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Abstract

This paper focuses on completeness results about generic expansions of propositional
Weak Nilpotent Minimum (WNM) logics with truth-constants. Indeed, we consider
algebraic semantics for expansions of these logics with a set of truth-constants {r | r ∈ C},
for a suitable countable C ⊆ [0, 1], and provide a full description of completeness results
when (i) the t-norm is a Weak Nilpotent Minimum satisfying the finite partition property
and (ii) the set of truth-constants covers all the unit interval in the sense that each
interval of the partition contains values of C in its interior.

Keywords: Monoidal t-norm based Logic (MTL), Nilpotent minimum Logic (NM), Weak
nilpotent minimum logics (WNM), Rational t-norm based logic, completeness results.

1 Introduction

T-norm based fuzzy logics are basically logics of comparative truth. In fact, the residuum ⇒
of a (left-continuous) t-norm ∗ satisfies the condition x⇒ y = 1 if, and only if, x ≤ y for all
x, y ∈ [0, 1]. This means that a formula ϕ→ ψ is a logical consequence of a theory if the truth
degree of ψ is at least as high as the truth degree of ϕ in any interpretation which is a model
of the theory. Indeed, the logic of continuous t-norms as it is presented in Hájek’s seminal
book [21], only deals with valid formulae and deductions taking 1 as the only truth value to
be preserved by inference (in the sense of yielding true consequences from true premises for
each interpretation). This line is followed by the majority of logical papers written from then
∗This paper is an updated and shortened version of the manuscript “On expansions of t-norm based logics

with truth-constants” that was written in 2006 as a kind of survey, but also with new results and proofs,
in principle intended to appear in a book gathering contributions presented at the Linz Seminar 2005 but
eventually never edited. Since then, new developments on this topic have been published [15, 16] using or
referring to results from this paper. Although it might be felt as a sort of circular referencing, for the sake of
being complete, we will also refer them when suitable.
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in the setting of many-valued systems of mathematical fuzzy logic. But, in general, these
truth-preserving logics do not exploit in depth neither the idea of comparative truth nor the
potentiality of dealing with explicit partial truth that a many-valued logic setting offers.

There are however two approaches that aim at remedying these shortcomings. On the
one hand, the idea of comparative truth is pushed forward in the logics called truth-degree
preserving logics in [18, 3] where a deduction is valid if, and only if, the degre of truth of the
premises is less or equal than the degree of truth of conclusion, so in fact what they preserve
are lower bounds of truth values. Actually, since Gödel logic is the only t-norm based logic
enjoying the classical deduction-detachment theorem, it is the only case where both notions of
logic coincide. On the other hand, in some situations one might be also interested to explicitly
represent and reason with intermediate degrees of truth. A way to circumvent this possible
problem while keeping the truth preserving framework is to introduce truth-constants into
the language.

This paper sticks to this latter approach, which in fact goes back to Pavelka [33], where
he built a propositional many-valued logic which turned out to be equivalent to the expansion
of  Lukasiewicz logic by adding a truth constant r into the language for each real r ∈ [0, 1],
together with a number of additional axioms. In this way the expanded language allows one
to have formulae of the kind r → ϕ which, when evaluated to 1, express that the truth value of
ϕ is greater or equal than r. Pavelka’s logic, with a form of infinitary notion of completeness,
was later further developed by Novák et al. [30, 31] and simplified by Hájek [21].

More recently, an alternative approach, based on traditional algebraic semantics, has been
considered to study completeness results (in the usual sense) for expansions of t-norm based
logics with countably-many truth-constants. Indeed, after [21], only the case of  Lukasiewicz
logic was known to be finite strong complete. Using this algebraic approach, the expansion
of Gödel (and of some t-norm based logic related to the Nilpotent Minimum t-norm) with
rational truth-constants and the expansion of Product logic with countable sets of truth-
constants have been respectively studied in [14] and in [34]. The basic cases of  Lukasiewicz,
Gödel and Product logics have been extended to the more general case of logics of continuous
t-norms which are finite ordinal sums of the three basic components in [12]. Moreover, in [5]
the case of expanding  Lukasiewicz logic with irrational truth-constants has been addressed. In
these papers, the issue of canonical standard completeness (that is, completeness with respect
to the standard algebra where the truth-constants are interpreted as their own values) for
these logics has been determined. Also, special attention has been paid to the fragment
of formulae of the kind r → ϕ, where ϕ is a formula without additional truth-constants.
Actually, this kind of formulae have been extensively considered in other frameworks for
reasoning with partial degrees of truth, like in Novák’s evaluated syntax formalism based
on  Lukasiewicz Logic (see e.g. [32]), in Gerla’s framework of abstract fuzzy logics [19] or in
fuzzy logic programming (see e.g. [36]). More recently, similar formulae are also being used
in systems of fuzzy description logic (see e.g. [26]).

This paper, always within the algebraic semantics approach, is meant as a follow-up of
the paper [12] where the focus was on extensions of BL logic. Here we focus on standard
completeness results for expansions with truth-constants of logics of weak nilpotent minimum
t-norms1 (WNM t-norms for short) in a general setting. The latter are axiomatic extensions
of the WNM logic, an extension of the MTL logic introduced in [13] which is complete

1A weak nilpotent t-norm ∗ is a left-continuous t-norm satisfying x ∗ y = min(x, y) whenever x ∗ y > 0, for
all x, y ∈ [0, 1].
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with respect to all standard algebras defined by weak nilpotent t-norms. More specifically,
extending first results in [14], we provide a full description of completeness results for the
expansions of logics of WNM t-norms ∗ with a set of truth-constants {r | r ∈ C}, for a
suitable countable subalgebra C of the standard algebra [0, 1]∗ when: (i) the WNM t-norm
∗ has the finite partition property (see Def. 15), and (ii) the set of truth-constants C covers
all the unit interval in the sense that each component (for continuous case) or interval of the
partition (for the WNM case) contains at least one value of C in its interior. Many of the
results about expansions of WNM logics are formally presented here for the first time. We
notice that in [15] completeness results with respect to rational semantics are provided for a
wide family of expansions of t-norm logics with truth-constants, including WNM logics.

The paper is structured as follows. After this introduction, we provide the necessary
background in the next three sections. In Section 2, we give the general definitions of t-norm
based logics we will deal with in the paper, the notion of standard completeness and general
results for axiomatic extensions of these logics, the equivalence between different kinds of
standard completeness and properties of the corresponding algebraic varieties (the embed-
dability properties playing an important role). In Section 3 we overview known completeness
results for logics of WNM t-norms and in Section 4 we introduce the general definitions of the
expansions of t-norm logics with truth-constants and their algebraic counterpart. In Section
5 we study the structure and relevant algebraic properties of the expanded linearly ordered
WNM-algebras, which are needed to obtain the completeness results described in Section 6.
Section 7 deals with completeness results when restricting the language to evaluated formu-
lae. Section 8 provides some complexity results for some WNM t-norm based logics expanded
with truth-constants. We finish with some concluding remarks.

2 Preliminaries

The weakest logic that we will consider in this paper is the Monoidal T-norm based
Logic (MTL). It is defined in [13] by means of a Hilbert-style calculus in the language
L = {&,→,∧, 0} of type 〈2, 2, 2, 0〉. The only inference rule is modus ponens and the axiom
schemata are the following (taking → as the least binding connective):

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ&(ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ&ψ → χ)
(A7b) (ϕ&ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ

The usual defined connectives are introduced as follows:
ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ);
ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ);
¬ϕ := ϕ→ 0;

1 := ¬0.
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Axiom schema Name
¬¬ϕ→ ϕ Involution (Inv)

¬ϕ ∨ ((ϕ→ ϕ&ψ)→ ψ) Cancellation (C)
ϕ→ ϕ&ϕ Contraction (Con)

ϕ ∧ ψ → ϕ&(ϕ→ ψ) Divisibility (Div)
ϕ ∧ ¬ϕ→ 0 Pseudocomplementation (PC)

(ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ) Weak Nilpotent Minimum (WNM)
ϕ ∨ ¬ϕ Excluded Middle (EM)

Table 1: Some usual axiom schemata in fuzzy logics.

Tables 1 and 2 collect some axiom schemata and the axiomatic extensions of MTL that
they define.2

Logic Additional axiom schemata
SMTL (PC)
ΠMTL (C)
IMTL (Inv)
WNM (WNM)
NM (Inv) and (WNM)
BL (Div)
SBL (Div) and (PC)

 L (Div) and (Inv)
Π (Div) and (C)
G (Con)

CPC (EM)

Table 2: Some axiomatic extensions of MTL obtained by adding the corresponding additional
axiom schemata.

The algebraic counterpart3 of MTL logic is the variety MTL of the so-called MTL-algebras,
which are structures defined as follows.

Definition 1 ([13]). An MTL-algebra is an algebra A = 〈A,&A,→A,∧A,∨A, 0A, 1A〉 of type
〈2, 2, 2, 2, 0, 0〉 such that:

1. 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice.

2. 〈A,&A, 1A〉 is a commutative monoid with unit 1A.

3. The operations &A and →A form an adjoint pair:
∀a, b, c ∈ A, a&Ab ≤ c iff b ≤ a→A c.

2Of course, some of these logics were known well before MTL was introduced. We only want to point out
that it is possible to present them as the axiomatic extensions of MTL obtained by adding the corresponding
axioms to the Hilbert-style calculus for MTL given above.

3We assume some basic knowledge on Universal Algebra. All the undefined notions can be found in [4].
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4. It satisfies the prelinearity equation:
(x→A y) ∨A (y →A x) = 1A

An additional (unary) negation operation is defined as ¬Aa := a→A 0A, for every a ∈ A. If
the lattice order is total we will say that A is an MTL-chain.

For the sake of a simpler notation, from now on superscripts in the operations of the
algebras will be omitted when they are clear from the context.

Given an MTL-algebra A and an element a ∈ A, we say that a is the (negation) fixpoint
of A if, and only if, a = ¬a. It is easy to prove that there exists at most one fixpoint (see, for
example, [24]). The sets of positive and negative elements of A are respectively defined as:

A+ := {a ∈ A | a > ¬a} A− := {a ∈ A | a ≤ ¬a}

Consider the terms p(x) := x ∨ ¬x and n(x) := x ∧ ¬x. The next proposition is an easy but
useful result describing these sets.

Proposition 2 ([27]). Let A be an MTL-algebra. Then:

• A+ = {p(a) | a ∈ A,¬a 6= ¬¬a}.

• A− = {n(a) | a ∈ A}.

Notice that p(a) is the fixpoint if, and only if, ¬a = ¬¬a .

Given an MTL-algebra A, a filter is any set F ⊆ A such that:

- 1A ∈ F ,

- If a ∈ F and a ≤ b, then b ∈ F , and

- If a, b ∈ F , then a&b ∈ F .

In the rest of the paper we will use the following notations:

• Fi(A) will denote the set of proper filters of A;

• given a filter F ∈ Fi(A), F will denote the set {a ∈ A | ¬a ∈ F};

• for each element a ∈ A, Fa will denote the filter generated by a, i.e. the minimum filter
containing a.

Next proposition states the usual one-to-one correspondence between filters and congruences.

Proposition 3. Let A be an MTL-algebra. For every filter F ⊆ A we define Θ(F ) := {〈a, b〉 ∈
A2 | a ↔ b ∈ F}, and for every congruence θ of A we define Fi(θ) := {a ∈ A | 〈a, 1〉 ∈ θ}.
Then Θ is an order isomorphism from the set of filters onto the set of congruences and Fi is
its inverse.

By virtue of this correspondence, we will do a notational abuse by writing A/F instead
of A/Θ(F ), and for each a ∈ A, [a]F will denote the class of a in A/F .

Given any class K of MTL-algebras, we denote its equational consequence as |=K, i.e. given
a set of equations Λ and an equation ϕ ≈ ψ in the language L, Λ |=K ϕ ≈ ψ means that for
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every A ∈ K and every evaluation e of the formulae in A, e(ϕ) = e(ψ) whenever e(α) = e(β)
for every α ≈ β ∈ Λ. If Λ = ∅, then we will write |=K ϕ ≈ ψ, instead of ∅ |=K ϕ ≈ ψ. When
there is only one algebra in K, say A, we will write Λ |=A ϕ ≈ ψ instead of Λ |={A} ϕ ≈ ψ.

MTL is actually an algebraizable logic in the sense of Blok and Pigozzi (see [2]) and MTL
is its equivalent algebraic semantics. This implies that any axiomatic extension L of MTL is
also algebraizable and its equivalent algebraic semantics is the subvariety L of MTL defined
by the translations of the axioms into equations. Therefore, any axiomatic extension L of
MTL is strongly complete with respect the variety L of L-algebras.

Theorem 4 ([13]). Let L be an axiomatic extension of MTL. For every set of formulae
Γ ∪ {ϕ} ⊆ FmL, Γ `L ϕ if, and only, {ψ ≈ 1 | ψ ∈ Γ} |=L ϕ ≈ 1.

Taking into account that, for any axiomatic extension L of MTL, every L-algebra is
representable as a subdirect product of L-chains, the above completeness result can be refined
to consider the class of chains of the variety.

Corollary 5. For every set of formulae Γ ∪ {ϕ} ⊆ FmL, Γ `L ϕ if, and only, {ψ ≈ 1 | ψ ∈
Γ} |={L−chains} ϕ ≈ 1.

Moreover, a lot of expansions of MTL are also algebraizable. Indeed, let L be an axiomatic
extension of MTL, let L′ be a language extending L, consider a set Σ ⊆ FmL′ and let L’ be
the expansion of L obtained by adding the formulae of Σ as axiom schemata. Assume that
for every new n-ary connective λ in the language L′,

{p1 ↔ q1, . . . , pn ↔ qn} `L′ λ(p1, . . . , pn)↔ λ(q1, . . . , qn)

Then L′ is algebraizable and its equivalent algebraic semantics is the variety of algebras in
the language L′ axiomatized by the axioms of L plus the equations {ϕ ≈ 1 | ϕ ∈ Σ}. We call
the members of this variety L′-algebras. In general, L′ needs not be a conservative expansion
of L; in fact, we can extract from [2] the following criterion.

Proposition 6 ([2]). Under the previous hypothesis, L′ is a conservative expansion of L if,
and only if, every L-algebra is a subreduct of some L′-algebra.

Some algebraizable expansions of the so far mentioned logics have been introduced
in the literature. Among them, a remarkable set of expansions are those obtained by
enriching the language with the projection connective ∆ (see [1]). Namely, given any
axiomatic extension L of MTL, the expansion L∆ is defined by adding to the language a
unary connective ∆, and adding to the Hilbert-style system of L the following axiom schemata:

(∆1) ∆ϕ ∨ ¬∆ϕ
(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)
(∆3) ∆ϕ→ ϕ
(∆4) ∆ϕ→ ∆∆ϕ
(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

and the rule of necessitation for ∆: from ϕ derive ∆ϕ.
This logic is algebraizable and its equivalent algebraic semantics is the variety of L∆-

algebras, i.e. expansions with ∆ of L-algebras satisfying the translation of the axioms
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(∆1), . . . , (∆5) and the equation ∆1 ≈ 1. It is easy to prove that all L∆-algebras are repre-
sentable as subdirect products of L∆-chains. The interpretation of the ∆ connective in these
chains is very simple, namely if A is an L∆-chain, then ∆A(1A) = 1A and ∆A(a) = 0A for
every a ∈ A \ {1A}.

Proposition 7. For every axiomatic extension L of MTL, L∆ is a conservative expansion of
L.

Proof: It is obvious that every L-chain is the reduct of an L∆-chain (just take the same chain
and define ∆ in the only possible way for chains), thus we can apply Proposition 6. 2

Fuzzy Logic has always been interested in semantics defined over the real unit interval.
Such kind of semantics can be found inside the class of MTL-algebras. Indeed, given a left-
continuous t-norm ∗ and its residuum ⇒ (defined as a ⇒ b = max{c | a ∗ c ≤ b}), the
algebra

[0, 1]∗ = 〈[0, 1], ∗,⇒,min,max, 0, 1〉

is an MTL-chain. Notice that [0, 1]∗ is completely determined by the t-norm. Moreover, it is
obvious that in every MTL-chain A over [0, 1], the operation &A is a left-continuous t-norm.
We call these chains standard chains.

For some expansions of MTL their completeness with respect to chains can be improved
to completeness with respect to standard algebras. This leads to the following standard
completeness properties.4

Definition 8 (RC, FSRC, SRC). If a logic L is an algebraizable expansion of MTL in a
language L′, we say that L has the (finitely) strong standard completeness property, (F)SRC
for short, when for every (finite) set of formulae T ⊆ FmL′ and every formula ϕ it holds that
T `L ϕ iff {ψ ≈ 1 | ψ ∈ T} |=A ϕ ≈ 1 for every standard L-algebra A. We say that L has the
standard completeness property, RC for short, when the equivalence is true for T = ∅.

Of course, the SRC implies the FSRC, and the FSRC implies theRC. These completeness
properties are preserved when taking fragments of the logics:

Proposition 9. Suppose that L′ is a conservative expansion of L. Then:

• If L′ enjoys the RC, then L enjoys the RC.

• If L′ enjoys the FSRC, then L enjoys the FSRC.

• If L′ enjoys the SRC, then L enjoys the SRC.

These completeness properties have usually been proved using some forms of embeddings
of L-chains into standard L-chains. Actually, the SRC has been proved for the following logics
by showing that all countable chains5 are embeddable into a standard one: MTL (in [25]),
IMTL and SMTL (in [11]), G (in [9]) and WNM and NM (in [13]). In fact, as stated in next

4For an extensive study of completeness properties in fuzzy logics see [8]. In particular, the reader can find
the definitions and results reported in this section in that paper and references thereof.

5This and many similar statements in the paper must be understood as referring to non-trivial chains. It
is clear that the trivial chain, i.e. the one that has just one element, cannot be embedded into a non-trivial
algebra, but for the sake of readability we will omit this obvious restriction.
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theorem, SRC is equivalent to the embeddability of the subdirectly irreducible countable
chains. As regards to the FSRC, in some cases (see for instance [23, 21, 6] for Product,
 Lukasiewicz and BL logics), the result has been obtained by proving first that every chain of
the equivalent variety semantics is partially embeddable into a standard algebra. For a long
time, this condition was only known to be sufficient, but recently it has been proved that it
is actually equivalent to the FSRC.

Definition 10. Given two algebras A and B of the same language we say that A is partially
embeddable into B when every finite partial subalgebra of A is embeddable into B. Generaliz-
ing this notion to classes of algebras, we say that a class K of algebras is partially embeddable
into a class M if every finite partial subalgebra of a member of K is embeddable into a member
of M.

Theorem 11. If L is an algebraizable axiomatic expansion of MTL (in particular if it is an
axiomatic extension of MTL), then

(i) L has the FSRC if, and only if, the class of L-chains is partially embeddable into the
class of standard L-algebras whenever the language of L is finite.

(ii) L has the SRC if, and only if, every countable chain of L is embeddable into a standard
L-chain.

Notice that in (i) the implication from right to left is true even if the language is infinite.
Sometimes standard completeness properties can be refined with respect to some subclass

of standard algebras; sometimes it is even enough to consider only one standard algebra.
When the standard completeness can be proved with respect to a particular standard algebra
which is the intended semantics for the logic, we call it canonical standard completeness. As
a matter of fact, the equivalencies in the previous theorem remain true when restricted to
some subclass of standard algebras.

3 About the logics L∗ of a WNM t-norm ∗
The canonical standard completeness is a matter of special interest when one considers the
logic of the variety generated by the algebra defined by one particular t-norm, because then
this t-norm gives the intended semantics for the logic.

Definition 12. Let ∗ be a left-continuous t-norm. L∗ will denote the axiomatic extension of
MTL whose equivalent algebraic semantics is V([0, 1]∗), the variety generated by [0, 1]∗.

By definition, for every left-continuous t-norm ∗, the logic L∗ enjoys the RC restricted to
[0, 1]∗, i.e. the canonical RC. But what about (canonical) FSRC and SRC properties for the
logics L∗ for ∗ being a left-continuous non-continuous t-norm?

Unlike the continuous case, there is no general representation theorem for left-continuous
t-norms. However, some particular families of left-continuous non-continuous t-norms are
well studied and even some finite axiomatizations are known for their corresponding logics.
Namely, axiomatic extensions of the WNM logic (in particular the logics L∗ for ∗ being
a WNM t-norm) and the corresponding varieties of WNM-algebras are studied in [13, 28,
29]. Moreover the variety of NM algebras (the WNM-algebras such that the corresponding
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negation is involutive) and their subvarieties are fully studied in [20]. Next, we summarize
the main results of all these papers.

The operations in WNM-chains are easily described. LetA = 〈A,&A,→A,∧A,∨A, 0A, 1A〉
be a WNM-chain. Then for every a, b ∈ A:

a&Ab =

{
a ∧A b if a > ¬b,
0A otherwise.

a→A b =

{
1A if a ≤ b,
¬Aa ∨A b otherwise.

In [13] it is shown that the operation ∗ in WNM-chains defined over the real unit interval
[0, 1] is given by a special kind of left-continuous t-norm. These t-norms are defined in the
following way. If n is a negation function6 and a, b ∈ [0, 1], the operation ∗n defined as:

a ∗n b =
{

min{a, b} if a > n(b),
0 otherwise,

is a left-continuous t-norm and its residuum is given by:

a⇒n b =
{

1 if a ≤ b,
max{n(a), b} otherwise,

for every a, b ∈ [0, 1]. Moreover, it fulfills a⇒n 0 = n(a). It is straightforward that [0, 1]∗n :=
〈[0, 1], ∗n,⇒n,min,max, 0, 1〉 is a WNM-chain, and all WNM-chains over [0, 1] are of this
form.

Notice that a standard WNM-chain given by a negation function n is an NM-chain if, and
only if, n is involutive, i.e. n(n(a)) = a for every a ∈ [0, 1]. It follows from the study of such
negations in [35] that there is only one standard NM-chain up to isomorphism, namely the
one given by the negation n(x) = 1 − x. We will refer to it as [0, 1]NM. The left-continuous
t-norm corresponding to this algebra was introduced by Fodor in [17]. On the other hand,
observe that [0, 1]G is the standard WNM-chain defined by the so-called Gödel negation nG
(nG(0) = 1 and nG(x) = 0 for every x > 0), and in fact, nG it is the only negation defining a
continuous WNM t-norm.

Since standard WNM-chains are completely determined by their negation functions, the
study of L∗ logics when [0, 1]∗ is a WNM-chain, requires some knowlegde on the properties of
such negations functions, see [10], and [13] for generalizations to MTL and WNM chains.

Lemma 13 ([10]). Let A be a MTL-chain. Then for every a ∈ A:

(i) ¬a = ¬¬¬a,

(ii) a ≤ ¬¬a,

(iii) a = ¬¬a if, and only if, there is b ∈ A such that a = ¬b (in such a case a is called
involutive),

(iv) ¬¬a = min{b ∈ A | a ≤ b and b = ¬¬b}.
6A non-increasing function n : [0, 1] → [0, 1] is a negation function if x ≤ n(n(x)) for any x ∈ [0, 1] and

n(1) = 0, (see [10]).
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0           a1       a2     a3      a4      a5 a6     a7             1

1

x ∗ y = min(x, y)

x ∗ y = 0

Figure 1: An example of WNM t-norm with a finite partition.

Moreover, when A = [0, 1], ¬ is a left-continuous function.

The last result gives rise to the following definitions.

Definition 14. Let A be a WNM-chain and let a ∈ A be an involutive element. We define
Ia := {b ∈ A | ¬b = ¬a} and we call it the interval associated to a, where the negation
function is constant with value ¬a. We say that a has a trivial associated interval when
Ia = {a}.

A weak negation function has a form of symmetry; roughly speaking: if we complete its
graph by drawing vertical lines in the jumps, then the obtained graph is symmetric with
respect to the diagonal x = y. Therefore, the constant intervals Ia in the positive part of the
chain symmetrically correspond to jumps in the negative parts (and vice versa).

Definition 15. We say that a WNM-chain [0, 1]∗n, defined by a weak negation function
n : [0, 1] → [0, 1], has the finite partition property if n is constant in a finite number of
subintervals of [0, 1]. In such a case we define the associated finite partition by considering
the set X = {0, 1}∪{a ∈ (0, 1) | a is either the maximum or infimum of a non-trivial interval
associated to an involutive element, a discontinuity of n, or the fixpoint}. The family of
intervals determined by X is called the partition induced by the WNM t-norm ∗n.

Notice that such a partition yields two kinds of intervals: those where the negation takes
a constant value, and those where all the elements are involutive. As a matter of terminology,
we call them constant intervals and involutive intervals, respectively. Figure 1 shows an
example of a WNM t-norm with a fixpoint, a3, and with a finite partition where the constant
intervals are [a4, a5] and [a6, a7], while the involutive intervals are [0, a1], [a1, a2], [a2, a3],
[a3, a4], [a5, a6] and [a7, 1].
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0                            c                               1         0                   1‐c            c                 1          0                 1‐c              c                 1  

x * y = min(x, y) 

1 

x * y = 0 

x * y = min(x, y) 

x * y = 0 

1 

c                                                              c                                                                 c 

x * y = min(x, y) 

x * y = 0 

1 

Figure 2: Three parametric families of WNM t-norms with finite partition.

Figure 2 shows three families of WNM t-norms with finite partition of at most three
intervals, parametrized by a real number c: c ∈ [0, 1) for ⊗c, c ∈ [1/2, 1) for ?c and c ∈
[1/2, 1] for �c. As limit cases for the parameter c, we get two well-known t-norms, namely,
⊗0 = �1 = min and ?1/2 = �1/2 is the Nilpotent Minimum t-norm. Moreover, for each
family, for values c different from these limit cases, one gets isomorphic t-norms in each of
three families, and hence yielding the same logics. Actually, up to isomorphims, the t-norms
depicted in Figure 2 together with the limit cases gives all the WNM t-norms with at most
three associated intervals.

An interesting observation is that in any standard WNM-chain [0, 1]∗n , if a is positive
element then Fa = [a, 1] and the elements of the quotient algebra [0, 1]∗/Fa are such that

[x]Fa =


[1]Fa , if x ∈ Fa (i.e. if x ≥ a)
[0]Fa , if x ∈ Fa (i.e. if x ≤ n(a))
{x}, otherwise

Therefore, the quotient algebra [0, 1]∗/Fa is isomorphic to another standard WNM-chain. If
a belongs to a constant interval, then this standard chain has I1 6= {1}, see Figure 3.

To refer to the class of WNM t-norms and those with a finite partition we will use from
now on the following notation:

WNM = {∗ is a weak nilpotent minimum t-norm}

WNM-fin = {∗ ∈WNM | ∗ has a finite partition}7

In [28, 29] the following results have been proved:

Theorem 16. In the context of L∗ logics for ∗ ∈WNM, the following statements hold:

1. If ∗ ∈WNM-fin , then the logic L∗ is finitely axiomatizable (and a method for finding
the axiomatization has been given).

7Observe that this notation is somewhat analogous to the one used in [12] when studying expansions with
truth-constants of logics based on continuous t-norm, namely CONT = {∗ is a continuous t-norm} and
CONT-fin = {∗ ∈ CONT | ∗ is an ordinal sum of finitely many basic components}.
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2. If ∗ ∈WNM-fin and I1 6= {1} or ∗ has no positive constant intervals, then L∗ has the
canonical SRC, i.e. with respect to the algebra [0, 1]∗.

3. If ∗ ∈WNM-fin, ∗ has some positive constant interval and I1 = {1}, then L∗ has the
SRC with respect to the class {[0, 1]∗, [0, 1]∗/Fa}, where a is the maximum involutive
element such that Ia 6= {a}. Moreover, this result cannot be improved, i.e. L∗ does not
enjoy the SRC with respect to only one of these two algebras.

4. If ∗ /∈ WNM-fin and I1 6= {1}, then L∗ has the canonical FSRC, i.e. with respect to
the class {[0, 1]∗}.

5. If ∗ /∈ WNM-fin and I1 = {1}, then L∗ has the FSRC with respect to the class
{[0, 1]∗} ∪ {[0, 1]∗/Fa | a positive involutive element such that Ia 6= {a}}.

6. There are ∗ /∈WNM-fin for which L∗ has not the SRC.

Figure 3 shows on the left an example of a t-norm ∗ of WNM-fin falling under item
3 of the last theorem, where I1 = {1} and a is the maximum involutive element such that
Ia 6= {a}, while on the right it shows the t-norm defining the standard algebra isomorphic to
the quotient algebra [0, 1]∗/Fa.

0                                            a           1                                      0                                                      1  

[0, 1]
*

isomorphic to [0, 1]
* /Fa

1 1
x ∗ y = min(x, y) x ∗ y = min(x, y)

x ∗ y = 0
x ∗ y = 0

•

Figure 3: A WNM t-norm with a finite partition such that I1 = {1} (left) and its corresponding
t-norm of the quotient algebra [0, 1]∗/Fa.

4 Expansions of L∗ logics with truth-constants

In this section we introduce the basic definitions and first general results regarding the ex-
pansions with truth-constants for those extensions of MTL which are the logic of a given
left-continuous t-norm.

Definition 17 (Logic L∗(C)). Let ∗ be a left-continuous t-norm and let C = 〈C, ∗,⇒
,min,max, 0, 1〉 ⊆ [0, 1]∗ be a countable subalgebra. Consider the expanded language LC =
L ∪ {r | r ∈ C \ {0, 1}} where we introduce a new constant for every element in C \ {0, 1}.

12



We define L∗(C) as the expansion of L∗ in the language LC obtained by adding the so-called
book-keeping axioms:

r&s↔ r ∗ s
(r → s)↔ r ⇒ s

for every r, s ∈ C.

Notice that in this definition the book-keeping axioms r ∧ s ↔ min{r, s} that would
correspond to the other primitive connective in MTL, ∧, are not present, since they are easily
derivable in L∗(C) as actually defined.

The algebraic counterparts of the L∗(C) logics are defined in the natural way:

Definition 18. Let ∗ be a left-continuous t-norm and let C be a countable subalgebra of [0, 1]∗.
An L∗(C)-algebra is a structure

A = 〈A,&A,→A,∧A,∨A, {rA | r ∈ C}〉

such that:
1. 〈A,&A,→A,∧A,∨A, 0A, 1A〉 is an L∗-algebra, and
2. for every r, s ∈ C the following identities hold:

rA&AsA = r ∗ sA
rA →A sA = r ⇒ sA.

The canonical standard L∗(C)-chain is the algebra

[0, 1]L∗(C) = 〈[0, 1], ∗,⇒,min,max, {r | r ∈ C}〉,

i.e. the LC-expansion of [0, 1]∗ where the truth-constants are interpreted on their defining
numbers.

Since the additional symbols added to the language are 0-ary, the condition of algebraiz-
ability given in the prelimininaries is trivially fulfilled. Therefore, L∗(C) is also an algebraiz-
able logic and its equivalent algebraic semantics is the variety of L∗(C)-algebras, denoted as
L∗(C). In particular this means that the logics L∗(C) are strongly complete with respect to
the variety of L∗(C)-algebras. Furthermore, reasoning as in the MTL case, we can prove that
all L∗(C)-algebras are representable as a subdirect product of L∗(C)-chains, hence we also
have completeness of L∗(C) with respect to L∗(C)-chains.

Theorem 19. For any Γ ∪ {ϕ} ⊆ FmLC , Γ `L∗(C) ϕ if, and only if, {ψ ≈ 1 | ψ ∈
Γ} |={L∗(C)−chains} ϕ ≈ 1.

This general completeness with respect to chains, can be refined by using [7, Lemma
3.4.4], where Cintula proves a very general result for expansions of fuzzy logics with rational
truth-constants. Adapted to our framework, it reads as follows.

Theorem 20 ([7]). Let ∗ be a left-continuous t-norm such that L∗ is strongly complete with
respect a class K of L∗-chains. Then L∗(C) is strongly complete with respect to the class of
L∗(C)-chains whose L-reducts are in K.

Notice that when K is the class of all L∗-chains, then this theorem does not provide
anything new other than the result of Theorem 19. If K is the class of standard L∗-chains,
the condition that L∗ should be strongly complete with respect to K (i.e. the SRC property)
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is very demanding. For instance if we restrict ourselves to continuous t-norm based logics,
then only Gödel logic G satisfies this condition. On the other hand, if we turn our attention
to genuine left-continuous t-norms, the only well-known family with this property are the
WNM t-norm logics described in Theorem 16.

Since all the logics L∗(C) are expansions of MTL, sharing modus ponens as the only
inference rule, they have the same local deduction-detachment theorem as MTL has. In fact,
the proof for MTL or BL also applies here.

Theorem 21. For every Γ∪ {ϕ,ψ} ⊆ FmLC , Γ, ϕ `L∗(C) ψ if, and only if, there is a natural
k ≥ 1 such that Γ `L∗(C) ϕ

k → ψ. If ∗ is a WNM t-norm, then one can always take k = 2.

One can also show the following general result about the conservativity of L∗(C) w.r.t. L∗.

Proposition 22. L∗(C) is a conservative expansion of L∗.

Proof: Let Γ ∪ {ϕ} ⊆ FmL be arbitrary formulae and suppose that Γ `L∗(C) ϕ. Then there
is a finite Γ0 ⊆ Γ such that Γ0 `L∗(C) ϕ. By the above deduction theorem, there exists a
natural k such that `L∗(C) (Γ0)k → ϕ, identifying the set Γ0 with the strong conjunction
of all its formulae. By soundness, this implies that |=[0,1]L∗(C)

(Γ0)k → ϕ. Since the new
truth-constants do not occur in Γ0 ∪ {ϕ}, we have |=[0,1]∗ (Γ0)k → ϕ, and by RC of L∗,
`L∗ (Γ0)k → ϕ, and hence Γ `L∗ ϕ as well. 2

In the rest of the paper we will study theRC, FSRC and SRC properties for the logics with
truth-constants L∗(C) where ∗ is a WNM t-norm, as well as canonical standard completeness
properties.

5 Structure of L∗(C)-chains for WNM t-norms ∗
We have seen in Theorem 19 that the logics L∗(C) are complete with respect to the L∗(C)-
chains. Moreover, Theorem 20 gives strong standard completeness of the logics L∗(C) for
those ∗ ∈WNM-fin which make the logic L∗ to enjoy the SRC (see Theorem 16). However,
we need to reach a deeper insight into L∗(C)-chains to better study which classes of chains
give standard completeness or when canonical standard completeness results hold. This is
done in this section.

Next we assume ∗ is a left-continuous t-norm and C is a countable subalgebra of [0, 1]∗.

Lemma 23. For any L∗(C)-chain A = 〈A,&,→,∧,∨, {rA | r ∈ C}〉, let FC(A) = {r ∈ C |
rA = 1A} and FC(A) = {r ∈ C | ¬r ∈ FC(A)}. Then:

(i) FC(A) is a filter of C.

(ii) The set {rA | r ∈ C} forms an L∗-subalgebra of A isomorphic to C/FC(A), through the
mapping rA 7→ [r]A, in such a way that

[1]A = FC(A) and [0]A = FC(A),

where [r]A denotes the equivalence class of r ∈ C w.r.t. to the congruence defined by the
filter FC(A).
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Proof: (i) If r ∈ FC(A) and s ∈ C with s > r, then s ∈ FC(A) because by the book-keeping
axioms we have sA = max(r, s)

A
= rA∨sA = 1A. Moreover if r, s ∈ FC(A) then r∗s ∈ FC(A)

since r ∗ sA = rA&sA = 1A. Therefore FC(A) is a filter.
(ii) An easy computation shows that sA = rA iff (r ⇒ s) ∗ (s⇒ r)

A
= 1A, i.e. elements of

the same class have to be interpreted by the same element of A while elements of different
classes have to be interpreted by different elements of A. 2

In general, the equivalence classes of C with respect to a filter F , i.e. the elements of C/F ,
are difficult to describe, but some interesting cases can be indeed fully described, namely
when ∗ is a continuous t-norm (see [12]) or when it belongs to WNM:

Lemma 24. Let ∗ ∈WNM and let C be a countable subalgebra of [0, 1]∗. For any F ∈ Fi(C)
and for any r, s /∈ F ∪ F , it holds that [r]F = [s]F iff r = s.

Proof: The proof is an easy generalization of the proof for NM and some particular WNM
t-norm logics given in [14]. 2

This lemma shows that the interpretation of the constants over a L∗(C)-chain A depends
only on the filter FC(A). Indeed, if i : C → {rA | r ∈ C} denotes that interpretation, i.e.
i(r) = rA for all r ∈ C, then i maps truth-values r to 1A or 0A depending on whether
r ∈ FC(A) or r ∈ FC(A) respectively, and over the rest of the elements of C, i.e. those in
C \ (FC(A) ∪ FC(A)), i is a one-to-one mapping.

The standard chains of the variety L∗(C), i.e. the L∗(C)-algebras over [0, 1], are the key to
obtain standard completeness results for the logic L∗(C) when using the technique of partially
embedding L∗(C)-chains into standard ones. In order to know when such embeddings are
possible, it is necessary to study the standard L∗(C)-chains in more detail. This question is
in fact related to describe the ways the truth-constants from C can be interpreted in [0, 1]
respecting the book-keeping axioms. We have seen in Lemmas 23 and 24 some necessary
conditions showing the preeminent role of the set Fi(C) of proper filters of C plays in this
question. Observe that each proper filter of C is either of type Fa = {x ∈ C | x ≥ a} or of
type F>a = {x ∈ C | x > a} for some positive a ∈ C.

One can wonder whether, given a filter F ∈ Fi(C), there always exists a standard L∗(C)-
chain A such that FC(A) = F . Obviously, the simplest thing to look at is whether the
algebra

[0, 1]FL∗(C) = 〈[0, 1], ∗,⇒∗,min,max, {iF (r) | r ∈ C}〉,

where the mapping iF : C → [0, 1] is defined as

iF (r) =


1, if r ∈ F
0, if r ∈ F
r, otherwise

(1)

is always an L∗(C)-algebra over [0, 1]∗, or in other words, whether the mapping iF is always
a proper interpretation of the truth-constants, in the sense of satisfying the book-keeping
axioms.

It is easy to check that this is actually the case when ∗ is continuous (see Prop 5.3 in [12]).
The case of L∗(C) logics when ∗ ∈ WNM-fin is not so simple. We illustrate the problem
with an example. Let ∗ be the WNM t-norm depicted in the left hand side of Figure 3 and
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take C = Q ∩ [0, 1]. Let a be a positive involutive element such that Ia 6= {a} (i.e. such that
a is the supremum of a constant interval) and let Fa be the principal filter generated by a.
Then the mapping iFa : C → [0, 1], defined as in expression (1), is not a proper interpretation
of the truth-constants since for each b ∈ Ia, ¬i(b) = ¬b = ¬a and i(¬b) = i(¬a) = 0, i.e. the
book-keeping axioms are not satisfied and hence the algebra [0, 1]FL∗(C) is not an L∗(C)-algebra.
Thus the mapping (1) used to interpret the truth-constants in the case of continuous t-norms
does not always work in the case of a WNM t-norm.

In fact, for the case ∗ ∈ WNM-fin, if we want to associate to each filter F ∈ Fi(C) a
standard chain of L∗(C) such that FC(A) = F , we need to proceed in a different way. We will
divide the job by cases.

1. If the classes of C/F satisfy the condition that ¬[r]F = [0]F implies [r]F = [1]F , then the
interpretation used in the case of continuous t-norms works well and the chain [0, 1]FL∗(C)
is an L∗(C)-chain like in the continuous case.

2. If in C/F there are classes such that

[r]F 6= [1]F (that is, r /∈ F ) and ¬[r]F = [0]F ,

then the mapping iF : C → [0, 1] defined by expression (1) is not, in general, an
interpretation as the example above proves.

Thus in this case, we consider two further subcases:

(a) If [0, 1]∗ is such that I∗1 6= {1} (i.e. ¬x = 0 for some x < 1), then the mapping
i′F : C → [0, 1] defined by,

i′F (r) =


1, if r ∈ F
0, if r ∈ F
f(r), if ¬r = 0 and r /∈ (F ∪ F )
r, otherwise

(2)

where f : {r ∈ C | ¬r = 0, r /∈ (F ∪ F )} → I∗1 is an (arbitrary) one-to-one
increasing mapping, is an interpretation which satisfies the book-keeping axioms.
Then the algebra

[0, 1]FL∗(C) := 〈[0, 1], ∗,⇒∗,min,max, {i′F (r) | r ∈ C}〉

is an L∗(C)-chain over [0, 1]∗.

(b) If [0, 1]∗ is such that I∗1 = {1} (i.e. ¬x = 0 implies x = 1), then the mapping
i′F : C → [0, 1] defined in the previous case does not apply here since having
I∗1 = {1} makes impossible to define a one-to-one mapping f as required there.
In this case we take as initial chain, not the standard chain [0, 1]∗, but the chain
([0, 1]∗)/Fa (which still belongs to the variety L∗) where a ∈ C is the greatest
element in the constant intervals of [0, 1]∗. Notice that [1]Fa = [a, 1], [0]Fa = [0,¬a]
and [r]Fa = {r} for any r ∈ (¬a, a). Hence, ([0, 1]∗)/Fa is isomorphic to an L∗-
chain [¬a, a]∗′ by identifying [1]Fa with a, [0]Fa with ¬a, and [r]Fa with r for all
r ∈ (¬a, a), and by taking ∗′ as the obvious adaptation to the interval [¬a, a] of
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the original ∗. Now it is clear that [¬a, a]∗′ is such that I∗
′

1 6= {1} and therefore we
can define a mapping i′′F : C → [¬a, a] analagously to (2) which makes the algebra

〈[¬a, a], ∗′,⇒∗′ ,min,max, {i′′F (r) | r ∈ C}〉

an L∗(C)-chain. Finally, by means of an increasing linear transformation h :
[¬a, a]→ [0, 1], it is easy to obtain an isomorphic L∗(C)-chain over [0, 1]

[0, 1]FL∗(C) := 〈[0, 1], ◦,⇒◦,min,max, {jF (r) | r ∈ C}〉

where x ◦ y = h(h−1(x) ∗′ h−1(y)) and jF (r) = h(i′′F (r)) for all r ∈ C. Notice that
◦ needs not coincide with ∗.

Notice that the algebra [0, 1]FL∗(C) built in case (a) and in case (b) is not univocally
defined since its definition depends on the choice of some mappings, but all possible
choices would yield isomorphic algebras.

Thus, we have the following corollary:

Corollary 25. Let ∗ ∈ WNM-fin and let C be a countable subalgebra of [0, 1]∗. Then for
any filter F ∈ Fi(C), there exists a standard L∗(C)-chain A such that FC(A) = F , namely
A = [0, 1]FL∗(C).

Any standard L∗(C)-chain A such that FC(A) = F will be called from now on standard
L∗(C)-chain of type F .

6 Completeness results

In this section we will prove completeness results for the logics L∗(C) in the following particular
case:

- when ∗ ∈WNM-fin and C is a countable subalgebra of [0, 1]∗ such that has elements
in the interior of each interval of the partition.8

Thus, from now on we will assume that the algebra C satisfies these conditions.
In the following subsection we will focus on strong and finite strong standard complete-

ness results while in the second subsection we will focus on the issue of canonical standard
completeness.

6.1 About SRC and FSRC results

We start with a general result on strong standard completeness when ∗ ∈WNM-fin which
is a consequence of Cintula’s Theorem 20 and the SRC results given in statements 2 and 3
of Theorem 16.

Theorem 26. For every ∗ ∈ WNM-fin and every suitable C, the logic L∗(C) enjoys the
SRC restricted to the family {[0, 1]FL∗(C) | F ∈ Fi(C)}.

8This condition is analogous to that of [12] where ∗ ∈ CONT-fin and C is required to have elements in the
interior of each component of the decomposition of ∗ as an ordinal sum of basic components.
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G(C) NM(C) L∗(C), for other ∗ ∈WNM-fin
RC Yes Yes Yes

FSRC Yes Yes Yes
SRC Yes Yes Yes

Canonical FSRC No No No
Canonical SRC No No No

Table 3: (Finite) strong standard completeness results for logics of a t-norm from WNM-fin.

As particular cases of the above theorem we obtain that the logics G(C) and NM(C) enjoy
the SRC restricted to the corresponding family {[0, 1]FL∗(C) | F ∈ Fi(C)}. If differs radically
from the situation in continuous t-norm based logics L∗(C) where the SRC fails for each
continuous ∗ 6= min (see [12]).

Notice that these results can never be improved to canonical FSRC, as the following
example shows.

Example 1. For every non-trivial filter F (that exists in all these cases) and every r ∈ F \{1},
the derivation

(p→ q)→ r |= q → p

is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C).

These results are collected in Table 3.

6.2 About canonical standard completeness

From the results of the last sections, we already know that all the considered logics enjoy
the RC restricted to the family of standard chains associated to proper filters of C, i.e, their
theorems are exactly the common tautologies of the chains of the family {[0, 1]FL∗(C) | F ∈
Fi(C)}. But, although the logics considered in the last sections do not enjoy the canonical
FSRC (even in the continuous case only  L(C) enjoys it when C ⊆ Q∩[0, 1]), some of them still
have the canonical RC, i.e. their theorems are exactly the tautologies of their corresponding
canonical standard algebra. In order to prove it, we need to show that tautologies of the
canonical standard chain are a subset of the tautologies of each one of the standard chains
associated to each proper filter of C.

In [14] it is proved that the expansions of Gödel logic, NM logic and the logics correspond-
ing to the t-norms ⊗c and ?c depicted in Figure 2 enjoy the canonical RC.9 Here we give a
new unified and simpler proof.

Theorem 27. If ∗ ∈WNM-fin such that its negation on the set of positive elements is either
both involutive and continuous, or is identically 0, then L∗(C) enjoys the canonical RC.

Proof: Suppose ϕ is a tautology with respect to [0, 1]L∗(C). We will prove that ϕ is also
a tautology with respect to [0, 1]FL∗(C) for each F ∈ Fi(C), which implies that `L∗(C) ϕ.
Let e be an interpretation over the chain [0, 1]FL∗(C). Suppose that A is the finite algebra

9In [14] it is wrongly claimed that the expansions L∗(C) for ∗ = �c (see Figure 2) were also canonical
standard complete, in Example 2 we provide a counter-example.

18



generated by {e(ψ) | ψ subformula of ϕ} and α = min{r ∈ F | r occurs in ϕ}. Suppose that
f : (¬α, α) → (0, 1) is a bijection such that f(r) = r for all r /∈ F ∪ F such that r in ϕ and
f is a homomorphism from A to the canonical standard chain. Then define an evaluation e′

on the canonical standard chain defined by e′(p) = f−1(e(p)) if p is a propositional variable
that appears in ϕ and e′(p) = 1 otherwise. Since ϕ is a tautology for the canonical standard
chain, e′(ϕ) = 1. Take the algebra [0, 1]∗/Fα where Fα is the principal filter generated by α.
By hypothesis this algebra is isomorphic to [0, 1]∗. Define the evaluation e′′ on the quotient
algebra obtained from e′ and it obviously satisfies e′′(ϕ) = [1]Fα . But a simple computation
shows that the algebra B generated by {e′′(ψ) | ψ subformula of ϕ} is isomorphic to A
and e′′(ϕ) over the quotient algebra corresponds to e(ϕ) over the chain [0, 1]FL∗(C) and thus
e(ϕ) = 1. 2

Actually, the only expansions of logics L∗ with ∗ ∈WNM-fin that enjoy the canonical
RC are those falling under the hypotheses of last theorem. This is proved below by showing
counterexamples for the remaining cases, where p(x) and n(x) denote the terms x ∨ ¬x and
x ∧ ¬x respectively.

Example 2. Let ∗ ∈ WNM-fin not falling under the hypotheses of last theorem. We dis-
tinguish the following three cases:

• Suppose the negation is continuous on the set of positive elements and the only constant
interval formed by positive elements is I1. In such a case, there is an interval I of
involutive positive elements, followed by I1. Take a truth-constant b in the interior of
I. Then the formula

(¬¬p(x)→ p(x)) ∨ (b→ p(x))

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any F containing
b. Take into account that in [0, 1]L∗(C) a positive element is either involutive or greater
than b.

• Suppose the negation is continuous on the set of positive elements and there is some
constant interval formed by positive elements different from I1 (this is the case of the
family of t-norms �c in Figure 2). Let b be the minimum involutive positive element
with a non-trivial associated interval. Then the formula

(¬¬p(x)→ p(x)) ∨ (¬p(x)→ ¬b)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any F containing
b. Notice that in this case [0, 1]FL∗(C) is such that either a positive element is involutive
or its negation is not greater than ¬b.

• Suppose the negation is not continuous on the set of positive elements. Let b be the
minimum discontinuity point of the negation function in the set of positive elements.
Then I¬b is the greatest constant interval in the negative part with biggest element ¬b
and not containing the fixpoint. Then the formula

(¬¬n(x)→ n(x)) ∨ (¬n(x)→ ¬¬n(x)) ∨ (n(x)→ ¬b)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any F containing b.
Notice that in [0, 1]L∗(C) a negative element is either involutive or belongs to a constant
interval whose greatest element is the fixpoint (if it exists) or it is less or equal than ¬b.

All the results on canonical RC are gathered in Table 4.
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[0, 1]∗ Canonical RC for L∗(C)
[0, 1]NM Yes
[0, 1]⊗c Yes
[0, 1]?c Yes

[0, 1]∗, for other ∗ ∈WNM-fin No

Table 4: Canonical standard completeness results for logics L∗(C) when ∗ ∈ WNM-fin.
Recall that ⊗c, and ?c are those WNM t-norms depicted in Figure 2.

7 Completeness results for evaluated formulae

This section deals with completeness results when we restrict to what we call evaluated formu-
lae, formulae of type r → ϕ, where ϕ is a formula without new truth-constants (different from
0 and 1). These formulae can be seen as a special kind of Novák’s evaluated formulae, which
are expressions a/A where a is a truth value (as in our definition) but A is a formula that may
contain truth-constants again, and whose interpretation is that the truth-value of A is at least
a. Hence our formulae r → ϕ would be expressed as r/ϕ in Novák’s evaluated syntax. On
the other hand, formulae r → ϕ when ϕ is a Horn-like rule of the form b1& . . .&bn → h also
correspond to typical fuzzy logic programming rules (b1& . . .&bn → h, r), where r specifies a
lower bound for the validity of the rule.

From the previous sections we know that the FSRC is true for the expansion of L∗ with a
suitable subalgebra of truth-constants (not only for evaluated formulae). But restricting the
language to evaluated formulae these results can be improved.

For the case of WNM-fin t-norms, the only available results are those from [14] for
evaluated formulae of the kind r → ϕ where r is a positive constant (i.e. r > ¬r), that we
will call positively evaluated formulae. Indeed, as shown in [15, Prop. 3], canonical FSRC
can only be achieved with these kind of formulae.

Theorem 28 ([14]). If ∗ is either ⊗c or ?c in Fig. 2, then L∗(C) has the following canonical
FSRC if we restrict the language to positively evaluated formulae:

{ri → ϕi}i∈I `L∗(C) s→ ψ iff {ri → ϕi}i∈I |=[0,1]L∗(C)
s→ ψ.

where I is a finite index set, ψ,ϕi ∈ FmL and ri ∈ (c, 1].

For ∗ ∈WNM-fin other than⊗c, ?c the canonical FSRC restricted to positively evaluated
formulae does not hold as the following counterexamples show.

Example 3. Let ∗ = �c in Fig. 2 with c > 1/2. Let r ∈ C such that 1 − c < r ≤ c. Then
the semantical deduction

¬¬p(x)→ p(x) |= r → p(x)

is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C) for any F containing r. Obviously, in [0, 1]L∗(C) any
involutive and positive element is greater than r.

Example 4. Let ∗ ∈WNM-fin be such that the first interval I of the partition associated to
∗ formed by positive elements is involutive and there is a constant interval on the right of it.
In such a case, take a truth-constant r in the interior of I. Then the semantical deduction,

(¬¬p(x)→ p(x))→ p(x) |= r → p(x)
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is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C) for any F containing r. Observe that in [0, 1]L∗(C)
the premise is true if, and only if, p(x) is not involutive or 1, and for these cases p(x) is
greater than r.

Example 5. Let ∗ ∈ WNM-fin such that the first interval of the partition associated to ∗
formed by positive elements is a constant interval with respect to the negation (Ic being c the
biggest element of the interval). Additionally suppose that there is another interval of positive
elements that is also a constant interval with respect to the negation. In such a case, take a
truth-constant r ∈ Ic. Then the formula,

r → ¬¬p(x)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any F containing r.
Obviously in [0, 1]L∗(C) any involutive and positive element is greater than r.

Example 6. Let ∗ ∈WNM-fin be such that there is a positive element which is a disconti-
nuity point of the negation function. Then, due to symmetry of negation functions, there is a
constant interval whose elements are negative and whose greatest element is not the fixpoint.
Denote by I the greatest constant interval formed by negative elements whose greatest element
is different from the fixpoint and take r as the greatest element of I, i.e. I = Ir. Then the
semantical deduction,{

¬¬n(x)→ ¬(¬¬n(x)→ n(x)),
¬n(x)→ ¬(¬n(x)→ ¬¬n(x))

}
|= ¬r → ¬n(x)

is valid deduction in [0, 1]L∗(C) but it is not in [0, 1]FL∗(C) for any F containing r. Observe
that the first premise is true if, and only if, n(x) is either not involutive or n(x) = 0 and
the second premise is true if and only if n(x) does not belong to a constant interval whose
greatest element is the fixpoint. Thus, if x satisfies the premises, it is clear that n(x) belongs
to a constant interval which does not contain the fixpoint, thus it is less or equal to r, and
hence the conclusion is also satisfied.

These four examples, as in the case of general canonical RC studied in the last section,
prove that a rather large family of expansions of the logic of a WNM t-norm with truth-
constants do not enjoy the canonical FSRC even when we restrict the language to positively
evaluated formulae. Indeed only four logics logics are not covered for the previous examples,
namely G(C), NM(C) and the logics L∗(C), for∗ being either ⊗c with c > 0 or ?c with c > 1/2
(see Figure 2). Thus only these four logics with truth-constants enjoy the canonical FSRC
when restricted to positively evaluated formulae.

As for canonical RC, the same examples above indeed prove that canonical RC does not
hold except for the previous four logics. The proof is based in the use, when applicable, of
the deduction theorem for WNM and their extensions, which reads as follows: ϕ `L ψ iff
`L ϕ

2 → ψ, for any extension L of WNM. The result of applying the deduction theorem to
the premises in the the above Examples 3, 4 and 6 yield non evaluated formulae, but they are
actually equivalent to an evaluated formula using the exchange property of the implication.
Indeed, the formulae obtained then in each of these 3 examples are respectively:

r → ((¬¬p(x)→ p(x))2 → p(x)),

r → (((¬¬p(x)→ p(x))→ p(x))2 → p(x)),
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Restricted to pos. evaluated formulae of L∗(C)
[0, 1]∗ Canonical RC, Canonical FSRC

[0, 1]NM Yes
[0, 1]⊗c Yes
[0, 1]?c Yes

[0, 1]∗, for other ∗ ∈WNM-fin No

Table 5: CanonicalRC and FSRC results restricted to positively evaluated formulae for logics
L∗(C) when ∗ ∈ CONT-fin ∪WNM-fin.

and

¬r → [((¬¬n(x)→ ¬(¬¬n(x)→ n(x)))&(¬n(x)→ ¬(¬n(x)→ ¬¬n(x)))2 → ¬n(x)].

Obviously, these three formulae and the one in Example 5, r → ¬¬p(x), where the truth-
constant r is suitably chosen as in each corresponding example above, are evaluated to 1 for
each canonical evaluation but not when r is evaluated as 1.

A summary of these completeness results is shown in Table 5. Furthermore, comparing
this table with Table 4 we realise that for a logic L∗(C) where ∗ ∈WNM-fin the canonical
RC turns out to be equivalent to the canonical RC (and to the canonical FSRC) restricted
to positively evaluated formulae.

A short remark about the canonical SRC property. Very recently, and thus after the
original manuscript of this paper was written, the same authors have published [15] where the
rational completeness properties of expansions of t-norm based logics with truth-constants.
In particular, in that paper the authors solve the question whether these expansions of WNM
t-norm logics enjoy the canonical strong rational completeness, denoted CanSQC in [15], for
positively evaluated formulae. It turns out that an easy checking reveals that the same proofs
apply for real semantics as well. For the readers’ convenience, we show in Table 6 the adapted
canonical SRC results, where C+ denotes the set of positive elements of the algebra C, and
Psup−acc([0, 1]) denotes the set of subsets of [0, 1] containing at least one sup-accessible point.
By sup-accessible point it is meant an accumulation point r ∈ C which is the supremum of a
strictly increasing sequence 〈ri〉i∈N of points of C.

8 Adding truth-constants to expansions with ∆ connective

For every left-continuous t-norm ∗, consider the logic L∗∆, the expansion of the logic L∗ by
adding to the language the unary connective ∆ as introduced in Section 2.

Since there is a one-to-one correspondence between L∗-chains and L∗∆-chains, Theorem
11 leads to the next statement about the SRC and FSRC of logics L∗∆.

Theorem 29. For any left-continuous t-norm ∗, L∗ has the SRC (resp. FSRC) with respect
to a class of standard L∗-chains K if, and only if, L∗∆ has the SRC (resp. FSRC) with respect
to the class of standard L∗∆-chains K∆, where K∆ denotes the class of ∆-expansions of chains
in K.

22



Logic Canonical SRC
G(C), C+ ∈ Psup−acc([0, 1]) No
G(C), C+ 6∈ Psup−acc([0, 1]) Yes

NM(C), C+ ∈ Psup−acc([0, 1]) No
NM(C), C+ 6∈ Psup−acc([0, 1]) Yes
L⊗c(C), C+ ∈ Psup−acc([0, 1]) No
L⊗c(C), C+ 6∈ Psup−acc([0, 1]) Yes
L?c(C), C+ ∈ Psup−acc([0, 1]) No
L?c(C), C+ 6∈ Psup−acc([0, 1]) Yes

L∗(C), for other ∗ ∈WNM-fin No

Table 6: Canonical SRC properties for propositional WNM fuzzy logics with truth-constants
restricted to positively evaluated formulae.

Now we will consider expansions with truth-constants for these logics with ∆. Given a
left-continuous t-norm ∗ and a countable subalgebra C ⊆ [0, 1]∗, we define the logic L∗∆(C)
as the expansion of L∗∆ in the language LC obtained by adding the following book-keeping
axioms:

r&s↔ r ∗ s
(r → s)↔ r ⇒ s

∆r ↔ ∆r

for every r, s ∈ C.
Again, using the general facts mentioned in the preliminaries we know that L∗∆(C) is an

algebraizable logic and we can axiomatize its equivalent algebraic semantics, the variety of
L∗∆(C)-algebras. Moreover, it can be easily checked that L∗∆(C)-algebras are representable
as subdirect product of chains.

Proposition 30. For every left-continuous t-norm ∗ and every countable subalgebra C ⊆
[0, 1]∗, the logic L∗∆(C) is a conservative expansion of L∗∆, whenever L∗∆ has the FSRC.

Proof: Let us denote by S is the class of standard L∗∆-chains and by S(C) is the class of
standard L∗∆(C)-chains. Let Γ∪{ϕ} be arbitrary formulae of L∗∆ and suppose that Γ `L∗∆(C)
ϕ. Then there is a finite Γ0 ⊆ Γ such that Γ0 `L∗∆(C) ϕ, and this implies that Γ0 |=S(C) ϕ.
Since the new truth-constants do not occur in Γ0 ∪ {ϕ}, we have Γ0 |=S ϕ, and by FSRC of
L∗∆, Γ0 `L∗∆ ϕ, and hence Γ `L∗∆ ϕ. 2

Hence, for each ∗ ∈WNM, L∗∆(C) is a conservative expansion of L∗∆. Since L∗∆-chains
are simple, adding ∆ to L∗(C)-chains simplifies significantly their structure as next lemma
shows.

Lemma 31. Let A be a non-trivial L∗∆(C)-chain, ∗ be a left-continuous t-norm and C ⊆ [0, 1]∗
be a countable subalgebra. Then, for every r, s ∈ C such that r < s, we have rA < sA.

Proof: Suppose rA = sA. Then 1A = ∆1A = ∆s→ rA = ∆(s→ t)
A

= 0A; a contradiction.
2
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Therefore, in the variety of L∗∆(C)-algebras all chainsA are such that FC(A) = {1}, among
them the canonical standard chain that we denote by [0, 1]L∗∆(C). Furthermore, observe that
the condition that C has elements in the interior of each interval of the partition, together
with the previous lemma and the book-keeping axioms, implies that all L∗∆(C)-chains must
have the same kind of partition (the same sequence of constant and involutive intervals). In
particular, this implies that [0, 1]L∗∆(C) is the only standard L∗∆(C)-chain up to isomorphism.

Theorem 32. Let ∗ ∈ WNM-fin and let C ⊆ [0, 1]∗ be a suitable countable subalgebra.
Then:

1. L∗∆(C) has the canonical SRC.

2. L∗∆(C) is not a conservative expansion of L∗(C).

Proof: The fact that all L∗∆(C)-chains have the same kind of partition gives that all the
countable ones are embeddable into [0, 1]L∗∆(C). Thus Theorem 11 ensures the canonical SRC.
Let us now prove the second statement. Recall the example in Section 6.1 that showed L∗(C)
does not enjoy the canonical FSRC: (p → q) → r |=[0,1]L∗(C)

q → p and (p → q) → r 6`L∗(C)
q → p. But then, (p → q) → r |=[0,1]L∗∆(C) q → p and hence (p → q) → r `L∗∆(C) q → p, by
the canonical SRC of L∗∆(C). Therefore, L∗∆(C) is not a conservative expansion of L∗(C). 2

9 Complexity results

In the paper [22], Hájek has studied the computational complexity of relevant subsets of
formulae with rational truth-constants, i.e. formulae of the language LC where C = Q∩ [0, 1].
Here we follow his approach to determine the computational complexity of some logics L∗(C)
with ∗ ∈WNM-fin.

In the following we will use [0, 1]Q to denote Q ∩ [0, 1]. A left-continuous t-norm ∗ is
called r-admissible when both ∗ and its residuum ⇒ are closed operations on [0, 1]Q . Notice
that if ∗ is r-admissible, then Q∗ = 〈[0, 1]Q, ∗,⇒,min,max, 0, 1〉 is a countable subalgebra
of the standard algebra [0, 1]∗, and hence it is meaningful to consider the logic L∗(Q∗) and
the canonical standard algebra [0, 1]L∗(Q∗). To simplify a bit the notation we will denote the
latter as [0, 1]L∗(Q).

We introduce the following three sets of formulae, namely the set of tautologies, the set
of satisfiable formulae and the set of pairs of formulae in the semantical consequence relation,
everything with respect to the canonical standard chain [0, 1]L∗(Q):

RTAUT (∗) = {ϕ | [0, 1]L∗(Q) |= ϕ ≈ 1}

RSAT (∗) = {ϕ | [0, 1]L∗(Q) 6|= ¬ϕ ≈ 1}

RSECON(∗) = {〈ϕ,ψ〉 | ϕ ≈ 1 |=[0,1]L∗(Q)
ψ ≈ 1}

Hájek’s results in [22] can be summarized as follows. An r-admissible t-norm ∗ ∈ CONT-fin
is called strong r-admissible when each  L-component and Π-component is isomorphic to [0, 1] L
and [0, 1]Π respectively via a bijection f mapping rationals into rationals such that both f and
f−1 restricted to rationals are deterministically polynomially computable. Then for a strong
r-admissible t-norm ∗ ∈ CONT-fin with rational endpoints in all its basic components:
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(i) when [0, 1]∗ has no Π-component, RTAUT (∗) and RSECON(∗) are coNP-complete
and RSAT (∗) is NP-complete;

(ii) otherwise, RTAUT (∗), RSECON(∗) and RSAT (∗) are in PSPACE.

Now, let us consider the set of theorems of L∗(Q∗), the set of consistent formulae in L∗(Q∗)
and the set of pairs of formulae such that the second is derivable from the first in L∗(Q∗):

RTHEO(∗) = {ϕ | L∗(Q) ` ϕ}

RCONS(∗) = {ϕ | ϕ 6`L∗(Q) 0}

RSY CON(∗) = {〈ϕ,ψ〉 | ϕ `L∗(Q) ψ}

Theorem 33. Let ∗ ∈WNM-fin be r-admissible such that all the endpoints of its partition
are rational. Then RTAUT (∗) and RSECON(∗) are coNP-complete and RSAT (∗) is NP-
complete.

Proof: The proof is a generalization of the one for ∗ = min in [22, Theorem 2].
Given a formula ϕ, let R(ϕ) be the universe of the WNM-subalgebra of Q∗ gener-
ated by the set of truth-constants appearing in ϕ. It is clear that R(ϕ) is finite.
Let Part(∗) be the set 0 < s1 < . . . < sm < 1 of the endpoints of the parti-
tion associated to ∗ (recall that it includes the negation fixpoint if it exists) and let
X = R(ϕ) ∪ Part(∗) = {0 = t0 < t1 < . . . < tk−1 < tk = 1} which forms another finite
WNM-subalgebra of Q∗. If ϕ contains n propositional variables, then we choose n rational
elements ai1, . . . , ain in each open interval (ti, ti+1) such that X ∪

⋃k−1
i=0 {ai1, . . . , ain} forms a

WNM-subalgebra Aϕ of Q∗. Now, one can prove the following:

Claim: ϕ ∈ RSAT (∗) if and only if there exists an evaluation e on Aϕ such that e(ϕ) = 1.
Proof: Let v be an evaluation on [0, 1]L∗(Q) such that v(ϕ) = 1, and let B the L∗(R(ϕ))-
algebra generated by the set {v(q) | q propositional variable in ϕ}. Then one can check that
B can be embedded in Aϕ. 2

Therefore ϕ ∈ RSAT (∗) if and only if one can guess such an evaluation.
Analogously, one can prove that ϕ 6∈ TAUT (∗) iff one can guess an evaluation e on Aϕ

such that e(ϕ) < 1.
Finally, the case of checking 〈ϕ,ψ〉 ∈ RSECON(∗) is reduced, due to the deduction

theorem for WNM, to checking ϕ2 → ψ ∈ TAUT (∗). This ends the proof. 2

Finally, taking into account the canonical standard completeness results for expansions
of WNM logics (see Section 6.2), we can state the computational complexity of the following
logics with rational truth-constants.

Theorem 34. Let ∗ ∈WNM-fin be r-admissible such that all the endpoints of its partition
are rational. If L∗ is G, NM, L⊗c or L?c, we have that RTHEO(∗) and RSY CON(∗) are
coNP-complete and RCONS(∗) is NP-complete.
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10 Conclusions

In this paper we have been concerned with expansions of logics of WNM t-norms with count-
able sets C of truth-constants when (i) the t-norm is a WNM t-norm with an associated finite
partition, and (ii) the set of truth-constants covers all the unit interval in the sense that the
interior of each interval of the partition contains at least one value of C. In particular we
have considered different kinds of standard completeness properties and have identified which
logics satisfy them. Some modest results on computational complexity for the expanded logics
are also presented.

This paper is a natural follow-up of [12], where the authors studied the expansions with
truth-constants of logics of continuous t-norms. However, as already mentioned in a footnote
at the beginning of the paper, by some reasons this paper comes when further developments
have been already or are near to be published, namely the study of completeness properties
for rational-valued semantics (as opposed to real-based semantics in this paper) in [15] and
an exhaustive study of expansions with truth-constants for predicate t-norm logics in [16].
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