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Abstract 
 
The term ‘synergy’ – from the Greek synergia  – means ‘working together’. The concept 

of multiple elements working together towards a common goal has been extensively used in 

neuroscience to develop theoretical frameworks, experimental approaches, and analytical 

techniques to understand neural control of movement, and for applications for neuro-

rehabilitation. In the past decade, roboticists have successfully applied the framework of 

synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and 

prostheses. At the same time, robotic research on the sensorimotor integration underlying the 

control and sensing of artificial hands has inspired new research approaches in neuroscience, and 

has provided useful instruments for novel experiments.  

The ambitious goal of integrating expertise and research approaches in robotics and 

neuroscience to study the properties and applications of the concept of synergies is generating a 

number of multidisciplinary cooperative projects, among which the recently finished 4-year 

European project “The Hand Embodied” (THE). This paper reviews the main insights provided 

by this framework. Specifically, we provide an overview of neuroscientific bases of hand 

synergies and introduce how robotics has leveraged the insights from neuroscience for 

innovative design in hardware and controllers for biomedical engineering applications, including 

myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand 

kinematics. The review also emphasizes how this multidisciplinary collaboration has generated 

new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and 

principles for analyzing human behavior and synthesizing artificial robotic systems based on a 

theory of synergies. 

  



Introduction 
 
The human hand is an extraordinarily sophisticated and versatile sensorimotor system. 

Controlling the large number of elements of the hand, such as muscles, bones, and joints, as well 

as integrating multiple sensory modalities, are complex tasks the Central Nervous System (CNS) 

must deal with. 

As infants, we use our hands as a sensory organ to learn the properties of the world 

around us, e.g., whether a surface is cold or hot, rough or smooth, hard or soft. As early motor 

developmental milestones are conquered and well before we learn how to walk or to verbally 

communicate, we acquire the ability to perform well-directed reaching movements towards 

objects that capture our attention, pre-shape our hands to ensure that we can grasp objects as we 

complete our reach, and oppose the thumb to the other fingers to firmly grasp and manipulate 

objects. As the CNS continues to mature, we become more skilled at using our hands as motor 

organs, through which we gradually learn to perform a wider gamut of manual actions. Some of 

these actions may require the ability of moving individual digits independently when, for 

example, we need to pick and manipulate a small object, or learn to play a musical instrument. 

Other actions may require the use of all digits in a synergistic fashion, i.e., by conjointly closing 

or opening all digits in a coordinated way [1]. 

Given the critical role that the hand plays in activities of daily living, hence quality of 

life, as well as to better understand how to improve functional recovery of hand control after 

neurological or traumatic injuries, many studies have been devoted to characterize the way the 

CNS controls the hand. As hand function emerges from the interplay among a large number of 

sensory and motor elements, neural control of the hand has been studied across many levels of 

the CNS and through a wide variety of experimental approaches. The quantification of the spatial 



and temporal coordination of multiple hand muscles, joints, and digit forces has led a number of 

investigators to develop and test the theoretical framework of hand synergies. 

Synergies 
 
In the large body of studies on neural control of movement (for reviews the reader is 

referred to [2–7]) “synergies” have been defined in several different ways depending on the 

level(s) and scale of the sensorimotor system being investigated, including but not limited to 

motor units, muscles, and joints (for details see [8]). Thus, at the level of motor units, common 

neural input in the time and/or frequency domain (synchrony and coherence, respectively) could 

be viewed as a form of synergistic control as it constrains the timing at which multiple motor 

units are activated (for review see [9]). At the muscle level, muscle synergies have been defined 

as patterns of muscle activity whose timing and/or amplitude modulation enable the generation 

of different movements (for review see [10]). When examining motor output rather than neural 

drive underlying movement production, synergies have also been identified and defined as 

covariation patterns that constrain in a systematic way angular excursions at multiple joints, e.g., 

hand postural synergies ([11–13]; for review see [8]), or covariation patterns among digit forces 

(for review see [14]).  

Regardless of the level of the CNS at which synergies are defined, the main implication 

that is shared across the different definitions of synergies is that multiple degrees of freedom are 

controlled within a lower dimensional space than the available number of dimensions. It has been 

proposed that in the intact nervous system, synergies allow to flexibly adapt to different task 

conditions, e.g., the amplitude and/or temporal relations among several muscles can be changed 

to generate different motor behaviors, or the same behavior across different task conditions. 

However, injury to the nervous system would interfere with the ability of the sensorimotor 



system to flexibly combine synergies, thus leading to abnormal synergies ([15,16]; for a review 

see [6]). 

As the number of studies of hand synergies in animal and human models grew and 

refined analytical and experimental approaches, over the past decade roboticists have started to 

investigate the potential applications of hand synergies for artificial hands ([17,18]). This work 

has led to the successful application of the concept of synergies [17] and the creation of novel 

design and control concepts for robotic hands and prostheses, while providing experimental tools 

and new research approaches for neuroscience.  

The aims of this review are to provide an overview of the neuroscientific bases of hand 

synergies  meant as common patterns of actuation of the human hand  and to report how 

robotics has leveraged the insights from neuroscience for innovative design in hardware and 

controllers for biomedical engineering applications, including myoelectric hand prostheses, 

devices for haptics research and human-machine interactions, and wearable sensing of human 

hand kinematics. We also describe insights that robotics research on artificial hand design and 

control has provided to neuroscience research. This review mainly focuses on the most 

significant achievements of the international cooperation project called “THE Hand Embodied”1 

and is organized in four sections. The first section describes the synergistic organization 

underlying motor control of the human hand. We will review how such an organization can be 

observed at different levels − postural, muscular, and neural − and quantified through different 

techniques − motion tracking, electromyography (EMG), and brain functional imaging. The 

second section describes how the concept of synergy has been exploited in robotics to develop 

tools for the analysis, modeling, and synthesis of artificial robotic hands, with potential 

                                                 
1 “THE Hand Embodied” project was supported by the European Community under CP grant no. 248587, within 

the FP7-ICT-2009-4-2-1 program “Cognitive Systems and Robotics” (01.03.2010 — 28.02.2014). 



applications for human-robot interaction and prosthetics. The third section focuses on the 

relation between sensing and human hand synergies, and in particular on how the concept of 

dimensionality reduction might apply to the sensory domain of hand control, in the framework 

we define as sensory synergies. Furthermore, we consider how sensory and motor elements can 

be combined together into the paradigm of sensory-motor synergies. Analogies and applications 

in robotics are also discussed. The fourth and last section introduces open questions and 

directions for future research built on leveraging the complementary questions and approaches 

used in robotics and neuroscience to advance our understanding of neural control of the hand, as 

well as biomedical and robotic applications. 

1. Hand synergies: Motor control 
 
The taxonomy proposed in [19] divided the large number of hand postures into two main 

categories: power and precision grips. The main insight of this taxonomy was the definition of 

hand postures based on a functional gradient. Thus, tasks that demand large forces are performed 

using hand postures that are characterized by large contact areas, often involving the palm of the 

hand and several digits. In contrast, precision grips would be used to perform tasks that require 

small but finely controlled forces, often exerted through the fingertips. However, the 

examination of digit joint kinematics extracted from static hand posture revealed a different 

picture than the aforementioned taxonomy. Specifically, hand postures used to grasp a wide 

variety of imagined objects could be described by a very small number of linear combinations of 

joint angles, i.e., principal components or postural synergies (or eigenpostures) [11]. 

Furthermore, it is also possible to observe a gradient in hand eigenpostures, where lower-order 

principal components reflect covariation patterns for metacarpal-phalangeal (MCP) and 



interphalangeal (IP) joints − which are mainly responsible for coarse hand opening and closing− 

and higher-order principal components corresponding to finer hand shape adjustments. These 

observations, which have been replicated with real objects [12] and in many other experimental 

settings (see [8] for a review) revealed that the apparent complexity associated with having to 

control multiple digit joints might be addressed by constraining them to move in a synergistic 

fashion. In other words, the problem of controlling many joints is not as complex as it seems, 

especially when not all joints can or should be moved independently from other joints.  

As reviewed in [8], the synergistic organization in the motor domain can be defined 

according to the level at which the analysis is performed. In the following sections, we will 

review the main concepts related to how synergies have been defined at kinematic or postural 

level, at the muscular level, and at the neural level. 

1.1 Kinematic redundancy and biomechanical constraints 

 
The biomechanical architecture of the hand provides some insights into how the CNS 

might implement a synergistic control of digit motion and forces (for a review see [20]). Briefly, 

the tendons of extrinsic finger flexors and extensors cross several joints. Therefore, tension 

exerted on a tendon would generate torques at several joints. Furthermore, passive linkages exist 

among hand muscles, and in non-human primates these connections can transmit tension across 

tendons [21]. Both of these observations indicate that motion at multiple joints and/or digits can 

occur without the need for, or the existence of, neural drive to multiple hand muscles. However, 

and as discussed in [6], the CNS can override – to some extent – these tendencies for ‘unwanted’ 

widespread motion at multiple fingers, as it happens following training in performing 

individuated finger movement necessary for typing or piano playing.  



1.2 Muscle synergies 

 
As mentioned above, synergies can be also studied at the muscular level. The leading 

hypothesis of the so-called “muscle synergies” is that multiple muscles can be activated as a unit 

by varying their timing and/or neural drive (quantified as EMG). The combinations of these 

multi-muscle activation patterns would therefore underlie the control of given movements, e.g., 

postural control, gait, or arm movements, across different task conditions or requirements 

[4,10,22]. 

With respect to hand control, and in addition to the above-described peripheral 

constraints on independent digit motion and contact forces, it has been proposed that the 

organization of neural inputs to motor nuclei of hand muscles in the spinal cord might also 

contribute to their synergistic activation. Specifically, common neural inputs to motor units of 

hand muscles have been described for extrinsic and intrinsic hand muscles during grasping 

[23,24]. Interestingly, common neural input to hand muscle motor unit pairs appear to be 

distributed along a functional gradient, where muscles involved in synergistic finger control tend 

to receive stronger common neural input than muscles involved in fine modulation of digit 

movement and forces (extrinsic and intrinsic hand muscle, respectively) ([25,26]; for a review 

see [9]). Studies of hand muscle synergies quantified at the motor unit population level through 

interference EMG have revealed that the activation of multiple muscles scales with total grip 

force during three-digit grasping [27], thus complementing the above observations of correlated 

neural input to motor unit pairs. Non-human primate studies have further quantified correlations 

in EMG amplitude of hand muscles recruited for grasping objects with different shapes and 

sizes [28,29]. Synergistic control of multiple hand muscles has also been described by studies of 

whole-hand grasping in humans [30] and finger spelling [30,31]. It should be noted that the 



analysis of hand synergies at the muscular or kinematic level are likely to reveal phenomena that 

lie on a functional continuum, i.e., dynamic and static hand postural synergies may be related to, 

or mediated by, hand muscle synergies. This view is supported by a recent study showing a close 

correspondence between muscle synergies and kinematic synergies in a reach-grasp-pull task 

[32]. 

An important question is whether hand synergies are learned or inborn. The earliest form 

of hand synergy is probably the ‘palmar grasp reflex’ that is found at birth, and through which 

the whole hand closes in response to a stimulation of the palm of the hand. Movement of 

individual fingers and thumb follow at 10-12 months of age, thus laying the foundations for more 

complex hand movement patterns that will gradually be mastered over the years [33]. It is 

tempting to speculate that this gradual evolution from somewhat basic hand movement patterns 

(e.g., whole hand opening and closing) to movements characterized by greater motion 

independence among the fingers might correspond with the above-described eigenpostures. 

Experimental observations point out to the high degree of similarity in eigenpostures among 

individuals, both in laboratory tasks (e.g., [11]) and activities of daily living [34], as well as 

across manual tasks [35]. At the same time, the role of training and intensive practice can, to 

some extent, modify these stereotypical finger movement patterns [36]. However, the degree of 

plasticity with which motor commands can adapt to override synergistic finger movement 

patterns is not fully understood. A better understanding of the extent to which hand synergies can 

emerge through sensorimotor experience and interactions with the environment will be 

extremely valuable scientifically and in terms of bio-inspired technological applications (see 

Section 2). 



In summary, the organization of neural inputs to hand muscles limits the extent to which 

the CNS can independently activate individual hand muscles, thus control individual digit forces 

and movement. Such limitation is captured by the tendency of neural activity measured across 

motor unit pairs and populations to be modulated in a synergistic fashion across multiple 

muscles. The next section examines constraints and neural correlates of hand synergies at higher 

levels of the CNS.  

1.3 Neural bases of hand synergies 

 
As reported in the previous sections, the control of the hand can be described by 

consistent spatial-temporal coordination patterns in the kinematic, kinetic, and muscle domains 

across a wide variety of tasks. Thus, the critical question of whether and to what extent hand 

synergies are represented in the CNS arises. In other words, are synergies the best models to 

describe how the sensorimotor system deals with redundant solutions to the control of multiple 

degrees of freedom [2,37–39] or, rather, are synergies the ‘real alphabet’ that the motor-related 

brain areas rely on to compose the ‘words’ of different hand movements [40–42]? 

The compelling hypothesis is that synergistic control of the hand would not simply 

represent an effective theoretical approach to explain how the CNS solves the redundancy 

problem, but could also characterize the way movements and actions are represented and 

recognized at the neural level. Brain regions involved in hand action representation and motor 

planning are distributed in a well-identified fronto-parietal cortical network, the so-called ‘grasp 

circuit’ [43]. Within these action-sensitive regions, the neural representations of different 

features of movements (e.g. target representation, final goal, hand-object interaction, etc.) appear 

to be extensively distributed but topographically organized [44–46]. Nonetheless, the nature of 

the specific neural information encoded within these regions is still ill-defined. Of particular 



relevance to this review article is the question about the structural and functional organization of 

hand movement control within brain regions such as primary motor cortex, supplementary motor 

area and premotor cortex, from which the cortico-spinal transmissions originate to control motor 

units.  

Historically, the concept of motor somatotopy was introduced based on work on humans 

and animal models. This concept proposes that primary motor cortex is topographically arranged 

into sub-segments that control a single effector, or a subset of effectors, e.g., muscles or joints 

[47–50]. Whereas a coarse arrangement of body limbs (e.g. hand, mouth or face areas) has been 

confirmed within primary motor areas, the intrinsic organization of the distinct limb-specific 

clusters has often been challenged ([51–53]; see also review by [20]). For instance, in the hand-

related areas of primary motor cortex, single finger representations appear to be distributed along 

overlapping patches that lack an elementary functional organization, and are even 

interconnected, thus favoring a hand-movement coding based on multi-joints and multi-muscles 

modules [21,54–56]. In addition, neurophysiological studies have indicated that single neurons 

within primary motor and premotor areas exhibit a heterogeneous organization that includes low-

level representations of single digit control - as predicted by a somatotopic functional 

organization [47,51] -, to the higher-level description of full behaviorally-relevant motor acts, 

which would favor an action goal-oriented organization  [57–59]. 

The above-described behavioral and physiological observations indicating that hand 

postures can be effectively characterized as linear combinations of a small number of synergies 

offer an alternative and more comprehensive theoretical description of motor functional 

organization. While favoring the idea of a modular definition of motor acts, a synergy would 

represent a way for the CNS to (1) simplify motor control through a dimensionality reduction 



strategy, (2) produce complex movements through a wide number of weighted combinations of 

neuronal populations, and (3) spatially and temporally coordinate multiple elements of individual 

digits through a task-specific interaction with the biomechanical constraints of the effector. An 

invariant representational structure for simple and complex hand movements, independent from 

the somatotopic arrangement of the digits, has been recently demonstrated in sensorimotor 

cortex, thus supposing the existence of an ‘organizing mechanism’ that models the similarity 

between movement-related response patterns across individuals [60]. 

So far, however, limited evidence exists of synergy-based neural representations of hand 

synergies in motor cortical areas. Specifically, direct intracortical microstimulation in non-

human primates [7,41] and indirect transcranial magnetic stimulation in humans [40,61] over 

primary motor cortex can elicit synergistic finger movement patterns. Nonetheless, until recently 

no study has directly associated neural responses within primary motor areas in humans to 

synergy-based hand control, or dimensionality-reduction strategies in motor planning at the 

cortical level. 

To better understand the brain functional architecture that mediates hand synergies, a 

recent study [62,63] combined machine learning and multivariate approaches methods to 

neuroimaging [64,65] and integrated these data with motor control models, as defined via 

behavioral or electrophysiological measurements. Specifically, multivariate techniques allowed 

to directly assess whether brain activity at a cortical level encodes hand movements through the 

“language” of postural hand synergies. A multimodal experimental paradigm integrated patterns 

of neural responses during grasping movements as measured with functional magnetic resonance 

imaging (fMRI) with kinematic and EMG-based models of hand synergies. Preliminary results 

revealed a significantly higher accuracy of the synergy-based model than a somatotopy-based 



model of functional organization in predicting movement-specific patterns of neural response. 

Importantly, the synergy-based model also indicated that synergies are encoded in primary motor 

areas associated with hand control in a consistent fashion across subjects. If confirmed, these 

observations of a ‘high-level’ encoding of individual hand postures through synergies would 

provide, for the first time, evidence for neural correlates of functional sensory-motor modules in 

the brain. In addition, the specificity of the patterns of neural response elicited during different 

movements was exploited to predict hand postures directly from fMRI activity. This provides 

novel ways of decoding task-specific patterns of neural responses from motor control brain 

regions, as recently attempted using electroencephalography [66] and envisioned for robotic 

applications, such as more effective methods to acquire, localize, and decode signals for brain-

machine interfaces and prosthetic applications. 

From both theoretical and methodological perspectives, motor synergies account for an 

extensive, but still relative, amount of neural content of information, as quantified by measures 

of variance of brain activity [62]. This suggests that primary motor areas also process other 

action-related features, such as force production [67], final posture [57,68,69], or even single 

digit movements [70] and joint angles [71]. Therefore, further studies should also address the 

relative contribution of peripheral constraints versus central commands in generating coupled 

motion of the digits. 

2. From biology to robotics 
 

Attracted by the above-described experimental observations of synergistic patterns of 

finger motion, in the last decade roboticists have proposed a geometric model of hand synergies, 

which is applicable to the pre-grasping phase, i.e., before actual contact with the grasped object. 



The underlying concept for this model – and for a general geometrical interpretation of the 

concept of synergies – is dimensionality reduction. This dimensionality reduction refers to the 

reduction of the number of degrees of freedom (DOFs) of the human hand that can be controlled 

in an independent manner [72], as well as of the space of possible (most frequent) hand postures 

that can be actively controlled. One of the first software applications of this concept was 

provided by [18] as a means to reduce the number of dimensions of the large search space of 

robotic grasp planning with dexterous hands. The reduced computational burden allowed by a 

low-dimensional hand posture subspace allowed on-line grasp synthesis at a rate compatible with 

effective user interaction [73], and the reduction of the control variables [74]. At the same time, 

the geometric model of hand synergies suggested novel approaches for the design and control of 

robotic hands with a reduced number of aggregated DOFs. The first notable mechanical 

implementation of postural synergies was made in [17], where a two-eigenposture mechanism 

design combined and drove a 17-DOFs 5-fingered robot hand through a train of pulleys with 

different radii. 

Although the adoption of the concept of synergies for the development of robotic hands 

brought a significant simplification in terms of design and control complexity, it opened novel 

research questions: (1) Is anthropomorphism the best choice to implement and exploit the 

synergistic model in robotics? and (2) Is it possible to define a general framework to extend and 

map human hand synergies to robotic hands with dissimilar structure from a human hand? 

Question (1) is related to the debate on the usefulness of anthropomorphism in robot motion and 

design. Considerations on safety in human-robot physical interactions [75] and social 

interactions [76–78] motivate the anthropomorphic approach. For example, in scenarios where 

humans and robots have to cooperate to execute specific tasks, anthropomorphic robot motion 



can be more easily predicted by humans who could therefore better adapt to robot actions and 

avoid possible injuries.  

The suggestion to leverage the concept of human hand synergies for biologically-inspired 

designs of robotic hands can also be extended to other structures, such as upper and lower limbs. 

For example, in [79], two suitable non-linear kinematic synergies were constructed for the lower 

part of the body of a humanoid robot and exploited to increase its  capability to balance 

dynamically against unforeseen disturbances, e.g. from external forces or due to manipulation of 

unknown loads. 

In these cases, too, anthropomorphic robot motion inspired by human example could 

leverage the concept of synergies to enable more effective human-robot interactions (HRI) and 

co-adaptation, as well as artificial control. Furthermore, the spatial and temporal coordination of 

arm, wrist, and hand movements during reach-to-grasp points to a control strategy that constrains 

the action of multiple effectors and joints to achieve a high-level goal, i.e., transporting the hand 

in a way that optimizes the likelihood of successful object grasp and manipulation [80–85]. In 

this context, it should be noted that hand kinematic synergies have been quantified also during 

reach-to-grasp, indicating that the temporal evolution of hand shape is spatially and temporally 

coordinated with the control of shoulder and elbow kinematics responsible for hand transport 

[13]. 

The above-described biologically-inspired motor control strategies have been used in 

robotics also to define closed-loop grasp planning schemes to ensure anthropomorphism of robot 

motion, convergence to desired task goals, and human-like adaptive robot behavior. To achieve 

these goals, research has focused on mapping human motion to anthropomorphic robot motion 

through non-linear, constrained optimization methods [86–89]. The anthropomorphic robot 



trajectories are then projected into low-dimensional manifolds of upper limb “principal 

components”, where appropriate Navigation Function models can be trained [90].  

As specified in the above research question (2), the problem of mapping human to robot 

motion is particularly relevant also for the correct definition of a general framework for 

controlling robotic hands independently from their kinematics and mechanical design. This 

approach entails designing control algorithms for an anthropomorphic hand model with 

predefined synergies and mapping the resulting finger motions onto several robotic hands. This 

procedure can be implemented at different levels, e.g. at the joint level [73], in the Cartesian 

space [91], and considering the relation among hand poses [92]. However, the success of these 

approaches strictly depends on the kinematic structure of the robotic device, and thus cannot be 

easily generalized. To tackle this problem, a different solution was proposed in [93], where the 

authors introduced the concept of virtual objects and a mapping from humans to robots designed 

in the manipulated object domain. The role of virtual object can be played, for example, by a 

virtual sphere, which can be defined as the minimum volume sphere that includes a set of 

reference points on the fingertip of the human hand. Thus, motion of the human hand generates 

motion of the reference points, and consequently of the virtual sphere. Another example of this 

approach can be found in [94], where a rigid motion of the object center and a non-rigid strain 

(e.g., variation of the sphere radius) were used.  

At the same time, by defining in an analogous manner a virtual sphere also on the robotic 

hand, it is possible to implement such object-based mapping procedure by imposing that the rigid 

and non-rigid motions captured by the virtual object in the human hand are replicated by the 

object defined on the robotic hand. Other more general virtual object geometries were defined in 

[95,96]. The validity of the whole object-based mapping procedure was demonstrated with 



different robotic hand models, considering both motions and exerted forces, in bilateral 

teleoperation tasks and through software simulation [97,98] (Fig. 1).   

 

[INSERT FIGURE 1 APPROXIMATELY HERE] 

 

These mapping approaches can lead to standardization among control strategies of 

robotic hands with dissimilar structures, thus enabling to fully exploit a synergistic organization 

in a device-independent manner. This theoretical framework is reminiscent of the concept of 

motor equivalence, originally introduced by [100], which is a topic of ongoing investigation 

(e.g., [101]). This also allows to replicate an organized set of synergies in the artificial hand, 

ordered by increasing complexity, so that a correspondence can be attained between any 

specified task set  in terms of a number of different grasps and explorative actions  and the 

least number of synergies whose aggregation makes the task feasible.  

2.1  Soft synergies for soft hands 
 
In the previous section, we showed how the geometric model of postural synergies can be 

successfully exploited to implement synergies for software and hardware design. This approach 

enables to adopt a model of the hand with a number of independent actuators that is smaller than 

the number of joints. However, this approach does not necessarily imply that the hand will move 

and comply with the shape of the grasped object. To extend the applicability of this synergy 

model to the correct implementation of force generation and distribution in the robotic hand 

grasp and contact force control, the soft-synergy model was introduced to factor in the 

mechanical compliance of the hand musculo-tendinous system [102].  



In this model, the physical hand is attracted by an elastic field towards a reference hand 

identified by the geometric ‘synergy coordinates’ (as defined in [11] and discussed in the 

previous section). At the same time, the forces arising from contact with objects in the 

environment and mediated by the impedance of the hand-object mechanical system repels the 

physical hand from the reference hand, thus being responsible for force distribution during grasp. 

Numerical results obtained by this model indicate that the same dominant synergies (i.e., 

principal components) observed from human pre-grasp postural data are also crucial for 

establishing force distributions to perform stable grasps [102,103] .  

Such soft-synergy paradigm has triggered renewed interest for robotic grasp analysis and 

synthesis problems, together with the need of developing novel analytical tools to deal with the 

synergistic compliant coupling of a subset of DOFs. For example, the soft-synergy paradigm has 

enabled the definition of a rigorous procedure to establish the number of synergies that 

guarantees grasp stability and efficiency, depending on the task to be performed and the type of 

considered embodiment. To this aim, [104] proposed a quasi-static model and defined grasp 

structural properties related to contact force and object motion controllability. Here, the 

compliant model of soft synergies was assumed and different sources of compliance in the 

manipulation system were considered. Further studies focused on extending the manipulability 

analysis to synergy-actuated hands by employing the concept of manipulability ellipsoids and 

introducing new manipulability indexes [105]. This approach allowed the identification of the 

directions in the input and output spaces that maximize this manipulation efficiency metric. 

These directions could also be used as a tool to assess the manipulation performance of robotic 

hands by taking directly into account underactuation (i.e., the use of less degrees of actuation 

than DOFs) and compliance. A general grasp analysis framework for underactuated hands with 



compliance, which considers also pre-loading conditions, was then presented by [106]. Here, 

new definitions of structural properties of general manipulation systems and novel matrix 

factorization procedures were introduced to define a general approach to control the Cartesian 

grasp compliance in synergistically underactuated hands with variable impedance joints [107]. 

However, although the idea of soft synergy actuation represents an elegant solution to the 

problem of simple hand design, combining natural motion from the postural synergy approach 

with adaptability through compliance, its mechanical implementation is technically challenging. 

To address this issue, a soft-synergy model was translated into the corresponding adaptive 

synergy model, which can be identified through transmission matrix and joint stiffness. Based on 

the above considerations, the Pisa/Italian Institute of Technology (IIT) SoftHand [108,109], a 

joint venture between the University of Pisa and IIT, represents a promising approach to the 

design of soft-synergy inspired hands through adaptive underactuated mechanisms (Fig. 2). 

 

[INSERT FIGURE 2 APPROXIMATELY HERE] 

 

The Pisa/IIT SoftHand is an anthropomorphic robotic hand with 19 joints but only one 

actuator, which implements the soft-synergy model along the first postural synergistic direction 

through its corresponding adaptive synergy counterpart. This artificial hand exploits an 

innovative soft design of joints and ligaments, which enables a high level of compliance and 

adaptation to objects of different shape and dimensions. The mechanical design is parameterized 

by a transmission matrix and a joint stiffness matrix that allow the hand to exhibit the same 

behavior as the soft synergy model of human hand around a local equilibrium configuration. At 

the same time, the Pisa/IIT SoftHand design ensures high robustness, which allows the hand to 

exploit the external physical constraints to increase manipulation performance. Thanks to its 



simplicity, compliance, and robustness, the Pisa/IIT SoftHand represents an ideal platform for 

the development of a novel prosthesis [110,111], thereby opening interesting perspectives in 

prosthetics design and robotic rehabilitation. At the same time, EMG synergy-based approaches 

can be profitably exploited to increase control performance in HRI and prosthetics, as analyzed 

in the next section. 

2.2  EMG-Based Human-Robot Interaction Applications and Prosthetics 

In the framework of rehabilitation and assistive robotics, surface electromyography 

(sEMG) has been used as a human-machine interface for decades. Typically, a given number of 

sEMG signals are processed in real-time to control a rehabilitation or assistive device, e.g., an 

exoskeleton or a hand prosthesis, and enforcing at least a rough form of open-loop control by the 

prosthetic user. This is called myoelectric control, as it potentially enables control of the 

mechatronic device by using muscular activity in a way that mimics how the subject used to 

control his musculature before the loss of a limb. For the standard one-DOF hand prosthesis 

case, it is customary to have two sEMG sensors located on the residual wrist flexor and extensor 

muscles to control the closing and opening of the prosthesis. 

As opposed to this traditional approach, which has been and remains the clinical standard 

since the 60’s, controlling recent research prototypes of prosthetic hands relies on a larger 

number of sEMG electrodes, typically up to several tens of them, to better capture the electrical 

activity or the residual musculature and therefore decode the intent of the user [112]. Since such 

a well-tuned set of sEMG signals reflects quite faithfully the underlying residual muscle activity 

[113], the question arises as to whether the concept of muscle synergies can be of practical use 

for prosthetic applications. If so, can synergistic muscle activations be detected in the high-

dimensional sEMG signal space? Furthermore, does this signal space measured in the residual 



musculature of individuals with upper limb loss reflect the muscle synergies as found in the 

intact CNS? Lastly, can these muscle synergies be used to effectively simplify the task of the 

myoelectric controller, e.g., to ‘translate’ the motor plan or intent of the user into specific hand 

postures and/or torques/forces? 

These issues are controversial. In [114], the authors  reported that multi-muscle activation 

patterns can be detected across sEMG signals. This is hardly surprising as sEMG electrodes 

directly detect the neural activity of the motoneurons, although in a mixed form [115]. In the 

works cited above, Principal Component Analysis revealed that four linear combinations of 

sEMG signals could account for up to 90% of the sEMG signal variance, thus suggesting the 

existence of muscle synergies which are reminiscent of the above-described EMG-based 

synergies described for grasping and finger spelling in humans and non-human primates, as 

discussed in section 1.2 

It remains to be defined whether a synergy-based approach for decoding multiple sEMG 

signals has practical applications for myoelectric hand prostheses controllers. First, to evaluate 

such synergy-based approach, a fairly large number of sEMG signals with good signal-to-noise 

ratio is required, and this might be challenging in individuals with upper limb loss. Additionally, 

sEMG signals from amputees are known to change with time, e.g., as it happens with practice 

with self-powered prostheses [116]. Second, extracting sEMG synergies to be fed to a machine-

learning algorithm as an alternative to using the original, fully-dimensional input space is 

tantamount to compressing the input signal with potential loss of information, hence accuracy. 

However, the results of two recent methodological approaches appear to mitigate the above 

concerns. First, we will introduce the concept of incremental learning used to map multi-sEMG 

signals to multi-DOF devices: for example, in [117], an eight-dimensional sEMG space is used 



to finely control one of the most advanced commercially-available hand prostheses, the i-LIMB 

(Touch Bionics Ltd.) in a teleoperated scenario using an incremental machine learning method. 

Then we will describe how sEMG signals from two muscles with opposite mechanical actions 

can be used to map the user’s impedance and position control in a synergistic fashion onto an 

advanced robotic hand designed according to the concept of soft-adaptive synergies [118]. 

Whether the theoretical framework of sEMG-based synergies is of relevance here remains an 

open question, but these recent studies, as well as other investigations of using multi-sEMG 

signals for robotic hand control (see e.g. [119] or the survey in [120]), seem to pave the way 

towards a successful exploitation of synergistic concept in prosthesis control.  

Mapping EMG from multiple muscles to multi-DOFs devices.  

Whereas multi-fingered hand prostheses, prosthetic elbows, wrists and shoulders are now 

available for use in the rehabilitation clinics, in general control of these devices by the amputee 

is still largely an open issue. The standard approach is to use sEMG as the input signal to a 

machine learning- (ML-)based system; there is evidence in the scientific literature (e.g., [121–

123]) that, even decades after the operation, a surprising wealth of information can still be 

extracted from residual muscles. In other words, an appropriate set of sEMG sensors, coupled 

with a smart ML system, can effectively translate surface signals into control commands enacted 

upon the subject’s will. 

When considering sEMG from multiple residual muscles, interfacing these signals with a 

multi-DOF device implies creating a direct mapping between a multi-EMG pattern associated 

with a given movement, and the corresponding prosthetic control command. If the original multi-

muscle EMG pattern associated with movement can be exploited (that is, the EMG pattern that 

the subject would have recruited before the amputation), natural control can be enforced; that is, 



there is the possibility of letting the amputee controls the prosthesis in the most transparent way. 

On the other hand, as the amputee learns how to use a prosthesis, if the prosthesis reacts 

reasonably well, chances are that new multi-muscle patterns, or synergies meant as a re-

organization of the original sEMG pattern, will be developed in order to obtain an optimal ML-

based control. 

At the time of writing, the major factor hindering an effective deployment of ML-based 

control systems in the clinics is the issue of reliability [124,125]. ML-based control has the 

potentiality of actuating many DOFs simultaneously and proportionally, that is to dramatically 

increase the acceptance of self-powered prostheses. However, as it happens with all statistical 

methods, it cannot assure that a certain pattern will be stably recognized. Indeed, ML-based 

methods relying on classification are discrete decision systems (on-off) that suffer from the 

inherent ambiguity of the signal as it crosses the boundary between two decision zones of the 

input space. Moreover, surface signals are influenced by a number of factors such as sweat, 

sensor positioning and muscle fatigue.  

The concept of simultaneous and proportional (s/p) myocontrol defined in [115] can be 

regarded as an attempt to improve the reliability of ML-based myocontrol. S/p control directly 

maps the detected multi-muscle EMG onto patterns to simultaneous activation of several DOFs 

thanks to a regression method, rather than a classifier. Although still debated, the superiority of 

regression with respect to classification lies in (a) the capability of giving graded control as 

opposed to on-off, and (b) the fact that small errors in regression would likely not lead to a 

catastrophic result, but rather to slight instabilities in force application by the prosthesis. For 

these reasons, there is a definite trend in the community to employ s/p control in place of 

classification [86,120,126]. 



It should be noted that the vast majority of ML methods employ a one-shot initial 

calibration phase. To make this calibration sufficiently robust, the usage of an incremental 

machine learning approach was recently proposed. Incrementality means that the function 

approximation can be further refined after the initial calibration phase has finished; in fact, rather 

than calibration, the term model update is employed in this case [117,127]. As instabilities in the 

control can be therefore corrected as they happen, this approach has been called interactive 

learning. 

Minimalistic EMG Mapping: Tele-impedance approach 

In the previous paragraph, we have described several approaches used for mapping 

multiple sEMG signals to control prosthetic hands. In this paragraph, we propose a different 

approach: using the minimal number of EMG signals to control a synergy-inspired robotic hand, 

i.e. the Pisa/IIT SoftHand described in section 2.1. Furthermore, below we discuss a novel 

control concept beyond the classic position control approach, i.e., tele-impedance.  

When humans interact with the external environment, they are able to produce restoring 

forces with respect to environmental displacement [128] by modulating limb impedance through 

muscle co-contraction. It has been proposed that tele-operation tasks, such as operating a 

prosthetic hand through myoelectric control or remote control of a robotic gripper, can be 

performed using compliant (soft) slave robots and time-to-time modulation of their impedance 

throughout the task. [129] proposed an approach to overcome stability problems in force-

reflecting tele-operation and enable a more human-like task execution [130]. In this approach, 

user intent is incorporated into the control command, which includes both the desired motion or 

equilibrium position and stiffness profile estimated on the master side through a suitable human-

machine interface. These profiles are then replicated on the tele-operated robot in real-time. The 



strong correlation between muscle activation and impedance can be leveraged by using sEMG 

signals to estimate arm and hand position and impedance. For the latter case, this approach is 

intuitive since it is well known that muscle force increases with muscular activity [131]. 

Furthermore, individual muscle forces contribute to net joint torque, whereas their co-activation 

can modulate joint impedance [132]. However, the extraction of position from muscle forces 

requires the application of inverse dynamics [133]. 

The effectiveness of the tele-impedance approach in replicating the impedance of the 

proximal arm and lower limb was demonstrated by [118,130,134] who extended the tele-

impedance approach to the control of the Pisa/IIT SoftHand and exploited the efficiency and 

robustness of its soft synergy-based design. These authors developed a novel active impedance 

controller that incorporates both hand stiffness and postural synergy references in real-time. With 

the goal of exploiting the minimum number of muscles necessary for decoding the reference 

profiles, in [118] the authors used the major finger antagonist muscle pair – the m. extensor 

digitorum communis (EDC) and m. flexor digitorum superficialis (FDS) – and two functions of a 

modified hyperbolic tangent shape [135] to map the reference commands extracted from 

experimental data. Through tele-impedance control and exploiting two tactile interfaces, which 

conveyed information about grasping forces and high-frequency texture information to the user, 

subjects could improve grasp robustness and interaction performance while controlling the 

Pisa/IIT SoftHand through a myoelectric interface.  

These findings offer a novel perspective for the control of prosthetic devices with multi-

DOFs. The current challenge is to determine whether and in what conditions tele-impedance is a 

better solution with respect to multi-sEMG signal pattern regression. To address this issue, the 

choice of the end effector has to be taken into account. Specifically, the question is whether or 



not synergy-based robotic hands should be used, which can cope motor redundancy through their 

mechatronic design. Additional factors to consider are the extent to which synergy-based designs 

improve artificial hands’ reaction to external disturbances, and/or improve the intuitiveness with 

which humans can operate them. 

3. Hand synergies: Sensing 
 

In this section, we consider the dual aspect of actuation, i.e., the sensing domain. Here we 

describe how “dimensionality reduction” through synergies is not limited to the motor domain, 

as it also appears to operate in the sensing domain by reducing the huge amount of inputs from 

sensory receptors into a low-dimensional set of manageable perceptual representations of the 

external world. Furthermore, we leverage the notion that it might be possible to determine a 

relation between sensory and motor domains, which lays the foundations of the concept we refer 

to as sensory-motor synergies. As reviewed above for the motor domain, we describe how the 

physiological principles underlying neural sensing can inspire robotics research and design 

through simplified approaches to the design of haptic interfaces and sensorization of robotic and 

human hands with a reduced number of sensors. Applications of such approaches include HRI 

and sensorimotor rehabilitation. We also describe how robotics can provide useful tools to 

neuroscience for studying sensorimotor integration. 

3.1 Multi-sensory integration and fusion as the perceptual analogue of motor synergies 
 

Motor synergies can be regarded as maps between the higher dimensional complexity of 

the mechanical architecture of the human hand and the lower dimensional control space of the 

action and performance [3]. In essence, perception can be also regarded as a process for the 



reduction of dimensions and complexity. Color vision provides a clear example of complexity 

reduction. Indeed, the infinite values of wavelength of the photons characterizing a given light 

can be mapped into a discrete color by specifying just the three dimensions of hue, saturation and 

brightness [136]. A similar reduction of dimensionality was also studied in haptics. In [137], the 

author investigated the number of dimensions that is needed to describe haptic perception from a 

mechanical point of view. Even if such a number is infinite, human touch-related experience 

seems to take place in a finite, low dimensional space. In these two examples, both in color 

vision and touch, the nervous system produces a nearly instantaneous reduction of dimensions to 

convert a complex problem into a manageable set of computational tasks. Several perceptual 

illusions can be interpreted as the results of this reduction of the stimulus complexity. Following 

the same reasoning, the existence of a map between the higher-dimensional space of elemental 

sensory variables involved in the mechanics of touch and the lower dimensional space of 

perceptual primitives was postulated in [103]. The elements of this mapping can be regarded as 

projections of the tactual perception manifold onto constrained subspaces, the latter ones 

individuating increasingly refined approximations of the full spectrum of haptic information. The 

authors referred to these maps as sensory synergy basis. From a geometrical perspective, this is 

the counterpart of postural synergy basis in the motor domain [11].  

The tactile system uses different strategies to achieve a reduction of stimulus complexity 

(i.e., a reduction of the perceptual dimensionality). Selective attention on salient features is an 

example of efficient complexity reduction. As demonstrated in [138], in haptic search tasks the 

observer focuses on specific features of the stimuli. An object having a salient feature would 

quickly pop out during the search task, thus reducing the exploration time. With regard to 

softness discrimination, a possible reduction of dynamic, force-varying tactile information 



operated by the nervous system can be described by a tactile flow paradigm [139], which 

suggests that, in dynamic conditions, a large part of contact sensing on the finger pad can be 

described by the flow of strain energy density (SED). Moreover, the integral version of the tactile 

flow equation can be used to explain the Contact Area Spread Rate (CASR) experimental 

observation. This finding reveals that a considerable part of tactile ability in object softness 

discrimination is retained in the relationship between the contact area growth over an indenting 

probe (e.g. the finger pad which presses the object) and the indenting force itself  [140]. These 

suitable approximations and reductions of haptic information manifold can suggest new 

strategies to build haptic interfaces, in order to implement trade-offs between accuracy in 

stimulus rendering and simplicity. For example, recognizing that a simple force-area relation 

describes a large amount of cutaneous information involved in softness discrimination by 

probing has inspired the development of simpler and more effective haptic displays for human-

computer interaction (e.g., [140–143]). 

Cutaneous cues appear to be more informative than kinaesthetic cues in softness 

discrimination [144,145]. Applying the “synergy as a basis” description, in [103] the authors 

ventured to consider kinaesthesia and CASR as the two main  “synergies” in softness 

discrimination: this idea seemed to be further supported by the experimental outcomes in [146], 

which offered an interesting parallel with synergies in the motor domain. Similarly to the motor 

domain, performance in softness discrimination increases with the number of sensory synergies 

involved, i.e. when both kinaesthetic and cutaneous cues are available, even if cutaneous 

perception provides a more refined “inner representation of object softness”. Similar findings 

have also been reported by length perception experiments [147]. 



Such an increase in perceptual/representation fidelity can be found also in the artificial 

side. Tactile displays, which provide specific stimuli through skin deformation, are able to elicit 

a better softness perception than their purely kinesthetic counterparts, i.e., devices that act as 

force displays. However, the fidelity by which softness can be artificially rendered increases with 

the number of synergies employed in rendering., i.e., by suitably integrating both types of 

devices [146]. 

 At the human side, the integration of sensory information occurs both over space and 

time.  An example of temporal integration is when we slide the fingertip over the surface of an 

object to feel its texture, or we follow a contour to perceive its shape [148]. Spatial integration 

occurs when information from different body locations is combined. In [149] the authors 

investigated whether different ways of spatial integration lead to the same or different 

perceptions of length, by comparing different ways of discriminating length using two fingers, 

either of the same hand (thumb and index finger) or of the different hands (both index fingers). 

Results showed that the unimanual and the bimanual grasping conditions yielded best 

performance. Indeed, in all conditions information from different locations had to be integrated, 

but apparently this is easiest if body locations are strongly connected. Different types of 

information can be also jointly exploited to provide a unified perception of tactile properties of 

the external environment. In [149], the authors investigated whether local curvature can be also 

used for length discrimination and thus whether extent and curvature information can be 

integrated.  Results showed that when length and curvature were both present in the stimuli, 

performance (i.e., sensitivity) was significantly better than when just length or curvature alone 

was present. This provides clear evidence that curvature and length information can be integrated 



in perception. Of these two conditions, the one in which curvature and length correlated as in 

circular stimuli led to best performance. 

Multisensory fusion can be also viewed as an instance of sensory dimensionality 

reduction. Whenever we explore an object, for example a pencil, we fuse the multiple cues 

provided by our senses (such as the visual and tactile estimate of its length, color, softness, etc.) 

in a unique, coherent object representation. Multisensory integration has also an interesting 

counterpart in robotics, for example for the control of mobile robots [150]. Due to this 

mechanism of dimensionality reduction, questions like “Is the visual length of the pencil longer 

than its tactile length?” would sound as meaningless in most of daily life experience (except for 

philosophical debate), since the redundant estimates gathered from the different sensory channels 

are merged in a unique multisensory estimate.2 What would be an optimal strategy for sensory 

fusion? We know from classical studies in psychophysics that the level of noise could be 

considerably different between different sensory channels. In this case, a weighted average of 

different cues, where the weight of each cue is an inverse function of its noise, would provide a 

statistically optimal solution to the problem [151]. In their classical paper, Ernst and Banks [152] 

showed that the actual combination of vision and touch is statistically optimal.  

An important related research topic in haptics is the sensory fusion of proprioception and 

cutaneous touch. Indeed, whenever we move the hand and we contact an external object, the 

somatosensory system receives multiple afferent signals from the musculoskeletal system (e.g., 

[153,154]), and the skin (e.g., [139,155–157]). Our brain fuses these signals to produce a unique 

and coherent representation of the hands position, contact orientation and motion. Accordingly, 

                                                 
2 Notice however that questions like that are often posed in psychophysical experiments, where specific setups 

allow to disentangle the cues; see for example [152]. 



in [158] the authors showed that the perception of motion of a touched surface arises from the 

integration of tactile cues, proprioceptive cues, and prior assumptions on surface motion state. 

As already pointed out, a simple solution to fuse different sensory measurements (i.e. 

different sensory  cues)  comprises computing their weighted average  [151]. When the weights 

are chosen as inversely proportional to the relative precision of the measurements, this 

guarantees a statistically optimal estimate [152]. For signals to be integrated, however, they have 

to be received in commensurable units of measure. The issue of combining qualitatively different 

cues was first studied in visual depth perception [151]. The authors distinguished between 

absolute and relative depth cues. The latter need to be calibrated in a process known as cue 

promotion in a way that the units become commensurable. Only after cue promotion, the 

absolute and relative cues can be integrated into an object estimate. A similar model also 

accounted for the fusion of proprioception and touch in the perception of finger displacement 

[159]. Moving the finger to contact an external surface, it produces a spread, from an initial 

point, of the area of contact between the skin and the object. This is even more appreciable if the 

external object is compliant; in this case, the size of the area increases even further with the 

finger indentation. Therefore, the spread of the area of contact provides a relative cue to finger 

displacement or indentation. Accordingly modulating the size of the area of contact through the 

softness-rendering device illustrated in [143], induces an illusory displacement of the finger. The 

size of the area of contact is a promoted displacement cue, which is combined with absolute 

cues, for example from proprioception, to gather a fused estimate of the finger displacement. 

 A similar fusion of the proprioceptive and the tactile cue might also occur when sliding 

our finger over a rigid surface and we have to estimate the motion path or the velocity. Touch is 

able to provide displacement information, showing that the human brain is able to integrate the 



motion signal over time. Three behavioral experiments [160] showed that this is actually the 

case, that is, observers were able to integrate tactile velocity over time to produce a reliable 

estimate of the motion path. Using the tactile device described in [161], the authors generated 

slip motion along several triangular paths. Participants contacted the moving surface with the 

index fingertip, while keeping the hand world-stationary and they were able to accurately 

indicate the length and the shape generated by the motion path. The experimental paradigm 

required estimating the motion path through a mechanism of path integration; heuristics solely 

based on motion duration would not account for the actual responses. The above-discussed 

studies showed that, when both proprioceptive and tactile motion cues are available, the 

somatosensory system fuses these cues in a unique representation of limb motion, thus producing 

a reduction in signal dimensionality and complexity. 

The integration of multiple cues might in principle include information from our motor 

plan and the predictions that a given action would have on proprioception and touch. This would 

suggest the possibility of a mapping or correspondence between the strain pattern on the skin and 

muscle and the coordinated muscle activity, particular for a given action. This mapping can be 

defined as a sensorimotor synergy [103] and could simplify the interpretation of the complex 

sensory information from touch. In the next section, we propose a novel perspective on the 

correlation between sensory and motor signals, and how sensory-motor synergies can be 

exploited at the neural level to build a manageable perceptual representation. The duality of 

sensory and motor domains will be also discussed in the context of artificial sensory and motor 

domains, with applications to sensorization of human hands. 



3.2 Sensory-motor synergies at the neural level and robotic applications 
 

The execution of purposeful movements is dependent on a brain-body relationship and a 

sense of the relationship between ourselves and the environment. The brain can rely on hundreds 

of thousands of sensors in skin, muscles and joints as well as direct control of hundreds of 

muscles. Evolution has established a number of predefined structures in the CNS, but how the 

sensors find their appropriate target neurons and how this process leads to the emergence of 

meaningful movements among the very large number of DOFs of the body is not known. 

However, a number of basic principles of the architecture or circuitry structure of the brain are 

known, as are the activation properties of the sensors. In combination with behavioral analysis of 

movement patterns and their statistics in humans (e.g., [11,12,162]) and animal models (e.g., 

[29,163]), it is slowly becoming possible to model the neural circuitry mechanisms for task-

specific dimensionality reduction in sensorimotor functions, and even how these mechanisms can 

be learned and established in brain circuitry. The processing is massively parallel, where most 

tasks of movement control can be expected to engage large proportions of the circuitry. This has 

the interesting consequence that the same circuitry components are involved in most or all tasks, 

implying that the brain has in addition solved the challenge of having the solutions to a very 

large number of motor tasks in the same circuitry components. 

However, the modeling of the control circuitry requires a reality check of the viability of 

the underlying fundamental principles – in this respect, principles from robotics may provide 

critical insights. One example of such insights is the enabling constraints provided by the 

‘anatomy’ of robotic hand [109], where the mechanics will preferentially allow certain types of 

movements, but modifications of those movement patterns can be added as needed. In fact, the 

basic plan of the central nervous systems is similar across such widely different mammals as the 



mouse and the whale [164], but the mechanics of the bodies are not. Therefore, it has been 

proposed that the biomechanics of our bodies are an important initial factor behind the early 

organization of the neural control circuitry, for both motor control and sensory processing [165]. 

But what would be the circuitry mechanisms that support the acquisition of such complex skills? 

A possible answer is that the basic mechanisms are not particularly complex, but the 

learning occurs in many different phases and layers of control in sequence. Perhaps the most 

easily graspable solution is that of acquisition of sensory synergies, as the learning of (relatively) 

pure sensory synergies probably occurs in one layer only. This framework provides a 

demonstration-of-principle that is likely to apply also for the acquisition of muscle synergies for 

dimensionality reduction during movement. In essence, the skin of our bodies have thousands of 

sensors [160] that provide monosynaptic (direct synaptic) input to the neurons of the cuneate 

nucleus in the brainstem. All tactile inputs that reach the neocortex of the brain must first pass 

the cuneate nucleus where information is integrated by a monolayer of neurons, supported by a 

limited population of local inhibitory interneurons. Each neuron of the monolayer receives input 

from hundreds or thousands of sensors. However, in an intracellular analysis of such neurons, the 

number of primary sensory afferents that provided synapses of substantial influence on the 

receiving neuron was as few as 5-8 [166], which suggested the involvement of a learning process 

strengthening a few of the synapses while reducing the weight of other synapses. This 

observation raised the question of what purpose this learning process might have. Specifically, 

what was the common denominator that made some sensors provide strong synaptic input to 

certain cuneate neurons, whereas the efficacy of synaptic input of the same sensors to other 

neurons was reduced?  



A recent study, in which a novel view on the organization of somatosensory processing in 

the brain was tested, seems to have shed light on these issues. The study was made possible by 

likewise recent advances in psychophysics/robotics where a haptic interface designed to explore 

haptic illusions in humans had been developed [157]. The novel idea being tested was that the 

somatosensory functions of the brain are based on the fundamental input features defined by 

contact mechanics [137]  rather than the classical neuroscience concepts of receptive fields and 

sub-modalities. Thus, the individual cuneate neurons did indeed seem to be apt at segregating the 

input features, or haptic input dimensions [157,167]. A consequence of this phenomenon is that 

each cuneate neuron has a unique input profile, but the population of cuneate neurons can give 

precise information about the contact mechanics of a skin-object interaction at any point on the 

skin. As the input features run across multiple receptive fields, where 100’s of sensors are 

located, whereas the individual cuneate neurons appear to sample information primarily from 5-8 

sensors, this is a prime example of a sensory synergy or dimensionality reduction where the 

astronomic number of combinatorial possibilities provided by the sheet of sensors is reduced to a 

mere subset by learning mechanisms at the level of the cuneate neurons.  

At the neural level, the subsets of sensors identified through the learning process are then 

most likely selected by the movement statistics and the sensor locations of the individual, where 

the movement of the skin against objects by the laws of contact mechanics will determine which 

sensors will be most frequently co-activated. These co-activated sensors will be the ones that 

become strengthened in their synapses on the cuneate neurons, and the higher the number of 

cuneate neurons, the higher the number of co-activated sensor sub-groups can be afforded to be 

represented, and the richer the sensory experience. It is likely that we can think of the 

organization of the motor control systems in a similar fashion: the movement statistics, which 



initially are determined by the biomechanics of the individual’s body, will be laid down in the 

circuitry structure by learning processes. However, the motor control systems are more 

complicated than the sensory system reviewed above, as they are subdivided into several layers 

of varying intrinsic complexity. The innermost control loops reside in the spinal cord, and the 

earliest muscle synergies are probably established there, perhaps as early as in fetal life. The 

spinal circuitry is relatively complex, as it is driven in part by motor commands from higher 

centers and in part from sensory feedback of different types, where the tactile sensors described 

above are but one of at least three major classes of sensory feedback [168]. More complex 

synergies are likely dependent on the functionality added by the cerebellum [8,169], which 

regulates the spatiotemporal structure of the motor commands descending to the spinal circuitry 

from higher centers. 

The strong relationship between the motoric and sensory side can be exploited also in the 

artificial side, offering useful hints to robotic research. As previously pointed out, the concept of 

motor synergies enables to reduce the number of DOFs to be enrolled according to a given level 

of approximation of the motor act and, as extensively discussed, was used in robotics under a 

controllability point of view, to design and control artificial hands with a reduced number of 

inputs/actuators. 

However, this result can also have another interpretation, under the observability point of 

view: the question is whether it is possible to reduce the number of independent hand joints to be 

measured or sensed to achieve hand pose estimation at a given level of approximation. Indeed, if 

the human hand moves according to patterns of most frequent use, it could be possible to exploit 

this information to improve hand pose reconstruction despite measurements, which are in general 

noisy and reduced in number.  



In [170], this approach was applied to whole hand avatar animation, considering only two 

contact points for the thumb and the index with a haptic interface. Exploiting synergistic 

information, the forces necessary to track real finger trajectories through virtual springs (between 

the avatar’s tips and the corresponding operator’s tips) were transformed in the synergy-space of 

general forces. The latter ones were subsequently used to estimate the updated synergy variables 

and then to characterize the whole-hand configuration. 

In [171], authors examined the problem of optimal estimation of the posture of a human 

hand using non-ideal hand pose reconstruction (HPR) systems, or gloves, with many applications 

in the fields of human-robot interaction, rehabilitation and virtual reality. Indeed, all HPR 

methods are inherently affected by non-idealities, which limit their performance, such as the 

complexity of the human hand biomechanics and costs. All these factors usually determine an 

incomplete and imperfect relation between the measurements and the anatomical DOFs of the 

human hand. The solution proposed in [171] was to increase the accuracy of the pose 

reconstruction without modifying the glove hardware — hence basically at no extra cost — by 

collecting, organizing, and exploiting information on the probabilistic distribution of human 

hand poses in common tasks. Such information was organized in a database as in [11], 

represented in a hierarchy of correlation patterns (or postural synergies), and finally fused with 

glove measurements in a consistent manner. Thus, it was possible to provide good hand pose 

reconstructions in spite of insufficient and inaccurate sensing data, as demonstrated through 

simulations and experiments with a low–cost glove. In the companion paper  [172], authors 

pushed forward this analysis, investigating how and where to place sensors on a glove, to get 

maximum information about the actual hand posture. This problem becomes particularly crucial 

when constraints limit the number and the quality of the sensors. 



The example of the human hand can again provide inspiration to solve this problem. 

Indeed, looking at the dorsal skin of the human hand, a non-uniform distribution of different 

types of mechanoreceptors can be observed. Such receptors were proven to contribute to the 

kinesthetic perception of finger position (see e.g. [153]). These observations suggest that a non–

uniform map of sensitivities to joint angles may exist in the human hand sensory system. Even if 

the functional role of this architecture remains to be understood, a fascinating explanation might 

be related to the different importance of distinct elementary percepts in building an overall 

representation of the hand pose. All these biological data motivated the search for a preferential 

distribution and density of different typologies of sensors in sensing gloves, with the goal of 

optimizing their accuracy. This optimal sensor distribution and density, which enables to get 

maximum information about the actual hand posture, was shaped on the basis of postural 

synergistic information as represented in [171]. 

Of particular significance is the mutual inspiration between neuroscience and robotics. 

Specifically, the kinematic synergy concept, together with the observations on the biology of 

human mechanoreceptors, was the leading idea for the optimal estimation approach with HPR 

systems. At the same time, experimental results obtained with artificial devices might further 

inspire biological investigations, thereby providing theoretical and technical tools to advance the 

study of human hand sensorimotor apparatus. 

4. Open questions and directions for future research 
 
This article has reviewed the main scientific findings on the synergistic organization of 

human sensory-motor apparatus and how this organization has inspired novel paradigms for the 

development of ‘’intelligent ‘’ artificial systems. Under this light, the words pronounced by the 



anthropologist Sherwood Washburn [173] more than 50 years ago, “…the modern human brain 

came after the hominide hand…”, not only appeared as an astonishing assertion, but represented 

the historical starting point for the interdisciplinary reflections we have discussed in this paper. 

This assumption was linked to the idea that in order to completely understand intelligence, we 

must first understand the details of sensorimotor system underlying the control of our own hands. 

We have shown that in robotics it is quite tempting to think of a similar hypothesis, namely that 

the design of mechanical hands, including the principles of low-level sensing and control, will 

shape, at least in part, the development of the field of artificial intelligence at large.  

The fundamental idea underlying this approach and the related cross-disciplinary work 

reported in this survey was that (rephrasing Galileo) “the hand and the physical embodiment, 

which determines its behavior and cognitive capabilities, speaks a language whose words are the 

sensorimotor synergies”, and that only the understanding of this language will enable us to build 

artificial systems that can have a dialogue with the human counterpart.  

These observations motivated questions that were addressed by “THE Hand Embodied’’ 

project, however some important scientific questions remain open and should be targeted by 

future research. These concern the reciprocal linkages between the physical hand and its high-

level control functions, and the way that embodiment enables and determines behaviors and 

cognitive functions. According to the methodology delineated in this paper, the study of the 

intrinsic relationship between the hand as a cognitive abstraction and its bodily instance might be 

furthered by performing neuroscientific and perceptual behavioral studies with participants 

engaged in controlled manual activities. In parallel, the development of a theoretical framework 

explaining the underlying neurobiological mechanisms can lay the foundations for the design and 

control of robotic hands, haptic interfaces, and neuro-prosthetic devices. We deem these studies 



to be necessary to eventually come to an understanding of how the embodied characteristics of 

the human hand and its sensors, the sensorimotor transformations, and the very constraints they 

impose, affect and determine the learning and control strategies we use for such fundamental 

cognitive functions such as exploring, grasping and manipulating.  

The multidisciplinary approach we have undertaken shows that human data and 

hypothesis-driven simulations can be analyzed and used to derive novel system architectures for 

the “hand” as a cognitive organ, and this knowledge can eventually be applied to design and 

control robotic devices with superior robustness and flexibility. The program is fundamentally 

based on the conceptual structure and the geometry of “synergies”, and in the broad definition 

we have used of "enabling constraints”: correlations in redundant hand mobility (motor 

synergies), correlations in redundant cutaneous and kinaesthetic receptors readings (multi-cue 

integration), and overall sensorimotor system synergies.  We believe that these concepts are also 

keys for advancing the state of the art in artificial systems as well as the creation of the next 

generation of humanoid robots, advanced haptic systems, and highly integrated neuro-prosthetic 

devices.  

From a technological perspective, work reported in this survey also has important 

implications for future research.  First, the technology of “soft hands” that was adopted in the 

project THE can be applied in many forms – e.g. using continuum robotics as presented in [174]. 

Indeed, the use of compliant hands to replace traditional rigid robotic devices opens new 

opportunities, but also new challenges, in robotic manipulation. Manipulation with a simple, 

soft-synergy based hand allows for, and indeed requires strong interactions with the 

environment, including the manipulandum. Through the observation of human hand operations, 

it can be easily realized how fundamental in everyday grasping the role of hand compliance to 



adapt fingers to the shape of the surrounding objects is. Since the shape of soft hands is 

determined by the forces exchanged with the objects in contact, objects and environmental 

constraints can be profitably exploited to functionally shape the hand and to go beyond its 

nominal kinematic limits by exploiting structural softness [175,176], substantially changing the 

classical manipulation planning paradigm. Due to their simplicity, compliance and robustness, 

hands developed following the soft synergy approach represent an ideal platform for the 

development of novel prostheses, thus opening interesting perspectives in robotic rehabilitation. 

Initial work using the Pisa/IIT SoftHand as a prosthesis on a number of normal subjects and 

amputees has provided promising albeit preliminary results in terms of ease of use, intuitive 

command, grasping and manipulation performance [111]. Furthermore, the exploitation of tele-

impedance and EMG-based applications as well as the usage of wearable haptic interfaces can 

enable a more natural and intuitive control of (synergy-inspired) prosthetic hands [118].  

On the other side, considering sensing and tactile-related information feedback, the 

correct understanding of mechanisms of multi-cue integration and sensor fusion, in other terms 

of sensory synergies, can not only inspire the design of novel, simple yet effective sensing 

systems and haptic devices but offer novel insights in a wide range of robotic applications, e.g. 

mobile robotics. In these applications, where multiple information sources are unified in a unique 

coherent perceptual representation, synergistic inspiration can be used to enable robotic systems 

with advanced perceptual and cognitive capabilities.  Furthermore, the identification of the most 

informative forms of sensed data, together with the study of transparent manners to convey them 

back to the user, can represent the successful approach to improve prosthetic devices, closing the 

loop between action and perception, and endowing prostheses not only with advanced control 

systems but also with perceptual properties.  



The challenging goal is to identify trade-offs between simplicity, intuitiveness and 

effectiveness. Suitably balancing these ingredients is not an easy task: ‘’working hard to make it 

simple” can be the novel motto for synergy-inspired robotic research. In other terms, getting 

close to the astonishing capabilities of CNS in producing nearly instantaneous simplifications of 

the huge amount of human sensory-motor data can be the key for the design of a novel 

generation of cognition-enabled robotic devices. 

However, this road is still largely unexplored and the challenges it poses become more 

and more intriguing as research on the human hand sensory-motor apparatus provides novel 

insights. The approach we propose to profitably proceed along this road is to make technological 

developments and biological research working together in a synergistic fashion. The ultimate 

goal of this research is to bridge the gap between neuroscience and robotics with the twofold 

goal of increase the comprehension of the functional and neuroanatomical organization of the 

human hand, also thanks to technological tools to perform neuroscientific investigations and 

robotic inspiration, and to derive biology-inspired guidelines for a more effective development of 

robotic systems, through the usage of mathematical language.  
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Figure 1: Mapping synergies from the human hand model (left) to the robotic hand 
(right). The reference points on the human hand model (red dots) allow the definition of 
the virtual object. Activating the human hand synergies, the object is moved and 
strained; its motion and strain can be evaluated from the velocities of the reference 
points. This motion and strain, scaled if necessary, are then imposed to the virtual object 
relative to the robotic hand, defined on the basis of the robotic reference points (yellow 
dots). The hand models in the figure are obtained using the SynGrasp Toolbox [99].



Figure 2: (a) Skeleton of the Pisa/IIT SoftHand advanced anthropomorphic hand prototype. 
(b) The SoftHand joints can withstand large forces in all directions, thus allowing the hand to 
automatically return to the initial configuration. (c) Examples of experimental grasps 
performed with the Pisa/IIT Softhand (Adapted from [109])


