

Class 1, 2, and 3 BRAF-mutated metastatic colorectal cancer: A detailed clinical, pathologic, and molecular characterization

This is the peer reviewed version of the following article:

Original:

Schirripa, M., Biason, P., Lonardi, S., Pella, N., Simona Pino, M., Urbano, F., et al. (2019). Class 1, 2, and 3 BRAF-mutated metastatic colorectal cancer: A detailed clinical, pathologic, and molecular characterization. CLINICAL CANCER RESEARCH, 25(13), 3954-3961 [10.1158/1078-0432.CCR-19-0311].

Availability:

This version is available http://hdl.handle.net/11365/1096185 since 2020-03-13T08:32:05Z

Published:

DOI:10.1158/1078-0432.CCR-19-0311

Terms of use:

Open Access

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. Works made available under a Creative Commons license can be used according to the terms and conditions of said license.

For all terms of use and more information see the publisher's website.

(Article begins on next page)

Class 1, 2 and 3 BRAF mutated metastatic colorectal cancer:

a detailed clinical, pathological and molecular characterization

Marta Schirripa^{1§}, Paola Biason^{1§}, Sara Lonardi^{1*}, Nicoletta Pella², Maria Simona Pino³, Federica Urbano⁴, Carlotta Antoniotti⁵, Chiara Cremolini⁵, Salvatore Corallo⁶, Filippo Pietrantonio^{6,7}, Fabio Gelsomino⁸, Stefano Cascinu⁸, Armando Orlandi⁹, Giada Munari^{1,10}, Umberto Malapelle¹¹, Serena Saggio⁶, Gabriella Fontanini¹², Massimo Rugge¹⁰, Claudia Mescoli¹⁰, Stefano Lazzi¹³, Luca Reggiani Bonetti¹⁴, Giovanni Lanza¹⁵, Angelo Paolo Dei Tos¹⁶, Giovanna De Maglio¹⁷, Maurizio Martini^{18,19}, Francesca Bergamo¹, Vittorina Zagonel¹, Fotios Loupakis^{1*}, Matteo Fassan^{10*}

Affiliations:

¹Department of Oncology, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy

²Department of Oncology, University and General Hospital, Udine, Italy

³Medical Oncology Unit, Department of Oncology, Azienda USL Toscana Centro, S. Maria Annunziata Hospital, Florence, Italy

⁴Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, Roma, Italy

⁵Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

⁶Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy

⁷Department of Oncology and Hemato-oncology, University of Milan, Milano, Italy

⁸Department of Oncology and Haematology, University Hospital of Modena, Modena, Italy

⁹U.O.C Oncologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy

¹⁰Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Italy

¹¹Department of Public Health, University Federico II of Naples, Naples, Italy

¹²Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy

¹³Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy

¹⁴Department of Diagnostic Medicine and Public Health, Section of Pathology, Università di Modena e Reggio Emilia, Policlinico di Modena, Modena, Italy

¹⁵Department of Pathology, University of Ferrara, Ferrara, Italy

¹⁶Department of Pathology and Molecular Genetics, Treviso General Hospital, Treviso, Italy

¹⁷Department of Pathology, University Hospital of Udine, Udine, Italy

¹⁸Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, area di Anatomia Patologica, Fondazione policlinico Universitario A. Gemelli IRCCS, Roma, Italia

¹⁹Istituto di Anatomia Patologica, Università Cattolica Del Sacro Cuore, Roma, Italy

§Equal contribution as first authors

*Equal contribution as senior authors

Running title: Rare BRAF mutations in metastatic colorectal cancer CRC

Keywords: BRAF mutation, metastatic colorectal cancer, CMS, CD3/CD8, Cytokeratin, Personalized

medicine

Financial support: Regione Veneto RP-2014-00000395

Corresponding author:

Fotios Loupakis

Oncologia Medica 1, Istituto Oncologico Veneto IOV – IRCCS, via Gattamelata 64, 35128, Padova, Italy

Phone: + 39 049/8215919. Fax: + 39 049/8217929

fotios.loupakis@iov.veneto.it

Conflict of interest

Sara Lonardi had roles as consultant or advisor for Amgen, Bayer, Merck-Serono, Lilly. She received

research funding from Amgen, Merck-Serono and she is part of speakers bureau of Lilly, BMS.

Filippo Pietrantonio received honoraria and had roles as consultant or advisor for Amgen, Merck-Serono,

Roche, Sanofi, Bayer, Servier, Lilly.

Angelo Paolo Dei Tos had roles as consultant or advisor for Roche, Pfizer, PharmaMar, Lilly.

Vittorina Zagonel received honoraria and had roles as consultant or advisor for Bristol-Mayers Squibb,

Bayer, Roche, Pfizer, Janssen, Novartis, Astellas, Servier. She had roles as consultant or advisor for Celgene,

Merck-Serono.

Fotios Loupakis had roles as consultant or advisor for Roche, Bayer, Amgen, Genentech.

All the others authors declare no conflict of interest regarding the publication of this article.

Word count

Running Title: 8

Keywords: 5

Translational relevance: 82

Abstract: 250

Main text: 3703

References: 32

Total number of tables: 4 ordinary + 1 supplementary

Total number of figures: 2 ordinary + 3 supplementary

2

Downloaded from clincancerres.aacrjournals.org on April 9, 2019. © 2019 American Association for Cancer

Research.

Translational relevance:

This study focused on two rare and distinct subgroups of non-V600EBRAF mutated mCRC patients while comparing them to V600EBRAF mutated and a control set of wild-type patients. A detailed description of clinical and pathological features, including Consensus Molecular Subtypes (CMS) and BM1/BM2 categorization according to Barras et al. is reported, along with outcome data. Results underline the importance of non-V600EBRAF mutation detection and point out the need for focusing therapeutic research effort staking into account the specificities of these peculiar CRC subtypes.

Abstract

Purpose

BRAF mutations are grouped in activating *RAS*-independent signaling as monomers (class 1 - V600E) or as dimers (class 2 – codons 597/601), and *RAS*-dependent with impaired kinase activity (class 3 - codons 594/596). While clinical, pathological and molecular features of V600EBRAF mutated metastatic colorectal cancer (mCRC) are well known, limited data are available from the two other classes.

Experimental Design

Data from 117 *BRAF* (92 class 1, 12 class 2, and 13 class 3) mutated mCRC patients were collected. 540 *BRAF* wt mCRC were included as control. Immunohistochemical profiling was performed to determine the consensus molecular subtypes (CMS), cytokeratins 7/20 profiles, tumor infiltrating lymphocytes (TILs) infiltration and BM1/BM2 categorization. OS and PFS were evaluated by Kaplan-Meier and log-rank test.

Results

Class 3 *BRAF* mutated mCRC were more frequently left sided (p=0.0028), pN0 (p=0.0159), and with no peritoneal metastases (p=0.0176) compared to class 1, whereas class 2 cases were similar to class 1. HR for OS, as compared to *BRAF* wt, was 2.38 (95%CI 1.61-3.54) for class 1, 1.90 (95% CI 0.85-4.26) for class 2 and 0.93 (95% CI 0.51-1.69) for class 3 (p<0.0001). Class 2 and 3 tumors were all assigned to CMS2-3. A higher median CD3/CD8 positive lymphocytes infiltration was observed in *BRAF* mutated class 2 (p= 0.033) compared to class 3 cases.

Conclusions

For the first time different clinical, pathological features and outcome data are reported according to the 3 *BRAF* mutation classes in mCRC. Specific targeted treatment strategies should be identified in the next future for such patients.

Introduction

Analysis of molecular alteration like *RAS*, ^{V600E}BRAF mutation and microsatellite instability are nowadays a consolidated routine in the assessment of metastatic colorectal cancer (mCRC) patients¹ since all of them have a clear prognostic and/or predictive role.

V600EBRAF mutated mCRC patients share specific clinical and pathological features such as older age at diagnosis, female sex, right sided location of primary tumors, poor differentiation, mucinous histology and microsatellite instability²⁻⁴. In the metastatic setting, V600EBRAF mutation occurs in approximately 10% of cases, and it is associated with poor prognosis and scarce overall benefit from standard therapeutic approaches^{5,6}. Recently, specific gene expression profiles were described for distinguishing 2 subgroups among V600EBRAF mutated cancers, named BM1 (showing activation of KRAS/mTOR/AKT/4EBP1 pathway) and BM2 (with deregulation in the cell-cycle)⁷.

In recent years, thanks to the adoption of more accurate techniques for mutational status evaluation such as next generation sequencing and mass spectrometry other rare *BRAF* mutations have been identified. Overall non-V600EBRAF mutations occur in only 2% of mCRC patients and cover 19 different codons^{8,9}. The clinical significance of these mutations is largely unknown, due to the rarity of this condition.

Intriguing data on clinical features of non-V600EBRAF mutations in CRC patients emerged from 2 recent retrospective cohort studies. Those reports agree in defining the non-V600EBRAF mutated population (mainly including mutations in codons 594 and 596) as a distinct subgroup with its own features, in particular longer overall survival compared to V600EBRAF mutated patients, no association with older age, female sex, right sided tumor, mucinous histology, peritoneal spread and microsatellite instability^{8,10}.

A deeper knowledge of ^{non-V600E}BRAF mutation derived from functional studies on non-colorectal preclinical models which led to identify 3 classes of BRAF mutations: activating RAS-independent BRAF mutations signaling as monomers (class 1) or as dimers (class 2) and RAS-dependent BRAF mutations with impaired kinase activity or kinase-dead (class 3)⁹. ^{V600E}BRAF mutation belongs to class 1 whereas among ^{non-V600E}BRAF mutations those affecting codons 601 and 597 are assigned to class 2; while those in codons 594 and 596 to class 3. Preliminary data, mainly derived from melanoma models, suggested also a different sensitivity to BRAF inhibitors based on the 3 classes^{5,9,11}.

Moving from all the above considerations, the simple distinction in V600E and non-V600E mutations may be too simplistic, and a specific characterization of *BRAF* class 2 and 3 mutations is needed.

The present study aimed to provide a specific clinical, pathological, molecular and prognostic characterization of *non-V600E*BRAF* mutated mCRC patients.

Materials and Methods

Study design

Patients were categorized as follows: i) *BRAF* wild-type, ii) *BRAF* mutant class 1 (i.e. harboring the V600E alteration), iii) *BRAF* mutant class 2 (i.e. harboring codons 601 or 597 alterations) and iv) *BRAF* mutant class

3 (i.e. harboring codons 594 or 596 alterations). For all the *BRAF* mutated cases, tissue specimens (paraffin

embedded block or, as an alternative, 5 micron thick slides for IHC analyses) of primary and/or metastases

were collected from the archives of the referral Pathology Departments.

Data on availability of CRC samples diagnosed with $^{non-V600E}BRAF$ mutations were firstly retrieved from the 9

Italian Surgical Pathology Units involved in the study. Clinical and survival data of identified patients were

retrieved from 8 Italian Oncology Units and matched with available molecular and pathological

information. Main inclusion criteria were: diagnosis of metastatic CRC and available clinical data. Clinico-

pathological and survival data of V600EBRAF mutated and BRAF wild-type cases were collected from patients

referred to the Veneto Institute of Oncology, Padua, from January 2010 to December 2016. Clinical and

pathological features are described in **Table 1**. The study was approved by the Ethics Committee of Veneto

Institute of Oncology and was conducted according to ethical standards laid down in the 1964 Declaration

of Helsinki and its later amendments. Written informed consent was obtained from all the patients.

Mutational status analyses

RAS and BRAF mutational profiling were carried out on formalin fixed paraffin-embedded (FFPE) samples

from primary tumors and/or paired metastases by means of Sanger Sequencing, Sequenom MassArray

technology (Myriapod® Colon status, Diatech Pharmacogenetics, Jesi, Italy) or Ion Torrent PGM sequencing

(SiRe® next generation sequencing panel).

Pathological evaluation and IHC Analysis

Two experienced gastrointestinal pathologists, who were blinded to mutational status and patients'

outcome, revised specific pathological features of each sample.

Available primary and/or metastatic FFPE surgical samples were processed using the Galileo CK3500

Arrayer, a semiautomatic and computer-assisted Tissue microarray (TMA) platform. Four and three tissue

cores (1 mm in diameter) were obtained from each primary and metastatic lesion, respectively. Small

biopsy samples were processed separately. Immunohistochemical stainings were automatically performed

using the Bond Polymer Refine Detection kit (Leica Biosystems, Newcastle Upon Tyne, UK) in the BOND-

MAX system (Leica Biosystems) on 4 µm-thick sections. Primary antibodies, dilutions and scoring evaluation

are available upon request.

DNA mismatch repair machinery deficient tumours (MMRd) were defined in the absence of nuclear

6

Author Manuscript Published OnlineFirst on April 9, 2019; DOI: 10.1158/1078-0432.CCR-19-0311 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. immunostaining for one of the couples MLH1/PMS2 or MSH2/MSH6 in tumor cells¹².

Consensus molecular subgroups (CMS) were qualified according to Ten Hoorn and coll.¹³ by assessing 4 IHC markers (FRMD6, ZEB1, HTR2B, CDX2) in combination with pan-cytokeratin (KER) to normalize results. Primary tumors and/or metastasis were then categorized into the 3 CMS classes (CMS1, CMS2/3 or CMS4) using the online classification tool¹⁴, ¹⁵ (**Supplementary Figure 1**).

In *BRAF* class 2 and 3 cases, histological type and grading was revised according to the last updated WHO classification¹⁶. Cytokeratin expression pattern was evaluated by CK7 and CK20 expression, while tumor infiltrating lymphocytes (TILs) by means of positive intratumoral CD3/CD8 elements. To stratify class 2 and 3 tumors according to Barras et al.⁷ in BM1 and BM2 groups, an immunohistochemical profiling for CDK1, ATM, Phospho-AKT (Ser473), Cyclin D1, and Phospho-4E-BP1 (Thr70) expression was performed (**Supplementary Figure 2**). According to the Barras' paper, retained expression of ATM, activation of the AKT/4EB-P1 cascade (considering both the phosphorylated forms of AKT and 4E-BP1), low CDK1 expression and high Cyclin D1 expression are BM1 markers. Since no *a priori* criteria have been defined, we exploratively categorized each tumor based on their IHC profiles as follows.

To stratify class 2 and 3 tumors according to Barras et al. in BM1 and BM2 groups, we exploratively categorized each tumor based on the presence/absence of these 5 markers: CDK1, ATM, Phospho-Akt (Ser473), Cyclin D1, and Phospho-4E-BP1 (Thr70). Since BM1 is characterized by activation of PI3K/mTOR/AKT pathway, while BM2 of cell cycle pathway, we assigned samples to BM1 or BM2 based on the coherence of the following parameters. Overexpression of Phospho-Akt, Phospho-4E-BP1, ATM and Cyclin D1 and downregulation of CDK1 were consistent with a BM1 profile. On the other hand, BM2 cases were characterized by overexpression of CDK1 and downregulation of the remaining markers. A tumor was considered positive in ATM if >10% of tumor cells were positive for nuclear ATM staining. The activation of the AKT/4E-BP1 cascade was defined in the presence of high expression levels of the phosphorylated forms of AKT and/or 4E-BP1. High levels of Cyclin D1 and CDK1 expression were defined in the presence of at least 50% of positive cancer cells (Cyclin D1 in the nucleus, CDK1 both in the nucleus and cytoplasm). Samples with 4 or 5 coherent parameters were defined as BM1 or BM2, whereas tumors in which 3 out of 5 parameters were coherent with the hypothesis were defined as borderline BM1 or BM2. Tumors with only 1 or 2 parameters coherent with the original classification were defined as not evaluable.

Statistical analysis

Fisher's exact test or chi square test were used when appropriate to compare clinical, pathological and molecular features according to *BRAF* mutational status (*BRAF* wild-type versus (vs) *BRAF* mutant class 1 vs *BRAF* mutant class 2 vs *BRAF* mutant class 3; *BRAF* mutant class 1 vs *BRAF* mutant class 2; *BRAF* mutant class 3 and *BRAF* mutant class 2 vs *BRAF* mutant class 3). Overall survival (OS) was defined as the time from the diagnosis of metastatic disease to death due to any cause whereas progression free survival (PFS) was calculated from the date of first-line systemic treatment start to the first observed progression or death due to any cause. OS and PFS analyses were performed according to

the Kaplan–Meier method and survival curves were compared using the log-rank test. Statistical significance was set at p = 0.05 for a bilateral test. All analyses were carried out by means of MedCalc Software (Ostend, Belgium).

Results

Patients' characteristics, clinical outcome and treatments

Class 1, 2 and 3 *BRAF* mutated included 92, 12 and 13 patients respectively. *BRAF* wild-type patients were 540. Female patients were 49%, 50%, 46% and 37% in the 4 groups respectively. Median age was 69, 60, 56 and 62 years (p=0.004). Right-sided primary tumor occurred in 79%, 33.3%, 0% and 26% of cases (p<0.001) (**Table 1**).

Class 3 *BRAF* mutated patients were more frequently left-sided (46% vs 15%, p=0.003), with no locoregional nodal involvement (56% vs 17%, p=0.016) and no peritoneal spread (100% vs 69%, p=0.018) compared to class 1 ones. No differences were observed comparing class 2 with class 1 or class 3 cases (**Tables 1** and **2**).

Median OS was 21.0 vs 23.4 vs 44.5 vs 42.2 months, in *BRAF* mutated class 1, 2, 3 and *BRAF* wild-type, respectively (p<0.0001). Hazard ratio (HR) for OS was 2.38 (95% CI 1.61-3.54) for class 1 *BRAF* mutated, 1.90 (95% CI 0.85-4.26) for class 2 *BRAF* mutated and 0.93 (95% CI 0.51-1.69) for class 3 *BRAF* mutated compared to *BRAF* wild-type patients (**Figure 1**).

Median PFS from the beginning of the first-line treatment was 7.3 vs 7.0 vs 13.8 vs 10.1 months, in the 4 groups, respectively (p<0.0001). HR for PFS was 2.02 (95% CI 1.39-2.94) for class 1 *BRAF* mutated, 2.49 (95% CI 0.92-6.74) for class 2 *BRAF* mutated and 0.85 (95% CI 0.47-1.54) for class 3 *BRAF* mutated compared to *BRAF* wild-type patients (**Figure 2**).

In the group of *BRAF* wild type patients, among 463 patients undergoing first-line chemotherapy, 49 received a monotherapy plus/minus a biologic agent, 288 received a doublet plus/minus a biologic agent and 124 received a three drugs combination plus/minus a biologic agent, 2 received other treatments. Overall, 292 of them received a bevacizumab-based treatment and 123 an anti-EGFR antibody.

Among 73 class 1 *BRAF* mutated patients receiving first-line treatment, 7 underwent to a monotherapy plus/minus a biologic agent, 43 received a doublet plus/minus a biologic agent and 14 received a three drugs combination plus/minus a biologic agent, 9 received other treatments. Overall, 50 of them received a bevacizumab-based treatment, 7 received a treatment with an anti-EGFR antibody.

Nine out of 12 class 2 *BRAF* mutated patients received a first-line treatment. In particular, 2 underwent to a monotherapy and 7 to a doublet plus/minus a biologic agent. None of them received an anti-EGFR antibody.

Nine of 13 class 3 BRAF mutated patients received a first-line treatment. In particular, 1 underwent to a

monotherapy, 5 to a doublet plus/minus a biologic agent, 3 to a three drugs combination plus/minus a biologic agent. Overall, 4 of them received a bevacizumab-based treatment and 5 received treatment with an anti-EGFR antibody.

Mutational status and CMS in BRAF mutant patients

Among class 1 *BRAF* mutated patients, adequate tissue specimens were available for 74 out of 92 patients. In 40 out of 74 cases both primary and metastatic samples were available (9 cases had multiple metastatic sites available for IHC analysis). Overall, as indicated in **Table 3**, 39% of class 1 tumors were defined as CMS1 (immune-like subtype), 44% of patients as CMS 2-3 (epithelial-like subtype) and 17% of patients as CMS4 (mesenchymal-like subtype). Three cases were deemed as not evaluable due to lack of concordance between primary and metastatic samples.

Among class 2 *BRAF* mutated patients, all tumors carried a *BRAF* p.K601E mutation. Of note, one tumor was characterized by a concomitant *NRAS* p.G12C mutation. Adequate tissue specimens were available for 11 out of 12 patients. A total of 20 specimens were considered (8 primary and 12 metastatic); three cases had multiple metastatic sites available for IHC analysis and in three cases both primary and metastatic samples were available. All analyzed samples were categorized as CMS2-3.

Among class 3 *BRAF* mutated patients, 2 tumors carried a *BRAF* p.D594N mutation and 11 a *BRAF* p.D594G mutation. No other concomitant *RAS* mutation was identified. Adequate tissue specimens were available for 10 out of 13 patients. Overall 18 samples were analyzed (8 primary and 10 metastatic); 3 cases had multiple metastatic sites available for IHC analysis and in 3 cases both primary and metastatic samples were available. All analyzed samples were categorized as CMS2-3.

Pathological features, lymphocyte infiltration and BM1/BM2 Classification in class 2 and 3 BRAF mutated patients

Based on the WHO classification, among class 2 *BRAF* mutated cases, 1 tumor had mucinous histology, 1 micropapillary histology and 9 were not otherwise specified (NOS) adenocarcinomas. Tumor grade was high (i.e. grade 3 and 4) in 5 cases and low (i.e. grade 1 and 2) in the remaining 6 tumors. Intratumor phenotypic heterogeneity was evident only in a NOS adenocarcinoma, which showed intermingled areas of well-to-poor differentiation. No MMRd tumor was identified (**Table 3**). All cases showed a high CDX2 expression. In one case, metastatic samples showed a significant loss of CDX2 expression in comparison to the matched primary tumor, however those metastatic lesions retained the same histologic grade and a strong CK20 positivity, as observed in primary samples. The analysis of cytokeratins expression and infiltrating lymphocytes evaluation was possible in 9 samples. Two tumors (29%) were characterized by a low CK20 expression and two metastatic samples showed a significant loss in CK20 expression in

comparison to their matched primary/metastatic samples. All samples showed loss/low CK7 expression, in particular 3 cases (33.3%) showed a faint (1+) CK7 immunoreactivity. Median CD3 and CD8 positive infiltrating lymphocytes per high power field were high in 4 cases (**Table 4** and **Supplementary Figure 3**).

Among class 3 *BRAF* mutated patients, based on the WHO classification, 2 tumors had micropapillary histology, 1 cribriform histology and 7 were NOS adenocarcinomas. Intratumor phenotypic heterogeneity was evident in the 2 cases with micropapillary histology, which showed areas of poorly differentiated NOS histology. Tumor grade was high in 3 tumors and low in the remaining 7. As observed in class 2 lesions, no MMRd tumor was identified. Three cases (30%) showed a low expression of CDX2. Four tumors (40%) showed a low CK20 expression, all samples showed loss/low CK7 expression, whereas 2 samples showed a faint CK7 immunoreactivity. No significant intratumor heterogeneity for CMS, CDX2 and cytokeratins expression was observed in the 3 cases with multiple metastatic biopsies, nor among matched primary and metastatic samples. Median CD3 and CD8 positive infiltrating lymphocytes per high power field were low in all cases (Table 4 and Supplementary Figure 3).

Overall no differences were observed among class 2 and 3 cases, with the exception of a higher median CD3 and CD8 positive lymphocytes infiltration in class 2 *BRAF* mutated samples (p= 0.033) (**Table 4**).

In class 2 *BRAF* mutated tumors, 6 cases were positive for ATM, 7 showed an activation in AKT/4E-BP1, 2 were characterized by high levels of CDK1 and 3 by high levels of Cyclin D1. Overall, 5 cases were classified as BM1 (56%), 4 as BM2 (44%) whereas 2 tumors were not classifiable according to BM status (**Table 4**).

In class 3 *BRAF* mutated tumors, 4 cases were positive for ATM, 5 showed an activation in AKT/4E-BP1, 5 were characterized by high levels of CDK1 and 5 by high levels of Cyclin D1. Overall, 2 cases were classified as BM1 (33%), 4 as BM2 (67%), whereas 4 tumors were not classifiable according to BM status (**Table 4**).

Discussion

Several clinical and pathological descriptions of class 1 *BRAF* mutated mCRC patients (i.e. V600E) have been published indicating specific features and overall poor life expectancy^{5,6}. Our work characterized from a clinical, prognostic and biological perspective the complete panel of known *BRAF* mutations according to functional classes, showing specific features for class 2 *BRAF* mutated mCRC that have never been so extensively reported before, mainly due to their rarity. Moreover, we confirmed previous findings on class 1 and class 3 *BRAF* mutated^{8,10} and cross compared all the categories.

Looking at OS and PFS data, we observed that class 2 *BRAF* mutated patients have worse prognosis compared to class 3 and wild type patients, and class 1 - class 2 *BRAF* mutated patients share similar poor median OS and PFS.

From a practical point of view, the identification of new subgroups of mCRC patients with specific and rare *BRAF* mutations underlines the importance of the extensive adoption of modern techniques such as mass spectrometry or NGS in the daily clinical assessment of mCRC patients.

In the present study, we applied the CMS classification to the 3 *BRAF* classes adopting the practical and rapid immunohistochemical method proposed by Trinh et al.¹⁵ which allow to distinguish CMS2-3 from CMS4 cases analyzing four specific markers (CDX2, FRMD6, HTR2B and ZEB1). We defined CMS1 based on MMRd status, testing for lack of expression of PMS2 and/or MSH6. All class 2 and 3 patients were classified as CMS2-3 and no heterogeneity was observed when pairing primary and/or metastatic samples. So that, disease development and progression might not be dependent on immune related mechanisms and/or mesenchymal related pathways. Looking at class 1 *BRAF* mutated patients, a wider heterogeneity has been detected since CMS1, 2-3 and 4 occurred respectively in 39%, 44% and 17% of cases. Among this group, such classification might provide further helpful information for patients' stratification and treatment decision making and would need specific studies. Recently Sveen et al.¹⁷, investigated drug sensitivity according to CMS classification in preclinical models showing that CMS2 cell lines and PDX are more sensitive to EGFR and HER2 inhibition compared to other CMS subgroups. Unfortunately, IHC evaluation of CMS does not allow distinguishing CMS2 and 3 patients, so that to this extent further studies are needed.

To better characterize differences among class 2 and 3 patients we performed a deep IHC characterization. CK7 and CK20 profiling revealed low rate of heterogeneity when looking at primaries and paired metastases and none of our cases showed a complete inversion of the CK7 and CK20 expression, already described elsewhere in some class 1 *BRAF* mutated cases ^{18,19}.

Loss of CDX2 expression has been proposed as a negative prognostic feature in mCRC patients and it is frequently associated with ^{V600E}BRAF mutation and MMRd¹⁸⁻²⁰. In our series, loss of CDX2 was observed among 3 class 3 *BRAF* mutated cases. Due to the small numbers we were not able to further speculate on the prognostic impact of such feature.

Of note, CD3 and CD8 infiltration, already known as a prognostic feature in CRC²¹⁻²³, was higher in class 2

BRAF mutated compared to class 3 patients (p= 0.033). Such finding might contribute to explain the outcome differences observed in our series.

From a therapeutic point of view, we can't drive any definitive conclusion on anti-EGFR sensitivity of *BRAF* class 2 and 3 patients. A recent case report described a class 2 *BRAF* mutated mCRC patient achieving a durable response after treatment with panitumumab single agent²⁴. In our series, among class 2 *BRAF* mutated only 3 patients received an anti-EGFR with one responder, among class 3 *BRAF* mutated 6 patients received an anti-EGFR with 4 responders. Although definitive conclusions cannot be drawn, taking into account the kinase signaling mechanisms in class 2 and 3 patients, it could be hypothesized that class 3 patients might derive some benefit from anti-EGFRs due to their impaired kinase activity and to their RAS dependency. On the other hand, no reliable and specific data are available regarding systemic treatments of class 2 and 3 *BRAF* mutated patients.

International guidelines recommend as first line treatment for BRAF class 1 patients with good performance status and younger than 75 years a 4-drugs combination (the triplet FOLFOXIRI plus bevacizumab regimen)1. Many trials have been performed and/or are ongoing in order to identify targeted strategies able to block the hyper activated V600EBRAF signals. Disappointing results have been obtained with BRAF inhibitors alone²⁴⁻²⁶ and currently, new therapeutic options are under evaluation for this subgroup of patients adopting BRAF plus MEK inhibitors together with anti-EGFRs monoclonal antibodies²⁷. The recent stratification of class 1 BRAF mutated patients into BM1 and BM2 upon gene expression laid the basis for a more tailored biologic approach in the development of targeted therapies. Specifically, BM1 subgroup is characterized by activation of KRAS/mTOR/AKT/4EBP1 pathway, whereas the BM2 had a deregulation in the cell-cycle⁷. In our study, we assigned samples to BM1 or BM2 category adopting a specific IHC expression analyses. Of note, 2 and 4 cases among class 2 and 3 patients, respectively, were not assigned to either BM1 or BM2 since they presented a peculiar IHC profile not properly matching with BM1/BM2 categorization. One can hypothesize the presence of peculiar activation pathways for non-V600EBRAF mutated cases, however we should also consider the intrinsic limitations of our results due to the application of a different technique (IHC instead of gene expression) and the limited sample size of our work.

Interestingly, *in vitro* sensitivity of class 2 and 3 *BRAF* mutations to *MEK* and *BRAF* inhibition has been proven in melanoma, and a small number of patients with these mutations showed responses to treatment with MEK inhibitors²⁸⁻³¹. The largest cohort of patients was collected by Boweyer et al. describing the antitumor activity of trametinib in 5 patients bearing the rare class 2 or class 3 *BRAF* mutations³². Moreover, in order to elucidate these differences, functional studies were conducted in melanoma models showing that the activation of *RAS* and *ERK* pathways by these 3 classes through different mechanisms can explain their different sensitivity to therapeutic inhibitors: class 1 is sensitive to RAF "monomer" inhibitors (i.e. vemurafenib), class 2 is resistant to vemurafenib and could be sensitive to novel RAS dimer inhibitors (i.e. LY3009120) or MEK inhibitors (i.e. trametinib), class 3 is potentially sensitive to RTKs inhibitors (i.e. dasatinib)^{3,5,9,11}. Further studies are needed to clarify such mechanisms in CRC models and patients in the

In conclusion, our study extensively described for the first time the non-V600EBRAF mutations as two different subtypes of rare mCRC with specific clinical and prognostic and pathological features that might be taken into account when planning new basic research initiatives and innovative clinical trials in this setting.

References:

- 1. Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. *Ann Oncol.* **2016**;27(8):1386-22.
- 2. Clancy C, Burke JP, Kalady MF, Coffey JC. BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. *Colorectal Dis.* **2013**;15(12):e711-18.
- 3. Ogino S, Brahmandam M, Cantor M, et al. Distinct molecular features of colorectal carcinoma with signet ring cell component and colorectal carcinoma with mucinous component. *Mod Pathol.* **2006**;19(1):59-68.
- 4. Naguib A, Mitrou PN, Gay LJ, et al. Dietary, lifestyle and clinicopathological factors associated with BRAF and K-ras mutations arising in distinct subsets of colorectal cancers in the EPIC Norfolk study. *BMC Cancer.* **2010**;10:99.
- 5. Zheng G, Tseng LH, Chen G, et al. Clinical detection and categorization of uncommon and concomitant mutations involving BRAF. *BMC Cancer.* **2015**;15:779.
- 6. Comprehensive molecular characterization of human colon and rectal cancer. *Nature*. **2012**;487(7407):330-37.
- 7. Barras D, Missiaglia E, Wirapati P, et al. BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. *Clin Cancer Res.* **2017**;23(1):104-15.
- 8. Jones JC, Renfro LA, Al-Shamsi HO, et al. Non-V600 BRAF Mutations Define a Clinically Distinct Molecular Subtype of Metastatic Colorectal Cancer. *J Clin Oncol.* **2017**;35(23):2624-30.
- 9. Yao Z, Yaeger R, Rodrik-Outmezguine VS, et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. *Nature.* **2017**;548(7666):234-38.
- Cremolini C, Di Bartolomeo M, Amatu A, et al. BRAF codons 594 and 596 mutations identify a new molecular subtype of metastatic colorectal cancer at favorable prognosis. *Ann Oncol.* 2015;26(10):2092-97.
- 11. Karoulia Z, Gavathiotis E, Poulikakos Pl. New perspectives for targeting RAF kinase in human cancer. *Nat Rev Cancer.* **2017**;17(11):676-91.
- Remo A,Fassan M,Lanza G. Immunohistochemical evaluation of mismatch repair proteins in colorectal carcinoma: the AIFEG/GIPAD proposal. *Pathologica*. **2016**;108(3):104-09.
- Ten Hoorn S, Trinh A, De Jong J, et al. Classification of Colorectal Cancer in Molecular Subtypes by Immunohistochemistry. *Methods Mol Biol.* **2018**;1765:179-91.
- 14. https://crcclassifier.shinyapps.io/appTesting.
- 15. Trinh A, Trumpi K, De Sousa E Melo F, et al. Practical and Robust Identification of Molecular Subtypes in Colorectal Cancer by Immunohistochemistry. *Clin Cancer Res.* **2017**;23(2):387-98.
- 16. Bosman FT, Hruban RH, Theise ND. *WHO classification of tumours of the digestive system.* Vol 3. 4th ed. Lyon, France: IARC Press, **2010**.

- Author Manuscript Published OnlineFirst on April 9, 2019; DOI: 10.1158/1078-0432.CCR-19-0311 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
- 17. Sveen A, Bruun J, Eide PW, et al. Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. *Clin Cancer Res.* **2018**;24(4):794-06.
- 18 Kim JH, Rhee YY, Bae JM, et al. Loss of CDX2/CK20 expression is associated with poorly differentiated carcinoma, the CpG island methylator phenotype, and adverse prognosis in microsatellite-unstable colorectal cancer. *Am J Surg Pathol.* **2013**;37:1532-41.
- 19 Landau MS, Kuan SF, Chiosea S, et al. BRAF-mutated microsatellite stable colorectal carcinoma: an aggressive adenocarcinoma with reduced CDX2 and increased cytokeratin 7immunohistochemical expression. *Human Pathology.* **2014**;45:1704–12.
- Bruun J, Sveen A, Barros R, et al. Prognostic, predictive, and pharmacogenomic assessments of CDX2 refine stratification of colorectal cancer. *Mol Oncol.* **2018**;12(9):1639-55.
- Yoon HH, Shi Q, Heying EN, et al. Intertumoral Heterogeneity of CD3(+) and CD8(+) T-Cell Densities in the Microenvironment of DNA Mismatch-Repair-Deficient Colon Cancers: Implications for Prognosis. *Clin Cancer Res.* **2018**; 25(1):125-133.
- 22. Pages F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. *Lancet.* **2018**;391(10135):2128-39.
- 23. Allen WL, Dunne PD, McDade S, et al. Transcriptional subtyping and CD8 immunohistochemistry identifies poor prognosis stage II/III colorectal cancer patients who benefit from adjuvant chemotherapy. *JCO Precis Oncol.* **2018**;2018:10.1200/PO.17.00241.
- 24. Corcoran RB, André T, Yoshito T, et al. Efficacy and circulating tumor DNA (ctDNA) analysis of the BRAF inhibitor dabrafenib (D), MEK inhibitor trametinib (T), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E- mutated (BRAFm) metastatic colorectal cancer (mCRC). *Ann Oncol.* 2016;27: abstract 4450.
- 25. Hong D, Morris V, El Osta B, et al. Phase Ib study of vemurafenib in combination with irinotecan and cetuximab in patients with BRAF-mutated metastatic colorectal cancer and advanced cancers. *J Clin Oncol.* **2015**;33:abstract 3511
- 26. Corcoran RB, Atreya CE, Falchook GS, et al. Combined BRAF and MEK Inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. *J Clin Oncol.* **2015**;33:4023-31.
- 27. Gong J, Cho M, Fakih M. RAS and BRAF in metastatic colorectal cancer management. *J Gastrointest Oncol.* **2016**;7(5):687-04.
- 28. Dahlman KB, Xia J, Hutchinson K, et al. BRAF(L597) mutations in melanoma are associated with sensitivity to MEK inhibitors. *Cancer Discov.* **2012**;2(9):791-97.
- 29. Richtig G, Aigelsreiter A, Kashofer K, et al. Two Case Reports of Rare BRAF Mutations in Exon 11 and Exon 15 with Discussion of Potential Treatment Options. *Case Rep Oncol.* **2016**;9(3):543-46.
- 30. Kim KB, Kefford R, Pavlick AC, et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. *J Clin Oncol.* **2013**;31(4):482-89.

- 31. Marconcini R, Galli L, Antonuzzo A, et al. Metastatic BRAF K601E-mutated melanoma reaches complete response to MEK inhibitor trametinib administered for over 36 months. *Exp Hematol Oncol.* **2017**;6:6.
- 32. Bowyer SE, Rao AD, Lyle M, et al. Activity of trametinib in K601E and L597Q BRAF mutation-positive metastatic melanoma. *Melanoma Res.* **2014**;24(5):504-08.

Tables

Table 1. Baseline characteristics and major clinical parameters*

Charact	ceristics	BRAF wt TOT=540 N (%)	BRAF mut class 1 TOT=92 N (%)	BRAF mut class 2 TOT=12 N (%)	BRAF mut class 3 TOT=13 N (%)	p	p*	p ⁵	p#
Sex	Female	200 (37)	45 (49)	6 (50)	6 (46)	0.0458	1.0000	1.0000	1.0000
	Male	340 (63)	47 (51)	6 (50)	7 (54)				
Age	Median (range)	62 (21-91)	69 (35-85)	60 (45-89)	56(45-83)	0.004	0.115	0.759	0.251
Age	> 70	132 (24)	39 (42)	5 (42)	3 (23)	0.0007	0.4110	1.0000	0.2254
	≤ 70	408 (76)	53 (58)	7 (58)	10 (77)	0.0007	0.4110	1.0000	0.2351
Baseline ECOG PS	0	373 (69)	64 (70)	6 (55)	11 (85)				
	1	139 (26)	22 (24)	3 (18)	0 (0)	0.8875	0.2506	1.0000	0.167
	≥ 2	28 (5)	6 (6)	3 (27)	2 (15)				
Primary tumor	Yes	314 (58)	75 (82)	9 (75)	10 (77)	<.0001	1.0000	0.6965	0.7097
resected	No	226 (42)	17 (18)	3 (25)	3 (23)	<.0001	1.0000	0.0903	0.7097
Primary tumor	Right	137 (26)	73 (79)	4 (33.3)	0 (0)				
location	Left	265 (49)	14 (15)	4 (33.3)	6 (46)	<.0001	0.4666	0.1294	0.0028
i	Rectum	136 (25)	5 (5)	4 (33.3)	7 (54)	<.0001			
	NA	2	0	0	0				
Presentation of mets	Synchronous	383 (71)	60 (65)	7 (58)	7 (54)	0.3401	1.0000	0.7508	0.5395
	Metachronous	157 (29)	32 (35)	5 (42)	6 (46)				
Mucinous histology	Yes	34 (7)	26 (31)	2 (17)	3 (23)				
	No	497 (93)	58 (69)	10 (83)	10 (77)	<.0001	1.0000	0.4993	1.0000
	NA	9	8	0	0				
рТ	1-2	58 (14)	3 (4)	2 (20)	2 (20)				
	3-4	350 (86)	83 (96)	8 (80)	8 (80)	0.013	1.0000	0.0828	0.0828
	NA	132	6	2	3				
pN	0	104 (26)	14 (17)	4 (40)	5 (56)				
	≥1	292 (74)	70 (83)	6 (60)	4 (44)	0.0973	0.6563	0.0944	0.0159
	NA	144	8	2	4				
N° of metastatic	1	358 (66)	61 (66)	9 (75)	10 (77)	0.9203	1.0000	0.7467	0.5406
sites	≥ 2	182 (34)	31 (34)	3 (25)	3 (23)	-		0 107	0.0 700

^{*} class 2 vs class 3

[§] class 1 vs class 2

class 1 vs class 3

•i.e. at the time of first-line treatment start or, for candidates to BSC only, at the first visit for metastatic disease

Table 2. Sites of metastasis at diagnosis

Sites of met diagnosi:		BRAF wt TOT= 540 N (%)	BRAF mut class 1 TOT=92 N (%)	BRAF mut class 2 TOT=12 N (%)	BRAF mut class 3 TOT=13 N (%)	р	p*	p [§]	p#
Liver	Yes No	387 (72) 153 (28)	44 (48) 48 (52)	8 (67) 4 (33)	10 (77) 3 (23)	<.0001	0.6728	0.3579	0.0740
Lung	Yes	104 (19) 436 (81)	15 (16) 77 (84)	2 (18)	2 (15) 11 (85)	0.6101	1.0000	1.0000	1.0000
Distant Nodes	Yes	109 (20) 431 (80)	38 (41) 54 (59)	2 (18)	2 (15)	<.0001	1.0000	0.1234	0.1245
Peritoneum	Yes	102 (19)	29 (31)	3 (27) 9 (73)	0 (0)	0.0098	0.0957	0.7510	0.0176
Other	Yes No	60 (11) 480 (89)	12 (13) 80 (87)	1 (10) 11 (90)	3 (23) 10 (77)	0.729	0.5930	1.0000	0.3928

^{*} class 2 vs class 3

[§] class 1 vs class 2

[#] class 1 vs class 3

Table 3. Molecular stratification according to CMS

	BRAF mut class 1 TOT=74 N (%)	BRAF mut class 2 TOT=11 N (%)	BRAF mut class 3 TOT=10 N (%)	p	p*	p§	p#
CMS 1 - Immune-like	28 (39%)	0 (0%)	0 (0%)				
CMS 2/3 - Epithelial-like	31 (44%)	11 (100%)	10 (100%)				
CMS 4 - Mesenchymal-like	12 (17%)	0 (0%)	0 (0%)	0.0146	1	0.0015	0.0009
NA	3	0	0				

^{*} class 2 vs class 3

[§] class 1 vs class 2

[#] class 1 vs class 3

Table 4. Histopathological features, tumor infiltrating lymphocytes immunophenotype and BM1/BM2 classification in *BRAF* mutated class 2 and 3 patients

	BRAF mut class 2	BRAF mut class 3	
	TOT=11	TOT=10	p-value
	N (%)	N (%)	
Grading			
Low	6 (54)	7 (70)	0.659
High	5 (46)	3 (30)	
СК7			
Low (0-1)	9 (100)	10 (100)	1
High (2-3)	0 (0)	0 (0)	
NE	2	0	
СК20			
Low (0-1)	2 (29)	4 (40)	1
High (2-3)	5 (71)	6 (60)	
Discordant	2	0	
NE	2	0	
CDX2			
Low (0-150)	0 (0)	3 (30)	0.211
High (≥150)	10 (100)	7 (70)	
Discordant	1	0	
NE	0	0	
CD3/CD8			
Low (0-20)	5 (56)	10 (100)	0.033
High (>20)	4 (44)	0 (0)	
NE	2	0	
BM1/BM2 Classification			
BM1	5 (56)	2 (33)	0.608
ВМ2	4 (44)	4 (67)	
NA	2	4	

NE = not evaluable; NA = not assessable

Figure 1. Median OS according to BRAF mutation classes

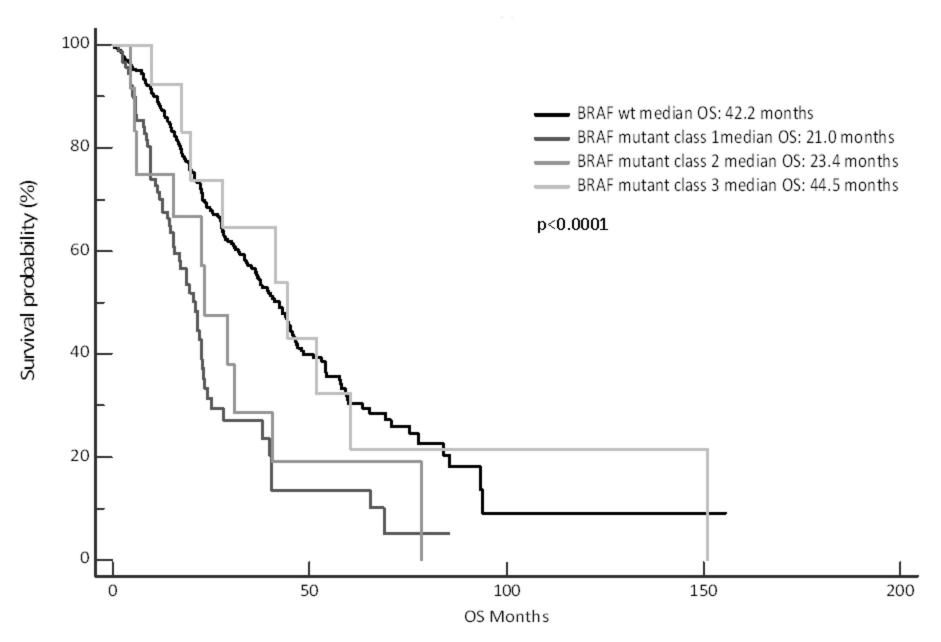
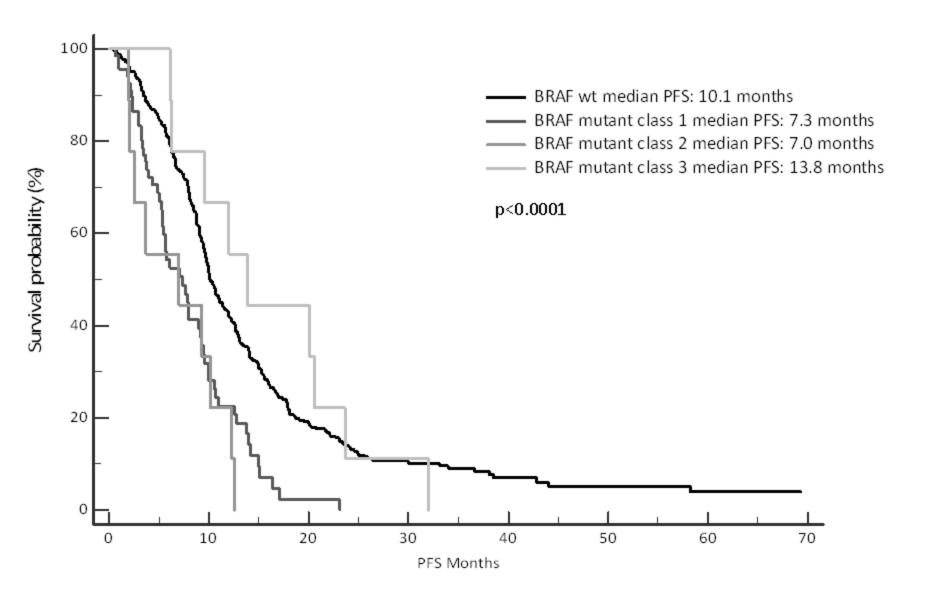



Figure 2. Median PFS according to BRAF mutation classes

Clinical Cancer Research

Class 1, 2 and 3 BRAF mutated metastatic colorectal cancer: a detailed clinical, pathological and molecular characterization

Marta Schirripa, Paola Biason, Sara Lonardi, et al.

Material

Clin Cancer Res Published OnlineFirst April 9, 2019.

Access the most recent version of this article at: **Updated version**

doi:10.1158/1078-0432.CCR-19-0311

Access the most recent supplemental material at: Supplementary

http://clincancerres.aacrjournals.org/content/suppl/2019/04/09/1078-0432.CCR-19-0311.DC1

Author manuscripts have been peer reviewed and accepted for publication but have not yet Author been edited. Manuscript

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Reprints and Department at pubs@aacr.org. **Subscriptions**

Permissions To request permission to re-use all or part of this article, use this link

http://clincancerres.aacrjournals.org/content/early/2019/04/09/1078-0432.CCR-19-0311.

Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)

Rightslink site.