
23 April 2024

Larsen, R., Pranzo, M. (2019). A framework for dynamic rescheduling problems. INTERNATIONAL JOURNAL
OF PRODUCTION RESEARCH, 57(1), 16-33 [10.1080/00207543.2018.1456700].

A framework for dynamic rescheduling problems

Published:

DOI:10.1080/00207543.2018.1456700

Terms of use:

Open Access

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.
For all terms of use and more information see the publisher's website.

Availability:

This version is availablehttp://hdl.handle.net/11365/1110961 since 2020-06-09T12:10:57Z

Original:

This is the peer reviewed version of the following article:

A Framework for

Dynamic Rescheduling Problems

Rune Larsen, Marco Pranzo

April 30, 2012

Abstract

Academic scheduling problems usually assume deterministic and known

in advance data. However this situation is not often met in practice, since

data may be subject to uncertainty and it may change over time. In this

paper we introduce a general rescheduling framework to address such dy-

namic scheduling problems. The framework consists in a solver and a con-

troller. The solver can also assume deterministic and static data, whereas

the controller is in charge of triggering the solver when needed and when

possible. Extensive tests are carried out for two well-known scheduling

problems, namely the single machine weighted completion time problem

and the job shop problem. The tests show how the proposed framework

allows to deal with different scheduling problems and to select the best

framework configuration.

Keywords: Scheduling, Simulation, Dynamic rescheduling.

1 Introduction

Scheduling problems are among the hardest and the most studied problems in
operations research. However, as observed by many authors [10, 12], there is
still a gap between theory and practice, in fact most formulations of scheduling
problems usually assume that data is deterministic and static over time. It is
well known that both uncertainties and dynamic environments are often present
in real-world applications. Nevertheless these presences are often neglected since
they are hard to model and to take into account algorithmically. Usually, sim-
plifying assumptions are done to assume all information deterministic, static
over time and known in advance. In some contexts these assumptions may be
reasonable since they lead to simplified and more tractable models. However,
a careful validation analysis on the problem is often required to assess whether
simplified models are reasonable or if they induce an oversimplification.

When the environment is assumed to be non-deterministic and dynamic
the problem is to formulate a plan in which the presence of the uncertainties
has been taken into account during the solution process. At least two kind of
approaches have been proposed in the literature:

1. Approaches that try to produce the best possible plan incorporating all
the available information on the uncertainties. Among these approaches
we can mention stochastic programming [21] and robust optimization [4].

1

In stochastic programming the idea is trying to include the uncertainty
sources directly in the formulation of the problem by generating and solv-
ing several scenarios, if necessary allowing changes in the solution over
time. However, allowing recurse decisions makes the problem fundamen-
tally intractable. In robust optimization the idea is to try to produce
a “robust” solution satisfying additional constraints taking into account
possible realizations of the uncertainty.

2. Approaches that try to represent the dynamic nature of the problem as
an additional layer between the solver and the application. In this case
the problem is usually maintained deterministic and the presence of the
uncertainty is addressed in a external wrapper. As time passes, whenever
some conditions are met, the deterministic scheduling solver is invoked
and a new problem corresponding to a current “snapshot” of the system
is solved. The results are then considered as a new plan to be followed
during the execution.

The advantages of dynamic rescheduling based approach over stochastic or
robust optimization are threefold:

Tractability A rescheduling approach allows solving larger instances within
reasonable computation times allowing, if application permits, hundreds
of reschedules over time.

Easiness of implementation This approach does not require the develop-
ment of a new solver for the problem at hand, if the deterministic solver
can be adapted to meet some simple requirements. Hence, it can be put
in production faster.

Knowledge of the problem This approach is robust with respect to errors
in the uncertainty modelling, i.e., the effects of different probability distri-
butions and parameters, since there is no need to embed the uncertainty
in the solver.

However there are also shortfalls for these approaches. In fact, better perfor-
mances can be achieved if the solver takes the information on the uncertainties
into account within the optimization process. Moreover, no theoretical results
are known for this kind of approach.

In this paper we take a dynamic rescheduling approach, in which a deter-
ministic scheduling solver is dynamically executed to update the plan in order
to adapt uncertainties as they happen. The focus of this work is to introduce a
general framework to model a dynamic rescheduling problem in an unified way.
The main components of the system are:

Solver The solver is in charge of actually solving at each iteration the schedul-
ing problem and thus producing a plan that is going to be executed.

Controller The Controller checks for rescheduling conditions during the execu-
tion of the schedule. Whenever a trigger condition is met, a new reschedul-
ing problem is formulated according to the information available at the
moment and solved by the solver.

2

Simulator The simulator component loads all the information on the real-
world realizations of the probability functions when started, and it is re-
sponsible for simulating the unpredicted deviations and disturbances that
may happen in real-time. Note that the information is not sent to the
solver.

Our aim is to study when the uncertainty starts to be relevant in terms of
feasibility and optimality and how different rescheduling policies behaves. The
emphasis is given to the general applicability of the method rather than to the
specific application or solver used. In fact, the answers to these questions may
be problem specific, however, it is important to have a single tool able to address
them.

The paper is organized as follows: In the next section we introduce definition
and notation. Section 3 briefly reviews the related literature and in Section 4
we introduce and describe the proposed framework and all its structural compo-
nents in detail. Section 5 shows the application of the framework to two different
scheduling problems. Finally conclusions and future research directions follow.

2 Definitions and notation

A scheduling problem can be classified as static if all the data is available at the
planning stage and no new information is added to or modified in the problem
during the execution of the planned schedule. On the other hand, dynamic
scheduling refers to problems where data may change during the execution of
the scheduling and some information is not available to the scheduler at the
planning stage.

A problem is deterministic if all information is certain. In stochastic schedul-
ing problems, some data may be uncertain at planning stage. Different kinds
of information could be available to the scheduler such as the probability distri-
bution or expected values. A stochastic instance has probability distributions
associated to each process time, and the deterministic instance resulting from
sampling these distributions will be called a sample instance.

When solving a scheduling problem, two phases can be distinguished namely,
a planning phase, in which the scheduler has to plan a schedule to solve the
instance at hand, and an execution phase, in which the plan is executed and,
depending on the application, it may be modified or not. Usually in scheduling
research the main focus is on the planning phase [14].

A disruption/disturbance of the plan is an unforeseen event that affects the
plan typically during its execution. It may consist in the realization of an
uncertain event which was known in the form of probability distribution, or it
may be a more disruptive event such as the breakdown of a machine, failure
of operations, the arrival of some new and urgent job/order to be processed or
canceled jobs etc. When a disruption occurs, and if the application setting makes
it possible, the scheduler has to decide whether to do nothing or reschedule. In
the former case the scheduler continues to follow the plan. While in the latter
case the scheduler should build/update the previous plan to reflect changes due
to the disruption.

Rescheduling is the act of modifying the offline plan in response to dis-
ruptions. Rescheduling is usually an expensive activity in terms of costs, time

3

and/or information exchange. Depending on the actual application the resched-
ule may not be feasible at all or it can be allowed with continuity as a monitoring
process executed along the schedule execution process. The rescheduling fre-
quency states the minimum time interval between two consecutive reschedules,
i.e., it regulates how often a reschedule process can be pursued. The rescheduling
policy decides when a new rescheduling process can be started. Rescheduling
policies can be classified as periodic, continuous, event-driven or hybrid [14]. The
periodic policy states that a rescheduling can be started after a fixed amount of
time. In continuous rescheduling the rescheduling process is carried out after ev-
ery timestep. Hybrid rescheduling is a strategy in which rescheduling is started
after a fixed time interval or in response to some events. The event-driven pol-
icy states that a reschedule can start in response to a some specified events.
It can be noted that the event-driven category is the most general since it can
contain all the other cases. The reaction time is the time between a disturbance
and when the solver starts the rescheduling process. Clearly, it depends on the
rescheduling frequency but there may also be a minimum reaction time caused
by the physical infrastructure. Finally a rescheduling objective has to be spec-
ified. We distinguish between complete optimization in which the rescheduling
algorithm optimizes the same objective function used in the planning phase and
a partial reoptimization in which the aim of the rescheduling is to minimize a
surrogate objective function. Partial rescheduling (schedule repair) occurs when
the rescheduling process tries to minimize the deviation from the available of-
fline plan and possibly taking the “real” objective function into account. This
is common in applications where the system should follow a plan known in ad-
vance [7]. Observe that, the deviation with respect to the plan can be limited
also by acting on the constraints of the problem [23], i.e., by keeping prece-
dence relations fixed or imposing time windows on the starting/ending time of
the operations. Other approaches may consider a multiobjective problem in
which both the “real” objective function and the surrogate function to consider
stability are simultaneously optimized [18].

The rolling horizon is the length of the time period for which a schedule has
to be produced. Events outside the rolling horizon are not to be considered in
the rescheduling. The presence of a short rolling horizon causes smaller instances
since one has to schedule only the operations within the rolling horizon but it
may generate myopic schedules, while longer rolling horizon generates larger
instances and potentially leads to better schedules. An acceptable trade-off
between these two contrasting needs should be found.

The frozen period is the length of the part of the schedule that cannot be
changed, and that should be maintained. Operations already in execution or
operations with imminent starting times that cannot be postponed, usually are
considered locked, i.e., in the frozen period. Technological constraints may cause
different length of frozen periods depending on the actual application.

The allowed computation time is the maximum time allotted to the optimiza-
tion algorithm to compute a schedule. It is clearly dependent on the application
and it is influenced by the rolling horizon and frozen times. Some applications
may require fast algorithms whereas in others settings the length of the allowed
computation time for the rescheduling can be comparable to the CPU time for
calculating the offline schedule.

Figure 1 illustrates the frozen period, the rolling horizon and the allowed
computation time (tend − tstart). The proposed rescheduling framework can

4

Planning phase Execution phase

0 td tstart tend tfrozen

Reaction time Frozen period Rolling horizon

Figure 1: A time line for rescheduling scenarios. A disturbance occurs at time
td, rescheduling starts at tstart and ends before tend.

reduce the complexity by considering an allowed computation time tcomputation

and all operations starting before tfrozen locked.

2.1 Mathematical notation

In this paper we assume that the deterministic scheduling problems solution
can be represented using a temporal network (i.e., a graph representation)
such as [20, 8, 11]. The scheduling problem can be represented as a set of
events/operations {o0, o1, . . . , on} and a set of precedence relations among op-
erations. Each operation has a minimum starting time ti. A precedence relation
(i, j) is a constraint on the starting time of operation oj which must be greater
or equal to the starting time of the predecessor oi plus a deterministic given
delay/processing time wij . wij is known in advance and can assume positive,
null or negative values. Precedence relations are divided into two sets: fixed F
and alternative A. Alternative precedence relations are partitioned into pairs,
i.e., ((i, j), (h, k)) ∈ A. There are two dummy operations o0 and on preceding
and following all the other operations. Without loss of generality we assume
t0 = 0.

Scheduling decisions are in form of disjunctions. That is, one of the two alter-
native disjunctive arcs has to be selected, i.e., added to the current graph. Given
a pair ((i, j), (h, k)) ∈ A in a solution we have either (i, j) ∈ S or (h, k) ∈ S,
where S is the set of selected arcs. A schedule is an assignment of starting
times t0, t1, . . . , tn to operations o0, o1, . . . , on respectively, such that all fixed
precedence relations, and exactly one for each pair of the alternative precedence
relations, are satisfied. The goal is to minimize a linear combination of the
starting time of the operations. This problem can be formulated as a particular
disjunctive program, i.e. a linear program with logical conditions involving oper-
ations “and” (∧, conjunction) and “or” (∨, disjunction), as in [3] and generalizes
disjunctive graph [20] and some of its extension [11].

min c0t0 + c1t1 + . . .+ cntn
s.t. tj − ti ≥ wij (i, j) ∈ F

(tj − ti ≥ wij) ∨ (tk − th ≥ whk) ((i, j), (h, k)) ∈ A
t0 = 0

A solution to this problem can be conveniently represented as a temporal
network G = (N,F ∪ S) where N is a set of nodes of the graph representing
events and F ∪ S is a set of weighted directed arcs and the starting time ti is

5

given by the longest path from o0 to oi. This is a general representation that
can model most well known scheduling problems.

A stochastic version of a scheduling problem can be represented by consider-
ing the weight of the arc as a probability function f(wij). By fs(wij) we denote
the s-th sample of the distribution f(wij).

We use the following notation to represent the uncertainty and the dynamic
evolution of a dynamic scheduling problem. Let δ = (i, j, f(w), t) be an ex-
ogenous change in the problem where t is the time in which the change in the
distribution is revealed to the scheduler, and i, j and f(w) are the starting,
ending node and the new probability function for the arc weight, respectively.
Let ∆t be the set of exogenous changes known at time t. Hence, ∆∞ represents
all the exogenous changes that will happen during the execution of the dynamic
instance. We use the notation that if there exist two arcs connecting the same
pair of nodes i and j then the most recent arc overwrites the old arc. More-
over, observe that, setting the weight to −∞ is equivalent to removing the arc
from the graph. Let ∆̄t be the set of changes caused by the solver until time t.
These internal changes are algorithmic decisions carried out before time t that
cannot be undone because they are already active and operation oi is already
in execution, i.e., scheduling decisions such as adding one alternative arc (i, j)
to the current selection S.

An instance for the dynamic scheduling problem I is the pair I = (G,∆∞).
An instance contains all the exogenous future changes that will take place in
the system. However, when solving a single deterministic scheduling problem
the algorithm faces only the information that has been revealed so far since the
future information is not available to the solver. The state of the system Σt at
time t is given by the tuple Σt = (G,∆′

t, t) where the set ∆
′

t = ∆t ∪ ∆̄t contains
the exogenous changes ∆t known at time t and the possibly empty set of all the
algorithmic changes ∆̄t introduced by the algorithm in the previous iterations.
Observe that, in general, Σt and Σt+1 can lead to two different deterministic
scheduling problems even if ∆′

t coincides with ∆′

t+1, because moving from time
t to time t + 1 may cause some operation to enter the frozen period and thus
leading to two different deterministic instances.

Let S((G,∆′

t)) be a solution to a deterministic scheduling problem with the
information available at the state Σt = (G,∆′

t, t) and let z∗((G,∆′

t, t), (G,∆′′

t , t))
be the value of the objective function obtained when applying the optimal deter-
ministic solution computed for the system state (G,∆′

t, t) at time t to a possibly
different system state (G,∆′′

t , t).

Theorem 2.1 z∗((G,∆′

t, t), (G,∆′

t, t)) ≤ z∗((G,∆′′

t , t), (G,∆′

t, t))

Proof Assume z∗((G,∆′

t, t), (G,∆′

t, t)) > z∗((G,∆′′

t , t), (G,∆′

t, t)) then there
exists a solution with a lower objective function value than z∗((G,∆′

t, t), (G,∆′

t, t))
which was defined to be optimal. Thus we must reject the assumption.

Observe that the optimal solution S∗(G,∆∞) of the instance I = (G,∆∞)
may not be obtained by optimally solving all the deterministic problems arising
as soon as the uncertainty is revealed z∗((G,∆′

t, t), (G,∆′

t, t)), ∀t. To show this,
it is enough to observe that, as in analogy with greedy algorithms, the solver
may be forced to take some decision (i.e., adding either arc (i, j) or (h, k) to S)
before some relevant information about that decision is actually known. And,
once the decision is taken, it cannot be undone.

6

z∗((G,∆∞,∞), (G,∆∞,∞)) is the optimal value of the ex-post optimization,
i.e, when all the uncertainty is known in advance, and it is a lower bound for
the best attainable solution (Theorem 2.1).

z∗((G,∆−∞, 0), (G,∆−∞, 0)) is the optimal value of the ex-ante optimiza-
tion, i.e, when no uncertainty is known in advance. Observe that it does not
necessarily give an upper bound for the optimal solution of I. To show this, it
is enough to consider a set ∆∞ = {δt, δt′}, where the exogenous change δt over-
writes the original value f(wij) and δt′ brings it back to the original value. The
ex-ante optimal solution therefore coincides with the ex-post optimal solution,
while the optimal solution computed at time t may be worse.

3 Literature and applications

Dynamic scheduling problems are an interesting practical extension of classical
scheduling problems but they are not deeply investigated [14]. Among the possi-
ble approaches, the simulation based are often applied to address the reschedul-
ing problem [17] since they combine classical scheduling problems with widely
applied techniques such as the discrete-events simulation.

The recent surveys by Vieira et al. [24] and Aytug et al. [1] review these
approaches and applications.

The common simulation-based approach makes it possible to either simulate
field disruption or gather them from the real-world application. The architecture
of simulation-based approaches is usually composed of a solver (which solves the
deterministic scheduling problem) a controller (which decides whether or not the
plan has to be updated) and a simulator (which simulates the world and decides
the exogenous events). Some papers have proposed general purpose rescheduling
frameworks that correspond approximately to the same architectural approach
[5].

In their paper, Honkomp et al. [9] models two chemical processes as a State
Task Network (STN). The offline scheduling problem is solved using CPLEX to
solve a MILP formulation of the problem and with a Bayesian heuristic. Dif-
ferent online strategies are evaluated; the no rescheduling, rescheduling with
penalties and full rescheduling. The evaluated objective functions is the devia-
tion from the deterministic objective function.

Cowling and Johansson [6] considered the classical single machine problem
1||ΣCi which the SPT rule solves to optimality. Perturbations happen only in
the first half of the schedule, and when information arrives three strategies are
evaluated: the no rescheduling, a repair strategy and a full reschedule according
to shortest processing time (SPT) rule. As evaluated objective functions they
consider a linear combination of utility (sum of completion times) and stability.

Pfeiffer et al. [15] developed the same simulation-based framework and ad-
dressed three different problems: i) a single machine minimizing the average
flow time with releases, ii) a small flexible job shop problem (5 machines and
8 jobs) and iii) industrial application with the objective of minimizing the tar-
diness. The offline solution is computed using heuristics, and the rescheduling
process is triggered either by a fixed rescheduling interval (periodic rescheduling)
or when a threshold between the planned and simulated solutions is exceeded.
They evaluated the effects of evaluation of machine breakdowns and stochastic
processing times. In their tests, the evaluated objective functions takes both

7

stability and efficiency into consideration.
Bidot et al. [5] consider a dynamic job shop scheduling problem which is

solved offline using the ILOG Scheduler. As online strategies they consider
a full rescheduling (where the rescheduling process is activated by a trigger)
and progressive techniques. The tests are carried out using (10x10) benchmark
instances and only efficiency is evaluated in the tests.

Recently, Rasconi et al. [19] consider a full rescheduling and a rescheduling
with penalties strategies. The tests are carried out on RCPSP/max benchmark
instances and evaluate CPU requirements, frequency of rescheduling, reschedul-
ing success rate as well as stability and efficiency.

The simulation based approach is also applied in this paper. The proposed
framework has capabilities similar to other frameworks found in the literature,
but to our knowledge it is the only framework that features all of these properties
simultaneously:

• Swappable and multiple solvers during the rescheduling process.

• Swappable and multiple objective functions evaluated during the reschedul-
ing process.

• Storing multiple solutions.

• Storing multiple scenarios for comparisons of solvers or solver parameters.

• Decision support through generated visual representations.

• Event driven with the possibility of interfacing directly with a real life
application.

In the following section we introduce in details of all the components of the
proposed framework.

4 Architecture

This section describes the implementation of the dynamic rescheduling frame-
work proposed in this paper. The framework is implemented in Java and uses
the statistical package R version 2.13.1 for generating plots.

Figure 2 presents the framework for dynamic rescheduling, which is com-
posed of a Controller, a Simulator, a Solver, an Instance Writer and Solution
Reader module. Moreover the framework should interact with both the Reality
(either the real world application or a its simulation) and possibly with a human
supervisor.

4.1 Reality module

In laboratory experiments the Reality module is in charge of replicating or in-
terfacing with the real-world. Thus it contains the “real” information about
uncertainty and probability distributions and provides it to the Simulator in
form of exogenous events ∆t. Observe that all the other modules are not aware
of how such exogenous events are generated. Typical changes to a distribution
associated with an uncertain event makes the event become less uncertain as

8

Solver

SimulatorSolution reader

Instance writer

Reality

Controller

Supervisor

Figure 2: Architecture of the Dynamic Rescheduling Framework.

more information becomes available. This process terminates when all stochas-
ticity is removed and the actual duration of each operation is finally known.
Depending on the application the actual duration can be known in advance
with respect to the starting time of the operation or while the operation is
being processed.

4.2 Simulator module

The Simulator maintains the system state information and updates it as time
passes. This is done by keeping a representation of the graph G from the system
state Σt. The state can change as a result of an event. We distinguish three
types of events:

End of the rescheduling process. This event is communicated to the Sim-
ulator by the Solution Reader module when a new scheduling solution is
available.

Exogenous change. This event is communicated by the Reality module sig-
nifying a changed distribution of an operations duration.

Time progress. This event is internally generated by the Simulator and con-
sists in updating the system state Σt to Σt′ , i.e., from time t to time
t′.

To bootstrap the loop in Figure 2, the Simulator is fed an initial solution to the
instance (G,∆−∞) computed in the planning phase. From this solution, the
initial state Σ−∞ = (G,∆′

−∞
,−∞) is created.

To analyse the stochasticity of the problem, the Simulator generates a prede-
termined amount m of Monte Carlo samplings by instantiating the probability
distributions associated to the uncertain events. Such distributions in general
may be different from the probability distribution used in the Reality module.
These are realised as a set of m different scenario graphs Gs ∈ G1 . . . Gm. G0

refer to the graph that would be converted to an instance if rescheduling is done.
The Simulator then solves a series of longest path problems rooted in the source
node to all other nodes in the graphs to obtain start times ti,s for each node in
Gs. These values are then used to decide if a rescheduling is warranted, and to
analyse the distribution of objectives.

9

Starting times are calculated using a longest path version of the Bellman-
Ford algorithm which is able to detect possible positive length cycles that indi-
cate infeasibility (i.e., an operation preceding itself). When an event ∆t causes
a decreased length of an edge (i, j) in a sample graph Gs a simple check can
verify if oj has a changed start time tj,s. If and only if that is the case, the
longest path calculations are redone from scratch. If the change causes an in-
crease, oj is marked as changed in the Bellman-Ford algorithm, and the longest
path algorithm is restarted.

4.2.1 Human Interaction

In some applications the Simulator could work with no human intervention or
supervision, while in other applications a decision maker could decide whether
or not a new rescheduling should be started and supervise the solutions found
by the Solver. More often, the presence of a Human Supervisor should be
considered. Therefore there is the need to find a suitable way to represent the
current solutions of the system and give the supervisor the overwrite possibility
(i.e., the chance to change the decisions taken by the automated system).

A possible way to provide information on the solution to the supervisor is
to make use of stochastic Gantt charts, as the one shown in Figure 3. Such
plots are based on predictive Gantt charts introduced in [2] and are useful for
displaying stochastic schedules. They are drawn as regular Gantt charts, but
the boxes signifying an event occurring with certainty at a given time, have
been replaced by a shape representing the approximate likelihood of an event
happening at a given time.

The height of the row representing each machine is not explicitly drawn, but
can be seen as the topmost and bottommost part of the operations belonging to
that machine. Figure 3 is a solution to a problem with two machines and two
jobs (J1,J2) each with two operations of which one is shown. The red vertical
line at time 350 intersects the shapes representing two operations labelled J0, 0
and J1, 1 respectively. The red line can be divided into three parts:

The area below the shape representing J1, 1 represents the chance that J1, 1
has finished at time 350, the area intersecting represents the chance that the
operation J1, 1 is currently running. The area above represents the chance that
J1, 1 has not started at time 350, as this area is occupied by the shape repre-
senting J0, 0, we must conclude that the machine is occupied by the previous
operation (J0, 0) in these cases.

Each shape is drawn based on linear interpolation between points drawn for
the following inputs to the quantile function: .01, .025, .05, .1, .2, .3, .4, .5, .6,
.7, .8, .9, .95, .975 and .99. Note that the first and the last percentile are not
represented to avoid visual artefacts on long tailed and unbounded distributions.

If other visualizations are required, the supervisor can request density plots
of timings of any operation, or for an objective function. This can be done for
multiple solutions, enabling comparisons such as the one depicted in Figure 4.

4.3 Controller module

The Controller implements the rescheduling policy, i.e., it decides when the
Solver should be invoked. This is done by a set of trigger conditions and when
the condition of a Trigger is satisfied then the Controller calls the Solver for a

10

Time

M
ac

hi
ne

s
(s

to
ch

as
tic

)

0 200 400 600 800 1000

M
0

M
1

J0,0

J0,1J1,0

J1,1

Figure 3: A small stochastic Gantt chart showing a single machine in a solution
to a two machine job shop problem.

reoptimization. A trigger is a function T (Σt, t, tlast,∆t \∆tlast
) that maps the

current state of the system Σt, the time t, the last time a solver was run tlast,
and the events ∆t \∆tlast

into a boolean value.
Triggers can be grouped by type according to the data that trigger them.

Deterministic triggers are triggered by changes in the deterministic data poten-
tially passed on to the solver G0, while stochastic triggers work on the Monte
Carlo trials on the graph representing the system state G1 . . . Gm.

Though the dynamic rescheduling framework is not limited to these, the
following types describe some of the most common deterministic triggers:

Changed makespan is triggering when the longest path from source to the
sink node changes.

Lateness of an operation is triggered when the longest path from source
node to the corresponding node plus the duration of the operation ex-
ceeds the due date of the operation.

Infeasibility of the solution originally provided by the solver.

Sum of lateness exceeding a given value.

Stochastic triggers are based on a boolean expression that can be evaluated
on each of the sample graphs G1 . . .Gm. They trigger when the boolean condi-
tion C is satisfied with a given percent chance with confidence p. For example
the reoptimization can be called when, with 95% confidence, there is at least
10% chance of worsening the objective function.

11

1300 1350 1400 1450 1500 1550

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Makespan of FT10 with extend=0.8

D
en

si
ty

Figure 4: Density plot of the makespan for two solutions to the FT10 job shop
instance with added stochasticity (extend = 0.8). The red solid line represents
a superior solution to the blue dotted line given that we want to minimize the
makespan. This can be seen as a shift toward lower makespans (left on the x
axis).

12

Custom triggers can be implemented by adhering to a provided interface.

4.4 Solution Reader and Instance Writer modules

The Solution Reader and Instance Writer modules must be implemented sepa-
rately for each Solver that is to be used with the framework.

The Solution Reader module must generate an temporal network from the
instance file and the solution produced by the deterministic solver.

The Instance Writer module is responsible for creating a deterministic in-
stance based on the simulation of the current system state Σt. The primary
challenge when implementing the Instance Writer module is the progressing
time during simulation. The Instance Writer should enforce that the starting
time of locked events should never be modified by the Solver. Common ways of
doing this includes leaving them out of the instance and mimicking their pres-
ence by enforcing release times on other operations, or alternatively introduce
deadlines and release times that fixes the original operations in time. The choice
is determined by the ability of the solver to handle the constraints needed.

4.5 Solver module

The Solver is the optimization core of the rescheduling system. The proposed dy-
namic rescheduling framework is Solver independent. Both exact and heuristic
solvers can be interfaced with the framework. If the solver uses a deterministic
algorithm, it is not going to be invoked twice on the same instance. In Section
5 we show how a dispatching rule yielding the optimal solution or a truncated
commercial solver can both be used as Solvers within the framework.

4.6 Parameters and Input

The framework requires the following application specific parameters:

Knowledge parameter k ∈ (−∞; 1] is used when the framework is not con-
nected to a real life application. It describes when the actual duration of
an operation is revealed to the framework.

A negative integer value denotes the amount of time units before the
operation is scheduled to begin in the current schedule. A value in the
interval [0; 1] denotes the percentage completion an operation must be at
before the process time becomes known to the framework. k = 0 thus
corresponds to generating the event when an operation starts, k = 1 when
it ends and k = −1 the time unit before the operation is scheduled to
start.

In case of negative k, gained information is retained even if the operation
is rescheduled thereafter

Frozen period the amount of time ahead of the starting time of an operation,
where it should be considered locked in the schedule.

Allowed CPU time the maximum amount of time the solver is allowed to use
for reoptimization.

13

Frequency parameter f ∈ [1;∞] is a lower bound in time units between runs
of the solver.

Finally the framework must be given information detailing how and when
to reschedule.

Number of samples n ∈ [0;∞) determines the number of graphs G1 . . . Gn

created by Monte Carlo samplings.

Sampling strategy g ∈ [0; 1] is used to generate a deterministic instance
for the solver based on the stochastic instance under consideration. For
bounded distributions this will be treated as reverse lookup in the cu-
mulative distribution function. Thus g = 0 corresponds to the shortest
possible duration, and g = 1 corresponds to the longest possible duration
and g = 0.5 is the median of the distribution. For unbounded distri-
butions, a maximum value must be enforced to avoid generating infinite
values.

Triggers must be implemented beforehand, and can be enabled by a parameter.

Rolling Horizons can be handled if implemented in the instance reader and
writer, and the solver must be able to solve the partial instance.

5 Computational Experiments

The computational experiments reported in this paper are based on two differ-
ent scheduling applications. Namely we consider the Single Machine Weighted
Completion Time problem and the academic Job-Shop Scheduling problem. In
the results we show the deviation from the optimal value of the ex-post opti-
mization z∗((G,∆,∞), (G,∆,∞)).

To illustrate the functionality of the framework, we perform an exploratory
analysis of each of the two problems, followed by the analysis of an artificial test
case. All the test have been carried out on a Intel Core i5 CPU 650 @ 3.20GHz
processor.

5.1 Single Machine Weighted Completion Time (SMWCTP)

The single machine problem we consider is the classical 1||
∑

wiCi single ma-
chine problem with the objective of minimizing the sum of the weighted comple-
tion time of each job. Given a job i, let pi and wi denote its processing time and
its weight, respectively. Given a solution, we denote the completion time of job
i with Ci. The problem is known to be polynomially solvable [22] by applying
the Weighted Shortest Processing Time (WSPT) rule, that is to sequence jobs
according to their non-decreasing ratios pi/wi.

We consider 10 randomly generated instances of SMWCTP, each having a
number of jobs randomly selected as n ∈ [10; 100]. Each operation oi has a
weight wi ∈ [1; 100] and a processing time pi ∈ [1; 100]. All values are uniformly
likely in each interval. We then create stochastic instances by changing all of
the process times into a uniform distribution ranging from its original duration
pi,j to pi,j + pi,j · extend for a given value of the extend parameter. In our

14

Time

M
ac

hi
ne

s
(s

to
ch

as
tic

)

0 1000 2000 3000 4000

M
0

Figure 5: A stochastic Gantt chart for a SMWCTP instance with 60 jobs.

test, we set extend ∈ {0.1, 0.2, . . .0.9, 1.0}. For each of the 100 stochastic in-
stances, we create 4 sample instances (sample = 4) by sampling each of the
distributions associated with the processing times. Sample instances represent
the actual realization of a given stochastic instance, and are used for generating
consistent processing times across multiple runs of the framework. Therefore
each stochastic instance is evaluated four times per run of the framework, one
for each sample.

During the experiments we tested 15 different “test case” configurations
(i.e., parameters that are influenced by the real-world application) by setting
the knowledge parameter k ∈ {−400,−200,−100,−10, 0} and the frequency
parameter f ∈ {1, 10, 100}. Observe that there is no need to test cases with
k ≥ 0 since it indicates that information about an operations process time is
revealed during the operations execution when the operation is already frozen.
For SMWCT the residual problem is just sorting the remaining operations using
the WSPT rule corresponding to the optimal ex-ante solution.

The sampling strategies were set to g ∈ {0, 0.25, 0.5, 0.75, 1} , furthermore
we used 3 Triggers:

Tobjective Trigger when the objective function changes.

Tchange10 Trigger when the sum of absolute values of changes in the process
times exceeds 10 time units.

Tchange100 Trigger when the sum of absolute values of changes in the process
times exceeds 100.

For each of the triggers, the f parameter provides a lower bound on the time
between rescheduling. Thus if f = 10 and Tobjective detects a changed objective
at time t = 1 and t = 2, 10 time units will still pass between reschedules.

Overall, 10 instances of SMWCTP have been extended into 100 stochastic
instances, which are subsequently solved in 4 different instantiations (using the
4 samples). 15 test cases and 15 configuration have been tested leading to 90000
executions of the framework. In Figure 5 a stochastic Gantt for a SMWCTP is
shown.

5.1.1 Results

Figure 6 shows the average quality of the solutions obtained, as a function of the
sampling strategy g for set values of k and f respectively. Figure 6 (a) shows
that guessing a low process time pi seems favorable for low values of f , i.e.,

15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Guessed duration of a job.

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

all f
f=1
f=10
f=100

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Guessed duration of a job.

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

all k
k=0
k=−10
k=−100
k=−200
k=−400

Figure 6: Solution quality as a function of the guess parameter g for the single
machine weighted completion time with the Tobjective trigger. The left plot
averaged over all k and the right plot averaged over all f .

Table 1: The average number of reschedules and the average deviation from the
optimal solution when applying the three triggers T1, Tchange10 and Tchange100.

Tobjective Tchange10 Tchange100

Reschedules 31.0 19.7 4.8
Average deviation 0.41% 2.26% 38.89%

when rescheduling frequently, while less frequent optimizations favor g values
closer to 0.5 and thus guesses closer to the expected value of pi. The time at
which the framework becomes aware of actual durations k (Figure 6 (b)) shows
a tendency to favor lower values of g.

Table 1 shows that rescheduling at every change of a duration (Tobjective)
when the f parameter allows leads to solutions that deviate from the optimal
offline solution by 0.41%, when averaged over all values of k, f , extend and g. If
an exogenous cost is associated with each rescheduling, rescheduling only if the
change in duration exceeds 10 time units (Tchange10), becomes interesting as it
saves 11.3 reschedules on average and obtaining solutions with 2.26% deviation
from the ex-post optimum on average. The exogenous cost must be significant
to justify using Tchange100, as the average deviation increases to 38.89%.

Table 2 shows that the difference between rescheduling every one and ten
time units is small compared to other sources of increase in solution quality.

Table 2: Average deviation in weighted completion times for different values of
rescheduling frequency f with the trigger Tobjective.

f 1 10 100

Average deviation 0.26% 0.38% 0.59%

16

Table 3: Average deviation in weighted completion times for values of k.

k -400 -200 -100 -10

Average deviation 0.06% 0.22% 0.54% 0.81%

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Possible increase in duration of an operation (extend)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

k=−10, f=10
k=−10, f=100
k=−10, f=1
k=−200, f=100
k=−200, f=1
k=−400, f=1

Figure 7: Solution quality as a function of the extend parameter for set values
of k and f with the trigger Tobjective.

Even a rescheduling every 100 time units provide comparable quality.
While, as expected, Table 3 shows an increase in deviation from offline op-

timum as k approaches 0.
Figure 7 shows effect of increased stochasticity on the solution quality. En-

forcing a pause of 100 time units between each rescheduling (f = 100) comes
at a small cost when k = −200, but the cost of increasing f rises when k = 10,
because the framework sometimes gets events but is unable to react on the due
to a recent rescheduling when f = 100.

5.1.2 Test cases analysis

Observe that the stochasticity extend, the knowledge k and the frequency f
parameters are usually determined by the application. For this artificial test
case we assume that extend = 0.8, k = −10 and f = 10, respectively.

The choices left to the managers are which trigger and sampling strategy to
adopt. Assume that possible triggers choices are Tobjective and Tchange10 and
g ∈ {0, 0.25, 0.5, 0.75, 1}, leading to 10 possible configurations.

By running the proposed dynamic rescheduling framework it turns out that
the best configuration is Tobjective and g = 0.25 since it provides the smaller
deviation from the ex post optimum (as shown by Table 4).

If there is an exogenous cost associated with rescheduling, the problem be-
comes multiobjective, as Tobjective always causes more than 40 reschedules while
Tchange10 causes significantly less. Five solutions are non-dominated (in bold in
Table 4): g ∈ {0.25, 0.5} for both triggers, and g = 1.0 for Tobjective.

17

Table 4: Average deviation from optimal ex-post solution and average number
of reschedulings for extend = 0.8, k = −10 and f = 10.

g = 0.0 g = 0.25 g = 0.5 g = 0.75 g = 1.0

Tobjective (dev.) 2.00% 0.95% 0.96% 1.35% 1.72%

Tobjective (# resch.) 40.9 41.5 41.3 43.8 40.6

Tchange10 (dev.) 2.37% 2.11% 2.94% 5.12% 3.36%
Tchange10 (# resch.) 32.2 26.1 24.3 26.7 31.5

5.2 Job shop scheduling

The classical job shop scheduling problem (J ||Cmax) is one of the most studied
NP-hard problems [16]. As solver we use a standard constraint programming
model for the classical job shop scheduling problem and it has been implemented
using IBM ILOG CP Optimizer version 12.2. Since solving to optimality may
take prohibitively long, the allowed CPU time is set to 60 seconds and the solver
uses a single worker thread.

In order to generate our tests we consider the well known 10-job 10-machine
benchmark instance FT10 [13] and we create stochastic instances by changing
all of the process times into a uniform distribution ranging from its original
duration pi,j to pi,j + pi,j · extend (extend ∈ {0.1, 0.2, . . .0.9, 1.0}). For each of
the stochastic instances, we create 4 sample instances by sampling each of the
distributions associated with the process times. Thus we generate 40 sampled
stochastic instances in total.

As test cases configuration we use k ∈ {−400,−200,−100,−10, 0, 0.5, 1} and
f ∈ {1, 10, 100}, leading to 21 different application settings.

20 configurations of the framework, obtained by setting g ∈ {0, 0.25, 0.5, 0.75, 1}
and 4 Triggers, have been tested. The 4 Triggers are:

Tobjective Trigger when the objective function changes.

Tfrequency Trigger as soon as the f parameter allows, and any distribution has
changed since last optimization.

Tchange10 Trigger when the sum of absolute values of changes in the process
times exceeds 10 time units.

Tchange100 Trigger when the sum of absolute values of changes in the process
times exceeds 100.

Overall 40 · 21 · 20 = 16800 runs of the framework have been executed.

5.2.1 Results

In Figure 8 we show the behavior of the ex ante solution and 4 test cases
configuration ((k = 0, f = 10), (k = −200, f = 1), (k = −400, f = 1) and
(k = 1.0, f = 100)) among the 21 considered as the stochasticity influence
increases (extend).

Figure 8 indicates that for values of extend below 0.2 there seems to be no
benefit to rescheduling on average. For higher values of the extend parameter

18

0.2 0.4 0.6 0.8 1.0

2
4

6
8

10

Possible increase in duration of an operation (extend)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

Ex Ante
k=0, f=10
k=−200, f=1
k=−400, f=1

Figure 8: Gap between the ex-ante and ex-post solution compared with selected
results by the framework.

Table 5: Solution quality as a function of rescheduling frequency f for the job
shop problem.

f 1 10 100

Average deviation 3.75% 3.83% 4.33%

there is a gap that can actually be exploited by allowing dynamic rescheduling.
Figure 8 also indicates that an earlier knowledge of events (i.e., lower values of
k) is beneficial. Besides, even if the actual duration is only known when the
operation starts (k = 0) and the rescheduling is not too frequent (f = 10) still
allows rescheduling to outperform the ex ante solution. The worst configuration
tested for k and f (k = 1.0, f = 100) seems to have no consistent improvement
over the ex-ante solution.

To illustrate the impact of the extend parameter we show in Figure 9 and
10 the difference in ex-ante and ex-post solutions for extend = 0.2 and 1.0
respectively. Observe that, for extend = 0.2 the two solutions coincides thus
the problem is deterministic enough to make rescheduling actions unnecessary.
However, for higher values of the extend parameter the two optimal solutions
differs, thus making rescheduling beneficial.

A clear benefit of obtaining knowledge earlier is expected. But when evaluat-
ing whether such information is worth the cost of obtaining it, the magnitudes
of these benefits needs to be established. Figure 11 shows an approximately
linear increase in solution cost as the k parameter increases. Contrary to the
single machine problem, we observe little extra penalty for jobs being locked
when the information about their durations are revealed (k ≥ 0). This is due
to other potentially affected operations possibly being unfrozen at that point.

Table 5 indicates the magnitude of the benefit of allowing frequent resched-
ules, but the data is averaged over all values for extend, g, s and k. On average,

19

Time

M
ac

hi
ne

s
(s

to
ch

as
tic

)

0 200 400 600 800 1000

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

J0,0

J0,1

J0,2

J0,3

J0,4

J0,5

J0,6

J0,7

J0,8

J0,9

J1,0

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

J2,0

J2,1

J2,2

J2,3

J2,4

J2,5

J2,6

J2,7

J2,8

J2,9

J3,0

J3,1

J3,2

J3,3

J3,4

J3,5

J3,6

J3,7

J3,8

J3,9

J4,0

J4,1

J4,2

J4,3

J4,4

J4,5

J4,6

J4,7

J4,8

J4,9

J5,0

J5,1

J5,2

J5,3

J5,4

J5,5

J5,6

J5,7

J5,8

J5,9

J6,0

J6,1

J6,2

J6,3

J6,4

J6,5

J6,6

J6,7

J6,8

J6,9

J7,0

J7,1

J7,2

J7,3

J7,4

J7,5

J7,6

J7,7

J7,8

J7,9

J8,0

J8,1

J8,2

J8,3

J8,4

J8,5

J8,6

J8,7

J8,8

J8,9

J9,0

J9,1

J9,2

J9,3

J9,4

J9,5

J9,6

J9,7

J9,8

J9,9

Time

M
ac

hi
ne

s
(D

et
er

m
in

is
tic

)

0 200 400 600 800 1000

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

J0,0

J0,1

J0,2

J0,3

J0,4

J0,5

J0,6

J0,7

J0,8

J0,9

J1,0

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

J2,0

J2,1

J2,2

J2,3

J2,4

J2,5

J2,6

J2,7

J2,8

J2,9

J3,0

J3,1

J3,2

J3,3

J3,4

J3,5

J3,6

J3,7

J3,8

J3,9

J4,0

J4,1

J4,2

J4,3

J4,4

J4,5

J4,6

J4,7

J4,8

J4,9

J5,0

J5,1

J5,2

J5,3

J5,4

J5,5

J5,6

J5,7

J5,8

J5,9

J6,0

J6,1

J6,2

J6,3

J6,4

J6,5

J6,6

J6,7

J6,8

J6,9

J7,0

J7,1

J7,2

J7,3

J7,4

J7,5

J7,6

J7,7

J7,8

J7,9

J8,0

J8,1

J8,2

J8,3

J8,4

J8,5

J8,6

J8,7

J8,8

J8,9

J9,0

J9,1

J9,2

J9,3

J9,4

J9,5

J9,6

J9,7

J9,8

J9,9

Figure 9: A stochastic Gantt chart for an ex-ante solution to a job shop instance
for g = 0.5 and extend = 0.2 (top), and a deterministic Gantt chart for the
ex-post solution to the same problem. Note the conservation of ordering of
operations.

Time

M
ac

hi
ne

s
(s

to
ch

as
tic

)

0 500 1000 1500

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

J0,0

J0,1

J0,2

J0,3

J0,4

J0,5

J0,6

J0,7

J0,8

J0,9

J1,0

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

J2,0

J2,1

J2,2

J2,3

J2,4

J2,5

J2,6

J2,7

J2,8

J2,9

J3,0

J3,1

J3,2

J3,3

J3,4

J3,5

J3,6

J3,7

J3,8

J3,9

J4,0

J4,1

J4,2

J4,3

J4,4

J4,5

J4,6

J4,7

J4,8

J4,9

J5,0

J5,1

J5,2

J5,3

J5,4

J5,5

J5,6

J5,7

J5,8

J5,9

J6,0

J6,1

J6,2

J6,3

J6,4

J6,5

J6,6

J6,7

J6,8

J6,9

J7,0

J7,1

J7,2

J7,3

J7,4

J7,5

J7,6

J7,7

J7,8

J7,9

J8,0

J8,1

J8,2

J8,3

J8,4

J8,5

J8,6

J8,7

J8,8

J8,9

J9,0

J9,1

J9,2

J9,3

J9,4

J9,5

J9,6

J9,7

J9,8

J9,9

Time

M
ac

hi
ne

s
(D

et
er

m
in

is
tic

)

0 500 1000 1500

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

J0,0

J0,1

J0,2

J0,3

J0,4

J0,5

J0,6

J0,7

J0,8

J0,9

J1,0

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

J2,0

J2,1

J2,2

J2,3

J2,4

J2,5

J2,6

J2,7

J2,8

J2,9

J3,0

J3,1

J3,2

J3,3

J3,4

J3,5

J3,6

J3,7

J3,8

J3,9

J4,0

J4,1

J4,2

J4,3

J4,4

J4,5

J4,6

J4,7

J4,8

J4,9

J5,0

J5,1

J5,2

J5,3

J5,4

J5,5

J5,6

J5,7

J5,8

J5,9

J6,0

J6,1

J6,2

J6,3

J6,4

J6,5

J6,6

J6,7

J6,8

J6,9

J7,0

J7,1

J7,2

J7,3

J7,4

J7,5

J7,6

J7,7

J7,8

J7,9

J8,0

J8,1

J8,2

J8,3

J8,4

J8,5

J8,6

J8,7

J8,8

J8,9

J9,0

J9,1

J9,2

J9,3

J9,4

J9,5

J9,6

J9,7

J9,8

J9,9

Figure 10: A stochastic Gantt chart for an ex-ante solution to a job shop instance
for g = 0.5 and extend = 1.0 (top), and a deterministic Gantt chart for the ex-
post solution to the same problem. Note that the order of operations are not
conserved.

−400 −300 −200 −100 0

2.
8

3.
2

3.
6

4.
0

Timeunits before start where length of job is known. (k)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

0.0 0.2 0.4 0.6 0.8 1.0

4.
2

4.
4

4.
6

4.
8

5.
0

Percent completion of a job when length is known. (k)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

Figure 11: Solution quality as a function of the knowledge parameter k.

20

0.0 0.2 0.4 0.6 0.8 1.0

3.
5

4.
0

4.
5

5.
0

Guessed duration of a job. (g)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

all f
f=1
f=10
f=100

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Guessed duration of a job. (g)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

all k
k=1
k=0
k=−10
k=−100
k=−200

Figure 12: Solution quality as a function of the guess parameter g for JSP.

Table 6: The average number of reschedules and the solution quality when
applying the four triggers Tobjective, Tfrequency, Tchange10 and Tchange100.

Tobjective Tfrequency Tchange10 Tchange100

Avg. Reschedules 26.1 73.4 50.0 14.5
Average deviation 3.78% 3.75% 3.75% 3.95%

lower values for the frequency lead to better solutions.
To evaluate g’s influence on the solution quality, we plot it for different values

of f and k respectively in Figure 12. Contrary to the single machine problem we
observe g = 0.5 results in the best results. This corresponds to passing expected
values of probability functions to the solver.

If the job shop problem has exogenous costs associated with rescheduling
fewer reschedules can be obtained through the use of triggers. Table 6 shows
that postponing rescheduling until process times have changed by at least 10
units (Tchange10), on average produces solutions of the same quality as reschedul-
ing when a change is encountered and the f parameter allows (Tfrequency) while
using significantly fewer reschedules. Rescheduling only when events have af-
fected the objective of the solution given by the last run of the solver (Tobjective),
yields slightly worse solutions but with a significant reduction in the number of
reschedules necessary. Finally requiring an accumulated change in the process
times of 100 time units provides reasonable results at even fewer reschedules.

During the execution, a supervisor can monitor the stochastic Gantt chart,
or the development of the objective function as shown in Figure 13. In the plot
the estimated solution quality is the makespan as computed by the deterministic
solver (red marks). Recall that the solver ignores uncertainties and the actual
solution quality as computed by the simulator module reflects the real makespan
(blue marks). The gap between the two typically starts out being large and
tends to decrease over time as the schedule is executed and uncertainties are

21

0 200 400 600 800 1000 1200 1400

13
40

13
50

13
60

13
70

13
80

13
90

14
00

Objectives as a function of time (Job Shop)

Time

M
ak

es
pa

n

Estimated quality seen by solver
Actual quality given full information

Figure 13: Progression of the objective function for the job shop problem with
extend ∈ {0.5, 0.75, 1.0}, k = −400, f = 10, g = 0.5. Jumps in either graph
could be due to a new solution being considered, but the estimated quality can
change due to events changing distributions.

revealed. At the end of the execution the two values must coincide. In Figure
13 the attained makespan value is 1385. Note that the actual solution quality
generally improves over time, but that a solution with a better makespan (1379)
was obtained four times, but discarded due to lacking information. In a real
life application, the full information is not known in advance and thus cannot
be plotted. In this case another scenario (e.g. worst case, best case) can be
monitored instead.

5.2.2 Test cases analysis

For this test case we assume that extend ∈ {0.5, 0.75, 1.0}, k = −100 and f = 10
but with the option of either setting k = −200 or f = 1 at a cost.

It is clear from Figure 14 that getting information earlier by setting k = −200

Table 7: The average number of reschedules when applying the four triggers
Tobjective, Tfrequency, Tchange10 and Tchange100 for extend ∈ {0.5, 0.75, 1.0}, f =
10 and k ∈ {−100,−200}.

Tobjective Tfrequency Tchange10 Tchange100

Avg. Reschedules 26.2 58.9 44.8 14.5

22

0.0 0.2 0.4 0.6 0.8 1.0

4
5

6
7

8

Tobjective

Guessed duration of a job. (g)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

k=−100,f=10
k=−100,f=1
k=−200,f=10

0.0 0.2 0.4 0.6 0.8 1.0

4
5

6
7

8

Tfrequency

Guessed duration of a job. (g)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

k=−100,f=10
k=−100,f=1
k=−200,f=10

0.0 0.2 0.4 0.6 0.8 1.0

4
5

6
7

8

Tchange10

Guessed duration of a job. (g)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

k=−100,f=10
k=−100,f=1
k=−200,f=10

0.0 0.2 0.4 0.6 0.8 1.0

4
5

6
7

8

Tchange100

Guessed duration of a job. (g)

A
ve

ra
ge

 d
ev

ia
tio

n
fr

om
 O

P
T

 in
 %

k=−100,f=10
k=−100,f=1
k=−200,f=10

Figure 14: Average deviation from optimal ex-post solution as a function of g
for each trigger for extend ∈ {0.5, 0.75, 1.0}.

23

is worth more on average than allowing rescheduling in each time step (f = 1),
independently of the trigger utilized. The general quality of the solution appears
to have no clear correlation with the trigger used, which further substantiates
the hypothesis that the rescheduling is done often enough to take advantage of
the available information.

Given that the triggers appear to give solutions of comparative quality, a de-
cision maker would likely choose Tobjective or Tchange100 to minimize the number
of reschedules performed (Table 7). For both of these triggers, setting g = 0.5
and k = −200 yields the best results: 2.96% and 3.07% respectively. To calcu-
late if lowering the value of k is worth it, the benefit of 0.29% and 0.39% for
Tobjective and Tchange100 respectively must be compared to any exogenous costs.

5.3 Comments

From our tests it turns out that having information earlier is more important
than frequent reschedules.

For the JSP the most important factor turns out to be the magnitude of
the uncertainties. When the problem allows only small changes (less than 20%)
in the processing times there is no need of dynamic rescheduling since the ex
ante solutions are already good enough. As the uncertainty increases the need
of allowing rescheduling increases too.

When coming to the influence of the parameter setting of the framework,
we observe a different behavior for the two problems. In the SMWCTP the
choice of the trigger is influential, and while giving different results the sampling
strategies do not radically change the quality of the solutions if f 6= 1. Whereas
in the JSP the choice of the trigger does not seem to have a strong influence
on the solution quality while the number of reschedules changes a lot. When
considering the sampling strategy g the best results are obtained by setting it
to the expected (median) values of the processing times.

6 Conclusions and future research

In this paper we introduced a simulation-based framework for addressing dy-
namic rescheduling problems.

The functionality of this framework has been shown by considering two dif-
ferent dynamic scheduling problems: A single machine and a job shop scheduling
problem.

The framework has in this paper been used to investigate some issues: (i)
comparing the relative performance of different solver configurations and the
absolute performance with ex-ante/ex-post optimization; (ii) evaluating the ro-
bustness of the ex ante solution to uncertain distributions; (iii) the influence of
triggers on the number of times rescheduling is performed, and the effect on the
solution quality.

Future developments include the application of this framework to specific
problems and use of spare CPU time of the Solver to perform alternative future
event branch prediction and the development of better strategies to produce
robust solutions.

24

Acknowledgements

The authors would like to thank Geoff Robinson and Andreas Ernst for providing
R code of a preliminary version of the stochastic Gantt charts.

References

[1] Haldun Aytug, Mark A. Lawley, Kenneth McKay, Shantha Mohan, and
Reha Uzsoy. Executing production schedules in the face of uncertainties:
A review and some future directions. European Journal of Operational
Research, 161(1):86 – 110, 2005.

[2] Kenneth R. Baker and Dan Trietsch. Principles of Sequencing and Schedul-
ing. Wiley Publishing, 2009.

[3] E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3
– 51, 1979.

[4] A. Ben-Tal and A. Nemirovski. Robust optimization – methodology and
applications. Mathematical Programming, 92:453 – 480, 2002.

[5] Julien Bidot, Thierry Vidal, Philippe Laborie, and J. Beck. A theoretic and
practical framework for scheduling in a stochastic environment. Journal of
Scheduling, 12:315–344, 2009.

[6] Peter Cowling and Marcus Johansson. Using real time information for
effective dynamic scheduling. European Journal of Operational Research,
139(2):230 – 244, 2002.

[7] A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of Operational
Research, 183:643–657, 2007.

[8] Salah E. Elmaghraby. Activity nets: A guided tour through some recent
developments. European Journal of Operational Research, 82:383 – 408,
1995.

[9] S. J. Honkomp, L. Mockus, and G. V. Reklaitis. A framework for schedule
evaluation with processing uncertainty. Computers & Chemical Engineer-
ing, 23(4 - 5):595 – 609, 1999.

[10] B.L. Maccarthy and Jiyin Liu. Addressing the gap in scheduling research:
a review of optimization and heuristic methods in production scheduling.
International Journal of Production Research, 31(1):59 – 79, 1993.

[11] Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with block-
ing and no-wait constraints. European Journal of Operational Research,
143(3):498 – 517, 2002.

[12] Kenneth N. McKay and Vincent C.S. Wiers. Unifying the theory and prac-
tice of production scheduling. Journal of Manufacturing Systems, 18(4):241
– 255, 1999.

25

[13] J.F. Muth and G.L. Thompson. Industrial Scheduling. Kluver Academic,
Amsterdam, 1963.

[14] Djamila Ouelhadj and Sanja Petrovic. A survey of dynamic scheduling in
manufacturing systems. Journal of Scheduling, 12:417 – 431, 2009.

[15] András Pfeiffer, Botond Kádár, and László Monostori. Stability-oriented
evaluation of rescheduling strategies, by using simulation. Computers in
Industry, 58(7):630 – 643, 2007.

[16] M. Pinedo. Scheduling – theory, algorithms and systems. Int. Series in
Industrial and System Engineering. Prentice-Hall, Englewood Cliffs, NJ,
1995.

[17] R Ramasesh. Dynamic job shop scheduling: A survey of simulation re-
search. Omega, 18(1):43 – 57, 1990.

[18] R. Rangsaritratsameea, William G. Ferrell, and Mary Beth Kurzb. Dy-
namic rescheduling that simultaneously considers efficiency and stability.
Computers & Industrial Engineering, 46:1–15, 2004.

[19] Riccardo Rasconi, Amedeo Cesta, and Nicola Policella. Validating schedul-
ing approaches against executional uncertainty. Journal of Intelligent Man-
ufacturing, 21:49–64, 2010.

[20] B. Roy and B. Sussman. Les problèm dordonnancement avec contraintes
disjonctives. Technical report, Note DS No. 9bis. Paris: SEMA, 1964.

[21] A. Ruszczynski and A. Shapiro. Stochastic Programming. In: Handbooks
in Operations Research and Management Science. Elsevier, Amsterdam,
2003.

[22] Wayne E. Smith. Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3(1-2):59–66, 1956.

[23] A.T. Unal, R. Uzsoy, and A.S. Kiran. Rescheduling on a single machine
with part-type dependent setup times and deadlines. Annals of Operations
Research, 70:93–113, 1997.

[24] Guilherme E. Vieira, Jeffrey W. Herrmann, and Edward Lin. Rescheduling
manufacturing systems: A framework of strategies, policies, and methods.
Journal of Scheduling, 6:39–62, 2003.

26

