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Abstract: Biometrics security is a dynamic research area spurred by the need to protect personal traits from threats like theft,
non-authorised distribution, reuse and so on. A widely investigated solution to such threats consists of processing the biometric
signals under encryption, in order to avoid any leakage of information towards non-authorised parties. In this study, the authors
propose to leverage on the superior performance of multimodal biometric recognition to improve the efficiency of a biometric-
based authentication protocol operating on encrypted data under the malicious security model. In the proposed protocol,
authentication relies on both facial and iris biometrics, whose representation accuracy is specifically tailored to the trade-off
between recognition accuracy and efficiency. From a cryptographic point of view, the protocol relies on Damgård et al. SPDZ.
Experimental results show that the multimodal protocol is faster than corresponding unimodal protocols achieving the same
accuracy.

1 Introduction
In the digital and increasingly interconnected world we live in,
establishing individuals’ identity is a pressing need [1, 2]. For this
reason, in the last decades, we are witnessing an increasing interest
in biometric-based recognition systems. Biometric recognition can
be split into two main categories: authentication and identification.
In the first scenario, also referred to as verification, the user is
interested in demonstrating that he/she is who he/she claims to be,
while in the second one, referred to as identification, the goal is to
determine the identity of the user submitting the biometric template
among those known by the system. Usually, in both verification and
identification protocols, a single biometric trait is used to extract a
biometric template, usually represented as a feature vector. The
feature vector then is matched with one or more templates stored in
the system database.

Under the EU GDPR (General Data Protection Regulation) [3],
biometrics are considered a special category of personal data that
requires both a special legal basis for processing and an
accompanying data protection impact assessment. Applications
using biometrics usually ask for the user consent, but this is not
sufficient to prevent the damage caused by a data breach. Hence,
recently, the security of biometric systems has become a very
active research area, due to the necessity of impeding newly
emerging cybercrimes like identity theft, privacy violation,
unauthorised access to sensitive information and so on [4].

Protocols allowing to process encrypted biometric signals
without decrypting them are among the most widely studied
solutions to enhance the security of biometric systems [5, 6].
According to such an approach, verification or identification is
carried out by the system relying exclusively only on encrypted
biometric templates, thus preventing the risk for sensitive
information leakage during the protocol.

The possibility of processing and comparing encrypted
biometric templates rely on a number of cryptographic tools [7–
10], broadly referred to as multi-party computation (MPC) [11].
Generally speaking, MPC protocols can be classified according to
the adopted security model. The most common distinction
considers protocols which are secure only against semi-honest
adversaries, and those which can be proven to be secure also
against malicious adversaries. To be specific, in the semi-honest
model, all the parties execute the protocol without deviating from

it, but meanwhile they try to obtain as much information as
possible about the other parties’ data. Protocols developed in the
semi-honest model are very efficient and, for this reason, are
adopted in the majority of the works proposed so far [5, 6]. On the
contrary, in the malicious model, the parties can arbitrarily deviate
from the protocol in their attempt to get access to sensitive
information. While security against malicious parties would be
desirable in many real-world applications, the resulting protocols
have a very high complexity and their use in real systems is often
impractical. The great majority of the attempts are made so far to
devise efficient biometric recognition protocols in the malicious
setting, focused on the development and use of innovative and
efficient MPC and cryptographic primitives. A less investigated
approach consists of the adoption of biometric recognition
protocols which are better suited to be implemented in a MPC
framework. Yet, as highlighted in [6], working on the signal
processing side of the problem may help to reduce significantly the
complexity of the MPC protocol, e.g. by efficiently trading off
between accuracy and complexity.

1.1 Contribution

In this work, we focus on an authentication protocol and, following
the above strategy, we present SEMBA: a SEcure Multi-Biometric
Authentication protocol which achieves a better trade-off between
efficiency and accuracy with respect to the single modality
subsystems composing it. This represents a major deviation from
most works on multimodal biometric systems, in which the
availability of multiple biometric modalities is exploited to
decrease interclass variability and improve intra-class similarity in
the presence of acquisition noise and any other kind of distortion
[12]. In this framework, the main contributions of the paper are as
follows:

(i) We design SEMBA, a multimodal biometric system that
combines face and iris templates and that can be easily
implemented by relying on secure multi-party computation
protocols;
(ii) We propose a privacy-preserving multi-biometric
authentication protocol secure against a malicious party. SEMBA is
based on the SPDZ tool [1, 2] and discloses only the final binary
decision;
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(iii) We compare our multi-biometric protocol with single
biometric protocols, showing that by using a properly simplified
representation of the two biometric traits, backed by a rigorous
signal processing analysis, the multimodal protocol can reach the
same accuracy of the corresponding single-modality systems based
on more accurate – and more complicated – representations of iris
and face templates, but with significantly lower computational
complexity. In particular, SEMBA obtains the same accuracy of the
stand-alone iris authentication protocol described in [13].
Nevertheless, system designers could also decide to exploit the
better performance allowed by multimodal authentication to
improve authentication accuracy with the same complexity of the
single modality protocols, according to ISO\IEC TR 24722:2015
[14].

1.2 Outline of the paper

In Section 2, we briefly discuss the state of art of privacy-
preserving biometrics systems, focusing on face and iris
biometrics. In Section 3, we introduce the cryptographic and
biometric protocols we use in our implementation. In Section 4, we
describe the SPDZ-based iris, face and multi-biometrics
authentication protocols. In Section 5, we present the results of
tests carried out in the plain domain. The results of such tests are
then used to set the parameters for the tests in the encrypted
domain, whose results are presented in Section 6. Finally, in
Section 7 we compare SEMBA with the state of the art and in
Section 8, we draw our conclusions.

2 Prior works
In the last years, many cryptographic tools, including oblivious
transfer [7], homomorphic encryption [9, 15], secret sharing [16]
and garbled circuits [8, 17], have been used for privacy protection
of biometric templates. In most works, such tools are used in such
a way to achieve security in the semi-honest model. Many privacy-
preserving authentication protocols have been proposed in the
literature making use of a wide variety of biometric traits. Since, in
this work, we present a privacy-preserving multi-biometric
authentication protocol based on face and iris, we focus on the state
of art relative to those biometries, then we discuss the few works
achieving privacy protection in the malicious model and finally we
discuss the main characteristics of multimodal (or fusion) biometric
systems.

2.1 Biometric recognition in the semi-honest model

As pointed in [5, 6], many prior works on biometric recognition are
designed to be secure against semi-honest adversaries. However,
protocols operating in the encrypted domain have high complexity,
and they require optimisation by working at different levels. First
of all, the biometric algorithm needs an efficient implementation in
the encrypted domain, thus algorithms with low implementation
complexity appear more suitable, even if they have a (slightly)
lower accuracy. As an example, Blanton and Gasti [18] have
compared the fingercode- and minutia-based implementations for
finger recognition showing that, despite the highest accuracy, the
fingercode representation results in a more efficient protocol than
the one based on minutiae, whose complexity is almost impractical.
For this reason, eigenface [19] and iriscode [20] representations are
commonly used for face and iris, respectively. Then the protocol
should be optimised to avoid complex operations, again at expense
of accuracy, and finally there is the necessity to operate at feature
level, accurately choosing the number of features and bits used for
their representation, to decrease the complexity while guaranteeing
high accuracy. We underline that protocols operating in the
encrypted domain have the same accuracy of the same protocol
operating in the plain domain where the same optimisations have
been applied and using the same feature representation.

Several works have been proposed to evaluate iris recognition
and face recognition in the encrypted domain. As far as face
recognition is concerned, some examples can be found in [21–24],
while with respect to iris recognition, protocols are provided in [18,
25–29].

2.2 Biometric recognition in malicious setting

All the works referred to in the previous section are designed to be
secure against semi-honest adversaries. However, there is the need
to guarantee higher security to fulfil the requirements imposed by
the GDPR, because as pointed out by Simoens et al. [30],
biometric templates are usually the target of malicious attackers.

There are few works on privacy-preserving biometric
authentication secure under a malicious model. Kantarcioglu and
Kardes [31] present a way to implement some primitives,
specifically the dot product and equality check, in the malicious
model, by also analysing the corresponding computational cost.
Even if this work is not directly related to biometrics protection,
the proposed solutions can be adapted to such an aim. In [32],
Abidin illustrates a general framework for biometric authentication
that uses a homomorphic encryption scheme to evaluate the
distance between two encrypted biometric templates. In his work,
Abidin proves security against malicious attacks, but he does not
provide any results about the practical implementation of the
protocol. In [33], Pathak and Raj describe two speech-based
authentication protocols. One of them is a non-interactive protocol
which is secure against malicious attacks. In both protocols, the
output is a probability value and the client checks if such a value is
equal to zero or not in the plain domain.

Several approaches [34–38] have been proposed to make Yao's
garbled circuit techniques secure in the malicious model through
zero knowledge proof, cut and choose, or other techniques. Such
approaches can also be used for biometric authentication protocols,
however their high complexity makes them impractical. Gasti et al.
[39] proposed a lightweight biometric authentication protocol
based on simple garbled circuits and secure against malicious
adversaries by relying on an untrusted third party (the cloud). In
the protocol, the biometric owner acts as circuit constructor, the
cloud as circuit evaluator, while the server verifies the correctness
of the circuit. The approach is secure against colluding biometric
owner and cloud, but not against colluding server and cloud.

2.3 Private multimodal biometric recognition

Given the recent technological advances, new devices are often
equipped with numerous sensors, opening the way to multi-
biometric authentication. In [40], Ross et al. present an overview of
the possible fusion scenarios and their applications in real life. For
our protocol, we choose a multimodal system that combines
information from face and iris.

Biometric signals are usually processed in four stages. First, a
sensor captures the traits of an individual as raw biometric data.
Second, raw data is processed and a compact representation of the
physical traits, called features, is extracted. Then, the feature
template is matched with the templates stored in a database.
Finally, the matching score is used to determine an identity or to
validate a claimed identity. Information can be merged at any time
during a multi-biometric recognition protocol [40]. The choice of a
specific fusion strategy depends on the intended application, its
specific characteristics and the MPC tool chosen to guarantee
privacy. Fusing the biometric signals at an early stage results in a
higher accuracy of the protocol at the expenses of a higher
complexity. For this reason, the most used approach, and the one
we use in this paper, is score level fusion, whereby the match
scores from each biometric trait involved in the process are
combined to obtain the final result. Score level fusion combines
good accuracy and relatively easy implementation.

To the best of our knowledge, Gomez-Barrero et al. [41] have
proposed the only previous work on multi-biometric privacy
protection operating in the encrypted domain.

In [41], the authors present a general framework for multi-
biometric template protection based on Pailler cryptosystem, in
which only encrypted data is handled. The authors examine the
outcome of the fusion of on-line signature and fingerprints, at three
different levels of fusion: feature, score and decision levels. During
the enrolment phase, the client, C, acquires the probe and extracts
the template Tr. C encrypts Tr and sends it to the server, S. S
holds only encrypted templates in the database and a pair (sk, pk)
of public and secret keys. During verification, S sends the
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encryption of the reference template E(Tr) to C. The client
computes the encrypted distance between E(Tr) and the new probe
Tp. Since Tp is available only on the client side, it does not need to
be encrypted. Moreover, C does not know sk and has no access to
Tr. Finally, the server decrypts the distance score and computes the
final decision. Gomez et al. system is secure in the semi-honest
model, therefore all the parties involved follow the protocol
honestly. For this reason, the score computed by C can be assumed
correct. However, a drawback of the system is that final
comparison is carried out on plain data by the server, thus
introducing a breach into the security of the system.

Other secure multi-biometric solutions: While in this paper we
focus on privacy-preserving multi-biometric recognition protocols
based on secure multi-party computation algorithms, we underline
that other secure solutions have been proposed in the literature.
Sowkarthika and Radha [42] have proposed a protocol for joint iris
and fingerprint authentication where fusion is performed at feature
level and security is based on fuzzy vaults. As other biometric
fuzzy vault solutions [43], the proposed protocol has an efficient
encoding protocol, while decoding is based on Reed-Solomon
error-correcting code. Given the protocol simplicity, fuzzy vault
based protocols are more efficient than MPC-based authentication
protocols. On the other side, fuzzy vault has shown weaknesses
against correlation attacks [44], attacks via record multiplicity,
blended substitution attacks [45] and other attacks, which cannot
be performed in the encrypted domain if the protocol is secure
against active adversaries.

Some works [46–48] exploited fuzzy commitment schemes for
multi-biometric protection. In fuzzy commitment scheme,
biometrics are protected by xoring them with a secret key chosen
during an enrolment procedure in which biometric data are
observed for the first time. This key is to be reconstructed after
these biometric data are observed again during an attempt to obtain
access (authentication). Since biometric measurements are
typically noisy, reliable biometric secrecy systems also extract so-
called helper data from the biometric observation at the time of
enrolment. Despite the efficiency of the fuzzy commitment
schemes, the helper data are assumed to be public, and therefore
they should not contain information on the secret, hence secrecy
leakage should be negligible, as shown in [49]. To solve the
problem, Failla et al. [50] proposed to implement fuzzy
commitment scheme in the encrypted domain.

In [51], authors propose an anti-spoofing multispectral
biometric cloud-based identification approach for privacy and
security of cloud computing. The approach offers a protocol based
on a different multi-biometric representation. Authors are not
leveraging on multiple biometrics, but on multiple representations
of the same biometric. Their solution uses multi-spectral palmprint
to generate features and then encrypts them by relying on
unpadded RSA Cryptosystem. Encrypted features collected during
the enrolment phase are used to train a regularised extreme
learning machine classifier able to handle the variations in the
encrypted biometrics and recognising the user. Unfortunately,
unpadded RSA is deterministic and hence weak against chosen
plaintext attacks. For this reason, the protocol cannot provide
sufficient security.

3 Tools
In literature, some frameworks that secure only against a passive
adversary have been proposed. Among them, we highlight
Sharemind [52], ABY [53] and SPDZ [1, 2]. ShareMind is a
commercial framework developed at the University of Tartu which
derives its efficiency from the great variety of protocols for integer,
fix- and floating-point operations, as well as for shuffling the
arrays. ABY [53] is a novel framework that allows a flexible
design process for developing highly efficient applications. It has
been developed by applying several state-of-art MPC techniques
and using exiting protocols in a novel fashion. ABY supports three
different sharing methods (Arithmetic, Boolean and Yao) and also
allows efficient conversion from one to another. SPDZ is a two- or
multi-party computation protocol secure against an active
adversary corrupting up to n − 1 of the n players.

Among them, we chose SPDZ because of its security against
active adversaries and high efficiency. SPDZ is not only the secret
sharing tool that can be used for secure multi-party computation
with active adversaries, but it is best suited to our purpose. For
example, the system presented in [54] provides perfect security
against an active, adaptive adversary corrupting t < n/3 players,
which is not optimal for our scope.

In the remaining of this section, we present the SPDZ protocol
and biometric tools used in our protocol.

3.1 Cryptographic tools: SPDZ system

Damgård et al. [1, 2] proposed the MPC framework named SPDZ,
a two- or multi-party computation protocol secure against an active
adversary corrupting up to n − 1 of the n players. This method uses
multiplicative triples generated offline by using somewhat
homomorphic encryption (SHE) to efficiently perform online
secret sharing operations.

We assume that all computations are performed over a fixed
finite field F p of characteristic p; where p is a prime number. Each
player Pi has an uniform share αi ∈ F p of a secret key α such that
α = ∑i = 1

n αi mod p (in the following we omit the indication of the
modulus operation for simplicity). In this paper, we focus on secure
two-party computation protocols, then n = 2 and α = α1 + α2. An
item a ∈ F p is ⟨ ⋅ ⟩-shared if the player Pi holds a tuple ⟨ai, γ(a)i⟩
such that a = a1 + a2 and γ(a) = γ(a)1 + γ(a)2. In other words, ai and
γ(a)i are additive secret shares of a and γ(a). The value γ(a)
represents the message authentication code (MAC) of a. Any
operation involving some variables is also performed on their
MAC, so that, at the end of the protocol, the MAC is checked
before revealing the outcome. If one of the parties has a different
MAC from the others, the procedure aborts. During the description
of the protocol, we say that a ⟨ ⋅ ⟩-shared value is partially opened
if each party reveals to the other one the value ai but not the
associated γ(a)i.

An SPDZ protocol can be divided into two major phases. The
preprocessing phase, sometimes referred to as the offline phase,
where the system is set up, and the online phase, where the actual
computation is performed.

3.1.1 Preprocessing phase: In the offline phase, the parties
generate a public key and a shared secret key for the SHE scheme.
Then, relying on the homomorphic properties of SHE, the
preprocessing protocol generates α and α's shares, input shares,
shares of tuples for multiplications and squares, and the random
share values necessary to evaluate the comparison [2]. As in [2],
we assume that the shares of a common key of a homomorphic
encryption scheme have been distributed to all the parties, along
with the share of the MAC key and an encryption of the MAC
itself.

The offline phase of SPDZ protocol has two distinct sub-
phases. In the first one, random data are encrypted and used to
create multiplication tuples, square tuples and shared bits, by
exploiting the homomorphic properties of the cryptosystem. Tuples
and bits are over-produced with respect to the quantity needed by
the online protocol (the total tuples number is doubled). Since an
adversary could induce an error during tuples construction, and
therefore compromise the whole following computation, in the
second sub-phase a random subset of the material previously
produced is consumed in order to verify if tuples and shared bits
have been built correctly. The check is done by sacrificing
techniques, i.e. half of the tuples are partially opened and then the
MACs are checked without revealing the MAC key. The detail of
this last operation is described in [2].

In this paper, we assume that the generation of tuples and inputs
has already been carried out in the encrypted domain before the
protocol starts and we focus on the analysis of the online part of the
system.

3.1.2 Online phase: Operations in SPDZ: By using SPDZ, linear
operations, such as additions and scalar multiplications (see
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Table 1), can be performed on the ⟨ ⋅ ⟩-shares without interaction;
while products between ciphertexts and comparisons need data
transmission and proper sub-protocols using the multiplication
triples generated during the preprocessing phase. 

Multiplication: Here, we show how to securely evaluate the
product between two ciphertexts and the square of a ciphertext [2].
During the offline phase, several multiplication triples are
produced. If a, b, c ∈ F p are such that c = a ⋅ b, then a
multiplication triple is the set {⟨a⟩, ⟨b⟩, ⟨c⟩}. In the online phase, to
multiply two shared ⟨x⟩ and ⟨y⟩, we take a multiplication triple
{⟨a⟩, ⟨b⟩, ⟨c⟩} and we partially open ⟨x⟩ − ⟨a⟩ and ⟨y⟩ − ⟨b⟩,
disclosing ε = x − a and δ = y − b to both parties. Now the shares
of z = x ⋅ y can be computed as ⟨z⟩ = ⟨c⟩ + ε ⋅ ⟨b⟩ + δ ⋅ ⟨a⟩ + ε ⋅ δ.
and δ.

Similarly, during the offline phase, we prepare a list of pairs of
⟨ ⋅ ⟩-shared values {⟨d⟩, ⟨e⟩} such that e = d2 (d, e ∈ F p). This
arrangement allows to efficiently compute the square of a shared
value x using only one transmission. Since the square protocol is
similar to multiplication, we refer to [2] for details.

Complexity: Each multiplication requires two transmissions
between the parties to partially open ε and δ, while each square
operation requires only one transmission.

Comparison: Here we describe the computation of a secure
comparison x < y, for any two elements x, y ∈ F p. We rely on the
protocol proposed in [55] that has the lowest computational
complexity among all the secure comparison protocols proposed so
far.

The comparison computation is based on the observation that
⟨x < y⟩ is determined by the truth values of ⟨x < p/2 ⟩,
⟨y < p/2 ⟩ and ⟨(x − y) mod p < p/2 ⟩, where ⟨x < y⟩ indicates
the share values of the outcome of x < y. By choosing p large

enough to guarantee that both inputs are lower than p
2 , only

⟨(x − y) mod p < p/2 ⟩ needs to be evaluated.
Given z = x − y, then ⟨x < y⟩ can be easily computed as

1 − ⟨z < p/2 ⟩. We observe that if z > p/2 , then 2z > p. Since
we work on F p, we have that 2z mod p = 2z − p and it is odd; else
if z < p/2  then 2z < p and it will be even because we do not need
any modular operation. Therefore, to establish if z is larger or
smaller than p/2 we need to determine only the last significant bit
of 2z. To compute the last significant bit of 2z, we use a value ⟨r⟩
shared by the parties both as integer and as a bit array. The value r
along with its bit decomposition is pre-computed off line. We
indicate by r0r1…rℓ the bits of r and with ⟨ri⟩ the corresponding
shared values.

First of all we compute ⟨s⟩ = ⟨2z + r⟩, then s is partially
opened. If s < p then the last significant bit of 2z is equal to s0 ⊕ r0,
otherwise it is equal to 1 − (s0 ⊕ r0). Since we work in the field F p,
s < p iff s < r. By recalling that s is known to both parties, we can
easily obtain a ⟨ ⋅ ⟩-share of δ, the truth value of ⟨s < r⟩ (i.e.
⟨δ⟩ = ⟨s < r⟩) working on the bits of s and on the shared bits of r.
Then we use the following procedure to calculate ⟨δ⟩ = ⟨s < r⟩.

If s0 = 0 then ⟨δ⟩ = ⟨r0⟩ else ⟨δ⟩ = ⟨0⟩.
For all i < ℓ − 1 if si = 0 then ⟨δ⟩ = ⟨ri⟩ + ⟨δ⟩ ⋅ ⟨1 − ri⟩ else

⟨δ⟩ = ⟨ri⟩ ⋅ ⟨δ⟩.
Now ⟨z < p/2 ⟩ can be easily calculated as

⟨δ ⊕ s0 ⊕ r0⟩ = ⟨δ⟩ − ⟨s0 ⊕ r0⟩ − ⟨δ⟩ ⋅ ⟨s0 ⊕ r0⟩ . (1)

Since s0 is known in our implementation

⟨δ ⊕ s0 ⊕ r0⟩ = ⟨δ⟩ + ⟨r0⟩ − 2 ⋅ ⟨δ⟩ ⋅ ⟨r0⟩ if s0 = 0,
1 + 2⟨δ⟩ ⋅ ⟨r0⟩ − ⟨r0⟩ − ⟨δ⟩ if s0 = 1. (2)

Complexity: This protocol requires one multiplication for each
iteration plus one for the last step in (1). Therefore, the complexity
depends on the bit length of r and it is equal to ℓ multiplications,
which require 2ℓ transmissions.

3.2 Biometrics tools

In our work, we compare two different authentication systems: an
iris authentication protocol and a multimodal system relying on the
fusion at the score level of iriscode and eigenfaces. As shown in
Section 4, both protocols can be implemented efficiently in the
encrypted domain by relying on the SPDZ framework. In the
following subsections, we first describe the stand-alone iris
(Section 3.2.1) and face (Section 3.2.2) recognition protocols in the
plain domain, and then we focus on the main characteristics of a
general multimodal recognition protocol (Section 3.2.3).

3.2.1 Iris recognition: In our implementation, we use the iriscode
template proposed for the first time by Daugman in [20] and then
modified by Masek in [13]. The description of the entire extraction
process is out of the scope of this paper, therefore we are only
giving an overview of the process, focusing mainly on the details
which are relevant for the current work.

An iriscode is a bit vector whose length N depends on the radial
(r) and angular (θ) resolutions used during template extraction. The
extraction process outputs also a bitwise noise mask. The noise
mask represents the regions of the iris altered by noise, e.g. by
eyelashes end eyelids. To compare two templates (the query and
the probe enrolled in the database) the authentication process uses
the weighted Hamming distance (HD), where the weights depend
on the noise mask bits. In this way only significant bits are used to
calculate the distance between the two templates. Given the
template length N = 2 ⋅ r ⋅ θ, we indicate by F1 = f 1, 1… f 1, N and
F2 = f 2, 1… f 2, N the iris templates and M1 = m1, 1…m1, N and
M2 = m2, 1…m2, N the corresponding noise masks. We assume that
the value mi = 1 in the mask vector indicates that the bit is affected
by noise and must be excluded from the computation. Moreover,
we indicate with a = 1 − a the negation of a feature bit a. The
weighted HD can be calculated as

HD = ∥ (F1 ⊕ F2) ∧ (M1 ∧ M2) ∥
N − ∥ M1 ∨ M2 ∥

= ∑ j
N ( f 1, j ⊕ f 2, j) ∧ (m1, i ∧ m2, i)

N − ∑ j = 1
N m1, j ∨ m2, j

.
(3)

3.2.2 Face recognition: Face templates can be generated by
relying on the eigenfaces method proposed by Tuck and Pentland
in [19] providing a set of facial characteristics that can be used to
describe all the faces into the database (the face-space), as
eigenvectors do in linear algebra. The template associated to a face
Γ is the projection of Γ on the face space Ω = [ω1…ωk]. Each ωj
describes the contribution of the corresponding eigenface, ej, in
representing the input image. In order to find the image that best
matches Γ, the algorithm looks for the projection vector Ωj among
all database images that minimises the Euclidean distance (ED)

ED = ∥ Ω − Ωj ∥ = ∑
i = 0

k
Ωi − Ωj, i

2 . (4)

3.2.3 Multi-biometric score level fusion: In this work, we
choose to use multimodal fusion (face and iris) at score level. This
is motivated by the fact that, on the basis of what illustrated in
Section 2.2, face and iris recognition protocols allow to easily
compute the match score in the encrypted domain. Moreover, we
underline that both iris and face can be acquired at the same time in
real applications, for example by using a smartphone camera. We
summarise our fusion system in Fig. 1. 

Match scores generated by iris and face subsystems are
characterised by a different range of values: the output of the iris
protocol is a real number in [0, 1], while the output of the face
recognition protocol is a squared number in [0, M], M ∈ ℝ. Many
ways have been proposed to overcome the problems generated by
the differences between the scores provided by different biometric
recognition systems (see [40] for more details). Among them, due
to the characteristics of our MPC system, we choose a linear
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combination of the scores. Furthermore, to normalise the face
matching score, we choose to use a min–max normalisation
method [40]

face_score_norm = score − minface
maxface − minface

, (5)

where minface, maxface indicate the minimum and maximum values
of the face range. Since minface = 0, if i ∈ [0, 1] is the HD
resulting from iris match, f is the ED between faces and R is the
maximum value of the face recognition system, multimodal
recognition corresponds to checking if the following inequality
holds:

α ⋅ i + β ⋅ f
R < t (6)

where α, β ∈ [0, 1] are proper weights and t ∈ [0, 1] is the decision
threshold. The choice of the parameters α, β, T  determines the
trade-off between equal error rate (EER) and computational
complexity (Section 5.1). As in [41, 56] we choose β = 1 − α for
the tests in the plain domain. More details are provided in Section
4.

4 Proposed protocol
In this section, we describe the details of SEMBA implementation.
We start by presenting the security model (Section 4.1), and then
we present the implementation of the iris and face authentication
protocols (Sections 4.3 and 4.4) and the multimodal biometric
protocol (Section 4.5). Finally, we discuss the security of the SPDZ
protocols in Section 4.6.

4.1 Security model

All the protocols involve a client (the biometric owner) and a
server that authenticates the identity of the client. Since in our
computation we have only two parties, from now on, the SPDZ
protocol is described for n = 2. We assume that S and C have
already run the preprocessing phase. We also assume that the

server owns a shared reference template of the client. During the
online phase, the client could be interested to be authenticated by
the server without revealing neither his identity nor his biometric
templates. It may also be interested in obtaining records stored by
the server for some malicious purpose, e.g. in order to perform
spoofing attacks. On the other hand, the server does not want to
dislocate its records, while can be interested to collect new
biometric templates or identify the user that is authenticated.
Hence, both client and server can be malicious, i.e. they may be
interested in gaining as much information as possible on the other
party even by deviating from the protocol. Considering that the
SPDZ protocol involving n parties is secure up to n − 1 malicious
parties, we assume that only one, either the client or the server, can
act maliciously. It is to be pointed out that if both act maliciously,
they obtain no real information about the counterpart. We finally
assume that the parties are connected through a secure channel
providing privacy against eavesdroppers and any third party that
can compromise the transmission.

4.2 Biometric representation

To operate in the encrypted domain, we need a version of the
authentication protocol that works only with integer numbers. This
is a necessary step since the cryptosystem underlying secure
protocol can handle only integer numbers. Few solutions operating
on floating point exist [57–59], but have higher complexity. For
this reason, we must adapt the biometric algorithms of Section 3.2
to let them work with integer numbers. Passing from an algorithm
implemented in floating-point arithmetic to one working with
integer numbers (fixed-point arithmetic with no truncation)
requires that the inputs and the parameters of the protocol are
quantised and represented by a suitable number of bits, so that the
final output does not differ significantly from the results that would
have been obtained with a floating-point implementation.
Generally speaking, given a positive floating-point number, we can
construct its quantised version multiplying it by a positive integer
value and rounding the result to the nearest integer, as specified by
the following mapping:

a → aq = ⌊qa⌉

where we have indicated explicitly that ⌊qa⌉ is an integer number
that requires a number of bits for the representation chosen in order
to have in the new fixed-point protocol negligible accuracy loss
with respect to the original floating-point protocol. In our protocol,
iris features are binary values and do not need quantisation, while
eigenfaces, weights and acceptance threshold are values that must
be correctly quantised. We also underline that a protocol operating
in the encrypted domain does not introduce any further accuracy
loss compared to the corresponding fixed-point plain protocol.

4.3 Iris authentication protocol in the encrypted domain

The SPDZ protocol supports operations modulo p. Each binary
element of an iris feature is encrypted as a modulo p integer ⟨a⟩-
share. For this reason, to implement the HD computation as in (3),
we must implement logical operations ⊕ , ∨ , ∧ as a combination
of integer operations +, − , ⋅. The correspondence between binary
and integer operations is detailed in Table 2. 

Let F1 = f 1, 1, f 1, 2, ⋯, f 1, N and F2 = f 2, 1, f 2, 2, ⋯, f 2, N be two
binary iris feature templates, where N is the number of features, we
indicate with ⟨Fi⟩ the vector containing the shares of each element,
i.e. the vector ⟨ f i, 1⟩, ⟨ f i, 2⟩, ⋯⟨ f i, n⟩ for i = 1, 2.

Since M1 ∧ M2 is equivalent to M1 ∨ M2, the HD in (3) can be
computed as

∑i = 1
N ( f 1, i + f 2, i − 2 ⋅ f 1, i ⋅ f 2, i) ⋅ 1 − (m1, i ∨ m2, i)

N − ∑ j = 1
N (m1, i ∨ m2, i)

, (7)

where m1, i ∨ m2, i = m1, i + m2, i − m1, i ⋅ m2, i.
In SPDZ, as well as in other MPC protocols, division is a very

expensive operation. Hence, instead of evaluating the division and

Table 1 Linear operation in SPDZ
Operation Party 1 Party 2
⟨a⟩ + ⟨b⟩ ⟨a⟩1 + ⟨b⟩1 ⟨a⟩2 + ⟨b⟩2

⟨a⟩ − ⟨b⟩ ⟨a⟩1 − ⟨b⟩1 ⟨a⟩2 − ⟨b⟩2

α ⋅ ⟨a⟩ α ⋅ ⟨a⟩1 α ⋅ ⟨a⟩2

c + ⟨a⟩ c + ⟨a⟩1 ⟨a⟩2

⟨a⟩ indicates the pair ⟨a, γ(a)⟩, ⟨a⟩i indicates the pair ⟨ai, γ(a)i⟩.
 

Fig. 1  General scheme of our fusion protocol
 

Table 2 Correspondence table between binary and integer
operations
Binary Integer
a ⊕ b a + b − 2 ⋅ a ⋅ b
a ∧ b a ⋅ b
a ∨ b a + b − a ⋅ b
a 1 − a
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then comparing the distance with the decision threshold, the
denominator is multiplied by the threshold before the comparison.
By letting

num = ∑
i = 1

N
( f 1, i + f 2, i − 2 f 1, i f 2, i) 1 − (m1, i ∨ m2, i) (8)

and

den = N − ∑
j = 1

N
(m1, i ∨ m2, i), (9)

the authentication check corresponds to

num < t ⋅ den . (10)

As it can be seen from (8), many share multiplications are needed
to calculate the numerator, namely, N multiplications for each
F1 ⊕ F2, M1 ∧ M2 and (F1 ⊕ F2) ∧ (M1 ∧ M2). To compute the
denominator, we can reuse the m1, i ∨ m2, i that has already been
computed for the numerator. Multiplication between shares
requires data transmission, slowing down the computation. To
optimise the protocol, we split the multiplication protocol into two
parts. First, we calculate ⟨εi⟩ = ⟨ f 1, i⟩ − ⟨a⟩ and ⟨δi⟩ = ⟨ f 2, i⟩ − ⟨b⟩,
for all i = 1…N. Then, to partially open the values, both server and
client exchange shares by using a packet for all ε's and one for all
δ's. In this way, we need only two transmissions for N
multiplications.

Complexity: Computing F1 ⊕ F2 and M1 ∧ M2 requires N
multiplications each, one for each element of the template;
moreover, N multiplications are required to compute
(F1 ⊕ F2) ∧ (M1 ∧ M2). The total cost associated to the computation
of num is 3N multiplications but, as we explained above, we need
only six transmissions. Computing den (9) has a negligible
complexity since m1, i + m2, i − m1, i ⋅ m2, i has already been calculated
for all i in (8). Moreover, we need a multiplication between den
and t, and ℓ multiplications for the comparison, where ℓ is the
number of bits necessary to represent a modulo p integer (see
Section 3.1.2). Consequently, we need 3N + ℓ + 1 multiplications
but only 2ℓ + 7 transmissions for the iris protocol.

4.4 Face authentication in the encrypted domain

As for the iris, we assume that face features have already been
computed according to the protocol described in Section 3.2.2,
obtaining a set of k real features Ωi that have been rounded (we
have chosen q = 1, however different values can be chosen to
increase accuracy) to represent them in F p (in the following we do
not indicate the rounding operator for simplicity).

Given the projection Ω of the query face image, the face-based
biometric authentication protocol must evaluate the ED as in (4),
and check if the distance is lower than a threshold t. Considering
that the square root cannot be evaluated efficiently in SPDZ, we
instead compare the squared Euclidean distance (SED) against the
squared threshold

∑
i = 1

k
(Ωi − Ωj, i)2 < t2 . (11)

In (11), Ωi indicates an element of the face Ω and Ωj, i the ith
element of the projection Ωj. Moreover, as we did for the HD, we
separate the square computation into two parts, so we need only
one transmission to calculate SED.

Complexity: The computation of the SED requires the
evaluation of k squares that can be parallelised, hence only one
transmission is necessary. For the comparison, we need ℓ products,
as in the iris authentication protocol. Considering that squares and
products have similar complexity, the complexity of the protocol is
given by k + ℓ products.

4.5 Fusion in the encrypted domain

We now describe our solution to implement the fusion protocol in
the encrypted domain. As outlined in (6), we use a linear
combination of the matching scores; to avoid performing divisions,
we evaluate

α ⋅ num ⋅ R + β ⋅ SED ⋅ den < T ⋅ den ⋅ R, (12)

where num and den stand for the numerator and denominator of the
iris HD, i in (6), while SED, R and T stand for squared Euclidean
distance score, face maximum range and threshold.

The SPDZ framework does not allow the use of non-integer
numbers, so α, β and T are scaled and approximated to integers in
the interval [0, 10]. We chose this interval because it is accurate
enough to obtain the same results achieved in the plain domain,
and the resulting bit-length is small enough to make it possible to
represent α ⋅ num ⋅ R + β ⋅ SED ⋅ den and T ⋅ den ⋅ R in ℤp.

Complexity: The previous formula requires three
multiplications and six transmissions that cannot be run in parallel.
Moreover, it needs ℓ multiplications for the comparison. In total,
the linear fusion requires ℓ + 6 multiplications and 2ℓ + 12
transmissions, plus the multiplications necessary to compute the
HD and the SED. The total complexity of the full multimodal
protocol is 3N + ℓ + 6 multiplications and k squares, while it
requires only 2ℓ + 19 transmissions.

4.6 Protocol security

As outlined in Section 4.1, the client or the server could act
maliciously to obtain private information of the other party. It is
hence necessary that SEMBA provides security against at least an
active party. When both the parties are malicious, any secure
protocol rarely outputs some information useful to the parties. The
whole protocol is developed within the SPDZ framework, and
hence our protocol is secure in the UC model if at least one of the
two parties is honest. In fact, according to [2], our SPDZ-based
protocol is secure against n − 1 malicious adversaries, where n = 2
in our two-party computation scenario. The offline phase does not
depend on the functionality evaluated and its security
demonstration against active adversaries in the UC model is
provided in [2].

The security demonstration of the online protocol is provided in
the following theorem:
 

Theorem 1: : The online SPDZ implementation of SEMBA is
computationally secure against any static adversary corrupting at
most 1 party if p is exponential in the security parameter.
 

Proof: The proof follows the security demonstration of the
online SPDZ protocol in [2]. We rely on the simulator SONLINE
defined in [2] to work on top of the ideal multi-biometric
authentication functionality ℱONLINE, such that the adversary
cannot distinguish among the simulator using the real function
ℱONLINE and the real SPDZ-based implementation using
multiplication triples generated offline. Input values broadcasted by
both the simulator and honest players are uniform and it is not
possible to distinguish among them. During execution, interaction
with player is performed only during multiplication and squaring
where partial opening reveals uniform values for both the honest
parties and the simulator. Also MACs have similar distribution in
both the protocol and the simulation. If the protocol does not abort
due to a cheat detection, both the real and the simulated runs output
the decision bit. In the simulation, the decision bit is obtained by a
correct evaluation of the multi-biometric function on the inputs
provided by the player. In real SPDZ-based implementation, the
adversary can cheat in the MAC check with probability 2/ p.
Hence, the probability that the adversary can distinguish the
simulated environment from the real one is negligible if p is
exponential. The adversary is not able to obtain the inputs of the
honest player because if the protocol does not abort, he can observe
only its input, the input shares received by the other party and the
final result. To obtain the original inputs of the honest party, the
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adversary should be able to solve the inequality in (6), which has
Ni + N f  unknown variables for the server and Ni + N f + 3 for the
client, where Ni and N f  are the number of features used to
represent iris and face, respectively.□

5 System tuning
In this section, we present the results of the tests performed on
plain data. We will use such results to choose the best parameters
to build an efficient protocol working in the encrypted domain.
Tests have been carried out on the ‘CASIA-IrisV1’ database for
irises and ‘CASIA-FaceV5 part 1’ database for faces, both
collected by the Chinese Academy of Sciences’ Institute of
Automation (CASIA) [60, 61].

The CASIA-IrisV1 database for irises [60] contains 756 grey-
scale eye images with 108 unique irises (or classes) and 7 images
for each of them. As in [13], we used a subset of the database for
the tests, retaining only those images in which the algorithm has
well-separated iris region from sclera and pupil. The resulting
database contains 625 eye images.

The CASIA-FaceV5 Databases for faces part 1 [61] contains
500 face images of 100 subjects. The face images are captured
using Logitech USB camera in one session. All face images are 16 
bit colour BMP files and the image resolution is 640 × 480 pixels.

We implemented and tested our SPDZ-based iris and multi-
biometric protocols on a desktop equipped with 8 GB RAM
processor Intel Core i3 CPU 550 @ 3.20 GHz Quad-Core running
Ubuntu 14.04 LTS (64 bit) operative system. We developed the test
using C++ language with GMP free library for arbitrary precision
arithmetic, operating on signed integers, rational numbers and
floating-point numbers.

To implement the SPDZ protocol, we chose the 46 bit prime
number p = 67280421310721, which is big enough to allow all the
needed modular operations and comparisons, and guarantee the
security of the protocol. Is a matter of fact, in iriscode
authentication, both num and den are integer values lower than N
and hence can be correctly represented in F p, as well as t ⋅ den that
need few bits more. Similarly, in face recognition protocol,
eigenfaces are represented with 8 bits and hence the upperbound
for SED is R = (28)2 ∗ k, where the maximum k is 10 eigenfaces.
Hence in our experiments R is lower or equal to 655,360 and it can
be represented in F p. Finally, in multi-biometrics authentication we
assume that α, β and T are scaled by multiplying them with the
factor 100, and R is equal to the maximum SED. Again, in the
worst case R = 655, 360 when = 100, hence the maximum value
that the left side of (12) can assume is

100 × 6400 × 655, 360 + 100 × 655, 360 × 6400 = 838860800000,
which can be correctly represented in F p. We can observe that such
values are also lower than p/2, allowing efficient evaluation of the
comparison, as described in Section 3.1.2.

Server and client run on the same computer, and we used a
socket to simulate the transmission channel. We assume that all the
communications are carried on secure channels (Section 4.1), in
order to prevent eavesdroppers and man-in-the-middle attacks.

We assume that in the precomputation phase, before the online
iris protocol starts, at least 3N + ℓ + 1 multiplication triples have
been generated, one for each multiplication in the protocol, along
with ℓ share bits. For the fusion protocol we need 3N + ℓ + 6
multiplication tuples, k square tuples and ℓ share bits.

5.1 Parameter optimisation

We performed tests on plain data, running the authentication
protocol on each single biometric and then by fusing the scores
obtained on eigenfaces and iriscodes.

Iris: In order to test the iris authentication protocol, we have
chosen a radial resolution r ranging from 4 to 20 and an angular
resolution θ between 100 and 200 (Table 3). As said above, we
tested the protocol on 625 eye images and each one has been
compared with all the others. To perform the tests in the plain
domain, we used the Matlab code provided by L. Masek (iris
recognition source code [62]) as part of his work [13]. As we can
see from Table 3, the best accuracy is achieved by letting the
angular resolution be equal to 160 angles and radial resolution
equal to 20 corresponding to an iris feature vector of length 6400 
bits. 

To reduce the EER, Masek [13] shifts n times the iris templates
keeping the lowest HD score. In SPDZ, this operation is
computationally very expensive, so we could not afford it.

Face: We have implemented the eigenface protocol by using
the Open Source Computer Video (openCV) library (http://
opencv.org/about.html) and Matlab. Face images are 640 × 480
pixel and we transformed them in 256 bit images. The protocol has
been tested on 500 images. We used the algorithm provided in the
openCV library to build k eigenfaces with k = 1…10. Each image
is thus represented by a projection vector of length k. Each
projection element is a 16-bit integer and the SED has been
calculated by using Matlab. We observed that the use of more than
five projections does not provide any significant improvement (see
Table 4). 

Multimodal: We have evaluated the efficiency of the fusion
protocol in the plain domain, by fusing the outcomes of face and
iris sub-algorithms. From Table 3, we have chosen some relevant
iris configurations, based on the achieved EER or number of
features. First of all, to better compare with the best iris result, we
chose r = 20 and θ = 160 resulting in N = 6400, then for each θ,
we looked for the best accuracy under 4%, and finally we chose
those configurations with EER similar to the previous ones but less
features. Moreover, we varied α in the interval [0, 1] and the
number of eigenfaces k from 1 to 10. Table 5 shows the EER for
each N and k. 

As shown in Table 5, the same accuracy of the 6400 stand-alone
iris protocol (2.08%) can be reached with many different multi-

Table 3 Iriscode EER (%) without shifting, as a function of different values of r and θ
r Angular resolution θ

100 120 140 160 180 200
4 8.19 6.43 4.37 3.34 3.31 3.10
6 6.88 5.05 3.01 2.45 2.71 3.01
8 6.13 4.42 2.69 2.19 2.58 4.36
10 6.31 4.03 2.64 2.44 2.54 3.92
12 5.96 4.10 2.56 2.14 2.59 3.71
14 5.71 3.85 2.54 2.17 2.58 3.27
16 5.49 3.79 2.32 2.13 2.51 3.31
18 5.71 3.61 2.46 2.31 2.41 3.18
20 5.77 3.74 2.20 2.08 2.41 3.13

 

Table 4 Eigenface EER (%) values, as a function of the
number of projections
k EER, % k EER, %
1 28.77 6 17.01
2 17.37 7 16.19
3 16.62 8 16.51
4 16.59 9 16.38
5 16.08 10 16.09
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biometric configurations, e.g. by using N = 3600 and k = 7 or
even by using only 1600 iris features and k = 1. For the tests in the
encrypted domain, between the two configurations with the same
accuracy, we chose the last one, since it has lower bandwidth and
computational complexity (see Tables 6 and 7). We can also notice
that keeping N = 1600, but using two features for face
representation, we can lower both accuracy and complexity.
Generally, by using two eigenfaces, the best possible accuracy is
provided with 5760 iris features. However, the same performance
is obtained also by the combination of 3600 iris features and three
face features. For this reason, we tested several configurations in
the encrypted domain, as summarised in Table 8. 

5.2 Validation with other datasets

We have also validated the results of our analysis on the IIT Delhi
Iris database [63] and the ORL Database of Faces [64]. The IIT
Delhi Iris database is composed by ten eye images (five for each
eye) of 224 individuals. In the ORL Database of Faces there are ten
different images of 40 distinct subjects. The size of each image is
92 × 112 pixels, with 256 grey levels per pixel.

By relying only on iriscode, we still obtain the lowest EER with
6400 features (r = 20 and θ = 160), where we observed EER = 
7.52%. This result is indeed higher than the one obtained with the
CASIA dataset. We observed some segmentation problems that
affected classification accuracy. However, optimal segmentation is
out of the scope of our paper and we have overlooked it to focus on
the advantages provided by using multi-biometrics in privacy

preserving authentication. Again we can distinguish two goals: (i)
if we desire higher accuracy we can combine a 6400-bit iriscode
with one eigenface, decreasing the EER to 3.46%; (ii) if we wish to
decrease protocol complexity, we can rely on 1280-bit iriscodes
(r = 4 and θ = 160) and 1 eigenface, which guarantees an EER = 
7.57%, really close to the original iriscode-based authentication
EER.

6 Complexity of the SPDZ protocol
We evaluated the computational complexity of the SPDZ protocol
(Section 4), by using the parameters chosen in the previous section
(see Tables 3 and 8). We here focus on the parameter configuration
identified with the CASIA-IrisV1 and CASIA-FaceV5 datasets.
However, we underline that in our validation tests in Section 5.2,
we obtained similar configurations. Execution times are heavily
affected by the number of multiplications. As we said in Section
4.3, when possible, we performed a single transmission, by packing
data. To calculate the execution time, reported in Table 9, we used
the clock function, measuring the CPU time of the process. 

We assume that the preprocessing phase has already been
completed, therefore we assume to have generated enough
multiplication and square tuples to complete the authentication
protocols (see Table 10) and at least 46 shares bits for comparison.
Since the number of bits depends only on p's bit length, the number
of share bits remains constant in all the protocols, while the
number of multiplication and square tuples depends on the
parameters set. 

In SEMBA, the number of transmission rounds depends only on
the bitlength ℓ of the prime number p and not on the feature
configuration, as it can be seen from Table 6. On the contrary, the
amount of data transmitted by each party also depends on the
number of features used in the protocol. In fact, the iris
authentication protocol has a bandwidth of (6N + 2ℓ + 2) ⋅ ℓ bits,
while the multimodal protocol bandwidth is ℓ ⋅ (6N + k + 2ℓ + 12)
bits. Since the complexity of the iris protocol is much higher than
that of the face-based authentication protocol, the overhead
introduced by the multimodal biometric authentication is of few
bytes, as it can be seen from Table 7. For this reason, the
communication complexity remains almost constant switching
from the iris to the multimodal protocol.

The main goal of our work was exploiting multimodality to
reduce complexity while maintaining the same accuracy of the iris-
based protocol. Moreover, our analysis shows that the multimodal
protocol can also be used to lower the EER without a significant
loss in terms of complexity. In the following, we discuss both
cases.

Improved efficiency: The running time of the stand-alone iris
authentication protocol ranges from 0.03 s for 1600 bits, up to 0.12 
s for a 6400 bit-long template in the malicious setting (see Table 9),

Table 5 EER of the multimodal biometric authentication protocol
Iris parameters Iris Number of eigenfaces (k)
N r θ 1 2 3 4 5 6 7 8 9 10
6400 20 160 2.08 1.17 1.15 1.02 1.25 1.25 1.24 1.31 1.37 1.4 1.41
5760 16 180 2.51 1.26 0.98 1.01 1.22 1.38 1.36 1.43 1.47 1.49 1.50
5600 20 140 2.20 1.20 1.08 1.19 1.18 1.34 1.28 1.36 1.38 1.39 1.40
4800 20 120 3.74 1.90 1.97 1.65 1.98 2.04 2.15 2.11 2.17 2.2 2.21
3840 12 160 2.14 1.84 1.52 1.50 1.45 1.63 1.74 1.76 1.77 1.78 1.78
3600 10 180 2.54 1.36 1.23 0.97 1.65 1.82 1.99 2.07 2.15 2.17 2.19
3360 12 140 2.56 1.51 1.32 1.38 1.31 1.56 1.61 1.58 1.63 1.67 1.69
2560 8 160 2.19 1.50 1.24 1.19 1.15 1.39 1.49 1.59 1.6 1.61 1.62
2400 6 200 3.01 2.01 1.83 1.89 2.13 2.37 2.56 2.66 2.7 2.72 2.73
2160 6 180 2.71 1.92 1.74 1.82 1.98 2.04 2.09 2.07 2.13 2.16 2.18
1920 6 160 2.45 1.47 1.42 1.43 1.57 1.66 1.95 1.92 1.95 1.96 1.97
1600 4 200 3.10 2.01 1.87 1.85 2.41 2.37 2.56 2.67 2.69 2.71 2.71
1280 4 160 3.34 2.29 1.89 2.22 2.26 2.51 2.80 2.80 2.92 2.98 3.01
The first three columns show iris's parameters: feature's number (N), radial resolution (r) and angular resolution θ. The fourth column shows the EER of the iris authentication system
(%). All the others columns contain the EER's obtained by fusing an iris template of length N and a face template with k ∈ {1…10} eigenfaces. We highlighted in bold the
configurations that we have selected for the tests under encryption.

 

Table 6 Complexity summary
Multiplications Squares Transmissions

iris 3N + ℓ + 1 0 2ℓ + 7
face ℓ k 2ℓ + 1
multimodal 3N + ℓ + 6 k 2ℓ + 19
We underline that transmission number depends only on p's bitlength ℓ.

 

Table 7 Communication complexity for the iris and
multimodal protocols
Iris Bandwidth, kB Face
N Iris Multimodal Overhead k
1600 53.24 53.30 0.06 1
3600 119.16 119.23 0.07 3
5760 190.35 190.42 0.07 2
6400 211.44 211.51 0.07 2
It is important to notice that adding few eigenfaces increases the bandwidth by a few
bytes only.
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while Luo et al. protocol [26] with masks needs 2.5 s for 9600 bits
and 0.56 s for 2048 bits in the semi-honest setting. Moreover from
Tables 8 and 9, it is evident that SEMBA can provide the same
accuracy of the best stand-alone iris protocol, but with lower
execution time and computational complexity. As a matter of fact,
the best EER for the stand-alone iris protocol is 2.08% for 6400
features corresponding to 19,246 multiplications (Table 6) in 0.12 
s, while in the fusion configuration for 1600 iris features and 1
eigenface feature, we need only 8744 multiplications (see Table 6,
where we consider squares as multiplications) to obtain an EER
equal to 2.01% in about 30 ms. On the contrary, the number of
required transmissions increases from 2ℓ + 7 to 2ℓ + 19 (Table 6),
but it depends only on the bit length of p.

Improved accuracy: As an alternative to improve the
computational complexity, the use of two biometrics instead of one
can be exploited to achieve a higher accuracy, at the cost of a slight
increase of complexity with respect to the iriscode protocol. In fact,
as shown in Table 6, complexity depends heavily on the number of
iris features, however by adding two eigenfaces it is possible to
decrease the EER rate, while the number of multiplications
increases only from 3N + ℓ + 1 to 3N + ℓ + 6 + k = 3N + ℓ + 8
(as usual we consider squaring to be equivalent to multiplication).
More generally, when we move to multimodal authentication, the
total CPU time slightly increases with respect to the unimodal iris
protocol, but the EER always decreases; by adding one more
eigenface (k = 2) to the 1600 iris feature configuration considered
above, we can have a better EER (1.87%) with the same time
complexity (30 ms). For the case of 5760 bit long iris template, the
EER passes from 2.1% for the unimodal authentication to 0.98%
for the bimodal case with k = 2 (Table 8). Finally, keeping 0.98%
as target accuracy, we highlight that we can reduce N to 3600 at the
cost of an additional feature in the face representation (k = 3). In
this case, computational complexity goes from 36,926 to 19,596
multiplications and time complexity decreases from 0.109 to 0.05 s
(Tables 7 and 9).

7 Comparison with the state of the art

SEMBA improves that state of the art by proposing for the first
time a multi-biometric protocol based on secure multi-party
computation, also secure against active adversaries. Our proposal is
based on the fusion of iriscode and eigenface at the score level.
Iriscode has been used in literature in [18, 25–27] for privacy
preserving iris recognition. Luo et al. [25] present one of the first
protocols for iris authentication and their rough protocol requires
around 480 s. Blanton and Gasti [18] have proposed a protocol
that, thanks to several optimisations, requires around 240 ms for
the online part of iris identification. Both the previous works focus
on the cryptographic aspects of the implementation, overlooking
the accuracy. Bringer et al. [27] proposed a two-step identification
protocol that, according the parameters configuration, provides a
false rejection rate ranging between 21 and 3.1%. The protocol
requires a runtime of around 2.6 s per candidate. Luo et al. [26]
presented an iris authentication protocol having an EER of around
1.45% and an online runtime of 573 ms in the worst case. In our
experiments we have reached similar accuracy and an online
runtime ranging between 30 and 120 ms, improving all the iris
recognition protocols proposed so far. Moreover, we underline that
SEMBA is secure against malicious parties, providing higher
security level. Such significant improvement is indeed due to the
excellent performances of the SPDZ protocol, but also to our smart
multi-biometrics feature optimisation.

The only MPC-based privacy preserving multi-biometric
scheme provided in literature is the system presented by Gomez-
Barrero et al. [41], which relies on signature and fingerprint and
ensures a good accuracy (EER = 0.12%). It is based on fully
homorphic encryption and has a computational cost (one
decryption on the server side and no encryptions at verification
time) lower than our protocol with a required time for a single
comparison of about 0.5 ms. However, a drawback of the system is
that final comparison is carried out on plain data by the server, thus
introducing a breach into the security of the system. On the
contrary, SEMBA also implements the final comparison step
within the SPDZ framework, to prevent any security loss, even if
this choice has a non-negligible cost in terms of complexity (see
Section 6). As a further difference, in [41] an ED computation (in

Table 8 EER of iris and multimodal biometric authentication protocols for different settings
Iris EER Face Fusion parameters
N Iris, % Fusion, % k α t
1600 3.10 2.01 1 0.80 0.35
1600 3.10 1.87 2 0.55 0.25
3600 2.54 0.97 3 0.55 0.25
5760 2.51 0.98 2 0.80 0.35
6400 2.08 1.15 2 0.80 0.35
α, t, respectively, stand for fusion coefficient and threshold.

 

Table 9 Iris protocol time in SPDZ system
Iris CPU time Face
N Iris, s Multimodal, s k
1600 0.029 0.030 1
1600 0.030 2
3600 0.048 0.049 3
5760 0.11 0.109 2
6400 0.12 0.120 2
 

Table 10 Number of multiplications and square triples needed
Iris Multiplicative tuples Squares tuples
N Iris Fusion k
1600 4847 4852 1
1600 4847 4852 2
3600 10,847 10,852 3
5760 17,327 17,332 2
6400 19,247 19,252 2
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case of two-modal system) requires M ⋅ F + 2 exponentiations,
where M is the number of enrolled samples for each subject and F
the feature's total number considering all the modalities. In our
work, instead, thanks to the SPDZ system and to the possibility of
using integer numbers, we need only k (the length of the feature
vector) squares, one of our most expensive operations. Last but not
least, thanks to the SPDZ system, SEMBA is secure under the
assumption that one between the server and the client acts
maliciously, while Gomez-Barrero et al. assume the semi-honest
model.

8 Conclusions
In this paper, we have proposed SEMBA, a multimodal
authentication protocol based on SPDZ [1, 2]. The protocol is
secure against a malicious party. We have shown that by using a
multi-modal system it is possible to improve the efficiency of the
recognition process in terms of number of multiplications and
evaluation time, without any loss of accuracy. In the same way, it is
also possible to improve accuracy at the cost of a negligible
increase of complexity. As an additional contribution, we adapted
the iris and face authentication protocols to work in the SPDZ
setting. A further additional complexity reduction is achieved by
resorting to packed transmission of encrypted data involved in the
secure multiplication protocol.

As future work, we plan to extend our approach to even more
biometric traits, like fingerprints, behavioural biometric and many
others. Another interesting research direction could be to look for
different algorithms and more efficient fusion rules to merge the
match scores. Due to the recently widespread use of biometric
authentication on laptops and smartphones, it would also be
interesting to evaluate the possibility to apply SEMBA to mobile
devices. In those devices, fingerprint or face readers and extractors
are often already in place, but since their only scope is to confirm
owner identification, templates are matched in plain domain.
Readers on mobile devices could also be used to access remote
services through biometric authentication. In this scenario,
SEMBA could be used to enhance security during match
computation.
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