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Fuzzy logic is intended to model logical reasoning with vague or imprecise statements like “Petr is young
(rich, tall, hungry, etc.)”. It refers to a family of many-valued logics (see entry on many-valued logic) and
thus stipulates that the truth value (which, in this case amounts to a degree of truth) of a logically
compound proposition, like “Carles is tall and Chris is rich”, is determined by the truth value of its
components. In other words, like in classical logic, one imposes truth-functionality.

Fuzzy logic emerged in the context of the theory of fuzzy sets, introduced by Zadeh (1965). A fuzzy set
assigns a degree of membership, typically a real number from the interval , to elements of a
universe. Fuzzy logic arises by assigning degrees of truth to propositions. The standard set of truth values
(degrees) is , where  represents “totally false”,  represents “totally true”, and the other numbers
refer to partial truth, i.e., intermediate degrees of truth.[1]

“Fuzzy logic” is often understood in a very wide sense which includes all kinds of formalisms and
techniques referring to the systematic handling of degrees of some kind (see, e.g., Nguyen & Walker
2000). In particular in engineering contexts (fuzzy control, fuzzy classification, soft computing) it is
aimed at efficient computational methods tolerant to suboptimality and imprecision (see, e.g., Ross 2010).
This entry focuses on fuzzy logic in a narrow sense, established as a discipline of mathematical logic
following the seminal monograph by Petr Hájek (1998) and nowadays usually referred to as
“mathematical fuzzy logic” (see Cintula, Fermüller, Hájek, & Noguera 2011 and 2015). It focuses on
logics based on a truth-functional account of partial truth and studies them in the spirit of classical
mathematical logic (syntax, model theoretic semantics, proof systems, completeness, etc.; both, at
propositional and the predicate level).
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The standard set of truth degrees for fuzzy logics is the real unit interval  with its natural ordering ,
ranging from total falsity (represented by ) to total truth (represented by ) through a continuum of
intermediate truth degrees. The most fundamental assumption of (mainstream) mathematical fuzzy logic
is that connectives are to be interpreted truth-functionally over the set of truth-degrees. Such truth-
functions are assumed to behave classically on the extremal values  and . A very natural behavior of
conjunction and disjunction is achieved by imposing  and  for each

.

Another, non-idempotent, conjunction  is typically added to account for the intuition that applying a
partially true hypothesis twice might lead to a different degree of truth than using it only once. Such a
conjunction is usually interpreted by a binary operation on , which is not necessarily idempotent, but
still associative, commutative, non-decreasing in both arguments and has  as neutral element. These
operations are called t-norms (triangular norms) and their mathematical properties have been thoroughly
studied (e.g., by Klement, Mesiar, & Pap 2000). Prominent examples of t-norms are the already
mentioned function , the standard product of real numbers, and the Łukasiewicz t-norm: 

. These three t-norms are actually continuous functions and any other
continuous t-norm can be described as an ordinal sum of these three basic ones (see, Ling 1965; Mostert
& Shields 1957).

Negation is interpreted by a non-increasing function assigning  to  and vice versa; usual choices are the
Łukasiewicz negation  and the Gödel negation:  and  for each . It is
also usual to introduce a constant symbol  for total falsity, hence interpreted as . Finally, a suitable
choice for implication is the residuum of the t-norm , that is, the unique function  satisfying the so-
called residuation condition: , if and only if, . Such a function exists (and is defined
as ) if, and only if, the t-norm is left-continuous.

2. MTL: A fundamental fuzzy logic
The weakest logic with connectives interpreted by truth-functions of the type described above is MTL
(Monoidal T-norm based Logic, Esteva & Godo 2001). It is a logic with the primitive connectives 

 and , and derivable connectives defined as:

MTL is defined as a consequence relation over the semantics given by all left-continuous t-norms.
Namely, given a particular left-continuous t-norm , an evaluation  is a mapping from propositional
variables to , extended to all formulas by interpreting  as , the implication  as its residuum ,
and  and  as  and , respectively.

A formula  is a consequence of a set of formulas  in MTL, denoted , if for each left-
continuous t-norm  and each evaluation  such that  for each  we have ; that
is: each evaluation that makes the premises totally true must also make the conclusion totally true.
Formulas  that always evaluate to  ( ) are called tautologies of MTL. Note that the formula 

 is a tautology in MTL, i.e., the conjunction  is stronger than .
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MTL can also be presented by a Hilbert-style proof system with the following axioms:

and modus ponens as the only inference rule: from  and , infer . This system is a complete
axiomatization of the logic MTL:  iff , where the latter relation denotes derivability
from instances of the above axioms and formulas in . The validity problem of  is known to be
decidable, however its computational complexity has not yet been determined.

3. Łukasiewicz logic
Łukasiewicz logic can be defined by adding

to the Hilbert-style system for MTL. It corresponds to the finitary version of the consequence relation
defined with respect to evaluations based on the Łukasiewicz t-norm (in symbols: for each finite set of
formulas  and each formula , we have  iff ).[2]

This logic was an early example of a many-valued logic, introduced by Łukasiewicz & Tarski (1930),
well before the inception of the theory of fuzzy sets, by means of an equivalent axiomatic system (with
modus ponens as the only inference rule):

Łukasiewicz logic is the only t-norm based fuzzy logic where all connectives are interpreted by
continuous functions, including the implication which, as the residuum of , is given by the function 

. McNaughton’s theorem (1951) states that real-valued functions over [0,1]
that interpret formulas of Łukasiewicz logic are exactly the continuous piecewise linear functions with
integer coefficients. In terms of computational complexity, the validity problem for this logic is
asymptotically not worse than in classical logic: it remains coNP-complete.

4. Gödel–Dummett logic
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Gödel–Dummett logic, also known as Dummett’s LC or simply Gödel logic, is another early example of a
many-valued logic with truth values in . It was introduced by Michael Dummett (1959) as the
extension of intuitionistic logic (see entry on intuitionistic logic) by the axiom

This formula enforces a linear order in the underlying (Kripke-style as well as algebraic) semantics. It also
appears in the context of Gödel’s observation that it is impossible to characterize intuitionistic logic by
finite truth tables (Gödel 1932). Gödel–Dummett logic can alternatively be obtained as an axiomatic
extension of MTL by adding the axiom , which amounts to requiring the idempotence of ,
and hence making the interpretation of both conjunctions coincide. In the fuzzy logic setting the Gödel–
Dummett logic can be seen as the consequence relation given by the minimum t-norm. It is distinguished
as the only t-norm based logic where the truth of a formula in a given evaluation does not depend on the
specific values assigned to the propositional variables, but only on the relative order of these values. In
this sense, Gödel–Dummett logic can be seen as a logic of comparative truth. Like for Łukasiewicz logic,
the computational complexity of testing validity remains coNP-complete.

5. Other notable fuzzy logics
Besides MTL (the logic of all left-continuous t-norms) and Łukasiewicz and Gödel–Dummett logics (each
induced by one particular t-norm), one can consider logics induced by other sets of t-norms or, in general,
arbitrary axiomatic extensions of MTL. In particular, the logic of all continuous t-norms (Hájek’s Basic
Fuzzy Logic) is obtained by adding the axiom

to those of MTL. Actually, for any set of continuous t-norms there is a finite axiomatization of the
corresponding logic (Esteva, Godo, & Montagna 2003; Haniková 2014). In particular the logic of the last
prominent continuous t-norm (algebraic product), known as Product logic, is the extension of Hájek’s
Basic Fuzzy Logic by the axiom:

On the other hand, not all axiomatic extensions of MTL can be given a semantics of t-norms. For
example, classical logic can be axiomatized as MTL  , but the axiom of excluded middle is not a
tautology under any t-norm based interpretation.

There are also reasons to consider weaker fuzzy logics. For example, it can be argued that the assumptions
forcing the interpretation of the conjunction to be a t-norm are too strong. In particular, the assumption
that  is the neutral element of conjunction enforces a definition of tautology as a formula always
evaluated to  and the consequence relation as preservation of the value  – that is,  is the only
designated value in the semantics.[3] A natural way to introduce logics with more than one designated
truth degree is to assume that the neutral element for  is a number . (It can be shown that in this
situation the designated truth degrees are exactly those greater than or equal to .) Such interpretations of
conjunctions are called uninorms. The resulting logic was axiomatized by Metcalfe & Montagna (2007).

Analogously one may argue against commutativity or even against associativity of conjunction.
Axiomatizations of resulting logics are described in the literature (see Cintula, Horčík, & Noguera 2013;
Jenei & Montagna 2003); an exception is the logic of non-commutative uninorms for which a natural
axiomatic system is not known.
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Finally, taking into account that fuzzy logics, unlike classical logic, are typically not functionally
complete, one can increase their expressive power by adding new connectives. The most commonly
considered connectives are: truth constants  for each rational number ; unary connectives 
and  interpreted as  and  if  and  otherwise; a binary connective 
interpreted as the usual algebraic product, etc. (Baaz 1996; Esteva, Gispert, Godo, & Noguera 2007;
Esteva, Godo, & Montagna 2001; Esteva, Godo, Hájek, & Navara 2000).

A thorough overview of all the kinds of propositional fuzzy logics mentioned in this section (and a
general theory thereof) can be found in the Handbook of Mathematical Fuzzy Logic (3 volumes, Cintula et
al. 2011a,b, 2015).

6. Predicate logics
Given any propositional fuzzy logic L there is a uniform way to introduce its first-order counterpart L  in
a predicate language  (defined as in the classical case). In this section, for simplicity, we present it for
t-norm based logics.

The semantics is given by structures in which predicate symbols are interpreted as functions mapping
tuples of domain elements into truth values. More precisely, a structure  consists of a non-empty
domain of elements , a function  for each -ary function symbol , and a function 

 for each -ary predicate symbol . Fixing an evaluation  of object variables in
, one defines values of terms ( ) and truth values of atomic

formulas ( ). Truth values of a universally/existentially
quantified formula are computed as infimum/supremum of truth values of instances of the formula where
the quantified variable runs over all elements of the domain . Formally:

where  is the evaluation sending  to  and keeping values of other variables unchanged. The
values of other formulas are computed using the truth functions for the propositional connectives of L.

The first-order logic L  is then defined as the consequence relation given by preservation of total truth
(value ), as in the propositional case. More precisely, we say that a first-order formula  is a
consequence of a set of formulas  (in symbols: ) if  for each evaluation v, whenever 

 for each evaluation v and each .

L  can be given a Hilbert-style calculus with the following axioms:

(P) The (first-order) instances of the axioms of the propositional logic L
, where the term  is substitutable for  in
, where the term  is substitutable for  in

, where  is not free in 
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, where  is not free in .

The deduction rules of L  are those of L plus the rule of generalization: from  infer .

For many notable propositional fuzzy logics (including MTL and Gödel logic) the above axiomatic
system is sound and complete with respect to the semantics (i.e.,  iff  for each  and
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each ; Cintula, Horčík, & Noguera 2014).

However, the first-order Łukasiewicz logic is not recursively axiomatizable as shown by Scarpellini
(1962; Ragaz (1981) proved that the set of tautologies is actually -complete in the sense of arithmetical
hierarchy). Completeness can be achieved either by including an infinitary inference rule (Hay 1963) or
by generalizing the set of truth-values (see next section). The situation is even more complicated in the
case of Hájek’s Basic Fuzzy Logic, where the set of first-order tautologies of all structures given by
continuous t-norms is as complex as true arithmetics (Montagna 2001).

7. Algebraic semantics
One of the main tools in the study of fuzzy logic is that of algebraic semantics (see entry on algebraic
semantics). Roughly speaking, the idea is to replace the real unit interval with an arbitrary set and
interpret the connectives as operations of corresponding arities on that set.

An MTL-algebra (introduced by Esteva & Godo (2001)) is a tuple  where

 is a bounded lattice
 is a commutative monoid

 iff  (where  is the lattice order induced by  or ).

MTL-algebras are a generalization of the t-norm based semantics explained above and provide a sound
and complete semantics for MTL.[4]

MTL-chains are those whose lattice order is total and they are the basic building blocks of the whole class
of algebras, in the sense that each MTL-algebra can be decomposed as a subdirect product of chains. This
implies that the logic is also complete with respect to the semantics of MTL-chains, which is then used as
the first step in the proof of its completeness with respect to the t-norm based semantics (Jenei &
Montagna 2002).

Algebraic semantics is a universal tool that can be used for any logic. In particular, for any arbitrary fuzzy
logic studied in the literature (even those not supporting a t-norm based semantics such as finite-valued
fuzzy logics or the logic of non-commutative uninorms) one can find a corresponding class of algebras
which can be decomposed as subdirect products of chains. This fact has led Běhounek & Cintula (2006)
to propose a definition of fuzzy logics as logics that are complete with respect to totally ordered algebraic
structures.

The use of algebraic semantics for first-order logics usually yields lower complexity for testing validity or
satisfiability than standard semantics (Montagna & Noguera 2010).

8. Proof theory
It has been a considerable challenge to come up with analytic proof systems for fuzzy logics. These are
systems that share important features, like the eliminability of cuts and the subformula property, with
Gentzen’s sequent calculi for classical and intuitionistic logic (see entry on the development of proof
theory). A major breakthrough has been achieved with the introduction of a so-called hypersequent
calculus for Gödel–Dummett logic by Arnon Avron (1991). Hypersequent calculi arise from sequent
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calculi by considering finite multisets or sequences of sequents, interpreted as disjunctions of sequents, as
main object of inference. In the case of Gödel–Dummett logic one lifts the rules of Gentzen’s
intuitionistic sequent calculus by simply adding side-hypersequents to the upper and lower sequents. For
example, the sequent rule for introducing disjunction on the right hand side

where  and  are finite sequences of formulas, is turned into the following hypersequent rule:

where  and  denote the side-hypersequents, i.e., finite sequences or multisets of sequents. This by
itself does not change the corresponding logic (intuitionistic logic, in this case). The crucial additional
structural rule is the so-called communication rule:

Here  are finite lists of formulas;  and  are either single formulas or remain empty; 
and  denote the side-hypersequents, like above.

To obtain a hypersequent calculus for the fundamental fuzzy logic MTL one has to add the
communication rule to a sequent system for contraction-free version of intuitionistic logic. Analytic proof
systems for other fuzzy logics, in particular Łukasiewicz logic, call for a more radical departure from
traditional calculi, where the sequent components of hypersequents are interpreted differently than
intuitionistic or classical sequents. Also so-called labeled proof systems and various tableau calculi have
been suggested. A detailed presentation of the corresponding state of the art can be found in Metcalfe,
Olivetti, & Gabbay 2008 and Metcalfe 2011.

9. Semantics justifying truth functionality
It is desirable, not only from a philosophical point of view, but also to a get a better grip on potential
applications of fuzzy logics to relate the meaning of intermediary truth values and corresponding logical
connectives to basic models of reasoning with vague and imprecise notions. A number of such semantics
that seek to justify particular choices of truth functional connectives have been introduced. Just two of
them are briefly described here.

Voting semantics is based on the idea that different agents (voters) may coherently judge the same
proposition differently. The proportion of agents that accept a proposition  as true may be seen as a truth
value. Without further restrictions this does not lead to a truth functional semantics, but rather to an
assignment of probabilities to propositions. But if one assigns a fixed level of skepticism to each agent and
imposes some natural conditions that keep the judgments on logically complex statements consistent with
those levels, then one can recover , , and  as truth functions for conjunction, disjunction and
negation, respectively. Details can be found in Lawry 1998.

Another intriguing model of reasoning that provides a justification for all propositional connectives of
standard Łukasiewicz logic has been introduced by Giles (1974). It consists in a game, where two players,
I and you, systematically reduce logically complex assertions (formulas) to simpler ones according to
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rules like the following:

If I assert , then I have to assert either  or .
If I assert , then you choose one of the conjuncts and I have to assert either  or ,
accordingly.
If I assert , then I have to assert  if you assert .

The rules for quantified statements refer to a fixed domain, assuming that there is a constant symbol for
each domain element one stipulates:

If I assert , then I have to assert , for a constant  chosen by you.
If I assert , then I have to assert , for a constant  chosen by myself.

The rules for your assertions are dual. At each state of the game an occurrence of a non-atomic formula in
either the multiset of current assertions by me or by you is chosen and gets replaced by subformulas, as
indicated by these rules, until only atomic assertions remain. A final game state is then evaluated
according to the following betting scheme.

For each atomic formula there is a corresponding experiment which may either fail or succeed, but may
show dispersion, i.e., it may yield different results when repeated. A fixed failure probability, called risk
value, is assigned to each experiment and thus to each atomic formula. The players have to pay 1 to the
other player for each of their atomic assertion where the associated experiments fails. For any game
starting with my assertion of  my expected overall loss of money if we both play rationally can be
shown to correspond inversely to the truth value of  evaluated in an interpretation of Łukasiewicz logic
that assigns the inverse of the risk values as truth values to atomic formulas. In particular, a formula is
valid in Łukasiewicz logic if and only if, for every risk value assignment, I have a strategy that guarantees
that my expected overall loss at the end of game is  or negative.

Fermüller & Metcalfe (2009) have pointed out a correspondence between optimal strategies in Giles’s
game and cut-free proofs in a hypersequent system for Łukasiewicz logic. The game has also been
extended by Fermüller & Roschger (2014) to characterize various types of (semi-)fuzzy quantifiers,
intended to model natural language expressions like “about half” or “almost all”.

Paris (2000) provides an overview over other semantics supporting various choices of truth functions; in
particular, re-randomizing semantics (Hisdal 1988), similarity semantics (e.g., Ruspini 1991),
acceptability semantics (Paris 1997), and approximation semantics (Paris 2000). Let us also mention the
resource-based semantics of Běhounek (2009). Moreover there are different forms of evaluation games
for various fuzzy logics, besides the one of Giles for Łukasiewicz logic outlined above. An overview over
those semantic games can be found in Fermüller 2015.

10. Fuzzy logic and vagueness
Modeling reasoning with vague predicates and propositions is often cited as the main motivation for
introducing fuzzy logics. There are many alternative theories of vagueness (see entry on vagueness), but
there is a general agreement that the susceptibility to the sorites paradox (see entry on sorites paradox) is
a main feature of vagueness. Consider the following version of the paradox:

(1)  is a huge number.
(2) If  is a huge number, then  is also huge.

φ ∨ ψ φ ψ
φ ∧ ψ φ ψ

φ → ψ ψ φ
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(∃x)φ(x) φ(c) c

$

φ
φ

0

10100
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At the face of it, it seems not be unreasonable to accept these two assumptions. By instantiating  with 
 in (2) and applying modus ponens with (1) as the other premise we conclude that  is

huge. By simply repeating this type of inference we arrive at the unreasonable statement

(3)  is a huge number.

Fuzzy logic suggests an analysis of the sorites paradox that respects the intuition that statement (2), while
arguably not totally true, is almost true.

There are various ways to model this form of reasoning in t-norm based fuzzy logics that dissolve the
paradox. For example, one may declare that any instance of modus ponens is sound if the degree of truth
of the conclusion is not lower than that of the strong conjunction of its premises.[5] As indicated, one
stipulates that every instance of (2) is true to degree , for some very small number . Even if we
declare (1) to be perfectly true, the statement that  is huge, too, might then be less than perfectly
true without sacrificing the soundness of instantiation and modus ponens. If, moreover, the degree of truth
of the conjunction of two not perfectly true (or not perfectly false) statements is less than that of each
conjunct, we may safely declare that statement (3) is perfectly false and nevertheless insist on the
soundness of each step in the indicated chain of inferences. Informally speaking, the paradox disappears
by assuming that repeatedly decreasing some perfectly huge number by a small amount leads to numbers
of which it is less and less true that they are huge too.

An alternative truth degree based solution to the sorites paradox has been proposed by Hájek & Novák
(2003). They introduce a new truth functional connective modeling the expression “it is almost true that”.
In this manner they formalize sorites-style reasoning within an axiomatic theory of an appropriate t-norm
based fuzzy logic.

Smith (2008; see also 2005) has argued that the so-called closeness principle captures the essence of
vagueness. It expresses that statements of the same form about indistinguishable objects should remain
close in respect of truth. It is a hallmark of many approaches to the paradox that employ fuzzy logic that
they are compatible with this principle.[6]
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