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Abstract

This paper deals with the discrete counterpart of 2D elliptic model problems rewritten in terms of Boundary

Integral Equations. The study is done within the framework of Isogeometric Analysis based on B-splines. In such a

context, the problem of constructing appropriate, accurate and efficient quadrature rules for the Symmetric Galerkin

Boundary Element Method is here investigated. The new integration schemes, together with row assembly and sum

factorization, are used to build a more efficient strategy to derive the final linear system of equations. Key ingredients

are weighted quadrature rules tailored for B–splines, that are constructed to be exact in the whole test space, also with

respect to the singular kernel. Several simulations are presented and discussed, showing accurate evaluation of the

involved integrals and outlining the superiority of the new approach in terms of computational cost and elapsed time

with respect to the standard element-by-element assembly.

Keywords: Boundary Integral Equations (BIEs), Isogeometric Analysis (IgA), Symmetric Galerkin Boundary

Element Method (SGBEM), B-splines, quadrature rules, singular integrals, modified moments, weighted quadrature.

1. Introduction

Boundary Element Methods (BEMs) are an important strategy for the numerical solution of linear partial differ-

ential equations appearing in many relevant problems in science and engineering applications, see [6, 17]. Through

the fundamental solution associated to the considered differential equation, a large class of both exterior and interior

elliptic Boundary Value Problems (BVPs) can be reformulated as linear Boundary Integral Equations (BIEs), reducing

by one the dimension of the computational domain for the discretization, when compared with Finite Element Meth-

ods (FEMs). For all these problems BEMs can be adopted, offering substantial computational advantages over other

numerical techniques. However, in order to achieve a general efficient numerical implementation, a number of issues

has to be carefully addressed. One of the most important consists in the accurate approximation of weakly singular,

Cauchy singular and even hyper-singular integrals over the boundary. Such integrals occur also when the Symmetric

Galerkin Boundary Element Method (SGBEM) [12] is applied to some BIEs. Indeed, in this case a linear symmetric

system of equations is obtained, whose coefficient matrix has entries defined as possibly singular double integrals on

the boundary of the problem’s domain. Thus, considering the outlined difficulties, it is not surprising that, since the

first appearances of SGBEM [20, 37, 48, 56], great effort has been devoted to the efficient and accurate computation

of the related Galerkin linear system, as proved by many papers investigating this aspect (see [1, 2] and references

therein). Such techniques were combined to the SGBEM scheme based on Lagrangian bases, always adopting the

standard element-by-element assembly procedure, as customary when the Lagrangian basis is used. This implies
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that all the double integrals were split into a sum of integrals on pairs of elements where a local quadrature rule was

adopted.

The advent of Isogeometric Analysis (IgA), [10, 21, 34] has brought a renewed interest in BEMs and very recently it

has been combined for the first time to the SGBEM scheme [3, 4, 41]. Papers dealing with problems in acoustics [19],

airfoils potential flows [38], Stokes flows [32], fluid-structure-interactions [33] can be found in the literature, using

the IgA Galerkin BEM formulation. BEM formulations have been used also to construct computational domains for

Galerkin-IgA [23]. In order to reduce complexity and gain efficiency, the use of collocation [51] or mixed collocation

is also common, see e.g. [28, 30, 35, 36, 39, 40, 42, 43, 45, 46, 47].

Following the IgA approach, in [3] B-splines have been used to represent both the domain geometry and the ap-

proximated solution of the problem at hand, giving a significant reduction in the dimension of the discretization space

required to attain a fixed accuracy with respect to the standard Lagrangian basis. In such preliminary implementation

of the IgA-SGBEM scheme, the entries of the coefficient matrix and of the right-hand side of the linear system are

evaluated by using the accurate quadrature rules introduced in [1] and suited for an element-by-element implemen-

tation of the SGBEM scheme. However, such quadrature rules are not capable to take any computational advantage

from the higher regularity of B-splines. The obvious consequence is that the method cannot benefit further from its

new isogeometric formulation. In order to avoid this drawback, in the present paper new quadrature rules tailored on

B-splines are introduced. The aim is to compute efficiently as well as accurately all the occurring double, possibly

singular, integrals, and this is a key point for a new, efficient assembly strategy. The considered quadrature rules are of

two kinds. When no singularity appears a B–spline weighted quadrature is adopted [15, 16]. This is constructed for

each B-spline basis function of the approximation space, taken as weight function, in order to be exact in a suitable

B-spline space, usually a refinement of the previous one. In presence of singularities, a new idea is applied. Following

the classic approach based on modified moments [15, 22, 27], and using the recurrence relations for B-splines [13], we

propose a new procedure so that, also in this case, the final quadrature is exact in the test space or in a related refine-

ment. As done in [5, 16] for the IgA-FEM case, we assembly the final matrix via row loop and sum-factorization. This

allows us to get a remarkable gain in terms of computational costs, as confirmed by the experiments. The proposed

strategy is ready to be used for problems equipped by Dirichlet data. For mixed problems, hyper-singular integrals

can appear which require some more analysis, for example using coordinate transformation [44, 52], subtracting the

singularities [25, 29, 31] or splitting the contributions in order to recover quantities that can be evaluated in closed

forms [2].

The paper is organized as follows. In Section 2 the boundary integral formulation of two model problems is briefly

introduced. In Section 3 some preliminaries and notations are given, which are necessary in the isogeometric setting

for the representation of the domain geometry and of the discretization space; then the double integrals defining the

entries of the coefficient matrix and of the right-hand side of the IgA-SGBEM linear system are defined. In Section

4, using a unified formulation, two families of quadrature rules are introduced to approximate the double integrals

introduced before. The families are two, since different rules are needed to deal with regular or singular integrals,

both occurring in any BEM formulation. The formulas used to deal with non singular integrals are taken from [16],

and they are briefly summarized in Subsection 4.1. Novel formulas addressing the double singular integrals on fixed

nodes and tailored on B-splines are introduced in Subsection 4.2, where a recursive relation for the computation of the

necessary modified moments for B-spline functions is presented. These last quadrature rules are also preliminarily

tested on some singular integrals whose exact solution is available. Section 5 deals with the efficient computation

and assembly of the IgA-SGBEM linear system. The new B-spline–oriented IgA-SGBEM assembly strategy is tested

through some numerical examples presented and discussed in Section 6. Finally, Section 7 reports the research

conclusions.

2. Boundary integral model problems

In this work we focus on 2D interior or exterior Laplace model problems on planar domains, assuming boundary

Cauchy data of Dirichlet type. In particular we deal with two different geometries: bounded simply connected domains

Ω ⊂ R2, and unbounded domains external to an open limited arc.

In the first case, denoting with Γ the boundary of Ω, assumed sufficiently regular, we deal with the boundary value
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problem
{

∆u = 0 in Ω ,

u = uD on Γ ,
(1)

where uD is the given boundary datum.

Choosing a direct approach [17], the boundary integral reformulation of (1) starts from the representation formula for

the solution u, i.e.

u(x) = − 1

2 π

∫

Γ

K̂(x, y) q(y) dγy +
1

2π

∫

Γ

∂K̂

∂ny

(x, y) uD(y) dγy, x ∈ Ω

where x = (x1, x2), y = (y1, y2), the kernel − 1
2π

K̂(x, y) represents the fundamental solution of the 2D Laplace operator,

i.e.

K̂(x , y) := ln(r) , with r := ‖x − y‖2 , (2)

and q := ∂u
∂n

. Hence, the solution u can be evaluated in any point of the domain, provided that we know the flux q on

Γ. So, with a limiting process for x tending to Γ and using the boundary datum, we obtain the BIE:

− 1

2 π

∫

Γ

K̂(x, y) q(y) dγy =
1

2
uD(x) − 1

2π

∫

Γ

∂K̂

∂ny

(x, y) uD(y) dγy, x ∈ Γ , (3)

in the boundary unknown q. The boundary integral problem (3) can be finally set in the following weak form [55]:

given uD ∈ H1/2(Γ), find q ∈ H−1/2(Γ) such that

A(q, p) = F (p), ∀p ∈ H−1/2(Γ) (4)

where

A(q, p) := − 1

2 π

∫

Γ

p(x)

∫

Γ

K̂(x, y) q(y) dγy dγx (5)

and

F (p) :=

∫

Γ

p(x)
[1

2
uD(x) − 1

2π

∫

Γ

∂K̂

∂ny

(x, y) uD(y) dγy

]

dγx

In the second case, still denoting with Γ an open limited arc in the plane, we consider the following problem

{

∆u = 0 in IR2 \ Γ,
u = uD on Γ .

(6)

The BVP in (6) can model the electrostatic problem of finding the electric potential around a condenser, whose two

faces are so near one another to be considered as overlapped, knowing the electric potential only on the condenser,

see e.g. [9]. This example is a classic case where BEM are preferred to FEM: a problem in an infinite domain with an

obstacle or a source lying on a curve [20, 50].

Choosing an indirect approach [17, 50], the BIE coming from the boundary integral reformulation of (6) reads:

− 1

2 π

∫

Γ

K̂(x, y) ϕ(y) dγy = uD(x), x ∈ Γ , (7)

where the unknown density function ϕ represents the jump of q across Γ.

Boundary integral problems (7) can be set in a weak form similar to (4), where the bilinear formA(ϕ, ψ) is defined as

in (5) and the right-hand side simplifies in:

F (ψ) :=

∫

Γ

ψ(x) uD(x) dγx .

The price for the simplification of the indirect approach is that the discrete solution obtained by solving the linear

system does not approximate directly the missing Cauchy data on the boundary, but just the density function appearing

in the chosen integral representation formula, see e.g. [17].
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3. IgA-SGBEM discretization

Now, we assume that in both the above model problems, Γ is defined as a parametric curve with no self in-

tersections, closed in the first case and open in the other. Thus Γ is the image of a regular invertible function

f : I ⊂ IR → Γ ⊂ IR2 such that, setting f(s) := ( f1(s), f2(s)) , every point x = (x1, x2) ∈ Γ can be seen as the

image of just one value s ∈ I , where I = [a , b] if Γ is open and I = [a , b), otherwise. In more detail, we assume that

Γ is parametrically represented by a function f defined as follows,

f(s) :=

N
∑

i=1

QiBi,d(s), s ∈ I ,

where the Qi, i = 1, . . . ,N , are ordered control points assigned in the plane and defining the shape of Γ, and where

{Bi,d(·), i = 1, . . . ,N} is the B-spline basis which spans a space S of piecewise d–degree polynomials with respect to

an assigned set ∆ of distinct breakpoints in I. Note that N and the regularity required in S at each inner breakpoint can

be a priori established. Actually the definition of the B-spline basis needs the preliminary introduction of the extended

knot vector T = {t1, . . . , td, td+1, . . . , tN+1, tN+2 , . . . , tN+d+1}, where td+1 = a , tN+1 = b , and t1 ≤ · · · ≤ tN+d+1 . Each

knot ti, i = d + 2, . . . ,N, is a possibly repeated occurrence of an inner breakpoint, while the first and last d knots

in T are auxiliary knots characterizing a specific B–spline basis. For brevity, when it is not strictly necessary, in the

following we shall refer to it by omitting d. The regularity at a certain inner breakpoint in ∆ of any function in S is

fully specified by prescribing the breakpoint multiplicity (integer between 1 and d + 1) in T . Since we want f at least

with a continuous image, such multiplicities are required to be all ≤ d and one of them is set to d only when Γ has

an angular point which will coincide with a control point. Extended knot vectors with multiple or periodic auxiliary

knots are the more commonly adopted strategies for completing the definition of T , see e.g. [13]. Note that the in

Computer Aided Geometric Design (CAGD) the standard way to represent closed curves relies on periodic extended

knot vectors and with the last d control points given by an ordered repetition of the first ones, see e.g. [26]. This

clearly means that in practice the dimension of the considered spline space S is N − d in this case.

In the IgA context, dealing with an isoparametric approach, the same basis or an its appropriate refinement is con-

sidered to generate the discretization space Ŝ where we will search the approximate solution of weak BIEs. Actually

spaces with dimension greater than N (or N − d in the closed case) can be clearly used for the experiments, without

abandoning the IgA paradigm, since the knot insertion procedure can always be adopted to represent the boundary

in a higher dimension spline space with a desired mesh spacing or with a reduced regularity at the breakpoints. We

remind that such a procedure implies introducing new breakpoints or increasing the multiplicity of the existing ones,

see e.g. [24].

In more detail, assuming for notational simplicity that no refinement is done, when Γ is an open arc, we difine the

space Ŝ as

Ŝ := span{B̂1, · · · , B̂N} ,
where

B̂i(x) := Bi(f
−1(x)) , x ∈ Γ , i = 1, . . . ,N . (8)

When Γ is a closed curve, the dimension of Ŝ must be equal to N − d. Thus we fix Ŝ as

Ŝ := span{B̂1, · · · , B̂N−d} ,

where B̂i, i = d + 1, . . . ,N − d are defined as in (8) while we have

B̂i(x) := B
(c)

i
(f−1(x)) , x ∈ Γ , i = 1, . . . , d ,

with

B
(c)

i
(t) :=



















Bi(t) if t ∈ I ∩ [ti, ti+d+1] ,

BN−d+i(t) if t ∈ I ∩ [tN−d+i, tN+i+1] ,

0 otherwise .

In order to simplify the notation, in the sequel, when Γ is closed, we shall omit the superscript (c) to denote the first d

cyclic basis elements.
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The algebraic reformulation of the IgA-SGBEM scheme leads to a linear system of equations, whose unknowns

represents the coefficient of the BIE approximate solution w.r.t. the chosen basis, see e.g. [44]. In more detail,

denoting such a solution with α̂(x) :=
∑NDoF

j=1
α jB̂ j(x) , with NDoF := dim(Ŝ ) , the resulting linear system has size NDoF

and is referred as

Aα = β , (9)

where A is a symmetric positive definite matrix, α = (α1, · · · , αNDoF
)T is the unknown vector and β ∈ IRNDoF is the

vector defining the right-hand side which depends on the given Cauchy data.

In particular, the entries of the matrix A in (9) are, up to the coefficient − 1
2π

, double integral of the type (see (5)):

∫

Γ

B̂i(x)

∫

Γ

K̂(x, y) B̂ j(y) dγy dγx , (10)

while the right-hand side involves the computation, depending on the problem at hand, of the following integrals

∫

Γ

uD(x)B̂i(x) dγx ,

∫

Γ

B̂i(x)

∫

Γ

∂K̂

∂ny

(x, y) uD(y) dγydγx . (11)

Introducing the scalar variables s and t defined as:

s := f−1(x) , t := f−1(y)

and the parametric speed associated with Γ,

J(·) :=

√

( f ′
1
(·))2 + ( f ′

2
(·))2 , (12)

in following subsections we rewrite integrals in (10), (11) over the parametric interval I.

3.1. Matrix entries

Referring to the double integral in (10), we can express it as

I
(i, j)

K
:=

∫

I

Bi(s) J(s)

∫

I

K(s, t) B j(t) J(t) dt ds , (13)

where K(s, t) := K̂(f(s), f(t)) . Let us investigate the nature of the involved kernel. Considering (2), we can write

K̂(f(s), f(t)) = ln(‖f(s) − f(t)‖22)1/2 =
1

2
ln













‖f(s) − f(t)‖2
2

(s − t)2













+ ln |s − t|

Setting

R(s, t) :=
‖f(s) − f(t)‖2

2

(s − t)2
=

[

f1(s) − f1(t)

s − t

]2

+

[

f2(s) − f2(t)

s − t

]2

, (14)

we have that

K(s, t) = K1(s, t) + K2(s, t) ,

where

K1(s, t) :=
1

2
ln (R(s, t)) , K2(s, t) := ln|s − t| .

Note that K1(s, t) can be defined also for s = t extending its definition by continuity, since

lim
t→s

R(s, t) = J2(s) , (15)

with J defined as in (12).

This splitting of K is useful to separate two contributions, the first coming from the geometry of Γ and the last

depending just from its singular nature. Actually, integral (13) can be evaluated as

I
(i, j)

K
= I

(i, j)

K1
+ I

(i, j)

K2

5



with

I
(i, j)

Kℓ
:=

∫

I

Bi(s)J(s)

∫

I

Kℓ(s, t) B j(t)J(t) dt ds , ℓ = 1, 2. (16)

Different quadrature rules are needed to compute IKℓ
, ℓ = 1, 2, since for ℓ = 2 weakly singular integrals can occur

because of the logarithmic nature of the kernel K2.

3.2. Right-hand side elements

Referring to the first integral in (11) we can rewrite it as:

b
(i)

1
:=

∫

I

Bi(s) J(s) uD(s) ds , (17)

where uD(s) = uD(f(s)) . Hence we have to evaluate a regular integral.

The second double integral in (11) can be expressed as

b
(i)

2
:=

∫

I

Bi(s) J(s)

∫

I

K(s, t) uD(t) dt ds , (18)

where uD(t) = uD(f(t)) and

K(s, t) :=
∂K̂

∂ny

(f(s), f(t)) J(t) .

We note that, when f ∈ C2(I), no singularity occurs in (18). Indeed, with some computation, we can write

K(s, t) =
( f2(t) − f2(s)) f ′

1
(t) − ( f1(t) − f1(s)) f ′

2
(t)

‖f(s) − f(t)‖2
2

,

that is,

K(s, t) =
1

R(s, t)

( f2(t) − f2(s)) f ′
1
(t) − ( f1(t) − f1(s)) f ′

2
(t)

(t − s)2
,

with R(s, t) defined in (14). Then, taking into account (15), we have

lim
t→s

K(s, t) =
1

2

f ′
2
(s) f ′′

1
(s) − f ′

1
(s) f ′′

2
(s)

J2(s)
.

On the other hand, without assuming f ∈ C2(I) , the kernel K̄ becomes strongly singular on boundaries with corners

and weakly singular on Lyapunov curves, see [8, Section 7].

4. Novel quadrature rules

As pointed out in the introduction, in the present paper we explore the construction of the algebraic counterpart

of the IgA-SGBEM scheme, by using two different weighted quadrature strategies for regular and singular integrals.

This means that the usual conditions considered for the construction of the quadrature - the exactness requirements -

are imposed with respect to a suitable chosen weight function.

The developed formulas have in common the vector of nodes - denoted by η - but the weights will change according

to the exactness requirements, consisting in imposing their exactness in a suitable spline space with the respect to the

selected weight function. Several quadrature rules are necessary, all determined by solving a linear system whose

coefficient matrix is in any case a B-splines collocation matrix. The existence of the rules is ensured by the non

singularity of such a matrix, feature achieved by choosing an η vector fulfilling the Schoenberg-Whitney conditions,

see for example [13].

The selected exactness spline space is a possible refinement of the test space S , obtained by uniform subdivision of

each element of ∆ into Nre f ≥ 1 elements, where Nre f > 1 is adopted to improve the quadrature accuracy. This -
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possibly new - partition of the interval I is denoted by ∆̄. The corresponding spline space can be generated by B-

splines, denoted in the following by B̄ j, j = 1, . . . ,NE , with NE ≈ Nre f NDoF .

Our choice of η, that fulfills the Schoenberg-Whitney conditions with respect to the extended knot vector associated

with B̄ j, j = 1, . . . ,NE , is the following: in the first and last element of ∆̄, we take d + 2 uniformly spaced points; on

each inner element we take midpoints and breakpoints. Hence η ∈ IRNquad with Nquad = 2d + 2Nre f Nh − 1, where Nh

denotes the number of elements of ∆ (Nh ≈ NDoF when no multiple inner knot is included in the extended knot vector

T ). Note that this simple choice was used also in [16] and for BEM with splines in [7].

We detail the construction of the quadrature rules in the following two subsections, respectively related to regular and

singular integrals.

4.1. B-spline weighted quadrature rule

When dealing with the external integrals in (16) and (18), with the integrals (17), or even with the inner integral in

(16) for the kernel K1, regular integrands occur, always with a B-spline factor, denoted in the sequel as Bi(s). In this

case, following [16], we consider this term as a weight and thus we obtain the quadrature:

Q(i)[ f ] :=

Nquad
∑

n=1

w(i)
n f (ηn) ≈

∫

I

f (s)Bi(s) ds. (19)

Let us detail the construction introducing some notation1.

• J (i) := { j : 1 ≤ j ≤ NE , supp(B̄ j) ∩ supp(Bi) , ∅} ; N
(i)

E
:= #J (i) (number of active exactness functions);

• N (i) := {n: 1 ≤ n ≤ Nquad , with ηn ∈ supp(Bi)}; N
(i)

quad
:= #N (i) (number of active quadrature nodes).

The weights w
(i)
n , n ∈ N (i), are determined by imposing the exactness of the formula on all B̄ j with j ∈ J (i), the other

weights are set to 0. The local exactness requirements then read:

Q(i)[B̄ j] =
∑

n∈N (i)

w(i)
n B̄ j(ηn) = µ

(i)

j
∀ j ∈ J (i) , (20)

where µ
(i)

j
:=

∫

I
B̄ j(s)Bi(s) ds can be exactly computed since the integrand is a piecewise polynomial function. Let

us note that the considered definition of η always ensures that N
(i)

E
≤ N

(i)

quad
. Thus, the conditions in (20) lead to a

possibly underdetermined linear system with maximum rank, thanks to the Withney-Schoenberg conditions fulfilled

by η. Actually the system is non squared only when the support of Bi includes (but is not limited to) the first or the last

element of ∆̄, where more nodes are taken. In this case we have chosen to solve the system in the minimum Euclidean

norm. Note that N
(i)

E
can be upper bounded independently from NDoF , since N

(i)

E
≤ (1 + Nre f ) (d + 1) . Consequently

the size of the linear system in (20) never becomes prohibitive.

This construction has to be repeated for all the basis functions Bi , i = 1, . . .NDoF . A related Pseudo–code is given

in Algorithm 1.

4.2. Singular weighted quadrature rule

When instead we deal with the inner integrals in (16), for K = K2, weakly singular integrals can occur, as discussed

in Section 3, hence a different formula is used. We choose to isolate the singular term, as done in [49] and introduce

a quadrature:

Qs[ f ] :=

Nquad
∑

n=1

ws
n f (ηn) ≈

∫

I

f (t) ln|t − s| dt. (21)

1Notice that we define support as the open set where the function is non-zero.
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Input: node vector η, B-splines Bi, i = 1, . . . ,NDoF , exactness B-spline evaluations (B) j,n := B̄ j(ηn)

j = 1, . . . ,NE , n = 1, . . . ,Nquad

1 for i = 1, . . . ,NDoF do

2 Extract indexesJ (i) of functions B̄ j having support intersecting the support of Bi;

3 Calculate integrals µ
(i)

j
:=

∫

I
B̄ j(t)Bi(t) dt , j ∈ J (i);

4 Extract indicesN (i) of nodes ηn belonging to the support of Bi;

5 Extract the local collocation matrix B
(i) = (B)J (i),N (i) ;

6 Calculate w(i) := (w
(i)
ν )ν∈N (i) (min. Euclidean norm) solution of B(i)w(i) = µ(i) with µ(i) := µ

(i)

j
, j ∈ J (i);

7 end

Output: vectors w(i), i = 1, . . . ,NDoF .

Algorithm 1: Construction of weighted quadrature rules: regular case

In order to fix the weight vector ws := (ws
n)

Nquad

n=1
, we impose exactness on the B-spline functions B̄ j, j = 1, . . . ,NE ,

that is we require the fulfillment of the following conditions:

Qs[B̄ j] =

Nquad
∑

n=1

ws
n B̄ j(ηn) = µ j(s) ∀ j = 1, . . . ,NE , (22)

with

µ j(s) :=

∫

I

B̄ j(t)ln|t − s| dt. (23)

Then, ws is the solution of a linear system of size NE × Nquad with NE ≤ Nquad whose coefficient matrix is a B-splines

collocation matrix at the quadrature nodes. We remark that this is a -possibly underdetermined- linear system with

maximum rank, thanks to the Withney-Schoenberg conditions. The right hand side µs := (µ j(s)) j=1,...,NE
, of (22) is

calculated by exploiting the recursive formula for B-splines, see below. Recalling that we are dealing with the inner

integrals in (16), for K = K2, and that the formulas introduced in the previous subsection are used for the outer

integrals, the parameter s varies among the entries of the vector η. So different weight vectors wηn ∈ IRNquad , n =

1, . . . ,Nquad, are pre-computed.

Let us derive now the recursive approach which can be use to compute the analytic expressions of the modified

moments introduced in (23). Given a B-spline basis of degree r, defined with respect to the partition ∆̄ of I, we set

Iq(B j,r, s) :=

∫

I

ln|t − s| tq B j,r(t) dt , q ∈ IN .

Then we can write

µ j(s) = I0(B j,d, s) , (24)

since B j,d = B̄ j.

Taking into account the Cox-De Boor recurrence relation of B-splines [13], assuming that t j is the j–th entry of

the associated extended knot vector,

B j,r(t) =
t − t j

t j+r − t j

B j,r−1(t) +
t j+r+1 − t

t j+r+1 − t j+1

B j+1,r−1(t) ,

we have that a consequent recurrence relation can be obtained for Iq(B j,r, s):

Iq(B j,r, s) =
Iq+1(B j,r−1, s) − t j Iq(B j,r−1, s)

t j+r − t j

+
t j+r+1 Iq(B j+1,r−1, s) − Iq+1(B j+1,r−1, s)

t j+r+1 − t j+1

. (25)

We remark that, when multiple knots are taken, if t j+r = t j (t j+r+1 = t j+1), the first (second) addend in the right-hand

side of (25) must be set to zero. In order to compute the desired modified moments (24) by means of (25), we need to

compute preliminarily Ik(Bi,0, s), for k = 0, . . . , d and i = 1, . . . ,NE + d. Now, considering that

Bi,0(t) =

{

1 if ti ≤ t < ti+1 ,

0 otherwise ,
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we obtain that Ik(Bi,0, s) =
∫ ti+1

ti
ln(|t − s|) tk dt , which clearly is a vanishing quantity if ti = ti+1. In the opposite case,

using the substitution z = t − s, we can write

Ik(Bi,0, s) =

k
∑

j=0

(

k

j

)

sk− j

∫ ti+1−s

ti−s

ln |z| z j dz .

Thus, the procedure starts by computing the quantities:

I j

i
(s) :=











∫ ti+1−s

ti−s
ln |z| z j dz , if ti < ti+1 ∧ [ti , ti+1] ⊂ [a , b] ,

0 otherwise
i = 1, . . . ,NE + d, j = 0, . . . , d .

Note that with some basic analytic computation we can derive the following explicit expression of I j

i
(s) for the non

trivial case:

I j

i
(s) =

z j+1

j + 1

(

ln |z| − 1

j + 1

)
∣

∣

∣

∣

∣

∣

ti+1−s

ti−s

.

The described procedure for the computation of the singular modified moments can be seen as a variant of that

introduced in [22], where it was defined for Cauchy singular integrals and used for developing quadrature formulas

based on cubic spline interpolation.

A related Pseudo–code sketching the main steps required for the computation of ws is given in Algorithm 2. Notice

that this procedure can be used -for example in collocation BEM methods- with respect to a generic vector of points

σ, while in our case we will have σ = η.

Input: Vector σ of abscissae in I, quadrature node vector η, exactness B-spline evaluations (B) j,n := B̄ j(ηn),

j = 1, . . . ,NE , n = 1, . . . ,Nquad

1 Perform LU-factorization of matrix B ;

2 for ν = 1, . . . , #σ do

3 Compute µ j(σν), j = 1, . . . ,NE ;

4 Calculate wσν as (minimum Euclidean norm) solution of Bwσν = µσν using matrix factorization ;

5 end

Output: vectors wσν , ν = 1, . . . , #σ

Algorithm 2: Construction of quadrature rules: singular case

Let us remark that we are proposing a new weighted quadrature where the weight is the singular kernel ln |t− s| for

a fixed value of s, and exactness is required on B-splines of a fixed degree. Following the analysis in [54], this require-

ment is the main ingredient for optimal convergence of the BIE approximate solution, because the quadrature error

estimate implies consistency of the overall scheme. Then, it is important to have some indication of the quadrature

error when applying the quadrature to a generic function. We consider the approximation of the integral

Is[v] :=

∫ 1

−1

ln |t − s| v(t) dt , (26)

for functions v(t) such that these values can be evaluated analytically and for s = ηn, where ηn is one of the quadrature

points introduced in Section 4. Then, the value Is[v] is approximated by Qs[v] as in equation (21). The error is

calculated as follows:

ERRd,Nh
[v] :=

∑Nquad

n=1
(Qηn [v] − Iηn [v])2

∑Nquad

n=1
(Qηn [v])2

, (27)

where Nquad is the number of quadrature points of the external quadrature. The complete analysis of the error of such

rules is beyond the scope of the present paper, we only report here some tests that we have run in order to confirm

their good behavior. We have done three kind of tests:
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1. First, we have checked that the exactness requirements are fulfilled. This issue is mainly concerned with the

condition number of the collocation matrix: we have chosen a-priori fixed quadrature points that could give bad-

conditioned matrices. In all our tests we get machine precision in the numerical computation of the modified

moments with the quadrature formula (21). Moreover, we have checked that the integral of the monomial

(considered in the whole patch) where exactness is due -namely the monomial td- is computed properly. Also

in these cases all tests up to degree d = 5 give exact result up to machine precision.

2. Then, we have considered the computation of moments where exactness is not required: for quadrature rules

where exactness is required on B-splines of degree d, we have computed approximated integrals of B-splines

of degree d + 1 and of the monomial td+1. Results are reported in Table 1.

3. At last, we have considered the integral:

Is















√
1 − t2

t2 + 25















=

∫ 1

−1

ln|t − s|
√

1 − t2

t2 + 25
dt = πln(2) +

π
√

26

5
ln















√
25 + s2

5 +
√

26















(28)

taken from reference [53]. This is an interesting benchmark, and in the cited paper the integral is approximated

by a procedure that computes an auxiliary integral via symbolic computations. On such function our aim is to

test monotone convergence confirmed by results available in Table 1.

Nh 10 20 40 80 100

d = 2 v(t) = B4,3(t) 3.46 · 10−7 1.41 · 10−7 5.62 · 10−8 2.08 · 10−8 1.49 · 10−8

3 B5,4(t) 2.92 · 10−8 1.40 · 10−8 7.20 · 10−9 3.75 · 10−9 3.03 · 10−9

4 B6,5(t) 5.96 · 10−10 2.39 · 10−10 1.03 · 10−10 4.40 · 10−11 3.44 · 10−11

5 B7,6(t) 2.58 · 10−11 9.64 · 10−12 3.92 · 10−12 1.06 · 10−10 4.67 · 10−9

d = 2 v(t) = t3 3.16 · 10−6 1.99 · 10−7 1.24 · 10−8 7.74 · 10−10 3.17 · 10−10

t4 5.21 · 10−5 3.25 · 10−6 2.04 · 10−7 1.27 · 10−8 5.22 · 10−9

d = 3 v(t) = t4 1.60 · 10−5 1.07 · 10−6 6.99 · 10−8 4.47 · 10−9 1.84 · 10−9

d = 2 v(t) =
√

1−t2

t2+25
6.89 · 10−4 2.60 · 10−4 9.45 · 10−5 3.37 · 10−5 2.41 · 10−5

3 4.05 · 10−4 1.50 · 10−4 5.30 · 10−5 1.85 · 10−5 1.31 · 10−5

4 2.92 · 10−4 1.06 · 10−4 3.66 · 10−5 1.25 · 10−5 8.80 · 10−6

5 2.04 · 10−4 7.09 · 10−5 2.44 · 10−5 8.23 · 10−6 5.76 · 10−6

Table 1: Error ERRd,Nh
[v(t)] as defined in (27). Notice that in the case of functions B j,d(t) the integrating function changes both rowwise, due to

degree d, and columnwise, due to Nh.

5. Efficient computation and assembly of IgA-SGBEM linear system

Applying quadrature rules introduced in the previous Section, and referring at first to (16), we can compute

I
(i, j)

K1
�

N
(i)

quad
∑

n1=1

w(i)
n1

J(η(i)
n1

)

N
( j)

quad
∑

n2=1

w
( j)
n2

J(η
( j)
n2

)K1(η(i)
n1
, η

( j)
n2

) (29)

and

I
(i, j)

K2
�

N
(i)

quad
∑

n1=1

w(i)
n1

J(η(i)
n1

)

Nquad
∑

n2=1

w
(η

(i)
n1

)

n2
J(ηn2

)B j(ηn2
) =

N
(i)

quad
∑

n1=1

w(i)
n1

J(η(i)
n1

)
∑

n2∈N ( j)

w
(η

(i)
n1

)

n2
J(ηn2

)B j(ηn2
) , (30)

where the last equivalence is due to the local support of B j , so that the number of non vanishing addends does not

depend on Nquad and therefor neither on NDoF .
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For the numerical evaluation of I
(i, j)

K2
, we could distinguish the case |i− j| > d+ 1 where the singularity does not occur,

so that the regular quadrature could be used as in (29). Nevertheless, in our implementation, we have used quadrature

rule (30) also for regular integrals in the construction of matrix IK2
, because we have checked that this change of rule

not only gives no advantage in terms of computational time, but also gives the same accuracy.

For the numerical evaluation of (17), we can simply consider

b
(i)

1
�

N
(i)

quad
∑

n=1

w(i)
n J(η(i)

n )uD(η(i)
n ) .

At last, since we assume f ∈ C2(I), for (18) we proceed by computing

b
(i)

2
�

N
(i)

quad
∑

n1=1

w(i)
n1

J(η(i)
n1

)

NGQ
∑

n2=1

wGQ
n2

K(η(i)
n1
, ηGQ

n2
)uD(ηGQ

n2
) ,

where
(

ηGQ,wGQ
)

is a gaussian quadrature, being the integrand function regular.

5.1. Assembly: computational cost

Following what described in the previous sections, the proposed procedure for the assembly of the algebraic

counterpart of the IgA-SGBEM scheme can be sketched as follows:

1. Fix Nre f and a choice of Nquad quadrature points η.

2. Construct the family of quadrature rules
(

η
(i)
n ,w

(i)
n

)

n=1,...N
(i)

quad

, i = 1, . . . ,NDoF following the procedure in Algo-

rithm 1. This is done by solving NDoF linear systems of dimension N
(i)

E
≤ (1 + Nre f )(d + 1).

3. Construct the family of quadrature rules
(

ηn,w
ηm

n

)

n=1,...Nquad

,m = 1, . . . ,Nquad following the procedure in Algo-

rithm 2. This is done by solving Nquad linear systems of dimension NE × Nquad ≈ Nre f NDoF × 2Nre f NDoF where

only the right hand size changes, so that the matrix can be factorized just once. We have performed in our tests

the usual LU factorization as implemented in Matlab.

4. Assembly the IgA-SGBEM matrix and right-hand side of interest. For computational efficiency, we propose

row assembly via sum factorization. Details of such construction can be found in [5, 16]. In Algorithm 3 we

present the technique in the case of (29).

Input: Quadrature rules

1 Set C(0)
n1,n2

:= K1(ηn1
, ηn1

), n1, n2 = 1, . . . ,Nquad;

2 for i = 1, . . . ,NDoF do

3 Compute C(1)

n1, j
:=

∑

n2∈N ( j) w
( j)
n2

J(η
( j)
n2

)C(0)
n1,n2

, j ∈ J (i);

4 Compute C(2)

i, j
:=

∑

n1∈N (i) w
(i)
n1

J(η
(i)
n1

)C(1)

n1, j
;

5 Fix C(2)

i,· to obtain the row I
(i,J (i))

K1
;

6 end

Output: matrix IK1
.

Algorithm 3: Construction of matrix IK1
of equation (29) by sum-factorization

Due to the savings introduced by the patch-strategy for the construction of the weighted quadratures, the number

of quadrature points for each parametric variable is 2d+2Nre f Nh −1. Thus the computational cost for the assembly of

the IgA-SGBEM linear system matrix with the introduced B-spline based quadrature strategy and sum factorization

is O([2d + 2Nre f Nh − 1]2) function evaluations.

Remark. In [3] the matrix entries were numerically evaluated within the framework of the standard element-by-

element assembly phase. This implies that, within a double nested cycle over the Nh mesh elements of the partition ∆
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on the parametrization interval I, having indicated by e
(i)

ℓi
, ℓi = 1, · · · , d + 1 the elements constituting the support of

the B-spline Bi, we computed and assembled (13) as

I
(i, j)

K
�

d+1
∑

ℓi=1

d+1
∑

ℓ j=1

∫

e
(i)

ℓi

Bi(s) J(s)

∫

e
( j)

ℓ j

K(s, t) B j(t) J(t) dt ds , (31)

taking into account the polynomial nature of the B-splines over each element of their support and using quadrature

schemes introduced in [2], suitable for standard local Lagrangian basis functions. In particular, in presence of kernel

singularity, arising for double integration over couples (e
(i)

ℓi
, e

( j)

ℓ j
) of coincident or consecutive elements, related double

integrals in (31) were split into the sum of a regular part and a singular part: the first was treated using Gauss-

Legendre rule for both inner and outer integrals, while the other term was evaluated using an interpolatory product

rule, absorbing kernel singularity into the weights, for the inner integration and the Double Exponential rule (briefly,

DE-rule), suitable for integrand function having weak singularities at the endpoints, for the outer integration. When

the double integration occurred on couples of ”far” elements Gauss-Legendre rule for both inner and outer integrals

was employed. The interested reader is referred to [2] and related references for more details on the above resumed

quadrature schemes.

Hence, having denoted by NG the number of the Gauss-Legendre rule points, by NDE the number of DE-rule points

and by Nprod the number of points of product rules for singular integration, the computational cost of the element-

by-element procedure for the generation of the IgA-SGBEM linear system matrix, in terms of integrand function

evaluation, was (d + 1)2(N2
h

N2
G
+ 3 Nh NDE Nprod) .

6. Numerical examples

In this section we present and discuss some numerical results obtained using both the old quadrature strategy with

the element-by-element assembly and the new B-spline based quadrature with the related new assembly. The old code

is developed in Fortran language while the new one is written in Matlab. Simulations have been performed on a laptop

equipped by Intel Core i5 CPU (2.53 GHz, 4 Gb RAM, 64 bit OS).

In all the following experiments, the error EM represents the maximum of the discrete error on a uniform mesh of 500

points in the parametric domain I, while ER is defined as the relative error in L2(I) norm. The details on the considered

BVP are reported in the description of each numerical test.

6.1. Exterior Dirichlet problem: parabola test

At first, let us consider the Dirichlet BVP defined in (6) exterior to the arc of parabola Γ = {x = (x1, x2) | x1 =

t, x2 = 1 − t2, t ∈ [−1, 1]}, representable by means of quadratic B-splines related to the extended knot vector

T1 =
[

−1 −1 −1 1 1 1
]

and to the control points Qi, i = 0, 1, 2, whose coordinates are collected in the following matrix:

Q =

[

−1 0 1

0 2 0

]

.

Here, the Dirichlet datum uD is given in such a way that the solution of (7) is explicitly known and reads ϕ(x) =
√

1 + 4x2
1
. The discrete counterpart of such BIE involves the computation of matrices IK1

and IK2
with, respectively,

regular and weakly singular integrals, see equations (29)-(30). Also, the right-hand side is regular so that in our

computations with the new assembly a B-spline weighted quadrature rule has been used. The comparison reported in

Table 2, for different values of the parameter h, which uniformly decomposes the parameter interval [−1, 1], involves

C1 quadratic B-spline basis used in the old (element-by-element, with NG = Nprod = 32, NDE = 63) and new (Nre f = 1

for both quadrature formulas) implementations of IgA-SGBEM.

Together with DoF and spectral condition numbers of the associated matrices, we show the relative error ER in L2

norm, the absolute errors EM in maximum norm and the elapsed time for the IgA-SGBEM matrix generation. Note

that the slightly different results concerning conditioning and accuracy are due to the different quadrature schemes
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adopted in the old and new assembly strategies. The elapsed time behaves in both cases as O(N2
h
) as expected, but the

superiority of the new approach is self-evident.

Similar conclusions can be deduced looking at the results in the bottom part of Table 2 where the comparison has been

done for increasing values of the B-spline basis degree d chosen for the approximation of the BIE solution. Here the

elapsed time behaves in both cases as O(d2).

The same data are used in Figure 1 where the convergence of errors are plotted with respect to the number of degrees

of freedom and with respect to assembly time. In the first plot it can be seen that the solution obtained with the new

strategy is accurate as the one calculated before, in the second plot it can be seen that the new strategy obtains very

good errors using modest times.

element-by-element new assembly

h DoF cond. ER EM time (s) cond. ER EM time (s)

1/5 12 7.19 · 101 1.54 · 10−4 5.08 · 10−4 6.80 8.56 · 101 1.79 · 10−4 6.67 · 10−4 0.13

1/10 22 1.87 · 102 1.65 · 10−5 5.73 · 10−5 15.96 1.87 · 102 1.72 · 10−5 5.96 · 10−5 0.44

1/20 42 4.57 · 102 1.96 · 10−6 6.92 · 10−6 41.75 4.50 · 102 2.01 · 10−6 6.98 · 10−6 1.93

1/40 82 1.01 · 103 2.43 · 10−7 8.50 · 10−7 134.29 9.90 · 102 2.48 · 10−7 8.60 · 10−7 6.47

1/80 162 2.12 · 103 3.03 · 10−8 1.07 · 10−7 566.12 2.07 · 103 3.08 · 10−8 1.06 · 10−7 25.45

1/160 322 4.34 · 103 3.90 · 10−9 1.97 · 10−8 2828.18 4.25 · 103 3.85 · 10−9 1.34 · 10−8 98.87

1/320 642 8.78 · 103 7.17 · 10−10 1.82 · 10−8 16659.45 8.59 · 103 4.81 · 10−10 1.64 · 10−9 409.79

d DoF cond. ER EM time (s) cond. ER EM time (s)

2 12 7.19 · 101 1.54 · 10−4 5.08 · 10−4 6.80 8.56 · 101 1.79 · 10−4 6.67 · 10−4 0.13

3 13 1.89 · 102 3.23 · 10−5 1.69 · 10−4 11.93 2.14 · 102 5.63 · 10−5 3.87 · 10−4 0.21

4 14 5.09 · 102 1.80 · 10−5 8.01 · 10−5 20.44 5.61 · 102 2.19 · 10−5 1.20 · 10−4 0.25

5 15 1.41 · 103 5.43 · 10−6 2.06 · 10−5 34.27 1.65 · 103 1.05 · 10−5 5.53 · 10−5 0.31

Table 2: Parabola test : comparison between the two different assembly strategy. On the top, for degree d = 2 and various spacing h. On the

bottom, for constant spacing h = 1/5 and various degrees d. On the first column we report calculated spectral condition number of the matrix. On

the second and third we report the calculated errors: true solution is known, thus the relative error ER in L2 norm and the absolute errors EM in

maximum norm are computed. Finally the elapsed time in seconds for the IgA-SGBEM matrix generation is reported.

Notice that the error when d increases decrees theoretically of a factor h, and this convergence is partially maintained from the methods, being the

condition number increasing. By the other side the convergence in h is as predicted in both cases, namely of order d + 1. In all tested cases the

condition number of the system is almost the same for the two assembly strategy and the overall time for assembly is strongly reduced by the new

strategy.

6.2. Interior Dirichlet problem: S-shaped closed domain test

We consider the interior Laplace problem (1) on the domainΩ shown in Figure 2, equipped by Dirichlet boundary

condition, where Γ := ∂Ω is described by cubic B-splines defined by the cyclic extended knot vector

T2 = [−3/2 : 1/6 : 3/2] ,

and control points depicted in Figure 2. Since uD = −(x1 + x2) is chosen, the solution of (3) is explicitly known, it

reads q(x) = q(f(t)) = ( f ′
1
(t) − f ′

2
(t))/‖f′(t)‖2 and has C1([−1, 1]) regularity.

Table 3 compares results obtained for this numerical test by the IgA-SGBEM element-by-element implementation

(NG = Nprod = 32, NDE = 63) and the new one (Nre f = 2 for both the quadrature formulas). Also in this case,

the new quadrature and assembly strategy reveals much faster than the old one. Because of modest regularity of the

solution the performed tests are limited to the case d = 3. The plot of the approximate solution obtained from the new

implementation with h = 1/48 is depicted in Figure 2, where the analytical solution of (3) is also reported.

This example is more challenging from the numerical point of view, due to modest regularity, the use of a direct

approach and the oscillations of the solution, see Figure 2. Moreover, we point out that the S-shaped domain, being

not starred, is not good for some of the interior point-BEM methods introduced recently [18].
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Figure 1: Parabola test: Convergence of the errors, case d = 2. On the left the plot of the errors with respect to the number of degrees of freedom

NDoF , on the right with respect to the assembly time. In blue with cross signs the new assembly, in red with circles the element-by-element strategy.

From the Figure on the left, the theoretical convergence of order d + 1 = 3 can be noticed. From the Figure on the right, we can conclude that the

new strategy is accurate as the previous and much more rapid.

element-by-element new assembly

h DoF cond. ER EM time (s) cond. ER EM time (s)

1/6 15 3.39 · 102 1.12 · 10−1 1.62 · 10−1 98.28 2.87 · 102 1.14 · 10−1 2.33 · 10−1 2.17

1/12 27 8.20 · 102 3.23 · 10−2 6.71 · 10−2 351.41 9.19 · 102 3.30 · 10−2 9.39 · 10−2 5.97

1/24 51 3.00 · 103 3.98 · 10−3 1.33 · 10−2 1240.44 3.67 · 103 4.03 · 10−3 1.97 · 10−2 22.50

1/48 99 8.75 · 103 5.79 · 10−4 2.03 · 10−3 4728.49 8.95 · 103 6.32 · 10−4 3.11 · 10−3 88.80

1/96 195 2.09 · 104 8.96 · 10−5 3.06 · 10−4 18615.21 2.15 · 104 1.85 · 10−4 1.69 · 10−3 372.18

Table 3: S-shaped domain test: comparison between the two different assembly strategies for degree d = 3. For the explanation of the columns see

the previous table. Notice that in all the tested cases the new assembly is accurate and efficient.
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Figure 2: S-shaped domain test: on the left the domainΩwith the control polygon (black) used to represent its boundary in cubic B–spline form with

the cyclic knot vector T2 (in red circles the control points); on the right analytic solution (solid) and numerical one obtained with d = 3, h = 1/48

(crosses).
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7. Conclusions and future work

In this paper we have presented a new strategy that gives fast assembly in IgA-SGBEM dealing with BVPs

equipped by Dirichlet boundary conditions. The remaining analysis for the application to mixed problems will be

covered in a forthcoming paper.

Note that the presented integration schemes can be easily used also in the context of collocation BEM, fixing the outer

collocation node and using the new quadrature rules for the inner integration.

Moreover, the proposed method can be profitably used when treating non-linear transmission problems, in order to

obtain the trace of the solution on the boundary, see [14].

An open issue consists in testing hierarchical spline spaces to develop an efficient adaptive isogeometric version of

the scheme, see [11]. The hierarchical approach could overcome the problem of dealing with non-regular curves.

The extension to 3D problems where the boundary surface can be described just by one open patch and the multi-patch

case for the description of closed surfaces is currently under study.
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