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Abstract

This paper is a contribution to the study of
two distinct kinds of modal logics for mo-
deling uncertainty. Both approaches use lo-
gics with a two-layered syntax, but while one
employs classical logic on both levels [6], the
other involves a suitable system of fuzzy logic
in the upper layer [9]. We take two promi-
nent examples of the former approach, pro-
bability logics Prlin and Prpol, and build ex-
plicit faithful translations into, respectively,
the two-layered modal fuzzy logics given by
 Lukasiewicz logic with 4 and its expansion
with the product connective. We first prove
the faithfulness of both translations using se-
mantics of all four involved logics. Then, we
use the axiomatization of Prlin and a hyper-
sequent presentation of the two-layered sy-
stem over  Lukasiewicz logic to obtain an al-
ternative syntactical proof.

Keywords: Mathematical Fuzzy Logic, Lo-
gics of uncertainty,  Lukasiewicz logic, Proba-
bility logics, Two-layered modal logics.

1 Introduction

In recent years, numerous logical systems have been
introduced to cope with reasoning about uncertain
events. Among them, two of the most prominent
examples are the modal logics introduced in [6] (see
also [11]), which we denote here as Prlin and Prpol.
The atomic statements of these logics express linear
(resp. polynomial) inequalities of probabilities of
classical events and are then combined using classical
connectives. Both logics are introduced semantically
using Kripke frames enriched by a probability mea-
sure, which allows for expressing validity of atomic
statements of these logics on events construed as sets of
worlds described by classical formulas. Despite dealing

with the intrinsically graded notion of probability, the
semantics of these logics remains essentially bivalent.

An alternative approach uses the framework of Mathe-
matical Fuzzy Logic and takes sentences like “ϕ is pro-
bable” at face value, identifying its truth degree with
the probability of ϕ; then one combines such formu-
las using connectives of a suitable fuzzy logic. Hence,
this approach shifts the syntactical complexity of the
atomic statements of the previous approach to the se-
mantics of the fuzzy logic in question. Such idea was
proposed in [9,10] and later studied by numerous aut-
hors; see [7] for a thorough survey or [3] for an abstract
treatment. In this paper, we consider three different
fuzzy logics to govern the behavior of modal formu-
las:  Lukasiewicz logic �, its expansion �4 with Baaz–
Monteiro operator 4, and its further expansion P�4
by product conjunction. The resulting modal logics
are denoted here as Pr�, Pr�4 , and PrP�4 respecti-
vely.1

We describe some strong formal links between systems
of the two kinds and thus show that both approaches
are much more closely related than it might seem at
first sight. First, in Section 2, we introduce the syntax
and semantics of all the logics under investigation.
Then, in Section 3, we present translations of Prlin
and Prpol into, respectively the logics Pr�4 and PrP�4

with a simple semantical proof of their faithfulness.
Section 4 presents an extension of Pr� into its hyperse-
quent variant HPr� which is then faithfully translated
into a hypersequent calculus H� of relations for
 Lukasiewicz logic [16], thus providing an alternative
proof system for Pr�. In Section 5, we use the results
of the previous section to provide a faithful translation
of the logic Prlin into HPr� (and consequently also
into Pr�4) without using the crucial results of [6]
showing that an axiomatic system proposed there is

1Let us note that the logics introduced above are known
under different names in the literature of their respective
communities. We have opted here for a uniform but neutral
terminology for ease of reference through the paper.
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an axiomatization of Prlin. We only assume that it
is sound w.r.t. the semantics (which is easy to check)
and actually obtain the fact that it indeed is an axi-
omatization of Prlin as a corollary of our translation.
Finally, in Section 6 we add some concluding remarks
and hints at future research directions.

2 Classical and Fuzzy logics of
Uncertainty

2.1 Propositional core

In this work we need four propositional logics: (1) clas-
sical logic CL casted in the language with the truth-
constant ⊥ and implication →, (2)  Lukasiewicz logic
� in the same language, (3) �4, the expansion of �
in the language with an additional unary connective
4 known as Baaz–Monteiro projection, and finally (4)
P�4, the expansion of �4 with an additional binary
connective � (called product conjunction). Next, we
review some of the properties of these logics needed
for the paper; we refer the reader to the corresponding
chapters of [2] for more details and references.

We expect the reader to be familiar with the notion
of formula (over an arbitrary propositional language)
and the notion of evaluation in classical logic. In the
case of �, �4, and P�4, (standard) evaluations are
functions from the corresponding set of formulas into
the real unit interval [0,1], such that e(⊥) = 0 and

e(ϕ→ ψ) = min{1, 1− e(ϕ) + e(ψ)}

e(4ϕ) =

{
1 if e(ϕ) = 1

0 otherwise

e(ϕ� ψ) = e(ϕ) · e(ψ)

Whenever necessary to avoid confusions, we use
subscript � to mark the corresponding connectives and
distinguish them from the classical ones.

Let L be any of these four logics. We say that a for-
mula ϕ is the semantical consequence of a set of formu-
las Γ of L, in symbols Γ |=L ϕ, if for each evaluation
e such that e(γ) = 1 for each γ ∈ Γ we have e(ϕ) = 1.

We expect the reader to be familiar with the notion of
derivability in a Hilbert-style axiomatic system `AX ;
we say that AX is an axiomatization of a logic L if for
each finite set Γ ∪ {ϕ} of formulas, we have: Γ |=L ϕ
iff Γ `AX ϕ. It is well known that there are numerous
axiomatizations of both the classical logic (where the
equivalence holds even for infinite sets of premises) and
the three fuzzy logics considered here. We write `L,
when an axiomatization of a logic L is fixed or known
from the context.

Let us conclude this subsection by recalling additional

definable connectives of � together with their defini-
tion and standard semantics:

¬ϕ ϕ→ ⊥ 1− x
ϕ ∨ ψ (ϕ→ ψ)→ ψ max{x, y}
ϕ ∧ ψ ¬(¬ϕ ∨ ¬ψ) min{x, y}
ϕ⊕ ψ ¬ϕ→ ψ min{1, x+ y}
ϕ⊗ ψ ¬(¬ϕ⊕ ¬ψ) max{0, x+ y − 1}
ϕ	 ψ ¬(ϕ→ ψ) max{0, x− y}.

2.2 Five two-layered modal languages

We start by recalling the language LPrlin of the logic
Prlin. It is a two-layered modal language: first, in a
lower layer, we have the non-modal formulas which are
simply those of classical propositional logic. We have
then basic inequality formulas of the form

n∑
i=1

aiP (ϕi) ≥ c

for ϕis being non-modal formulas and c and ai being
constants for integers (real numbers are used in a si-
milar system presented in [11], rationals in [5]). The
linear combination on the left-hand side of the inequa-
lity is called basic inequality term. The formulas of the
upper layer of LPrlin , called modal formulas, are then
obtained from basic inequality formulas via the usual
connectives of classical logic. Obvious abbreviations
apply; in particular, we use the following:

−
∑n
i=1 aiP (ϕi) for

∑n
i=1−aiP (ϕi)

P (ϕ) ≥ P (ψ) for P (ϕ)− P (ψ) ≥ 0

t ≤ c for −t ≥ −c
t < c for ¬(t ≥ c)
t = c for (t ≥ c) ∧ (t ≤ c).

The language LPrpol is obtained by using again the
language of classical logic for the lower layer, and allo-
wing any polynomial basic inequality terms in the up-
per layer, i.e., the basic inequality formulas of LPrlin

have the general form

n∑
i=1

aiP (ϕ1
i ) · · ·P (ϕmi

i ) ≥ c.

Complex formulas of the upper layer are built as for
LPrlin , combining basic inequality formulas by the con-
nectives of classical logic. Note that in LPrpol one
can express fundamental probabilistic notions, e.g.
independence of events using formulas of the kind
P (ϕ ∧ ψ) = P (ϕ) · P (ψ).

Let us now turn our attention to the fuzzy approach
towards logics of probability. We introduce three lan-
guages, LPr� (resp. LPr�4 or LPrP�4 ), where, as be-
fore, the lower-layer formulas are those of classical lo-
gic, but instead of basic inequality formulas combined
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by connectives of classical logic, the modal formulas
are built from simple atomic modal formulas of the
form P (ϕ) (for ϕ being classical formula) using the
connectives of the corresponding logic.

Remark 1. Note that a basic inequality formula∑n
i=1 aiP (ϕi) ≥ c of LPrlin can be seen as an atomic

modal formula obtained by applying an n-ary modality
�a1,...,an,c, on n classical formulas ϕ1, . . . , ϕn. In this
way, one can see LPrlin as an instance of an abstract
two-layered modal language in the sense of [3]. The
same is true for LPrpol , but here the set of used moda-
lities is even more complex. Thus, the five languages
can be summarized in the following table:

Language Lower l. Modalities Upper l.

LPrlin CL {t ≥ c : t lin} CL
LPrpol CL {t ≥ c : t poly} CL
LPr� CL {P} �

LPr�4 CL {P} �4
LPrP�4 CL {P} P�4

2.3 One semantics and five logics

The semantical picture for all five languages is based
on Kripke models enriched by (finitely additive) pro-
bability measures. A (probabilistic) Kripke model is a
triple M = 〈W, 〈ew〉w∈W , µ〉, where

• W is a non-empty set of worlds,

• ews are classical propositional evaluations,

• µ is a finitely additive measure over a Boolean
subalgebra of the powerset algebra of W such that

ϕM = {w : ew(ϕ) = 1}

is a measurable set for any classical formula ϕ.

Clearly, M allows us to define the truth values of non-
modal formulas in each of its worlds. The assignment
of truth values of modal formulas depends on the lan-
guage in question, but in all cases we evaluate modal
formulas only at the level of the whole model.

For the basic inequality formulas of LPrlin we define:

||
n∑
i=1

aiP (ϕi) ≥ c||M = 1 iff
n∑
i=1

aiµ(ϕi
M) ≥ c.

The truth values of basic inequality formulas of LPrpol

are defined analogously, and truth values of complex
modal formulas in both languages are then defined
using the truth-functions of classical connectives.

We recall that LPr� , LPr�4 , and LPrP�4 share the
same atomic modal formulas and define their truth
values simply as:

||P (ϕ)||M = µ(ϕM).

Then, clearly, we always have ||P (ϕ)||M ∈ [0, 1], and
so we can compute the truth values of more complex
modal formulas using truth functions for connectives
of the corresponding logic.

For each of the five languages we have introduced, we
can define a consequence relation on the corresponding
set of modal formulas as preservation of the truth value
1 over all Kripke models; for instance, for each set
Γ ∪ {ϕ} of modal LPrlin -formulas, we define:

Γ |=Prlin ϕ iff ||ϕ||M = 1 for each Kripke model M

where ||γ||M = 1 for each γ ∈ Γ.

Analogously, we define the consequence relations
|=Prpol , |=Pr� , |=Pr�4

, and |=PrP�4
.

2.4 Axiomatization results

An axiomatization for Prlin has been presented in [6].
It consists of: (1) any axiomatization of classical lo-
gic for both modal and non-modal formulas, (2) the
following axioms

(QU1) P (φ) ≥ 0
(QU2) P (>) = 1
(QU3) P (ϕ ∧ ψ) + P (ϕ ∧ ¬ψ) = P (ϕ)
(QUGEN) From ϕ↔ ψ infer P (ϕ) = P (ψ)

and (3) the axioms to manipulate linear inequalities,
meant to be instantiated with any basic inequality for-
mulas

∑k
i=1 aiP (ϕi) ≥ c, integers d′ < c and d > 0 and

permutations σ:

(LQ1) P (ϕ) ≥ P (ϕ)

(LQ2)
k∑
i=1

aiP (ϕi) ≥ c ↔
k∑
i=1

aiP (ϕi) + 0P (ϕ) ≥ c

(LQ3)
k∑
i=1

aiP (ϕi) ≥ c ↔
k∑
i=1

aσ(i)P (ϕσ(i)) ≥ c

(LQ4)
k∑
i=1

aiP (ϕi) ≥ c ∧
k∑
i=i

biP (ϕi) ≥ c′ →

→
k∑
i=1

(ai + bi)P (ϕi) ≥ c+ c′

(LQ5)
k∑
i=1

aiP (ϕi) ≥ c ↔
k∑
i=1

daiP (ϕi) ≥ dc

(LQ6)
k∑
i=1

aiP (ϕi) ≥ c ∨
k∑
i=1

aiP (ϕi) ≤ c

(LQ7)
k∑
i=1

aiP (ϕi) ≥ c→
k∑
i=1

aiP (ϕi) > d′

The proof that this axiomatic systems is indeed an
axiomatization of Prlin relies essentially on linear pro-
gramming methods. Let us note that there is no axio-
matization provided for Prpol in [6], though it is shown
to be PSPACE-complete via a reduction to real closed
field theory.
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In contrast, the axiomatizations of Pr�, PrP�4 , and
PrP�4 are much simpler (see [3,7,8]). They use any ax-
iomatization of classical logic for non-modal formulas,
any axiomatization of � (or �4 or P�4 respectively)
for modal formulas and just three additional axioms
and one rule:

(A1) (Pϕ�� P (ϕ→ ψ))→� Pψ
(A2) P¬ϕ↔� ¬�Pϕ
(A3) P (ϕ ∨ ψ)↔� [(Pϕ	� P (ϕ ∧ ψ))⊕� Pψ]
(Nec) From ϕ infer Pϕ.

3 The translations

Now we are ready to show that the classical probability
logic Prlin can be faithfully translated into the modal
fuzzy logic Pr�4 . Let t ≥ c be a basic inequality for-
mula in LPrlin , where t stands for

∑n
i=1 aiP (ϕi), and

consider the linear polynomial with integer coefficients

f(x1, . . . , xn) :=
n∑
i=1

aixi − c+ 1.

By the well-known McNaughton Theorem (see e.g. [1,
Lemma 2.1.21]), one can algorithmically build a for-
mula γ of � over variables p1, . . . , pn, such that for
any standard evaluation e of � we have

e(γ) = max{0,min{1, f(e(p1), . . . , e(pn))}}.

By (t ≥ c)• we denote the formula resulting from 4γ
by replacing each variable pi in γ by P (ϕi).

Clearly, (t ≥ c)• is a formula of LPr�4 . We can easily
extend it to a translation of all modal formulas from
LPrlin by setting ⊥• = ⊥� and (γ → δ)• = γ• →� δ

•.
Let us denote by Γ• the set resulting from applying
the translation to each formula in Γ.

Theorem 1. Let Γ ∪ {δ} be a set of modal formulas
of LPrlin . Then, Γ |=Prlin δ iff Γ• |=Pr�4

δ•.

Proof. It is easy to see that all we need to prove is that,
for each Kripke model M and each modal formula χ
of LPrlin , we have: ||χ||M = 1 iff ||χ•||M = 1.

We prove the claim by induction over the complex-
ity of χ. Assume that χ is a basic inequality for-
mula

∑n
i=1 aiP (ϕi) ≥ c. Then, we can write the

following sequence of equivalences: ||χ||M = 1 iff∑n
i=1 aiµ(ϕi

M) ≥ c iff
∑n
i=1 ai||P (ϕi)||M ≥ c iff

max{0,min{1,
∑n
i=1 ai||P (ϕi)||M − c + 1}} = 1 iff

||γ•||M = 1.

To prove the induction step, we only need to note
that (1) for a basic inequality formula χ we have that
(thanks to the semantics of 4) ||χ•||M < 1 implies
||χ•||M = 0 and (2) the  Lukasiewicz implication beha-
ves on values 0 and 1 as the classical one.

Now we extend the translation to Prpol and PrP�4 .
Recall that no axiomatization of Prpol is provided in
[6, 11] and so, thanks to the known axiomatization of
PrP�4 , this translation can be seen as a first, though
indirect, axiomatization of Prpol. Let t ≥ c be a basic
inequality formula in LPrpol of the form:

n∑
i=1

aiP (ϕ1
i ) · · ·P (ϕmi

i ) ≥ c

As before, we consider the linear polynomial:

f(x1, . . . , xn) :=
n∑
i=1

aixi − c+ 1,

and the corresponding formula γ of � over propositio-
nal variables p1, . . . , pn, such that

e(γ) = max{0,min{1, f(e(p1), . . . , e(pn))}}.

Let us by (t ≥ c)• denote the formula resulting from
4ϕ by replacing each propositional variable pi in ϕ by
P (ϕ1

i ) · · ·P (ϕmi
i ).

Theorem 2. Let Γ∪{δ} be a set of formula of LPrpol .
Then, Γ |=Prpol δ iff Γ• |=PrP�4

δ•.

4 An alternative proof system for Pr�

In this section we extend Pr� into a hypersequent va-
riant HPr� which we faithfully translate into a hyper-
sequent calculus H� of relations for  Lukasiewicz lo-
gic [16]. Therefore H� can be seen as an alternative
proof system for Pr�.

A sequent of relations is a syntactic object of the kind
Γ C ∆ where Γ,∆ are multisets of formulas, and C
stands for either the symbol ≤ or <. A hypersequent
G is a finite multiset of sequents of relations, denoted
as Γ1 C1 ∆1 | · · · | Γn Cn ∆n, where each sequent of
relation Γi Ci ∆i belonging to G is called a component
of the hypersequent. We refer to hypersequents contai-
ning only formulas in the language of  Lukasiewicz logic
as  L-hypersequents, and to hypersequents containing
formulas in the language of Pr� as Pr�-hypersequents.
Henceforth, we denote by [γ]n the multiset composed
of n occurrences of γ.

Let us define the semantics of  L-hypersequents and
the corresponding consequence relation. First, we ex-
tend an evaluation e to multisets of formulas by let-
ting e(Γ) =

∑
ϕ∈Γ(e(ϕ) − 1) and e(∅) = 0, then we

say that e satisfies an  L-hypersquent G if there is a
component Γ C ∆ of G such that e(Γ) C e(∆). By
G1, . . . , Gn |=H� G we mean that any evaluation e,
satisfying G1, . . . , Gn, satisfies G as well. Note that
|=H� ∅ ≤ ϕ iff |=� ϕ (indeed, e(∅) ≤ e(ϕ) − 1, iff
0 ≤ e(ϕ)− 1, iff 1 ≤ e(ϕ), that is |=� ϕ).
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≤ (emp)
γ ≤ γ (id)

⊥ < (⊥ <) ⊥ C γ (⊥)

G
G |H

(ew)
G |H |H
G |H

(ec)

G |Γ1,Γ2 ≤ ∆1,∆2

G |Γ1 ≤ ∆1 |Γ2 ≤ ∆2

(split≤)
G |Γ1,Γ2 ≤ ∆1,∆2

G |Γ1 ≤ ∆1 |Γ2 < ∆2
(split�)

G |Γ1 C ∆1 G |Γ2 C ∆2

G |Γ1,Γ2 C ∆1,∆2
(mix)

G |Γ C ∆

G |Γ,Π C ∆
(wl)

G |Γ ≤ ∆

G |Γ,⊥ < ∆
(w⊥)

G |Γ, δ C γ,∆ | γ ≤ δ G |Γ C ∆ | δ < γ

G |Γ, γ → δ C ∆
(→ l)

G |Γ C ∆ G |Γ, γ C δ,∆ | γ ≤ δ
G |Γ C γ → δ,∆

(→ r)

Table 1: Hypersequent calculus of relations H L for  L

For Pr�-hypersequents we proceed analogously: Given
a Kripke model M and a multiset Γ of formulas of
Pr�, we let ||Γ||M =

∑
γ∈Γ(||γ||M−1) and say that M

satisfies a Pr�-hypersequent G if ||Γ||M C ||∆||M for
some component Γ C ∆ of G; the consequence relation
G1, . . . , Gn |=HPr� G is then defined as expected. As
in the case of |=H�, we have |=HPr� ∅ ≤ ϕ iff |=Pr� ϕ,
i.e., HPr� naturally contains the logic Pr�.

The hypersequent calculus of relations H� is displayed
in Table 1. Recall that a derivation of a hypersequent
G from hypersequents G1, . . . , Gn in such calculus is
just a labeled tree, where the root is G, each node is
labelled by the application of a rule of H� and the
leaves are either axioms or one of G1, . . . , Gn. By
G1, . . . , Gn `H� G we mean that there exists a de-
rivation of G from G1, . . . , Gn in H�.

Now we are ready to define the translation. It can be
seen as a hypersequent variant of the translation of
Pr� into �, which is at the core of various proofs of
completeness of Pr� (the original idea is due to Hájek
[8] and is further developed in subsequent works; see
e.g. [3,7]). First, for any classical formula ϕ we define:

[ϕ] = {ψ : `CL ψ ↔ ϕ}.

Now, for any atomic modal formula P (ϕ), we let
P (ϕ)∗ = p[ϕ], where p[ϕ] is a fresh propositional vari-
able in the language of �, and for complex modal for-
mulas, we let (γ1 →� γ2)∗ = γ∗1 →� γ

∗
2 and ⊥∗

�
= ⊥�.

We also extend the translation to multisets of formu-
las in an expected way, i.e. [γ1, . . . , γn]∗ = [γ∗1 , . . . , γ

∗
n].

For a hypersequent G = Γ1 C1 ∆1 | · · · | Γn Cn ∆n

we then define G∗ = Γ∗1 C1 ∆∗1 | · · · | Γ∗n Cn ∆∗n.

Finally, we need to include a translation of the axioms
and the rule of Pr� into a hypersequent of H�. In order
to keep the translation finite we need to make it rela-
tive to a given finite set V of propositional variables.
Let us define the hypersequent AX ∗V as the smallest
multiset containing all the hypersequents from the fol-
lowing four sets (by Vϕ we denote the set of variables
occurring in ϕ):

RV = {p[ϕ] < ∅ : Vϕ ⊆ V, `CL ϕ}
A1
V = {p[ψ],⊥ < p[ϕ], p[ϕ→ψ] : Vϕ, Vψ ⊆ V }

A2
V = {p[ϕ], p[¬ϕ] < ⊥ |⊥ < p[¬ϕ], p[ϕ] : Vϕ ⊆ V }

A3
V = {p[ϕ∨ψ], p[ϕ∧ψ] < p[ϕ], p[ψ] |

p[ϕ∨ψ], p[ϕ∧ψ] < p[ϕ], p[ψ] : Vϕ, Vψ ⊆ V }

Note that the hypersequents above are meant to ex-
press the negation of properties of probability. The
reason for this will be clear in the following lemma.

Lemma 1. For any Pr�-hypersequent G in variables
from a set V , we have: |=HPr� G iff |=H� G

∗ |AX ∗V
iff `H� G

∗ |AX ∗V .

Proof. We prove the first equivalence only; the second
one follows from the axiomatization of H�, see e.g. [16].
We prove the right-to-left direction counterpositively.
Assume that 6|=HPr� G, i.e., there is a Kripke model
M such that, for each Γ C ∆ ∈ G, we have ||Γ||M 6C
||∆||M. Let now ê be an evaluation of  Lukasiewicz
logic such that ê(p[ϕ]) = ||P (ϕ)||M for each ϕ (it is
well defined because if p[ϕ] = p[ψ], then `CL ϕ ↔ ψ
and so ||P (ϕ)||M = ||P (ψ)||M). It is straightforward
to check that ê does not satisfy any of the components
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of G∗ |AX ∗V , i.e., 6|=� G∗ |AX ∗V (note that here we
have crucially used the fact that components of AX ∗V
are defined in a ‘negative’ fashion).

For the left-to-right direction, assume that ê is a coun-
termodel of G∗ |AX ∗V , i.e. ê(Γ∗) 6C ê(∆∗) for each
component Γ∗ C ∆∗ ∈ G∗ and ê is a countermo-
del of AX ∗V . The latter means that, for each ϕ,ψ
with Vϕ, Vψ ⊆ V : (1) ê(p[ψ]) ≥ ê(p[ϕ]) + ê(p[ϕ→ψ]) ,
(2) ê(p[¬ϕ]) = 1 − ê(p[ϕ]), (3) ê(p[ϕ∨ψ]) + ê(p[ϕ∧ψ]) =
ê(p[ϕ]) + ê(p[ψ]) and (4) p[>] ≥ 1.

Let W be the set of classical evaluations and consider
the subset of the powerset of W defined as:

BV = {{w : w(ϕ) = 1} : ϕ a formula and Vϕ ⊆ V }.

Clearly, BV is the domain of a Boolean subalgebra
BV of the powerset algebra of W . Then, we de-
fine the function µ′ : BV → [0, 1] as µ′({w : w(ϕ) =
1}) = ê(p[ϕ]). Due to the properties (1)–(4) above, we
know that µ′ is a finitely additive probability measure
on BV and so, by Horn–Tarski theorem [13] (see as
well [14, Theorem 6]), we know that there is a finitely
additive probability measure µ on the powerset alge-
bra of W such that µ(X) = µ′(X) for each X ∈ BV .
Then, M = 〈W, 〈w〉w∈W , µ〉 is a Kripke model (the
measurability condition is trivial as all subsets of W
are µ-measurable) and we only need to check that M
is a countermodel for G. This is a routine check, since
||P (ϕ)||M = ê(p[ϕ]) and hence ||Γ||M = ê(Γ∗) for each
multiset Γ of modal formulas occurring in G.

5 Translation of Prlin into HPr�

In this section, we show a faithful translation of the lo-
gic Prlin into HPr� (and consequently also into Pr�4)
without using the fact that the proof system presented
in Subsection 2.4 is an axiomatization of Prlin. We
only assume the soundness of this axiomatic system
w.r.t. the semantics of Prlin, i.e., if there is a proof of
ϕ from premises Γ, then Γ |=Prlin ϕ, which is easy to
check. We actually obtain the converse direction (i.e.,
the fact that it indeed is an axiomatization of Prlin)
as a corollary of our translation.

We use the fact that any modal formula of Prlin is
equivalent to a conjunction of clauses (i.e., disjuncti-
ons of literals, in our case basic inequality formulas
and their negations) and define the translation (·)H of
clauses of Prlin into Pr�-hypersequents.

Let us start by basic inequality formulas. Note that
an inequality t ≥ c for t =

∑n
i=1 aiP (ϕi) can be equi-

valently replaced (modulo a suitable permutation) by

m∑
i=1

aiP (ϕi) ≤
n∑

i=m+1

aiP (ϕi)− c

where all the ais are positive. Thus we can define:

Γt≥c = [P (ϕ1)]a1 , . . . , [P (ϕm)]am

∆t≥c = [P (ϕm+1)]am+1 , . . . , [P (ϕn)]an

s(t ≥ c) =
m∑
i=1

ai −
n∑

i=m+1

ai + c

(t ≥ c)H =

{
Γt≥c ≤ ∆t≥c, [⊥]s(t≥c) if s(t ≥ c) ≥ 0

Γt≥c, [⊥]−s(t≥c) ≤ ∆t≥c otherwise.

Analogously, we rewrite the inequality ¬(t ≥ c) as

m∑
i=1

aiP (ϕi) <
n∑

i=m+1

aiP (ϕi) + c

so that all ais are positive; we define Γt<c and ∆t<c

as before, and let

s(t < c) =
m∑
i=1

ai −
n∑

i=m+1

ai − c

(¬(t ≥ c))H =

{
Γt<c < ∆t<c, [⊥]s(t<c) if s(t<c) ≥ 0

Γt<c, [⊥]−s(t<c) < ∆t<c otherwise.

Finally, given any clause δ = γ1∨· · ·∨γn in LPrlin , we
let δH be the hypersequent γH1 | · · · | γHn .

Lemma 2. Let δ be a clause in LPrlin such that
|=Prlin δ. Then |=HPr� δ

H .

Proof. We show that any model M of δ is a model of
δH . Let δ = γ1 ∨ · · · ∨ γn, with γi literals, be of the
form

∑ni

k=1 aikP (ϕik) ≥ ci or ¬(
∑ni

k=1 aijP (ϕik) ≥ ci)
and let vik = µ(ϕM

ik ). Recall the definition of the trans-
lation (·)H : for each literal γi, the sequent γHi is either
of the form

Γγi C ∆γi , [⊥]s(γi) or Γγi , [⊥]−s(γi) C ∆γi ,

where Γγi = [P (ϕi1)]ai1 , . . . , [P (ϕimi
)]aimi and ∆γi =

[P (ϕimi+1)]aimi+1 , . . . , [P (ϕini
)]aini .

Assume that γi :=
∑ni

k=1 aikP (ϕik) ≥ ci and hence γHi
is of the first form above, with ≤ in place of C. We
have that M is a model of (γi)

H if and only if

ai1(µ(ϕM
i1 )− 1) + · · ·+ aimi(µ(ϕM

imi
)− 1) ≤

aimi+1(µ(ϕM
imi+1

)− 1) + · · ·+ aini(µ(ϕM
ini

)− 1)− s(γi)

which in turn holds iff

mi∑
k=1

aikµ(ϕM
imi

)−
mi∑
k=1

aik ≤
ni∑

k=mi+1

aikµ(ϕM
ik )−

ni∑
k=mi+1

aik

− (

mi∑
k=1

aik −
ni∑

k=mi+1

aik + c).
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It is now easy to check that the latter holds iff∑ni

k=1 aik(ϕik)
M ≥ ci, i.e. ||γi||M = 1. Other cases

are similar.

By classical reasoning, since M is a model of γi if and
only if it is a model of γHi , the same will hold for
γ1 ∨ · · · ∨ γn and γH1 | . . . | γHn . This concludes the
proof.

Lemma 3. Let δ be a clause in LPrlin such that
|=HPr� δ

H . Then `Prlin δ.

Proof. Let V be the set of variables in δ. Hence, due
to Lemma 1, `H� (δH)∗ |AX ∗V . Note that, by the
definition of the translations (·)H and (·)∗, and of the
set AX ∗V , the hypersequent (δH)∗ |AX ∗V only contains
propositional variables.

Hence we can find, for both (δH)∗ and AX ∗V , an anti-
image of the (composition of the) translations (·)H and
(·)∗. For (δH)∗ this is obviously the formula δ, while
for AX ∗V , we let α be the clause in Prlin such that
(αH)∗ = AX ∗V .

We now prove that, for each hypersequent occurring
in a derivation of (δH)∗ |AX ∗V in H�, the anti-image
of the (composition of the) translations (·)∗ and (·)H
is derivable in Prlin. When applied to the root of the
derivation, this shows `Prlin δ ∨ α. We proceed by
induction on the length of the derivation.

The case of axioms is easy. For the rules (ew), (ec),
derivations in classical logic suffice. Let us consider
the case where the last applied rule is (split≤), with
premise G |Γ1,Γ2 ≤ ∆1,∆2 and conclusion G |Γ1 ≤
∆1 |Γ2 ≤ ∆2. Let γ and ε1,2 be formulas such that
(γH)∗ = G and (εH1,2)∗ = Γ1,Γ2 ≤ ∆1,∆2. By in-
duction hypothesis, `Prlin γ ∨ ε1,2.

Without loss of generality, let ε1 := (
∑n1

i=1 aiP (ϕi) ≥
c1) be such that (εH1 )∗ = Γ1 ≤ ∆1, and ε2 :=
(
∑n2

j=n1+1 ajP (ϕj) ≥ c2) such that (εH2 )∗ = Γ2 ≤ ∆2.

We have then ε1,2 := (
∑n2

i=1 aiP (ϕi) ≥ c1 + c2) . We
want to prove that `Prlin γ ∨ ε1 ∨ ε2. First, we need
to show that

`Prlin

n1∑
i=1

aiP (ϕi) > c1 ∧
n2∑

j=n1+1

ajP (ϕj) > c2 →

→
n2∑
i=1

aiP (ϕi) > c1 + c2.

This follows by suitable applications of (LQ6), (LQ7),
(LQ4). The derivation of `Prlin γ ∨ ε1 ∨ ε2 is then
obtained by classical reasoning.

For the other structural rules we proceed similarly.
Note that we do not need to check the case of logi-
cal rules, since they cannot occur in a derivation of
(δH)∗ |AX ∗V . Indeed, the latter hypersequent only

contains propositional variables, and all the rules in
H� are analytic, i.e. their premises can only contain
subformulas of the conclusion.

Thus, we have proved `Prlin δ ∨ α. If we show that
`Prlin ¬α, the proof is finished. Let us recall the struc-
ture of α. Some of its disjuncts correspond to sequents
in RV , hence they are formulas of the kind P (ϕ) < 1,
where ϕ is a classical tautology. Their negation, i.e.
P (ϕ) ≥ 1, can be proved in Prlin, since ϕ ↔ >, by
(QU2) P (>) = 1 and by (QUGEN) P (ϕ) = P (>).
The remaining disjuncts come from the hypersequents
in (A1

V )–(A3
V ), hence they are formulas of the kind:

α1 : = P (ψ) < P (ϕ) + P (ϕ→ ψ)

α2 : = (1 < P (ϕ) + P (¬ϕ)) ∨ (P (ϕ) + P (¬ϕ) < 1)

α3 : = (P (ϕ) + P (ψ) < P (ϕ ∨ ψ) + P (ϕ ∧ ψ))∨
∨ (P (ϕ ∨ ψ) + P (ϕ ∧ ψ) < P (ϕ) + P (ψ))

The negation of each one of such formulas corresponds
to a basic fact about probability, which is derivable in
Prlin: in particular showing ¬α1 amounts to showing
a derivation of the formula P (ψ) ≥ P (ϕ)+P (¬ϕ∨ψ),
showing ¬α2 amounts to P (¬ϕ) + P (ϕ) = 1 and ¬α3

to P (ϕ ∨ ψ) + P (ϕ ∧ ψ) = P (ϕ) + P (ψ).

Let us sketch the proof of the last formula as an ex-
ample. By the axiom (QU3), we have P ((ϕ∨ψ)∧ϕ)+
P ((ϕ ∨ ψ) ∧ ¬ϕ) = P (ϕ ∨ ψ), which is equivalent to
P (ϕ) + P (¬ϕ ∧ ψ) = P (ϕ ∨ ψ). On the other hand,
again by (QU3), we have P (ψ) = P (ψ∧¬ϕ)+P (ϕ∧ψ).
The derivation of ¬α3 then follows from the last two
formulas we derived and a simple manipulation of
equalities.

Using the last two lemmata we can formulate the fol-
lowing faithful translation of Prlin into HPr� and the
promised alternative proof of axiomatization of Prlin.

Theorem 3. Let Γ ∪ {δ} be a finite set of formulas
of LPrlin and δ1 ∧ · · · ∧ δm a conjunctive normal form
of (

∧
γ∈Γ γ) → δ. Then, Γ `Prlin δ iff Γ |=Prlin δ iff

|=HPr� δ
H
i for each i.

Proof. The first implication is just soundness. The se-
cond one follows from Lemma 2 (as Γ |=Prlin δ clearly
implies |=Prlin δi for each i). The final one follows
from Lemma 3 and the fact that `Prlin δi for each i,
we obtain Γ `Prlin δ using a classical reasoning.

Finally, we can use our last result to provide the pro-
mised alternative translation from Prlin into Pr�4 .
The key is to interpret any Pr�-hypersequent G
(using again essentially McNaughton theorem, adap-
ting from [16]) as a formula I(G) of Pr�4 such that
|=HPr� G if and only if |=Pr�4

I(G). The rest of the

proof is a simple application of the previous theorem.
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Theorem 4. Let Γ ∪ {δ} be a finite set of formulas
of LPrlin and δ1 ∧ · · · ∧ δm a conjunctive normal form
of (

∧
γ∈Γ γ) → δ. Then, Γ |=Prlin δ if and only if

|=Pr�4
I(δH1 ) ∧ · · · ∧ I(δHm).

6 Conclusion

We have presented several faithful translations bet-
ween logics of uncertainty. Namely, we have transla-
ted Prlin into HPr� and (in two different ways) into
Pr�4 , and we have translated Prpol into PrP�4 .

The translations we have presented showcase the po-
wer of the many-valued semantics. The logic Prlin
has indeed a complex syntax (with many constants for
numbers) to express inequalities involving probabili-
ties of events, and needs explicit axioms to manipu-
late such linear inequalities, while Pr�4 can instead
directly express such inequalities thanks to its seman-
tics. Note that our second syntactic translation provi-
des, as an interesting corollary, an alternative proof of
completeness for the logic Prlin. Moreover, our trans-
lation of Prpol has given it an indirect axiomatization.

We believe that translations of other logics of uncer-
tainty are likely to bring similar benefits. Let us in-
dicate some concrete directions for further research.
First, we will study in our framework the systems in-
troduced in [4, 12], which allow for modal formulas
like P≥rϕ standing for “the probability of ϕ is at le-
ast r” where r is a constant for a rational number
and binary modalities expressing that a formula pro-
vides probabilistic confirmation or disconfirmation for
another. Another important research direction is to
provide analytic calculi for logics of uncertainty in the
literature, where so far little is known (see e.g. [15]).
Indeed, we plan to suitably extend the hypersequent
calculus H� discussed here, to obtain an analytic sy-
stem for the logic Pr�, and investigate whether such
framework can be extended and applied to other logics
of uncertainty.
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