, it has in-tervals [0; a] and [g1+1(a); 1] of isolated in-volutive elements,it has ! intervals of type 1in the negative part and ! intervals of type 1in the positive part and nothing else.
(xiii) g1+1 is a negation function such that it hasa �xpoint c which is non-isolated, it has !intervals of type 1 in the negative part and! intervals of type 1 in the positive part andnothing else.
The standard WNM-algebras de�ned by thoseweak negation functions will be denoted re-spectively by C2mt0;:::;tm;s0;:::;sm, C2mt0;:::;tm;s0;:::;sm,D2mt0;:::;tm;s0;:::;sm, D2mt0;:::;tm;s0;:::;sm, D2m+1t0;:::;tm;s0;:::;sm,



D2m+1t0;:::;tm;s0;:::;sm, C1, C1, D1, D1, D1+1 andD1+1. We call them canonical standard WNM-chains.

∞

∞
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c

Figure 1: Two examples of canonical standardWNM-chains: B3;2;1
1;1;0;1;1 and D1+1.

Theorem 2. Let A be a standard WNM-chain.Then:
1. If all the elements are involutive, then A �=[0; 1]NM and V(A) = NM.
2. Suppose that A has an �nite number n 2! n f0g of non-isolated involutive elements.Let m1 be the number of intervals in the neg-ative part and let m2 be the number of in-tervals in the positive part. Then, there aret0; : : : ; tm1 ; s0; : : : ; sm2 2 f0;1g such thatA �= Bn;m1;m2t0;1;t1;1:::;tm1 ;s0;1;s1;1;:::;sm2

, and ofcourse, V(A) = V(Bn;m1;m2t0;:::;tm1 ;s0;:::;sm2
).

3. Suppose that A has an in�nite number ofnon-isolated involutive elements but the num-ber of intervals of type 1 is �nite. Let m 2 !be the number of intervals of type 1 in thepositive part.
3.1. Suppose that A has no negation �x-point. It has m intervals of type 1in the negative part. Then, there aret0; : : : ; tm; s0; : : : ; sm 2 ! such that:3.1.1. if I1 = f1g, then V(A) =V(C2mt0;:::;tm;s0;:::;sm).3.1.2. if I1 6= f1g, then V(A) =V(C2mt0;:::;tm;s0;:::;sm).3.2. Suppose that A has a negation �xpointwhich is isolated. It has m intervals of

type 1 in the negative part. Then, thereare t0; : : : ; tm; s0; : : : ; sm 2 ! such that:3.2.1. if I1 = f1g, then V(A) =V(D2mt0;:::;tm;s0;:::;sm).3.2.2. if I1 6= f1g, then V(A) =V(D2mt0;:::;tm;s0;:::;sm).3.3. Suppose that A has a negation �xpointc which is non-isolated. It has m inter-vals of type 1 in the negative part whoseright extreme is not c. Then, there aret0; : : : ; tm; s0; : : : ; sm 2 ! such that:3.3.1. if I1 = f1g, then V(A) =V(D2m+1t0;:::;tm;s0;:::;sm).3.3.2. if I1 6= f1g, then V(A) =V(D2m+1t0;:::;tm;s0;:::;sm).
4. Suppose that A has an in�nite number of in-tervals of type 1.

4.1. Suppose that A has no negation �xpoint.4.1.1. if I1 = f1g, then V(A) = V(C1).4.1.2. if I1 6= f1g, then V(A) = V(C1).4.2. Suppose that A has a negation �xpointwhich is isolated.4.2.1. if I1 = f1g, then V(A) = V(D1).4.2.2. if I1 6= f1g, then V(A) = V(D1).4.3. Suppose that A has a negation �xpointwhich is not isolated.4.3.1. if I1 = f1g, then V(A) = V(D1+1).4.3.2. if I1 6= f1g, then V(A) = V(D1+1).
Moreover, all canonical standard WNM-chainsgenerate pairwise di�erent varieties.
In [5] the subvarieties BP0, BP+1

0 ofMTL are stud-ied and axiomatized. Inside WNM we obtain thefollowing:
� WNM \ BP0 is the variety generated byall WNM-chains without negation �xpointand it is axiomatized by: (:(:x)2)2 $:(:x2)2 � 1.
� WNM \ BP+1

0 is the variety generated by allWNM-chains with an isolated negation �x-point and it is axiomatized by:
1. (:(:x)2)2 $ :(:x2)2 _ (:x $ ::x) �1,



2. (x _ :x ! y _ :y) _ ((y _ :y ! :y ^::y)! y_:y)_(((x_:x)2 ! y_:y)!y _ :y) � 1.
Therefore, by Proposition 1 we obtain: V(C1) =
WNM \ BP0, V(D1) = WNM \ BP+1

0 andV(D1+1) =WNM.
Finally, we study the relations of inclusion be-tween these varieties.Proposition 2. Let A be a canonical standardWNM-chain. Then:
� If A has no �xpoint, then V(A) � V(C1).
� If A either has no �xpoint or the �xpoint isisolated, then V(A) � V(D1).
� V(A) � V(D1+1).

Proposition 3. Let A and A0 be canonical stan-dard WNM-chains both de�ned from a negationfunction of type (i), (ii), (iii), (iv), (v), (vi)or (vii). Then, V(A) � V(A0) if, and only if,A 2 IS(A0).
Therefore, given two canonical standard WNM-chains de�ned from a negation of the same typeit is easy to check whether there is some inclusionbetween the varieties generated by them.
To compare the varieties generated by chains de-�ned from negations of di�erent type, we useagain Proposition 1 and the following criteria:Proposition 4. Let A and A0 be canonical stan-dard WNM-chains de�ned from negations of dif-ferent type. Then:
� If A0 has a �nite number of non-isolated in-volutive elements (i.e. its negation is of type(i)) and A has an in�nite number of non-isolated involutive elements, then V(A) 6�V(A0).
� If A0 has I1 = f1g and A has I1 6= f1g, thenV(A) 6� V(A0).
� If A0 has no �xpoint and A has �xpoint, thenV(A) 6� V(A0).
� If A0 has an isolated �xpoint and A has anon-isolated �xpoint, then V(A) 6� V(A0).

4 Concluding remarks
By de�ning a collection of canonical standardWNM-chains, we have classi�ed all the varietiesgenerated by one standard WNM-chain. Some ofthem have been identi�ed and axiomatized. In aforthcoming paper we will give equational basesfor all varieties generated by a �nite family ofWNM-chains with �nitely-many non-isolated in-volutive points, so, in particular, we can axioma-tize the varieties of the form V(Bn;m1;m2t0;:::;tm1 ;s0;:::;sm2

).Nevertheless, the axiomatization of the remainingvarieties studied here is still an open problem.
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