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Preface 

 

A solid tumor is a dysfunctional neoplastic tissue characterized by uncontrolled 

growth and chaotic histological organization and it is composed, in addition to cancer 

cells, by heterogeneous subsets of non-transformed cells, such as mesenchymal stem 

cells, fibroblasts, endothelial cells, adipocytes and immune cells, establishing a 

complex tumor microenvironment (TME) with peculiar structural and biophysical 

characteristics. The features of the neoplastic parenchyma are well instructed through 

a complex interplay between cancer and stromal cells, orchestrated by soluble factors, 

metabolites, extracellular vesicles (EVs), as well as cell-to-cell interaction. All those 

processes will involve some peculiar proteins interacting with different type of 

molecule that could be studied by using computational approaches. 
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1. INTRODUCTION 

 

In recent years, bioinformatics is becoming more and more prevalent especially in 

pharmaceutical chemistry studies for the discovery of new and more innovative drugs 

aimed at different types of targets according to the different types of diseases. 

 

Bioinformatics  is an interdisciplinary field that develops methods and software tools 

for understanding biological data, in particular when the data sets are large and 

complex. As an interdisciplinary field of science, bioinformatics combines biology, 

computer science, information engineering, mathematics and statistics to analyze and 

interpret the biological data. Bioinformatics has been used for in silico analyzes of 

biological queries using mathematical and statistical techniques.  

 

 

Bioinformatics includes biological studies that use computer programming as part of 

their methodology, as well as a specific analysis "pipelines" that are repeatedly used, 

particularly in the field of genomics. Common uses of bioinformatics include the 

identification of candidates genes and single nucleotide polymorphisms (SNPs), 

thanks to the most varied genomics sequencing techniques such as NGS 

sequencing[1]. Often, such identification is made with the aim of better 

understanding the genetic basis of disease, unique adaptations, desirable properties 

(esp. In agricultural species), or differences between populations. In a less formal 

way, bioinformatics also tries to understand the organizational principles within 

nucleic acid and protein sequences, called proteomics. [1] 
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Figure 1. Map of the human X chromosome (from the National Center for Biotechnology 

Information website) 

 

 

In general, however, we have different areas of bioinformatics. For example we have 

the bioinformatics of omics[2], in which the studies are carried out purely on data 

coming from genomics[1], transcriptomics[1], proteomics[1], metabolomics[1] and 

other "omics"; structural bioinformatics, in which we study in depth the protein 

structures , Nucleic Acids structures and all small molecules , known and unknown , 

and in particular we study the physico-chemical interactions that occur between 

protein and ligands or between proteins and Nucleic Acids or between proteins 

themselves. We have other fields of bioinformatics more similar to bioengineering 

and basic computer science, in which Artificial Intelligence[70] and machine 

learning[70] are applied, to predict, for example, the druggability of a protein based 

on the chemical-physical data present in databases of proteins that they are known to 

be druggable ; protein folding prediction(see Alpha-Fold of Google - 
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https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery) ; 

omics big data analysis; classification of tumor images also of real patients ; analysis 

of human-machine interactions ; precision medicine applied to different diseases, 

including rare and genetic diseases ; robotics applied to biomedicine ;  and much 

more. 

Bioinformatics has become an important part of many areas of biology. In 

experimental molecular biology, bioinformatics techniques such as image and signal 

processing allow extraction of useful results from large amounts of raw data.  

In the field of genetics, it aids in sequencing and annotating genomes and their 

observed mutations. It plays a role in the text mining of biological literature and the 

development of biological and gene ontologies to organize and query biological data. 

It also plays a role in the analysis of gene and protein expression and regulation. 

Bioinformatics tools aid in comparing, analyzing and interpreting genetic and 

genomic data and more generally in the understanding of evolutionary aspects of 

molecular biology. At a more integrative level, it helps analyze and catalog the 

biological pathways and networks that are an important part of systems biology. In 

structural biology, it aids in the simulation and modeling of DNA, [2][5] RNA, 

[2][5],proteins [4] as well as biomolecular interactions. [5] [6] [7] [8] 

One branch of bioinformatics that deals with this is structural bioinformatics. In this 

sector it is possible to identify, after many steps that we will illustrate, thanks to the 

knowledge of the receptor or in any case of the protein target, a small number of 

potential drugs, starting from libraries potentially composed of thousands or hundreds 

of thousands of molecules or small molecules. 

After they have been identified, the best candidate molecules will be subjected to 

subsequent biological studies, such as "in vitro" and "in vivo" tests, to confirm the 

veracity of the computational simulations. 

It is therefore useless to underline how important it is today to use bioinformatics and 

all the tools of which it is composed, to begin a study whose purpose is the research 

https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
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and discovery of new drugs for a disease that is not yet known, or whose therapy 

itself is to be improved with new and more selective drugs that avoid the so-called 

"side effects" that we hear so much in this time of SARS-Cov-2 pandemic. 

 

 

 

Figure 2.  3-dimensional protein structure of Formate Dehydrogenase (PDB: 1KQF). 

 

 

Bioinformatics oncology is an integrative discipline that incorporates knowledge 

from the mathematical, physical and computational fields to promote biomedicine 

understanding of cancer. Before providing a deeper insight into the bioinformatics 

approach e utilities involved in oncology, we must understand what a system biology 

framework is and the genetic connection, due to the high heterogenicity of the 

background of the people approaching precision medicine. Indeed, it is essential to 

provide general theoretical information on genomics, epigenomics and 
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transcriptomics to understand the phases of the multi-omics approach. We consider 

how to create a multi-omic model. And we have analyzed the new frontiers and the 

future perspectives of this field. 

 

In the coming age of omics technologies, next gen sequencing, proteomics, 

metabolomics, and other high throughput techniques will become the usual tools in 

biomedical cancer research. However, their integrative approach is not trivial due to 

the broad diversity of data types, dynamic ranges and sources of experimental and 

analytical errors characteristic of each omics. The multi-omics systematic study of 

cancer found many different factors involved in the development / maintenance of the 

malignant state such as genetic aber rations, epigenetic alterations, changes in the 

response to signaling pathways, metabolic alterations, and many others . The advent 

of high-throughput technologies has permit ted the development of systems biology. 

The system biology paradigm tries to analyze cancer as a complex and intricate 

pathology and to gain insight into its molecular origin by taking into account the 

different contributions like DNA mutations, deregulation of the gene expression, 

metabolic abnormalities, and aberrant pathway signaling [5]. 

The essential basis of systems biology is to consider a biological phenomenon as a 

system of interconnected elements such as many complex molecular and 

environmental components interacting with each other at different levels. For 

example, tumor behavior is determined by a combination of changes in genomic 

information possibly associated with abnormal gene expression, protein profiles, and 

different cellular pathways. In this scenario, the complex interaction of DNA and 

proteins in replication, transcription, metabolic, and signaling networks are 

considered the decisive causes for cancer cells dis-functioning [5]. 

The integration of multi-omics data provides a platform to connect the genomic or 

epige nomic alterations to transcriptome, proteome, and metabolome networks 

underling the cellular response to a perturbation. Powerful and sophisticated 

computational tools canidentify the interconnection between genomic aberrations 
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with differentially expressed mRNAs, proteins, and metabolites associated with 

cancer-driven cellular perturbation [5]. 

If on the one hand this aspect provides an opportunity to better study the cellular 

response, on the other hand it poses a challenge for systems biology-driven modeling. 

Therefore, the next step of systems biology approach focuses on dynamic models that 

can deal with thousands of mRNA, protein, and metabolite changes developing 

effective strategies toadminister personalized cancer therapy [5]. Summarizing, the 

main goal of the systems biology research driven by multi-omics data is to develop 

predictive models that are refined by experimental validations in order to select 

patients based on personalized multi-omics data and stratifying them to determine 

who are most likely to benefit from targeted therapies [5]. Definition and detection of 

cancer-distinctive features allow the investigation of the transition process of a 

normal cell to malignancy. Generally, the hallmarks involve phenotypic and 

molecular changes in several metabolic pathways such as uncontrolled proliferation 

by blocking growth suppressors, reprogramming of energy metabolism, evading 

immune destruction, resisting cell death, angiogenesis, and metastasis [5]. These 

variations in cellular machinery are driven by molecular aberration in several omics 

layers such as genome, epigenome, transcriptome, proteome, and metabolome within 

cancer cells. Specifically, by applying next generation sequencing to cancer cell 

genomes, it is possible to reveal how mutations in proliferative genes like B-raf 

drives the activation of mitogen-activated protein- (MAP-) kinase signaling pathway 

underlying an uncontrolled cell proliferation. Molecular aberrations leading to cancer 

are involved not only in genomic mutational events but also in the epigenome. In 

particular, aberrant epigenetic mechanisms can be responsible for silencing of certain 

cancer suppressor genes [5]. The multistep processes of invasion and metastasis 

require a transition of epithelial cell toward mesenchymal phenotype to colonize 

distant sites. Recent studies have revealed that epithelial-mesenchymal transition is 

induced by specific transcription factors that coordinate the invasion and metastasis 

processes [5]. By applying transcriptomics techniques it is possible to investigate the 
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transcription factors involved in transcription regulatory networks assumed to be 

activated in malignancy. Moreover, manifestations of cancer hallmarks also affected 

cellular metabolism, in fact tumor cells can reprogram glucose metabolism and 

energy production pathways detectable with a metabolomics approach [1]. 

 

 

 

2. MATERIALS AND METHODS 

 

In this and the next few chapters, I will set out to clarify the methods used in different 

structural bioinformatics studies. In particular, I will illustrate the techniques, the 

pipelines and protocols used during the projects ,the softwares and tools used for 

simulations and analysis. 

We will analyze the results obtained in several studies recently published in various 

scientific journals. We will then finally draw conclusions and underline the strengths 

and weaknesses of bioinformatics. 

 

 

 

2.1 BIOINFORMATICS TOOLS AND SOFTWARES 

The starting point, which is common to many areas of research, is a detailed literature 

research about the disease and the receptor involved. In fact, it is necessary to check 

all the publications of the desease and recepor we want to study. We have to take care 

if there is a binding site of the protein or in any case an allosteric site and then we 

have to identify the amino acids of the pocket. If we know  a binding site from 

literature, we need to analyze the molecules that experimentally bind on the receptor 
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and then carrying out studies of structurally similar molecules, with different 

chemical substituents, in order to improve the therapy and avoid possible unwanted 

effects. Furthermore, it is necessary to check whether studies similar to ours have not 

already been done previously, so as not to repeat studies already done in the past. 

 

After having identified the right bibliography, we move on to practical study. First we 

have to go and search for the protein target on the most famous databases such as 

PDB[9] and Uniprot[10]. These platforms present databases of proteins and nucleic 

acids that have been obtained by X-Ray crystallography[11], NMR[12] or Cryo-EM 

[13] .   

We need to analyze the protein target with  Molecular visualization softwares such as 

PyMol[14] , Chimera [15] , VMD [16] , Jmol [17], etc. 

The analysis that must be carried out to check if there are some amino acid "gaps", or 

if there are missing amino acids in the primary sequence. Usually the vast majority of 

the "gaps" are found in the "protein-loops", as these are high motility protein folding, 

so it is possible that the resolution techniques already mentioned above, may not 

detect some amino acids present in these portions. 

 

 

 

2.2 HOMOLOGY MODELING 

 

Therefore, if  the gaps are present in the protein ,  we will have to perform a 

technique called "Homology Modeling" [18]. During this phase we must have the 

primary sequence of the receptor in FASTA format [19] available, and access to the 

Blastp website (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). In this 
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website, after pasting the primary squence into the main box, and after selecting the 

main research database (PDB in our case), the organism on which to carry out the in 

vivo tests (for example "rattus norvegicus") and others options, we are going to 

search for a possible "structuretemplate" on which processing the Homology 

modeling. The two most important parameters to consider are the "query cover" and 

the "identity percentage". The protein with the highest values of these parameters or a 

fair compromise will be selected as our working template. 

 

Subsequently, to carry out the actual homology modeling, having the template and 

the primary sequence available, we use a PyMol plugin called PyMod [20]. Inside 

this tool we can use the main software of Homology Modeling which is 

MODELLER[20] where, after following all the instructions, the protein chain will be 

generated  and all the missing  amino acids will also be present. 

 

 

 

 

 

 

 

2.3 STRUCTURAL BIOLOGY SIMULATIONS 

After carrying out homology modeling we can move on to the next two steps, namely 

Molecular Docking simulations[21] and Molecular Dynamics simulations [22]. 

By molecular docking we mean the "virtual screening" of the target, where we 

analyze the interactions and the binding poses of the ligands within the binding site. 
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The most commonly used docking softwares are Autodock[23] and Autodock 

Vina[24] for small molecules, and Haddock[25] and Rosetta[26] for larger molecules 

such as peptides or cyclic peptides. 

As mentioned, we usually start with thousands of molecules, and then arrive at two or 

three candidate molecules. The best 2-3 molecules are selected on the basis of the 

interaction energy calculated by Autodock Vina (in our case). Then the poses are 

analyzed on sight, superimposing them on the crystal experimental ligand, if any, for 

a more accurate study. 

 

 

The “final” step of an entire structural bioinformatics study is usually a technique 

called Molecular Dynamics simulation (MD) [22], where on the basis of “Newton's 

dynamics equations”[27] and “quanto mechanics equations”[28], we analyze the 

motility of the entire protein-ligand complex. This motility is an index of activity or 

not of the protein, in fact it is compared with the motility of the protein in the free 

state. If there are substantial differences between the free state and the complexed 

state, we can say that amolecule  inside the protein has a probable activity. The 

software most used in the study of molecular dynamics was Gromacs[29]. 

 

The Force Fields [30] most used in the studies were Amber[31] and Charmm[32] 

Forcefields. Especially with regard to charmm, the Charmm-GUIsite [33] was used 

very frequently. The energy minimizations [34] were almost always set at 5000 steps, 

the temperature equilibration took place at 303.15 K or at 310.15 K depending on 

whether the subsequent study was performed "in vitro" or "in vivo".  

The pressure was obviously set to 1 Bar. Molecular dynamics were performed on 

average of 100 nanoseconds (ns), with a writing interval (dt) of 2 femtoseconds (fs). 
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Some variations of molecular dynamics simulations have also been studied on our 

study systems. Two types in particular were taken into consideration: 

 

- Steered Molecular Dynamics simulations(SMD)[35] 

- Supervised MolecularDynamics simulations(SuMD)[36] 

 

With the steered molecular dynamics simulations , we can calculate the force of 

interaction between the ligand and the protein and above all therefore the “residence 

time” of the molecule inside the pocket. To obtain this simulation, a pull force bias 

must be indicated in the protocol. The average repulsion force applied in the study 

protocols was on average of 500 KJ mol-1 nm -2 . 

 

In a SUMD, instead, we try to simulate the approach of a ligand, which has been 

separated by tens of Angstroms, from the original binding site, and if it can simulate 

what happens in the experimentally obtained crystal. 

The SUMDs studies are still under review, as there is still no well-defined protocol.  

If on the one hand, for protein-protein interactions, as simulated for interactions 

between Spike protein and ACE2 [36] in the article of SARS-Cov-2 [36] , it seems to 

work properly, on the other hand for protein-ligand interactions, it seems that other 

parameters , such as background noise of the binding site , time and mode of binding 

site gating , force interactions between ligand and aminoacids in and out of the 

binding site , degrees of freedom ,  and other parameters must be taken into 

consideration in order to correctly optimize the simulations. 

What we are trying to understand with this technique is whether, given an interaction 

site, a ligand can enter in that site and engage in chemical-physical interactions as it 

would happen in an experimental crystal. The aim therefore would be to 
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computationally simulate what actually happens biologically. It is trivial to admit that 

it is not yet possible to carry out studies of this type with satisfactory answers. In any 

case, the SUMDs have been studied thanks to an home-made script written in Python 

programming language [37] in our laboratory. 

 

 

2.4 SIMULATIONS ANALYSIS PARAMETERS 

The parameters that are taken into consideration during the analysis of a molecular 

dynamics are  in particular RMSD[38] ,  RMSF [39] ,  Radius of gyration [40] , and 

the Gibbs free energy[41]. 

In bioinformatics, the root-mean-square deviation of atomic positions, or simply root-

mean-square deviation (RMSD),  

 

 

Equation 1.  RMSD Calculation 

 

 

is the measure of the average distance between the atoms (usually the backbone 

atoms) of superimposed proteins. Note that RMSD calculation can be applied to 

other, non-protein molecules, such as small organic molecules.  In the study of 

globular protein conformations, one customarily measures the similarity in three-

dimensional structure by the RMSD of the Cα atomic coordinates after optimal rigid 

body superposition. 
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When a dynamical system fluctuates about some well-defined average position, the 

RMSD from the average over time can be referred to as the RMSF or root mean 

square fluctuation. The size of this fluctuation can be measured, for example using 

Mössbauer spectroscopy or nuclear magnetic resonance, and can provide important 

physical information. The Lindemann index is a method of placing the RMSF in the 

context of the parameters of the system. 

 

A widely used way to compare the structures of biomolecules or solid bodies is to 

translate and rotate one structure with respect to the other to minimize the RMSD. 

Coutsias, et al. presented a simple derivation, based on quaternions, for the optimal 

solid body transformation (rotation-translation) that minimizes the RMSDbetween 

two sets of vectors. [42] They proved that the quaternion method is equivalent to 

thewell-known Kabsch algorithm. [43] The solution given by Kabsch is an instance 

of the solution of the d-dimensional problem, introduced by Hurley and Cattell. [44] 

The quaternion solution to compute the optimal rotation was published in the 

appendix of a paper of Petitjean. [45] This quaternion solution and the calculation of 

the optimal isometry in the d-dimensional case were both extended to infinite sets and 

to the continuous case in the appendix A of another paper of Petitjean. [46] 

The Radius of gyration  aims to analyze the angles of twisting that occur in the bonds 

between heavy atoms , such as Cαin Proteins , and it is also an index of flexibility and 

motility of the protein. 

In thermodynamics, Gibbs free energy (or Gibbs energy) is a thermodynamic 

potential that can be used to calculate the maximum reversible work that can be done 

by a thermodynamic system at constant temperature and pressure. Gibbs free energy  

 

 

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆 
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Equation 2.  Gibbs Free energy equation 

 

 

(measured in joules in SI) is the maximum amount of work not of expansion that can 

be extracted from a thermodynamically closed system (which can exchange heat and 

work with the surrounding environment, but it doesn't matter). This maximum can 

only be achieved in a fully reversible process. When a system reversibly transforms 

from an initial state to a final state, the decrease in Gibbs free energy is equal to the 

work done by the system on the surrounding environment, minus the work of the 

pressure forces. [47] 

 

The Gibbs energy (symbol G) is also the thermodynamic potential that is minimized 

when a system reaches chemical equilibrium at constant pressure and temperature. Its 

derivative with respect to the reaction coordinate of the system vanishes at the 

equilibrium point. Therefore, a reduction of G is required for a reaction to be 

spontaneous at constant pressure and temperature. 

So finally, if we find a negative energy in our protein-ligand complex, it is possible 

that the binding occurs spontaneously and therefore that there is an interaction 

between the ligand and the binding site of the target. 

The software used to perform this calculation has been MM/PBSA [48]. 

2.5 PROGRAMMING LANGUAGES : THEORY AND PROJECTS APPLICATION 

 

A programming language [71] is a formal language comprising a set of strings that 

produce various kinds of machine code output. Programming languages are one kind 

of computer language, and are used in computer programming to implement 

algorithms. 
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Most programming languages consist of instructions for computers. There are 

programmable machines that use a set of specific instructions, rather than general 

programming languages. Since the early 1800s, programs have been used to direct 

the behavior of machines such as Jacquard looms, music boxes and player pianos.  

The programs for these machines (such as a player piano's scrolls) did not produce 

different behavior in response to different inputs or conditions. 

 

Thousands of different programming languages have been created, and more are 

being created every year. Many programming languages are written in an imperative 

form (i.e., as a sequence of operations to perform) while other languages use the 

declarative form (i.e. the desired result is specified, not how to achieve it). 

 

The description of a programming language is usually split into the two components 

of syntax (form) and semantics (meaning). Some languages are defined by a 

specification document (for example, the C programming language is specified by an 

ISO Standard) while other languages (such as Perl) have a dominant implementation 

that is treated as a reference. Some languages have both, with the basic language 

defined by a standard and extensions taken from the dominant implementation being 

common. 

 

Programming language theory is a subfield of computer science that deals with the 

design, implementation, analysis, characterization, and classification of programming 

languages. 
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Figure 3. The source code for a simple computer program written in the C programming language. 

The gray lines are comments that help explain the program to humans in a natural language. When 

compiled and run, it will give the output "Hello, world!". 

 

During my PhD the most used programming language has been Python[72]. 

Python is an interpreted high-level general-purpose programming language. Its 

design philosophy emphasizes code readability with its use of significant indentation. 

Its language constructs as well as its object-oriented approach aim to help 

programmers write clear, logical code for small and large-scale projects. [71] 

 

Python is dynamically-typed and garbage-collected. It supports multiple 

programming paradigms, including structured (particularly, procedural), object-
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oriented and functional programming. It is often described as a "batteries included" 

language due to its comprehensive standard library. [72] 

 

 

Figure 4. An example of  factorial program written in Python 

 

Guido van Rossum began working on Python in the late 1980s, as a successor to the 

ABC programming language, and first released it in 1991 as Python 0.9.0. [72] 

Python 2.0 was released in 2000 and introduced new features, such as list 

comprehensions and a garbage collection system using reference counting. Python 

3.0 was released in 2008 and was a major revision of the language that is not 

completely backward-compatible. Python 2 was discontinued with version 2.7.18 in 

2020. [72] 

 

 

 

Python consistently ranks as one of the most popular programming languages. 

Python's large standard library, commonly cited as one of its greatest strengths, [73] 

provides tools suited to many tasks. For Internet-facing applications, many standard 

formats and protocols such as MIME and HTTP are supported. It includes modules 
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for creating graphical user interfaces, connecting to relational databases, generating 

pseudorandom numbers, arithmetic with arbitrary-precision decimals, [74] 

manipulating regular expressions, and unit testing. 

 

 

 

Figure 5. The standard type hierarchy in Python 3– Python Documentation 

 

Some parts of the standard library are covered by specifications (for example, the 

Web Server Gateway Interface (WSGI) implementation wsgiref follows PEP 333 

[75]), but most modules are not. They are specified by their code, internal 
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documentation, and test suites. However, because most of the standard library is 

cross-platform Python code, only a few modules need altering or rewriting for variant 

implementations. 

 

As of March 2021, the Python Package Index (PyPI), the official repository for third-

party Python software, contains over 290,000 [72] packages with a wide range of 

functionality, including: 

 

• Automation 

• Data analytics 

• Databases 

• Documentation 

• Graphical user interfaces 

• Image processing 

• Machine learning 

• Mobile App 

• Multimedia 

• Computer networking 

• Scientific computing 

• System administration 

 

Python can serve as a scripting language for web applications, e.g., via mod_wsgi for 

the Apache web server. [182] With Web Server Gateway Interface, a standard API 

has evolved to facilitate these applications. Web frameworks like Django, Pylons, 

Pyramid, TurboGears, web2py, Tornado, Flask, Bottle and Zope support developers 

in the design and maintenance of complex applications. Pyjs and IronPython can be 

used to develop the client-side of Ajax-based applications. SQLAlchemy can be used 
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as a data mapper to a relational database. Twisted is a framework to program 

communications between computers, and is used (for example) by Dropbox. 

 

 

 

Figure 6. Python Powered - Wikipedia 

 

 

Libraries such as NumPy, SciPy and Matplotlib allow the effective use of Python in 

scientific computing, with specialized libraries such as Biopython and Astropy 

providing domain-specific functionality. SageMath is a computer algebra system with 

a notebook interface programmable in Python: its library covers many aspects of 

mathematics, including algebra, combinatorics, numerical mathematics, number 
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theory, and calculus. [76] OpenCV has python bindings with a rich set of features for 

computer vision and image processing. [77] 

 

Python is commonly used in artificial intelligence projects and machine learning 

projects with the help of libraries like TensorFlow, Keras, Pytorch and Scikit-learn. 

[78] . As a scripting language with modular architecture, simple syntax and rich text 

processing tools, Python is often used for natural language processing. [71] 

Many operating systems include Python as a standard component. It ships with most 

Linux distributions, [79] AmigaOS 4 (using Python 2.7), FreeBSD (as a package), 

NetBSD, OpenBSD (as a package) and macOS and can be used from the command 

line (terminal). Many Linux distributions use installers written in Python: Ubuntu 

uses the Ubiquity installer, while Red Hat Linux and Fedora use the Anaconda 

installer. Gentoo Linux uses Python in its package management system, Portage. 

Python is used extensively in the information security industry, including in exploit 

development. LibreOffice includes Python, and intends to replace Java with Python. 

Its Python Scripting Provider is a core feature [81] since Version 4.0 from 7 February 

2013. 

There is a project of Python , called Biopython [80], which is widely used by the 

bioinformatics society, especially with regard to the analysis of genomics and 

genetics, and differend kind of biological data in general. 

The Biopython project is an open-source collection of non-commercial Python tools 

for computational biology and bioinformatics, created by an international association 

of developers. It contains classes to represent biological sequences and sequence 

annotations, and it is able to read and write to a variety of file formats. It also allows 

for a programmatic means of accessing online databases of biological  
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Figure 7.  A core concept in Biopython is the biological sequence, and this is represented by the 

Seq class. [80] A Biopython Seq object is similar to a Python string in many respects: it supports 

the Python slice notation, can be concatenated with other sequences and is immutable. In addition, it 

includes sequence-specific methods and specifies the particular biological alphabet used. 

 

information, such as those at NCBI. Separate modules extend Biopython's 

capabilities to sequence alignment, protein structure, population genetics, 

phylogenetics, sequence motifs, and machine learning. Biopython is one of a number 

of Bio * projects designed to reduce code duplication in computational biology. [5] 

 

 

Figure 8. Through the Bio.Entrez module, users of Biopython can download biological data from 

NCBI databases. Each of the functions provided by the Entrez search engine is available through 

functions in this module, including searching for and downloading records. 
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During the three years of  Ph.D. , the main focus was to help our research group, 

thanks to the automation of many processes and methods, which were previously 

carried out individually, by hand. My main task was to create pipelines and 

algorithms in order to allow the automatic operation of many Molecular Docking and 

Molecular Dynamics simulation studies through, the Gromacs and Autodock Vina 

XBsoftwares, and the interactions and the retrieval of information and data with the 

Webthanks to the principal Python Parsing Web Scraping libraries such as Urllib 

[72] and Selenium[72] , in order to be able to retrieve a lot of data automatically on 

the browser. The most frequent procedure, for example, was the automatic generation 

of the chemical-physical parameters of the protein-ligand complexes, both soluble 

and membrane complexes ,  on the CHARMM-GUI website[33].  

A very important task was also to create a tabu-like algorithm (shown in the 

Appendix section) for the study and analysis of Supervised Molecular Dynamics 

simulations (SuMD) [82].  

Finally, another very difficult task was to collaborate with the research group of prof. 

Niccolai, in order to be able to search for all the possible genes that report an X / Gly 

mutation [66] and the related disease on the ClinVar Data Base. Subsequently my 

task was to go and search for each gene mutated in Glycine, through the Python Web 

Scraping libraries (Selenium and Urllib) [37] , the corresponding protein structure in 

all possible conformations, on the UniProt and Protein Data Bank databases. 

Subsequently, analyzing many factors such as the quality of the protein, expressed in 

Angstrom units , the length of the primary sequence, the deposition date of the 

crystal, and other factors, including the elimination of redundancies contained in the 

different output files , we arrived to a final database of a small number of proteins. 

All the studies were of course automated with Python programming language. 
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3. RESULTS AND CONCLUSIONS 

 

During the three years of doctorate we found ourselves facing studies aimed at 

looking for inhibitors or allosteric modulators, both against soluble and membrane 

proteins.I will show below all my studies.  

In this chapter I am going to present the most important results obtained during my 

three years of PhD. All of these studies have been published in various scientific 

journals. 

I would like to thanks in this occasion all the members of our Laboratory and in 

particular Ottavia Spiga , Neri Niccolai, Prischi Filippo , Annalisa Santucci, Lorenza 

Trabalzini , Alfonso Trezza , Francesco Pettini , Anna Visibelli , Vittoria Cicaloni , 

Andrea Bernini , for their collaboration in the different projects , and all the other 

professors, students and researchers of our department who collaborated in our 

studies.For any detail I refer you to references section. 

 

 

 

 

 

3.1 SARS-Cov-2 reversible inhibitors 

SARS-CoV-2 RBD [49] and hACE2 binding is mostly driven by polar interaction, 

with an overall~900 Å2 buried surface area. A close analysis of the interface reveals 

the absence of cavities on RBD in the interaction surface. We performed MD 

simulations to account for the protein conformational fexibility and detected 1,029 

transient pockets. Based on the druggability features of the cavities, i.e. volume, 
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depth, polarity, and proximity to the hACE2 binding site, we detected a cluster of 9 

transient pockets. In order to identify possible PPI inhibitors the transient pocket that 

contained key residues involved in hACE2 recognition and binding (Fig. 3A) was 

selected and used for the virtual screening of 1582 FDA-approved drugs.This curated 

library of drugs, whose structures were freely downloaded from DrugBank[50], 

represents a reservoir of bioactive molecules that could be repurposed for COVID-19 

treatment relatively fast, due to their pre-existing approval for use in humans. 

 

 

 

 

Figure 3. RBD binding pocket and drugs bindg site. (A) Surface representation of the structure of 

the RBD of the S protein having an open pocket conformation. Te transient pocket surface patch is 

depicted in brown. In the zoomed region it is possible to see a detailed structural representation of 

the open pocket conformation. Residues laying on the pocket surface have been labelled and are 

shown in stick. (B, C) Structural representations of the (B) RBD-Simeprevir and (C) RBD-



29 
 

Lumacafor complexes resulting from docking simulations. Residues forming direct interactions 

with the drugs are shown as brown sticks. Hydrogen bonds are indicated with yellow dashed lines 

 

The 10 best compounds (Lumacafor, Paritaprevir, Dihydroergotamine, Trypan blue, 

Midostaurin, Dihydroergotoxine, Simeprevir, Lurasidone, Spinosyn D, Olaparib) 

showed high binding free energy scores (− 9.4 to − 8.5 kcal/mol). The compound 

with the highest binding energy (− 9.4 kcal/mol) was Lumacafor, a CFTR corrector 

that traffic the mutant protein to the plasma membrane. An analysis of the quality of 

interactions of the 10 best compounds revealed that Simeprevir had the highest 

number of polar bonds with side chains of residues in the RBD binding pocket. 

Simeprevir, a second-generation HCV NS3/4A protease inhibitor [51] , has been 

reported to be both a SARS-CoV-2 main protease inhibitor [52] and a S protein-RBD 

interaction inhibitor [53] 

In order to understand if Simeprevir and Lumacaftor are able to interfere and prevent 

the binding between the S glycoprotein and ACE2, we ran a Supervised Molecular 

Dynamics (SuMD) simulations. Using SuMD it is possible to simulate the full 

binding process of ACE2 to RBD in presence of Simeprevir or Lumacaftor in an 

unbiased way (i.e. independently from starting relative positions), taking into account 

hydration patterns and drug binding-unbinding events. We first validated the SuMD 

protocol by simulating the binding process of RBD with ACE2. The resulting relative 

position of ACE2 bound to RBD is comparable to that in the crystal structure. 
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Figure 4. Root mean square deviation (RMSD) plots. (A) The RMSD profile of drugs and protein 

backbone,(B) relative to the initial frame against simulation time. 

 

During the SuMDs drugs were allowed to move and find a more energetically 

favourable pose in the binding pocket. We noticed very limited movements of 

Simeprevir and Lumacafor and, to confrm binding stability, we performed 100 ns 

cMD simulations(Fig. 4) of RBD alone and in complex with the drugs. 

To quantify the strength of the interaction between Simeprevir and Lumacafor on 

RBD, we computed the interaction energy between the protein and the two drugs. Te 

total interaction energy for Simeprevir and Lumacafor was − 75.58± 4.2 kJ/mol and 

− 63.42± 13.8 kJ/mol respectively. Taken together these data suggest that Simeprevir 

and Lumacafor bind spontaneously to the target with high affinity. 
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Figure 5. Steered Molecular Dynamics simulations. (A) Force profiles of drugs pulled out of the 

RDB transientpocket along the unbinding pathway, Lumacaftor (dotted line) and Simeprevir 

(continuous line). (B, C)Structural representations showing position of Lumacaftor (cyan ball-and-

stick) and Simeprevir (green balland-stick) on RBD (white cartoon) during the different stages of 

the unbinding process from the RBD binding 

pocket (brown surface). 

 

To further characterise the recognition process of the two drugs to the S glycoprotein 

we performed Steered Molecular Dynamics (SMD) simulations. We ran a 800 ps 

SMD simulation on RBD in complex with both Simeprevir and Lumacafor, and the 

time-averaged force profles during the unbinding simulation of complexes is shown 

in Fig. 5A.  
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Both drugs have a steady increase of the applied forces on the first ~ 150 and ~ 200 

ps of the simulation, respectively for Lumacaftor and Simeprevir, until they 

reach the maximum, which corresponds to the rupture force of Lumacaftor and 

Simeprevir unbinding along this dissociation pathway. The force then quickly 

decreases and stays constant until the end of the simulation. In the first step, between 

0 and 315 ps of the simulation for Simeprevir and 0 and 354 ps for Lumacaftor, the 

two drugs slowly detach and move away from the transient pocket; in the second 

step, between 316 and 800 ps of the simulation for Simeprevir and 355 and 800 ps for 

Lumacaftor, they move away from the protein and enter the solvent region (Fig. 5 

B,C). The comparable rupture forces reflect similarity in the unbinding from RBD in 

line with our binding energy data. 

 

 

 

 

 

3.2 Natural h-ERG Channels blockers 

 

The cardiac action potential is regulated by several ion channels. Drugs capable to 

block these channels, in particular the human ether-a-go-go ` -related gene (hERG) 

channel[54], also known as KV11.1 channel, may lead to a potentially lethal 

ventricular tachyarrhythmia called “Torsades de Pointes”. Thus, evaluation of the 

hERG channel off-target activity of novel chemical entities is nowadays required to 

safeguard patients as well as to avoid attrition in drug development. Flavonoids, a 

large class of natural compounds abundantly present in food, beverages, herbal 

medicines, and dietary food supplements, generally escape this assessment, though 

consumed in consistent amounts. Continuously growing evidence indicates that these 

compounds may interact with the hERG channel and block it. The present review, by 
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examining numerous studies, summarizes the state-of-the-art in this field, describing 

the most significant examples of direct and indirect inhibition of the hERG channel 

current operated by flavonoids. A description of the molecular interactions between a 

few of these natural molecules and the Rattus norvegicus channel protein, achieved 

by an in silico approach, is also presented. 

 

 

 

 

 

Figure 6. Best docked poses of genistein, (±)-naringenin, and quercetin. Top view: the KV11.1 

channel is depicted in deep teal cartoon. Bottom, enlarged view of the small central cavity with the 

binding poses of genistein, (±)-naringenin, and quercetin represented in blue, green, and red sticks 
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and balls. The molecules bound within the same KV11.1 binding pocket, sharing a very similar 

binding pose. 

 

 

 

The results were analysed by using GROMACS 2019.3 package and displayed with 

GRACE. PyMOL2.3 (Schrodinger, ¨ USA) was used as molecular graphical 

interface. Docking results exhibited different potential binding poses for each 

compound, though all compounds located in the same binding region. The best pose 

for each ligand, generated by Autodock/VinaXB (Fig. 6), was selected according to 

the affinity to and interaction network on the target, taken as initial conformation for 

molecular dynamics simulations. The structural stability of each biological system 

was determined from the deviation produced during the simulation runs, which 

resulted inversely related to the deviation extent. The Root Mean Square Deviation 

(RMSD) profiles, reported in Fig. 7A, support the validity of the molecular dynamics 

simulation protocol, which allows to exclude computational artefacts. In Fig. 7B, the 

RMSD profiles related to ligands inside the KV11.1 binding pocket are reported. 

RMSD trends showed that all compounds achieved a good stability along the entire 

molecular dynamics run, thus confirming the strength and correctness of the selected 

binding poses. The molecular mechanics energies combined with the Poisson–

Boltzmann - or generalized Born - continuum solvation surface area (MM/PBSA and 

MM/GBSA) give rise to methods commonly 
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Figure 7. Molecular dynamics simulation root mean squared deviation profiles for the KV11.1 

channel-best ligand complexes. Root mean squared deviation (RMSD) values (nm) and time of the 

molecular dynamics run (ps) are reported on y and x axis, respectively. (A) RMSD of KV11.1 

channel in complex with its ligands. All complexes achieved a good stability after 25 ns. (B) RMSD 

of ligands within the KV11.1 channel binding pocket showed to be stable during molecular 

dynamics run, confirming a stable binding pose. The complex RMSD profiles are indicated with 

coloured lines. 

 

used to estimate the free energy of binding of small ligands to macro-molecules. In 

the case of the MM/PBSA method, the free energy of a certain state arises from the 

following equation [55]: 

 

G = Ebnd + Ecl + EvdW + Gpol + Gnp – TS 

Equation 3. MM/PBSAFree Energy Calculation[55] 

 

 

where the first three are standard MM energy terms from bond (bond, angle, and 

dihedral), electrostatic, and van der Waals interactions; Gpol and Gnp are the polar 

and non-polar contributions to the solvation free energy. Gpol is normally obtained 

by solving the Poisson–Boltzmann equation, whereas Gnp is estimated from a linear 



36 
 

relationship to the solvent accessible surface area (SASA). Thereafter, contributions 

of solvent molecules are removed from each snapshot, since the PBSA solvent model 

already takes into account the solvation energy. This may lead to some margin of 

error in the estimation of the binding energy, as both the simulation and energy 

calculation do not use the same energy function, thus requiring reweighting of the 

final energy values[56]. We used MMPBSA method to compute the binding free 

energy of flavonoid ligand-channel complexes. The large binding free energy values 

of KV11.1 channel-flavonoid complexes for genistein (− 71.50 kcal/mol), (±)-

naringenin (− 83.47 kcal/mol), and quercetin (− 93.29 kcal/mol), calculated by the 

MM/PBSA method, indicate that these flavonoids bind spontaneously inside the 

pocket of the channel with high affinity. Finally, the energy contribution per residue 

was also evaluated: the pore helical Ser-626 (segment S5), Tyr-654, and Phe-658 

(segment S6) of the Rattus norvegicus KV11.1 channel bound the flavonoids with 

high energy(Fig. 8), in agreement with previous findings. In fact, several authors 

[57,58 ,59] demonstrated that the pore helical Ser-624 (segment S5), Tyr-652, and 

Phe-656 (segment S6) of the human KV11.1, corresponding to the above mentioned 

Rattus norvegicus residues , are crucial for KV11.1 channel activity. This provides 

the molecular mechanism accounting for the ability of flavonoids to modulate rat 

hERG channel current. Since these flavonoids bind inside the pocket of KV11.1 

channel with high affinity and good stability, it may be of great interest to investigate 

by the co-docking procedure (Kadioglu et al., 2016) at hERG channel from one side, 

and by recording KV11.1 current in HEK293 cells incubated with both flavonoids 

and drugs known to block hERG channel on the other, the mutual interplay of these 

agents at this pharmacological target. Taken together, these findings provide the 

molecular basis to elucidate the activity of flavonoids at the hERG channel. This 

model, which coincides by a 95.4% of sequence identity and a cover of 72% with the 

human hERG channel, may serve to flag unwanted effects in humans caused by 

natural compounds ingested as dietary supplements. 
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Figure 8. KV11.1 channel binding residues-ligand binding free energy decomposition. The 

energetic contribution (cal/mol) of KV11.1 channel binding-residues with its ligand is 

reported on the ordinate scale. Crucial binding residues for KV11.1 channel biological 

activity are marked with a star. All ligands showed a large interaction network within the 

KV11.1 channel binding pocket, establishing bonds with high energy. 

 

 

 

 

3.3X/Gly  MUTATIONS AND TRANSIENT POCKETS FORMATION 

It has been recently suggested that amino acid replacements with Gly can modify the 

shape of protein surfaces and, hence, protein dynamics and functions. We have 

browsed ClinVar[60], the database of all the reported variants of clinical relevance, to 

identify all the proteins having X/Gly mutations that determine Mendelian disorders. 

We have found 959 benign and 875 pathogenic X/Gly substitutions. Pathogenicity 

origins were initially searched in the distribution profiles of replaced amino acids. 

These profiles indicated that Mendelian disorders that include Gly replacement arise 
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mainly from substitutions of hydrophobic amino acids that reduce protein core 

stability. In the case mutated proteins were structurally defined, we could give a 

deeper insight on pathogenicity mechanisms, as Gly-mutants might modify protein 

surfaces thus interfering with physiological protein-protein interaction processes. In 

many cases, we have found that pathological Gly-mutants exhibit protein surfaces 

with additional pockets. These new pockets (Fig. 9) could be the target of a 

pharmacological strategy for Mendelian disorder remediation. 

 

 

Figure 9. Wild type,  carcinogenic mutant  and ligand complexed carcinogenic mutant VHL 

protein. PDB : 4AJY 

 

ClinVar is a very large public database of reported associations between human 

variants and phenotypes. To select the relevant information for the present study, we 

applied the following filters through the web interface of ClinVar: “type of variation” 

= “single nucleotide variant”; “molecular consequence” = “missense”; “review 

status” = “at least one star”. Then, by applying the “clinical significance” filter, we 

extracted two separate mutation data sets with “benign” and “pathogenic” filter 

values. Finally, we selected only those mutations that lead to X/Gly substitutions, in 

both benign and pathogenic data sets. 

We have searched for X/Gly missense mutations among all the items collected in 

ClinVar variants. ClinVar, an online daily updated service that collects variants 

directly or from other humanmutation databases, as of October 3, 2020, reported 

25,579 benign and 22,901 pathogenic missense mutations. By parsing the information 
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contained in the latter ClinVar missense mutation items, thanks to a python script 

written in our laboratory,  we have found 959 benign and 875 pathogenic X/Gly 

substitutions. It must be noted first, that all the eight possible X/Gly replacements 

arising from single-nucleotide codon changes are present, but to a very different 

extent, see Fig. 10. 

 

 

 

 

Figure 10.  Distribution of X/Gly replacements referenced by ClinVar. Black and gray histograms 

respectively  refer to Gly-substitution in benign and pathogenic missense mutations. 

 

 

Gly-pipe[61], a software that we have recently developed to find those Gly mutations 

occurring at the protein surface and, hence, causing a change in its shape [61]. This 

software compares native and Gly-mutated structures to find new pockets close to the 

replaced amino acids. Thus, Gly-pipe, once applied to our data set of 255 X/Gly 

elements, indicates that only 96 mutations are located on protein surfaces, making 

them potentially responsible for functional modulations due to solvent dynamics 

changes. As Gly-pipe is a machine learning procedure to evaluate also the 

druggability score of new or enlarged pockets determined by X/Gly replacements, we 

restricted our analysis to those protein surface changes that are predicted as druggable 
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ones, i.e. with DS > 0.5. Thus, only 20 proteins of our data set have surface pockets 

induced by X/Gly substitutions with druggability scores suitable for ligand binding. 

Table 1 summarizes our results, indicating the 20 Mendelian disorders that are 

associated with Gly-mutations and exhibit a druggability score higher than 0.5. 
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3.4 Multi-omics applied to cancer therapy 

 

In general, cancer disrupts cellular relations and results in the dysfunction of vital 

genes. This disturbance is affective in the cell cycle and enhances abnormal 

proliferation [2]. There are three main types of cancer genes that control cell growth 

and can cause cancer to develop:  

 

1. Oncogenes. These, when mutated, actively promote cell proliferation. They 

are formed when proto-oncogenes that promote cell division are improperly 

activated, so they are not known to be inherited. They may lead to 

increased/dysregulated expression of the gene in a new location or to 

production of fusion proteins with new functions [2]. Two common oncogenes 

are HER2 and RAS.  

 

2. Gatekeeper genes. These are protective genes, also known as tumor 

suppressor genes. Normally, they negatively control cell growth by monitoring 

and controlling the cell phases or repairing mismatched DNA. Autosomal 

recessive mutations in tumor suppressor gene cause loss of function effect at 

the cellular level, inducing cells to grow uncontrollably, which may eventually 

form a tumor. Examples of tumor-suppressor genes include BRCA1, BRCA2, 

and p53 or TP53. Germline mutations in BRCA1 or BRCA2 genes increase a 

woman’s risk of developing hereditary breast or ovarian cancers and a man’s 

risk of developing hereditary prostate or breast cancers. They also increase the 

risk of pancreatic cancer and melanoma in women and men [2]. The most 

mutated gene in people with cancer is p53 or TP53. More than 50% of cancers 
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involve a missing or damaged p53 gene. Most p53 gene mutations are 

acquired. Germline p53 mutations are rare, but patients who carry them are at a 

higher risk of developing many different types of cancer.  

 

4 Carekeeper genes. These fix the mistakes made when DNA is copied. Many of 

them function as tumor suppressor genes. BRCA1, BRCA2, and p53 are all DNA 

repair genes. If a person has an error in a DNA repair gene, mistakes remain 

uncorrected. Int. J. Mol. Sci. 2021, 22, 5751 4 of 21 Then, the mistakes become 

mutations. These mutations may eventually lead to cancer, particularly mutations 

in tumor suppressor genes or oncogenes. Mutations in DNA repair genes may be 

inherited or acquired. Lynch syndrome is an example of the inherited kind. 

BRCA1, BRCA2, and p53 mutations and their associated syndromes are also 

inherited [2].  

 

As said before genetic changes that promote cancer can be inherited from our parents 

if the changes are present in germ cells, which are the reproductive cells of the body 

(eggs and sperm). Such changes, called germline changes, are found in every cell of 

the offspring. Cancer-causing genetic changes can also be acquired during one’s 

lifetime and are called somatic (or acquired) changes [2]. 
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Figure 11. The many levels of interactions found in a cancer system, that can be measured via the 

different omics technologies, such as genomics, epigenomics, transcriptomic, and proteomic 

 

It is largely proved that genomic instability is a reductive model; studies 

demonstrated 

epigenetic errors resulting in aberrant gene silencing/activation [2]. According to the 

definition, epigenetics is a dynamic situation in the study of cell fate, that alter the 

structureof DNA without directly affecting and mutating its sequence. In fact, 

mutationsoccurred in the elements that regulate the expression or repression of the 

genome, suchas transcription factors and noncoding RNAs, with a consistent effect 

on the coordination of multiple biological processes. These elements can be divided 

into three roles: “writers”and “erasers” refer to enzymes that transfer or remove 

chemical groups to or from DNAor histones, respectively; “readers” are proteins that 

can recognize the modified DNA orhistones [2].In tumor tissues, different tumor cells 

show various patterns of histone modification,genome-wide or in individual genes, 
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demonstrating that epigenetic heterogeneity existsat a cellular level and suggesting 

that tumorigenesis is the consequence of the combinedaction of multiple epigenetic 

events [2]. For example, the repression of gatekeeper genesis usually caused by DNA 

modification in the methylation of CpG islands together withhypoacetylated and 

hypermethylated histones [2]. Gene silencing experiments identifiedseveral hallmarks 

of epigenetic events, including histone H3 and H4 hypoacetylation,histone H3K9 

methylation, and cytosine methylation [2]. Major epigenetic modificationsare 

classified as DNA modifications, histone modifications, effects of non-coding 

RNA(Figure 2). 

 

 

Figure 12. Epigenetic regulations in cancer. Alterations in epigenetic modifications in cancer 

regulate various cellular responses, including cell proliferation, apoptosis, invasion, and senescence. 

Through DNA methylation, histone modification, and noncoding RNA regulation, epigenetics play 

an important role in tumorigenesis. These main aspects of epigenetics present reversible effects on 

gene silencing and activation via epigenetic enzymes and related proteins. 
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Computational approach plays central roles not only in the analysis of high-

throughput experiments, but also in data acquisition, in processing of raw file derived 

from several instruments, in storage and management of large streams of omics 

information and in the data model integration. Bioinformatics workflow management 

systems can be used in developing and in application of a certain pipeline. Examples 

of such systems include Galaxy [2], Snakemake [2], Nextflow [2], and the general-

purpose Common Workflow Language [2]. Several tools for omics data studies are 

available in Bioconductor project as packages for the R language [2] and in 

Biopython project [2] [37]. 

All the omics technologies have a specific role to figure out the complex phenotype 

of cells especially in complex diseases like cancer. Knowledge of the biological 

molecular basis of different cellular signaling pathways does not involve only genes 

and transcripts, in fact, proteins and metabolites are particularly important to predict 

the phenotypic alterations for diagnosis and prognosis of cancer, and for this reason, 

in this chapter, we will spend some words about them. Table 1 represents a summary 

of the applications of different NGS-based and mass spectrometry-based techniques 

which are at the basis of different omics data acquisition approaches. 

To date, genomics approach has highly sustained the finding and investigation of 

variations at both the germline and somatic levels thanks to many progresses in 

genome-exome sequencing techniques, for instance from the Sanger sequencing-

based approaches to the NGS-based sequencing. Bioinformatics has always had a 

central role in the analysis of downstream genetic data. For example, in the multiscale 

scale project “The Cancer Genome Atlas” (TCGA), researchers used NGS 

sequencing associated to bioinformatics tools with the aim to discover somatic 

mutational landscape across thousands of tumor samples and to understand the 

complexity underlying different cancer types [56,57]. For the analysis of NGS data a 

sequence aligner tool is used on the sequence data (stored in FASTQ format). Some 
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popular aligners are the stand-alone BWA , Bowtie ,Bowtie2 , and SNAP [2] , with 

aligned sequences being stored in SAM (Sequence Alignment Map, text-based) or 

BAM (Binary Alignment Map) files. 

 

 

 

Table 2. Summary of the applications of different techniques for sequencing, which are at the basis 

of different omics data acquisition approaches. Genomics, epigenomics, and transcriptomics are 

based on NGS techniques, whereas proteomics and metabolomics are driven by mass-spectrometric 

(LC-MS/MS) method. The main goal of genomics, epigenomics, and transcriptomics is the 

screening of genome-wide mutations, the identification of altered epigenomic modifications, and 

exploring differential RNA expression, while for proteomics and metabolomics is the identification 

of differentially regulated proteins and metabolites (reprinted from reference [6]). 
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The detection and quantification of RNA transcripts (mRNA, noncoding RNA and 

microRNAs) is possible owing to the employment of several transcriptomics 

techniques. Differently from the static nature of genome, transcriptome dynamically 

changes as consequence of temporal cellular and extracellular stimuli. Microarray 

was the technique of choice to detect alterations in cellular mRNA levels in a high-

throughput manner owing to its ability to quantify the relative abundance of mRNAs 

for thousands of genes at the same time. Microarrays are widely used to facilitate the 

identification of genes with differential expression between normal and cancer 

conditions. With the advent of NGS, the identification of the presence and the 

abundance of RNA transcripts in genome-wide manner became possible. In contrast 

to microarrays technique, RNA-seq does not depend on the transcript-specific probes 

and thus can effectively perform an unbiased detection of novel transcripts, also the 

less abundant, with high specificity and sensitivity. Starting points for RNA-seq 

bioinformatics analysis include alignment-based methods, such as Bowtie [2], and 

STAR [2], or alignment-free methods, such as kallisto [2] and Salmon [2]. Cancer-

related omics experiments often rely on specific, tailor-made analytic pipeline. 

TCGA and other repositories give the great opportunity to analyze the omics data by 

a pan-cancer approach where different types of cancers can be compared in terms of 

genomic and transcriptomic landscapes [2].  

Given the high complexity and dynamic range of proteins, their identification and 

quantification in large scale are significantly challenging. Proteomic analyses are 

applied to identify and quantify the set of proteins present within a biological system 

of interest. Progressions of the tandem mass-spectrometry (LC-MS/MS) techniques 

in terms of resolution, accuracy, quantitation, and data analysis have made it a solid 

instrument for both the identification and quantification of cells proteome. Recently, 

the advent of cutting edge high-resolution “Orbitrap” mass-spectrometer instruments 

associated with powerful computational tools (i.e., MaxQuant [2] and Perseus [2]) 

simplified the genomewide detection of all expressed proteins in human cells and 
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tissues paving the way for a first draft of the human proteome [2]. MS-based 

proteomics techniques have been extensively applied also to investigate the proteome 

alteration in several human cancer tissues [2]. In particular, the study of cancer 

proteomes is a promising path for biomarkers and therapeutic targets identification 

because proteins are the molecular unit from which cellular structure and function 

arise [2]. The application of MS techniques is not restricted to proteomics but rather 

can be extended to smaller molecules such as metabolites. Metabolomics is 

characterized by the quantifications of metabolites that are synthesized as products of 

cellular metabolic activities, such as amino acids, fatty acids, carbohydrates, and 

lipids. Their levels can be dynamically altered in disease states reflecting aberrant 

metabolic functions in complex disorders like cancer. Indeed, metabolic variations 

are significant contributors to cancer development . This is the reason why cancer 

metabolomics has become an important research topic in oncology , with the aim to 

get new insights on cancer progression and potential therapeutic targets. Lipidomics 

is a subset of metabolomics [84], specifically cancer lipidomics has recently led to 

the identification of novel biomarkers in cancer progression and diagnosis [2]. 

Metabolomics is still an ongoing field with the potential to be highly effective in the 

discovery of biomarkers, especially in cancer. This is possible due to the support of 

bioinformatics tools like metab package [86], which provides an analysis pipeline for 

metabolomics derived from gas chromatography-MS data, or metaRbolomics 

package [2], which is a general toolbox that goes from data processing to functional 

analysis. Similarly, the lipidr package [2] is an analogous framework focused on 

lipidomics data processing. 

 

In recent years, machine learning has been proved to be capable of solving many 

biomedical problems. These mathematical models can represent the relationships 

between observed variables and provide a useful description of biological 

phenomena. A ML tool can perform several tasks, including classification task in 

which the input data are divided into two or more classes and the learning system 
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produces a model capable of assigning one class among those available to each input. 

These models have important biomedical applications [2], because they are capable 

of discriminating between health and disease, or between different diseases outcomes 

[2]. In a regression task instead, the output belongs to a continuous rather than 

discrete domain. These models provide insights into the molecular mechanisms 

driving physiological states, reveal interactions between different omics, and have 

been used in prognostic tools [2]. In this context, due to the large amounts of 

heterogeneous data, the removal of non-informative characteristics whichsimplifies 

the model, increases its performance, and makes it less expensive to measure, reveals 

to be a crucial process [2]. Feature selection algorithm is a process which selects the 

variables that contribute most to the prediction, removing the irrelevant or less 

important features that can negatively contribute to the performance of the model. 

Both classification and regression ML techniques combined with feature selection 

algorithms have been widely used for cancer prognosis and prediction [2]. Moreover, 

many packages, which combine exploratory, supervised, and unsupervised tools, 

have been recently implemented in oncology. Table 4 provides a list of some of these 

new tools. 

 

Table 3. Main packages tools implemented in oncology for machine learning 
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The interpretation of a ML model results could be a difficult task. A strategy that can 

provide readily interpretable results consist in mapping omic data on functional 

characteristics, in order to make them more informative and to associate them with a 

wider body of biomedical knowledge. Some functional enrichment approaches are 

listed below:  

• Over-Representation Analysis (ORA) [2]; 

 • Gene-Set Enrichment Analysis (GSEA) [2];  

• Multi-Omics Gene-Set Analysis (MOGSA) [2];  

• Massive Integrative Gene Set Analysis (MIGSA) [2];  

• Exploratory Data Analysis (PCA) [2];  

• Divergence Analysis [2].  
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3.5 MMP-14 Cyclic-peptides inhibitors 

 

Matrix Metallo Proteinase 14 (MMP 14) [84] is known to be involved in many types 

of bone cancers [84] . After many researches we have found the protein in complex 

with Collagen (PDB:2MQS) [84]. 

 

 

Figure 13.MMP14 in complex with Collagen.PDB: 2MQS 

 

Thanks to a collaboration with  the University of Essex, that obtained an 

experimental crystal structure of MMP14 in complex with a cyclic peptide inhibitor, 

we have conducted computational studies on this target. We have performed 

Classical Molecular Dynamics simulations and meta-dynamics simulations , such as 

Supervised Molecular  Dynamics simulations. The results werenot so good and celar , 

in fact after having performed  SuMD simulation of the experimental crystal , we 

have observed that the experimental cyclic peptide , prevently moved  about 20 

Angstroms away from the binding pocket , did not reach the right pose as in the 
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experimental crystal of MMP14 in complex with the cyclic peptide itself. This 

problem is known since, as we have already said, small molecules or peptides and 

cyclic peptides can have different distortions and a consistent probabilistic variability 

, some of these are the noise and the large number of degrees of freedom.Anyway we 

are studying different algorithms, in collaboration with many universities and 

scientists , that could avoid all these problems and distortions. 

 

 

 

 

Figure 14.Experimental crystal of MMP14-cyclic peptide inhibitor obtained in the crystallography 

laboratory of the University of Essex. 

 

 

 

 

3.6Conclusions 
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Regarding the study on potential drugs against SARS-CoV-2 Spike Protein we can 

say that SARS-CoV-2 invades human cells via ACE2, a transmembrane protein 

expressed on the surface of alveolar cells of the lungs. Upon binding of ACE2, viral 

and host cell membranes fuse and the virus enters into the host cell. This results in the 

development of an infectious disease, called COVID-19, which is associated with a 

major immune infammatory response. Deaths are caused by respiratory failure, which 

have been linked to a cytokine storm with high serum levels of pro-infammatory 

cytokines and chemokines[62]. 

The aim of this proof of principle study was to propose a robust in silico protocol that 

overcame limitations of classic virtual screening studies. The role of hydration 

patterns in target recognition and binding is completely absent in docking 

simulations. Furthermore, in most virtual screenings, while the ligand is fexible, 

proteins are only semi-fexible, which afects both the resulting pose of the ligand and 

the scoring system[63]. 

More reliable information can only be obtained by MD simulations, which, despite 

being computationally expensive, allow to take into account macromolecules’ unique 

features, such as conformational fexibility, charge distribution, and hydration patterns 

in target recognition, drug binding, and drug unbinding[64]. 

Our results show the importance of taking into account the full structural features of a 

protein–ligand complex and how a combination of MD simulations may help predict 

the validity of a proposed inhibitor. Our work suggests that Simeprevir and 

Lumacafor could be potential initial compounds able to prevent and treat SARS CoV-

2 infection. 

 

Regarding the study on flavonoids against h-ERG receptors , we can say that the 

widespread use of plant-derived medications, functional foods, and dietary 

supplements results in a remarkable daily intake of flavonoids. The recent 

observation that the combination of quercetin and dasatinib decreases the number of 
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senescent cells in humans [65] is expected to generate great appeal of flavonoid use 

among the general public. Beyond their well-known beneficial effects on overall 

cardiovascular mortality, accumulating in vitro and in vivo evidence point out to 

some flavonoids as potential hERG channel blockers . Noticeably, unlike 

prescription-drugs, phyto-therapeutic products and dietary supplements are mostly 

used without prescription by a healthcare professional. Finally, a further concern is 

represented by the concomitant intake of flavonoids and QT prolonging drugs, due to 

the potential impact of these natural compounds on drug pharmacokinetics and 

bioavailability. Though the topics covered here deserve further investigations to 

better clarify the clinical relevance of these interactions, they have important 

implications that impose cautiousness in phytotherapy indication and dietary 

recommendation of flavonoids, especially for patients susceptible to LQTS and 

Torsades de Pointes owing to a reduced repolarization reserve. 

 

Regarding the study on Mendelian Disorders , we can say that Gly-mutations can be 

responsible for the formation of new pockets on the protein surface if some 

conditions are fulfilled, as in the case that amino acids involved in the replacement 

bear bulky side chains and are located near to the protein surface [66]. 

This feature can be exploited to design Glymutants for proteins whose activity we 

like to control through suitable ligands. In the present report, we explored how 

evolution designed Gly-mutants as witnessed in the human genome by ClinVar. 

ClinVar, as of October 3, 2020, classified 959 benign and 875 pathological missense 

Gly-mutations,offering a large repertoire for understanding the way these mutations 

can causeMendelian disorders. 

 

By crossing ClinVar and PDB data banks, the structural feature that originates a 

Mendelian disorder can be analyzed and, in case the Gly-mutation determines the 

formation of a potential new binding site, remediation could be found by discovering 
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ligands that shield the latter binding site. Thus, the possibility that a pill can fix a 

Mendelian disorder seems to be practicable. 

As a final remark, it must be underlined that a severe bottleneck for the present 

investigation has been due to the lack of structural information, reducing the 875 

proteins with pathological Glymutations to 225 structurally characterized systems. 

The continuous progress in protein structure predictions, like the ones recently 

proposed (67-68), will solve in part the problem. In general, AI will yield more and 

more powerful tools to predict which and how Mendelian disorders can be 

cured. The possibility of very fast tailoring of ligands for Gly-induced pockets 

through molecular graph generation with graph neural networks is just a recent 

example of AI-related advancements [69]. 

 

 

 

 

Regarding the sudies and reviews about possible applications of Multi-omics in 

Cancer therapy we can say that these computational approaches play a central role in 

improving our current cancer diagnostic capabilities . The understanding of the 

cancer progression, the new therapeutic interventions, and the discovery of novel 

cancer biomarkers need to adopt and integrate different omics strategies at multiple 

levels. To achieve this aim, there are five essential challenges in the omics integration 

workflow: (1) experimental challenges, (2) individual omics datasets, (3) integration 

issues, (4) data issues, and (5) biological knowledge.  

 

1. Experimental challenges: an accurate sample preparation in a multi-omics 

perspective becomes one of the major experimental challenges, with the aim to 

achieve a universal sample collection and preparation protocol for generating 

multiple omics datasets.  
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2. Individual omics datasets: data preprocessing is also another significant 

challenge. This process can be performed on each omic dataset independently 

before merging significant results or after the production of a unique merged 

dataset. Moreover, the information included in each individual omic dataset 

requires very different standardization and scaling approaches, operating in 

different numerical and time scales 

3. Integration issues: data integration issues increases the difficulty of accounting 

for false positives in merged datasets. Additional problems include the 

management of rigorous approaches based on statistical models with respect to 

less rigorous approaches that include a biological interpretation. In comparison 

to a single omics study, a multi-omics approach has the benefit to allow a 

deeper understanding ofhow the tumoral transformation is affecting the flow of 

information from different omics levels resulting in a bridge between 

cancerous genotype and the phenotype. 

4. Data issues: the storage of omics data is very important for reproducibility. To 

this end, new omic platforms are being developed to provide essential clinical 

data for insights into the prognosis and diagnosis of diseases. 

5. Biological knowledge: the interpretation of the outputs of computational 

models requires a deep knowledge of the biological system under study, in 

order to discriminate results that are not biologically relevant. 

 

 

Despite these challenges the application of bioinformatics data integration and 

analysis, as well as the use of molecular modeling algorithms, allow to formulate 

many predictions of drug–target interactions to greatly facilitate guided drug 

development and guided drug resistance prevention [2].  

Artificial intelligence (AI) approaches act on many aspects related to cancer therapy, 

including drug discovery and development and how these drugs are clinically 

validated and ultimately administered to patients [2]. The convergence of AI and 
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cancer therapy has led to multiple benefits in terms of cost and time reduction. AI 

methods, ranging from regression models to neural networks can accelerate drug 

discovery, harness biomarkers to accurately match patients to clinical trials, and truly 

customize cancer therapy using only patients’ own data. In conclusion, the design and 

development of methods that integrate different multi-omic computational 

approaches in order to create robust and reliable models can lead to enormous 

advances in understanding the biology of cancer. As bioinformatics tools evolve, they 

must become user-friendly, interconnected, interoperable, and powerful for intensive 

analyses. In this context, integrated omics is not just an ensemble of computational 

tools, but a cohesive paradigm for deeper biological interpretation of multi-omics 

datasets that will potentially reveal novel details into cancer investigation. Although 

this field is still under development, many advances are constantly being made, with 

the development of new updated algorithmic approaches. 

 

The results in all  studies have been satisfactory and in some case are in progress. For 

a more accurate understanding, I refer you to our scientific publications which you 

can find in the references section. 

 

In conclusion, it must be emphasized that, even if all these computational studies are 

promising for the futureperspectives, and are of great help for the scientific 

community, as they reduce time and labor costs, computational simulations actually, 

can’t never replace what happens naturally in the organism. Therefore, in order to 

provide a detailed study to the scientific community, it is necessary, in my opinion, 

that in silico simulations should always be confirmed by experimental studies, such 

as "in vitro" and "in vivo" tests. 

In any case, it is always better to check, before conducting a computational study, if 

there exsists an experimental confirmation of the target we are studying , for example 

in the databases we use or in scientific publications , in order to have a very important 

reference from which to start our computational study. 
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4.  APPENDIX 

In the appendix section I want to report two useful Python scripts that were used in 

the two recently published projects. The first Python script is the one that was used 

for the X / Gly mutation project with Professor Neri Niccolai. Instead the second 

script is the one that was used for the simulation of the Supervised Molecular 

Dynamics of the interaction of the two proteins involved in the pathogenicity 

mechanism of the SARS-Cov-2 virus, namely the RBD Spike Protein and the ACE 2 

(Angiotensin Converting Enzyme 2) .  I report below the two entire scripts. 

 

1. X/Gly Script (WebScraping research of X/Gly mutations , and related deseases 

and protein structures) 

 

#!/usr/bin/python 

import urllib2 

import re 

import httplib 

from urllib2 import urlopen 
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import shutil 

import time 

import subprocess 

import os 

import time 

import argparse 

import selenium 

import openpyxl 

import csv 

from socket import error as SocketError 

import errno 

 

#Creazione lista ClinVar  

 

with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/clinvar_resul

t.txt','r') as clin : 

     lista_clin = clin.readlines() 

 

# Ricerca soltanto delle mutazioni in glicina 

lista_mutazioni_gly = []                         

for i in lista_clin: 

 



60 
 

         try: 

           if i.split()[1][-4:-1] == 'Gly': 

              lista_mutazioni_gly.append(i) 

         except IndexError: 

           pass 

 

lista_mutazioni_gly_senza_doppioni = [] 

for gen in lista_mutazioni_gly : 

   if gen not in lista_mutazioni_gly_senza_doppioni: 

        lista_mutazioni_gly_senza_doppioni.append(gen) 

 

# Eliminiamo la ridondanza e scriviamo il file Mutations_without_redundance 

file_mutazioni_gly_redundance = open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutazioni_li

nee_geni.csv', 'w')  

for rigo in (lista_mutazioni_gly_senza_doppioni) : 

     file_mutazioni_gly_redundance.write(str(rigo)+'\n')      

file_mutazioni_gly_redundance.close() 

 

with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutazioni_T

OTALI.csv', 'w') as file_mutazioni_tot: 

       for m in lista_mutazioni_gly_senza_doppioni : 
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           file_mutazioni_tot.write(m.split()[0]+'\t'+m.split()[1]+'\n') 

 

 

with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutazioni_T

OTALI.csv', 'r') as file_mutazioni_tot: 

      lista_file_mut_tot =  file_mutazioni_tot.readlines() 

      lista_file_mut_tot = list(set(lista_file_mut_tot)) 

      for h in lista_file_mut_tot: 

         for u in  lista_file_mut_tot: 

            if h.split('(')[0] != u.split('(')[0] and h.split('(')[1] == u.split('(')[1]: 

                lista_file_mut_tot.remove(h) 

 

with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutazioni_T

OTALI.csv', 'w') as file_mutazioni_tot_no_redund: 

       file_mutazioni_tot_no_redund.writelines(lista_file_mut_tot) 

 

with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutazioni_li

nee_geni.csv','r') as file_mut_pdb : 

        with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutations_w

ithout_redundance.csv','a') as final_file : 
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              try: 

                lista_file_mut_pdb = [] 

                lista_doc_unico_gene = [] 

                lista_file_mut_pdb_ini = file_mut_pdb.readlines() 

                for i in lista_file_mut_pdb_ini: 

                    if i == '\n': 

                         lista_file_mut_pdb_ini.remove(i) 

                #lista_file_mut = file_mut.readlines() 

 

                for i in lista_file_mut_pdb_ini : 

                   lista_file_mut_pdb.append(i.split('(')[1].split(')')[0]) 

                lista_file_mut_pdb = list(set(lista_file_mut_pdb)) #elimino ridondanza dei 

geni al fine di diminuire il tempo di calcolo 

                lista_file_mut_pdb.sort() # ordino geni in ordine alfabetico 

                # creazione lista con tutti i geni unitari 

                for i in lista_file_mut_pdb : 

                   if i[0] == 'g': 

                       lista_file_mut_pdb.remove(i) 

 

 

                for l in lista_file_mut_pdb : 



63 
 

                      for j in  lista_file_mut_pdb_ini: 

                            if l == j.split('(')[1].split(')')[0]: 

                                 lista_doc_unico_gene.append(j) 

                                 break 

                final_file.writelines(lista_doc_unico_gene) 

 

              except (IndexError , NameError , urllib2.HTTPError ,urllib2.URLError , 

httplib.BadStatusLine ) : 

                pass 

 

time.sleep(1) 

 

#Ricerca totale di tutti i possibili codici pdb su uniprot e crazione di un database di 

mutazioni per ogni gene -- 

with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutations_w

ithout_redundance.csv', 'r') as file_mutazioni_without_redundance: 

  with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutations_&

_pdb_without_redundance.csv', 'a') as mutations_pdb: 

 

            lista_mutazioni_gly_no_redundance = 

file_mutazioni_without_redundance.readlines() 

 



64 
 

            for i in lista_mutazioni_gly_no_redundance :  

                 i = i[0:-1] 

                 try:    

                   ref_seq_code = i.split('(')[1].split(')')[0] # creo variabile ref_seq_code 

                 #print  ref_seq_code  

                 except IndexError: 

                   pass           

                 time.sleep(1) 

                 try:         

                    url= "https://www.uniprot.org/uniprot/?query=" +ref_seq_code 

+('&sort=score')  #ref_seq_code without NM only code number 

                    time.sleep(1) 

                 #print ref_seq_code,url 

                 #download uniprot search - parsing to take uniprot accession number 

 

                    response=urllib2.urlopen(url) 

                    time.sleep(1) 

                    webcontent=response.read() 

                 except (urllib2.HTTPError , urllib2.URLError , httplib.BadStatusLine , 

SocketError): 

                    pass 

 

                 out_wc=open("/home/libra/out_wc","a") 
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                 out_wc.write(webcontent) 

 

                 f1 = open("/home/libra/out_wc" ,'r') 

                 lines1 = f1.readlines() #legge tutte le linee e le mette in una lista  

 

                 for lin1 in lines1: 

 

                        ucode=re.findall('<a href="/uniprot/\w+',lin1) 

                        tl=len(ucode) 

                        if tl > 0: 

                                #print ucode 

 

                                unacc=ucode 

 

 

                 #print unacc 

                 #print acc 

 

                 out_wc.close() 

                 f1.close() 

 

                 os.system("rm /home/libra/out_wc") 
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                 info_uni= "PDB;" 

 

                 lista_pdb = [] 

 

                 for elemento in unacc : 

                    acc = elemento.split('/')[2] 

                    try: 

                      url1="https://www.uniprot.org/uniprot/"+acc+".txt" #download uniprot 

search - parsing to take uniprot accession number 

                      time.sleep(1) 

                      response1=urllib2.urlopen(url1) 

 

                    except (urllib2.HTTPError , urllib2.URLError , httplib.BadStatusLine , 

SocketError): 

                      pass 

 

                    webcontent1=response1.read() 

 

                    out_wc1=open("/home/libra/out_wc1","a") 

                    out_wc1.write(webcontent1) 

 

                    f2 = open("/home/libra/out_wc1" ,'r') 
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                    lines2 = f2.readlines() #legge tutte le linee e le mette in una lista  

 

                    mem=[] 

 

                    try: 

                       for lin2 in lines2: 

 

 

                                if ''.join(lin2).split()[0] == "DR" and  ''.join(lin2).split()[1] == 

info_uni: 

 

                                     k=info_uni+"_"+''.join(lin2).split()[2] 

                                     mem.append(k) 

 

                    except IndexError: 

                        pass 

 

 

 

 

 

                    #print mem 
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                    out_wc1.close() 

                    f2.close() 

 

                    os.system("rm /home/libra/out_wc1")                  

                    time.sleep(2) 

 

                    if len(mem) > 0: 

                       for pdb in mem: 

                             lista_pdb.append(pdb) 

 

                    lista_pdb = list(set(lista_pdb)) 

 

 

 

                 if  lista_pdb > 0 :                      

                      mutations_pdb.write(str(i)+'\t'+'PDB : '+str(lista_pdb)+'\n\n') 

                 else: 

                      mutations_pdb.write(str(i)+'\t'+'\n\n') 
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time.sleep(1) 

 

 

 

 

 

# Ricerchiamo il codice pdb referente al gene - la risoluzione - la data di deposizione 

della struttura - la lunghezza della sequenza 

 

lettura = open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutations_&

_pdb_without_redundance.csv','r') 

lista_lettura = lettura.readlines() 

lettura.close() 

 

with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutazioni_e

_pdb_uniprot_corrisposti_gene.csv','a') as file_mutazioni : 

 

   for i in lista_lettura: 
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        if i == '\n': 

            lista_lettura.remove(i) 

 

   for i in  lista_lettura: 

        lista_pdb = [] 

        i = i[0:-1] 

        print i 

        ref_seq_code = i.split('(')[1].split(')')[0] 

 

        linea = i.split('\tPDB')[1] 

        lista_linea = linea.split() 

        print (lista_linea) 

 

 

        for elemento in lista_linea: 

            try: 

               elemento = elemento.split('_')[1].split(';')[0]  

               lista_pdb.append(elemento) 

            except IndexError: 

               pass 

 

        lista_finale_pdb = [] 
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        if len (lista_pdb) > 0: 

          for pdb in lista_pdb: 

            try: 

              #pdb = pdb.split('_')[1][0:-1] 

              url3 = 'https://files.rcsb.org/view/'+pdb+'.pdb' 

              time.sleep(1) 

              try:         

                  urlopen(url3) 

 

              except: 

                  pass 

 

              try: 

                response3 = urllib2.urlopen(url3) 

 

              except (urllib2.HTTPError ,  urllib2.URLError, httplib.BadStatusLine , 

SocketError): 

                pass 

 

              webcontent2 = response3.read()       

              out_wc3=open("/home/libra/DANIELE/out_wc3.txt","w") 

              out_wc3.writelines(webcontent2) 
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              out_wc3.close() 

              with open('/home/libra/DANIELE/out_wc3.txt','r') as testo: 

                  try: 

                     for linea in testo: 

                        linea = ''.join(linea).split() 

                        for p in linea: 

                             if  p == ref_seq_code  or p == ref_seq_code+'_HUMAN' or p == 

ref_seq_code+'_RAT' or p == ref_seq_code+'_MOUSE' or p == ref_seq_code+';'  or 

p == ref_seq_code+'_HUMAN;' or p == ref_seq_code+'_RAT;' or p == 

ref_seq_code+'_MOUSE;' or p == ref_seq_code+','  or p == 

ref_seq_code+'_HUMAN,' or p == ref_seq_code+'_RAT,' or p == 

ref_seq_code+'_MOUSE,': 

                                      #print 'yes' 

                                      # Scrivere codice per greppare : Data deposizione pdb , 

Risoluzione pdb e Lunghezza sequenza pdb 

                                      lista_finale_pdb.append(pdb) 

                                      break 

 

 

 

                  except IndexError: 

                     pass 

 

            except  (urllib2.HTTPError ,  urllib2.URLError, httplib.BadStatusLine): 
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              pass 

 

 

 

        lista_finale_pdb_senza_copie  = [] 

        for pdb in lista_finale_pdb : 

               if pdb not in lista_finale_pdb_senza_copie: 

                      lista_finale_pdb_senza_copie.append(pdb)  

        print i 

 

        if len (lista_finale_pdb_senza_copie) > 0 :  

              file_mutazioni.write(str(i.split('\tPDB')[0])+'\t'+'PDB :'+'  ') 

              try: 

                for single in lista_finale_pdb_senza_copie: 

                    url4 = 'https://files.rcsb.org/view/'+single+'.pdb'  

 

                    try: 

 

                      urllib2.urlopen(url4) 

                      time.sleep(1) 

                      response4 = urllib2.urlopen(url4)  

                      time.sleep(1) 
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                    except  (urllib2.HTTPError , urllib2.URLError ,SocketError) : 

                      pass 

 

                    webcontent3 = response4.read() 

                    pdb_single = open("/home/libra/DANIELE/pdb.txt","w")  

                    pdb_single.writelines(webcontent3)  

                    pdb_single.close() 

                    with open('/home/libra/DANIELE/pdb.txt','r') as testo: 

                          lista_file_testo = testo.readlines() 

                          file_mutazioni.write(lista_file_testo[0]+'\t') 

                          for rigo in lista_file_testo: 

                             rigosplit = ''.join(rigo).split() 

 

                             if   rigosplit[0] == 'SEQRES'  : 

                                       file_mutazioni.write('sequence_lenght '+rigosplit[3]+'     ') 

                                       break      

 

 

 

                          for rigo in lista_file_testo: 
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                             if  rigo.split()[0] == 'REMARK' and 'RESOLUTION.' in 

rigo.split(): 

                                      file_mutazioni.write(rigo+'        \n') 

                                      #break 

 

              except (IndexError , urllib2.HTTPError , urllib2.URLError , NameError , 

httplib.BadStatusLine): 

                    pass                       

                    file_mutazioni.write('\t\t')     

              file_mutazioni.write('\n\n') 

        else :  

            file_mutazioni.write(str(i.split('\tPDB')[0]) +'\n\n') 

 

 

time.sleep(1) 

 

# Ricerco infine tutte le mutazioni per ogni gene -- presenti nel file 

Mutazioni_TOTALI.csv -- e le faccio scrivere in un file finale -- denominato 

Mutations_pdb_final.csv -- avente tutte le informazioni per ogni gene 

 

with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutazioni_T

OTALI.csv', 'r') as file_mutation_read: 
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   with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutazioni_e

_pdb_uniprot_corrisposti_gene.csv','r') as file_mutazioni_pdb_read:  

       with open 

('/home/libra/Scrivania/progetto_niccolai/mutazioni/prova_script_finale/Mutations_p

db_final.csv','a') as final_file_append: 

          lista_file_mutation_read = file_mutation_read.readlines() 

          lista_file_mutazioni_pdb_read = file_mutazioni_pdb_read.readlines() 

          for b in lista_file_mutazioni_pdb_read : 

            try:     

              if b.split('_')[0] == "NM" or b.split('_')[0] == "NC": 

                 lista_nuove_mutazioni = [] 

                 for h in lista_file_mutation_read  : 

                    if b.split('(')[1].split(')')[0] == h.split('(')[1].split(')')[0] : 

                        lista_nuove_mutazioni.append(h.split()[1]) 

                 final_file_append.write('Gene : '+b.split('(')[1].split(')')[0]+'  Mutazioni : 

'+str(lista_nuove_mutazioni)+'  Gene e Malattie : '+(b)+'\n') 

              else : 

                 final_file_append.write(b)  

            except IndexError: 

              pass 
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2. SuMD RBD-ACE2 

 

#!/usr/bin/python 

#!/usr/local/bin/python 

 

 

 

 

import shutil 

import time 

import subprocess 

import os 

import time 

import argparse 

 

input_command = ('export GMX_MAXCONSTRWARN=-1') 

subprocess.Popen(input_command,shell=True).wait() 

os.system('echo 1 |gmx pdb2gmx -f Complex.pdb -o Complex.gro -p topol.top -v  -

water tip3p') 

os.system('gmx editconf -f Complex.gro -o KALP_newbox.gro  -bt cubic -d 1.6 -c') # 

Con Membrana  gmx editconf -f Complex.pdb -o KALP_newbox.gro -c -box x y z   

with open ('box.txt','r') as file_read: 

         for linea in file_read: 
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              if ''.join(linea).split()[1] == 'size': 

                  os.system('gmx editconf -f Complex.pdb -o KALP_newbox.gro -c -box 

'+''.join(linea).split()[3]+' '+''.join(linea).split()[4]+' '+''.join(linea).split()[5]) 

time.sleep(2) 

os.system('rm *#') 

time.sleep(2) 

 

Solvatazione 

input_command = ('gmx solvate -cp KALP_newbox.gro -cs spc216.gro -o solv.gro -p 

topol.top') 

subprocess.Popen(input_command,shell=True).wait() 

 

 

# Ioni 

input_command = ('gmx grompp -f ../em.mdp -c solv.gro -p topol.top -o ions.tpr -r 

solv.gro -maxwarn 1000') 

subprocess.Popen(input_command,shell=True).wait() 

 

 

 

input_command = ('echo 15 |gmx genion -s ions.tpr -o solv_ions.gro -p topol.top -

neutral') 

subprocess.Popen(input_command,shell=True).wait() 
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# avvio minimizzazione 

input_command = ('gmx grompp -f ../em.mdp -c solv_ions.gro -p topol.top -o 

em_0.tpr -r solv_ions.gro -maxwarn 1000') 

subprocess.Popen(input_command,shell=True).wait() 

 

 

 

input_command = ('gmx mdrun -v -deffnm em_0 -nt 32') 

subprocess.Popen(input_command,shell=True).wait() 

 

# Controllo minimizzazione 

i = 0 

while True : 

      lista_em = [] 

      os.system('echo Potential| gmx energy -f em_'+str(i)+'.edr > em.txt') 

      time.sleep(2) 

      with open ('em.txt','r') as em: 

             for line in em: 

                lista_em.append(line) 
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             for l in lista_em: 

                if l == '\n': 

                  lista_em.remove(l) 

             time.sleep(2) 

             if ''.join(lista_em[4]).split()[0] == 'Potential' and 

float(''.join(lista_em[4]).split()[1]) >= 0: 

                        os.system('gmx grompp -f ../em.mdp -c em_'+str(i)+'.gro -r 

em_'+str(i)+'.gro -p topol.top -o em_'+str(i+1)+'.tpr -maxwarn 1000') 

                        os.system('gmx mdrun -v -deffnm em_'+str(i+1)+'  -nt 32') 

             else : 

                        break 

             i += 1 

      os.system('rm *#')  

 

# avvio nvt 

#input_command = ('gmx grompp -f nvt.mdp -c em_'+str(i)+'.gro -r em_'+str(i)+'.gro 

-p topol.top -o nvt_0.tpr -maxwarn 1000') 

input_command = ('gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o 

nvt_0.tpr -maxwarn 1000') 

subprocess.Popen(input_command,shell=True).wait() 

input_command = ('gmx mdrun -deffnm nvt_0  -nt 32') 

subprocess.Popen(input_command,shell=True).wait()  
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# Controllo nvt 

i = 0 

while True : 

      lista_nvt = [] 

      os.system('echo Temperature| gmx energy -f nvt_'+str(i)+'.edr > nvt.txt') 

      time.sleep(2) 

      with open ('nvt.txt','r') as nvt: 

             for line in nvt: 

                lista_nvt.append(line) 

             for l in lista_nvt: 

                if l == '\n': 

                  lista_nvt.remove(l) 

             time.sleep(2) 

             if ''.join(lista_nvt[4]).split()[0] == 'Temperature' and 

float(''.join(lista_nvt[4]).split()[1]) > 310 or float(''.join(lista_nvt[4]).split()[1]) < 309 

: 

                        os.system('gmx grompp -f nvt.mdp -c nvt_'+str(i)+'.gro -r 

nvt_'+str(i)+'.gro -t nvt_'+str(i)+'.cpt -p topol.top -o nvt_'+str(i+1)+'.tpr -maxwarn 

1000') 

                        os.system('gmx mdrun -deffnm nvt_'+str(i+1)+'  -nt 32') 

             else : 

                        break 

             i += 1 
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      os.system('rm *#') 

 

#avvio npt 

input_command = ('gmx grompp -f npt.mdp -c nvt_'+str(i)+'.gro -r nvt_'+str(i)+'.gro  

-t nvt_'+str(i)+'.cpt  -p topol.top -o npt_0.tpr -maxwarn 1000') 

subprocess.Popen(input_command,shell=True).wait() 

input_command = ('gmx mdrun -deffnm npt_0  -nt 32') 

subprocess.Popen(input_command,shell=True).wait() 

 

# controllo npt 

i = 0 

while True : 

      lista_npt = [] 

      os.system('echo Pressure| gmx energy -f npt_'+str(i)+'.edr > npt.txt') 

      time.sleep(2) 

      with open ('npt.txt','r') as npt: 

             for line in npt: 

                lista_npt.append(line) 

             for l in lista_npt: 

                if l == '\n': 

                  lista_npt.remove(l) 

             time.sleep(2) 
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             if ''.join(lista_npt[4]).split()[0] == 'Pressure' and 

float(''.join(lista_npt[4]).split()[1]) < 0.900 or float(''.join(lista_npt[4]).split()[1]) > 

1.100 : 

                        os.system('gmx grompp -f ../npt.mdp -c npt_'+str(i)+'.gro -r 

npt_'+str(i)+'.gro -t npt_'+str(i)+'.cpt -p topol.top -o npt_'+str(i+1)+'.tpr -maxwarn 

1000') 

                        os.system('gmx mdrun -deffnm npt_'+str(i+1)+'  -nt 32') 

             else : 

                        break 

             i += 1 

             #os.system('rm npt_'+str(i-1)) Rimuovo tutti i file npt antecedenti 

      os.system('rm *#')  

 

 

 

 

input_command = ('gmx grompp -f md_1ns.mdp -c npt_'+str(i)+'.gro -r 

npt_'+str(i)+'.gro -t npt_'+str(i)+'.cpt -p topol.top  -o md_0.tpr -maxwarn 1000') 

subprocess.Popen(input_command,shell=True).wait() 

input_command = ('gmx mdrun -deffnm md_0  -nt 32') 

subprocess.Popen(input_command,shell=True).wait() 

 

# inizializzo variabile md_input 
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md_input = 'md_0'  

#creare index corretto es  os.system("echo -e '0 & 19 \n q' |gmx make_ndx -f 

npt_7.gro -o index.ndx") esempio ligand and not system   

 

os.system("echo -e '19 \n 20 \n' |gmx pairdist -f md_0.xtc -n index.ndx") 

 

#creare var diff_iniz (diff tra ultimo e primo valore) 

with open('dist.xvg','r') as dist: 

     lista_dist = dist.readlines() 

for i in lista_dist: 

 if i.split()[0] == '0.000': 

     primo_valore = float(i.split()[1]) 

ultimo_valore = float(lista_dist[-1].split()[1]) 

 

# Analisi della distanza ottenuta dalla prima dinamica - Avvio algoritmo SuMD 

if float(ultimo_valore) >= float(primo_valore) or  (float(ultimo_valore) < 

float(primo_valore) and float(ultimo_valore) > 0.27): 

    #ciclo while True 

    i = 0 

    md_input = 'md_'+str(i) 

    md_out = 'md_'+str(i+1) 

    while True : 



85 
 

        os.system('gmx grompp -f md_1ns.mdp -c '+md_input+'.gro -p topol.top -r 

'+md_input+'.gro  -o '+md_out+'.tpr -n index.ndx -maxwarn 1000') 

        os.system('gmx mdrun -v -deffnm  '+ md_out+' -nt 32') 

        os.system("echo -e '19 \n 20 \n' |gmx pairdist -f  "+md_out+".xtc -n index.ndx") 

        with open('dist.xvg','r') as dist: 

            lista_dist = dist.readlines() 

        lista_distanze_tempi = [] 

        for val in lista_dist: 

           if val.split()[0] == '0.000': 

               primo_valore_out =  float(val.split()[1]) 

           if val[0] != '#' and val[0]!= '@' and  val.split()[0] != '0.000' and len(val.split()) 

== 2: 

              lista_distanze_tempi.append(val.split()) 

 

 

 

 

        lista_distanze_tempi.sort() 

 

        lista_only_distance = [] 

        for dist in lista_distanze_tempi: 

           lista_only_distance.append(float(dist[1])) 
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        minim_value_dist = min(lista_only_distance) 

        if minim_value_dist < primo_valore_out: 

          for el in lista_distanze_tempi: 

             if float(el[1]) == float(minim_value_dist): 

                frame = el[0] 

          md_input = 'md_'+str(i+1) 

          input_command = ('echo 0 |gmx trjconv -f '+md_out+'.xtc -s '+md_out+'.tpr -o 

'+md_input+'.pdb  -b '+frame+'  -e  '+frame) 

          subprocess.Popen(input_command,shell=True).wait() 

          os.system('gmx editconf -f '+md_input+'.pdb  -o  '+md_input+'.gro') 

 

          md_out = 'md_'+str(i+2) 

          os.system('rm mdout.mdp') 

          i += 1 

 

        if float(minim_value_dist) <= 0.27 : 

               #scrivere col trjconv dal primo  fino al frame piu basso 

               break  

 

        else : 

           md_input = 'md_'+str(i) 

           md_out = 'md_'+str(i+1) 
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           i = i-1 

        i += 1 

        os.system('rm *#') 

 

if float(ultimo_valore) < primo_valore and float(ultimo_valore) <= 0.27: 

    None 

os.system('gmx grompp -f md.mdp -c '+md_input+'.gro -p topol.top -r 

'+md_input+'.gro   -o md_cmd.tpr -maxwarn 1000') 

os.system('gmx mdrun -deffnm md_cmd -v -nt 32') 
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