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Abstract: The effectiveness of control measures against the diffusion of the COVID-19 pandemic is
grounded on the assumption that people are prepared and disposed to cooperate. From a strategic
decision point of view, cooperation is the unreachable strategy of the Prisoner’s Dilemma game,
where the temptation to exploit the others and the fear of being betrayed by them drives the people’s
behavior, which eventually results in a fully defective outcome. In this work, we integrate a standard
epidemic model with the replicator equation of evolutionary games in order to study the interplay
between the infection spreading and the propensity of people to be cooperative under the pressure
of the epidemic. The developed model shows high performance in fitting real measurements of
infected, recovered and dead people during the whole period of COVID-19 epidemic spread, from
March 2020 to September 2021 in Italy. The estimated parameters related to cooperation result to be
significantly correlated with vaccination and screening data, thus validating the model. The stability
analysis of the multiple steady states present in the proposed model highlights the possibility to tune
fundamental control parameters to dramatically reduce the number of potential dead people with
respect to the non-controlled case.

Keywords: evolutionary games; epidemic containment; system identification; complex systems;
COVID-19

1. Introduction

The recent coronavirus pandemic enforced the application of control measures for
restraining the virus diffusion. The most successful measures for weakening and reducing
the infection aim at preventing people from getting infected or at least to get the disease in
a weak form, and consist, on the one hand, of the adoption of medical treatment protocols
and of vaccination, and, on the other hand, of avoiding behaviors which favour virus
spreading, such as social distancing, movement reduction, mask wearing, and so on [1].
The application of any control measures requires the organization of suitable information
campaigns aimed at inducing people to adopt correct behaviors against the pandemic.
To make these campaigns effective, people must behave cooperatively with respect to
the limitations and requirements imposed by the deputed institutions and governments.
Unfortunately, more often, when taking decisions under strong pressure, such as, for
example, in the initial phases of the pandemic, the requirement of strong efforts may
activate in the population selfish and conservative mechanisms, which often lead to the
temptation to exploit the cooperative behavior of the others and to the fear of being
betrayed by their incorrect conduct. An example of these mechanisms is represented by the
panic buying that arose at the beginning of the COVID-19 pandemic (see, for example, [2]).
Similarly, correct campaigns should be able to convince citizens that the costs of vaccination
are less than the rewards, resulting in the possibility to recover almost normal life styles
and well-being. Avoiding selfish mechanisms and promoting good ones requires fostering
altruistic and cooperative feelings.

Emerging of cooperation is recognized as challenging in many different fields [3,4], and
Evolutionary Game Theory (EGT) represents a natural mathematical framework to model
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this problem. Indeed, it provides a rigorous methodology for studying strategic interactions
among people evolving over time [5,6]. The evident drawbacks of selfish behavior are
highlighted in the defective Prisoner’s Dilemma game, in both the mean field formulation
[7,8], and for interconnected populations [9,10]. The influence of social networks on the
dynamics of cooperation in evolutionary games has been deeply investigated [11–15].

With specific reference to the people’s behavior in the management of an epidemic, an
extensive review of the literature on behavioral epidemiology is presented in [16], where the
possibility to include its effect in mathematical models is discussed from a methodological
point of view, pointing out that concrete models should account for many factors, thus
significantly increasing the number of parameters and equations. Models grounded on
game theory have been proposed for analysing and predicting vaccination behavior [17,18].
In [19], a suitable game is introduced to account for the reward of social distancing in
vulnerable and non-vulnerable agents, while [20] studies the optimal strategies of people
to contain the epidemic spreading by appropriately planning their movements to avoid
strongly infected places.

Moreover, the emergence of the COVID-19 epidemic fostered the development of
mathematical models for the integration of the standard [21] or adapted [22,23] SIR and
SIRS models with suitable control measures for contrasting the infection in different ways.
For example, in [24] the role of a network on disease spreading is analyzed, in [25] optimal
control measures are identified by assuming networked populations, while in [26] an
analysis of strategic behavior during the COVID-19 pandemic was developed from an
economic perspective. Additionally, in [27] the strong influence of collective behavioral
patterns of the population in epidemic spreading was highlighted by stochastic models.

In this paper, we propose the integration of a SIRS epidemic model with a replicator
equation, describing the evolution over time of cooperation in large populations. Despite
the above large literature taking reasonably into account the presence of a network and its
role in the disease spreading, in this paper we focus on the interplay between epidemio-
logical and social dynamics from a mean field point of view, since our main objective is to
find simple mechanisms regulating people’s behavior and cooperation during a pandemic
event in a large and complex nation like Italy. Similar approaches have been taken into
account in [28], and deeply studied in [29], where the relationship between control mea-
sures, vaccine hesitation, information retrieval, and policy making has been investigated to
enforce cooperative behavior aimed to reduce the virus’ spread.

A convincing motivation for developing models like the one proposed in this paper is
provided in [30], where the authors highlighted that the effects of shield immunity and
economic shutdowns are complementary, such that governments should pursue them
in tandem. In a more theoretical setting [31], the SIR model has been coupled with the
replicator equation of evolutionary games. Similarly to our study, people’s behavior is
influenced by the infection strength, and, in particular, by evaluating the infection rates of
cooperators and defectors, including the corresponding risks and costs. Since evaluating
the infection rates is a difficult task for people, the model proposed in this paper assumes
that cooperative/defective decisions are driven by easily retrievable information, such as
the number of dead or infected individuals. A similar reasoning for spontaneous adoption
of quarantine states has been done in [32].

Developing this new model may help to formalize and understand better the twofold
feedback mechanisms between epidemic spreading and people’s behavior from a theoreti-
cal point of view. On one hand, the infection rate is assumed to depend on the propensity
to cooperate by respecting the control and recovery measures taken by the governments.
In our case, it decreases when cooperation increases. On the other hand, the parameters
of the game payoff matrix depend on the strength of the epidemic at any time; thus, the
higher is the gravity of the epidemic, the higher is the propensity to cooperate, despite the
limitations and costs imposed by the government’s directives. Overall, the switches from
the Prisoner’s Dilemma game to the fully cooperative Harmony game and vice versa are
observed.
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The remaining of this paper is organized as follows. In the Material and Methods
section, the assumptions on which the mathematical model is grounded, together with its
theoretical properties, are reported, while the Results section presents the main findings of
the research. Finally, some concluding remarks are provided in the Conclusions section.

2. Materials and Methods

A population of M individuals, split into 6 classes, is considered:

• S: Susceptible individuals;
• U: Undetected infected individuals;
• I: Detected infected individuals (hospitalized or quarantined);
• R: Recovered individuals;
• D: Dead individuals,

where S +U + I + R + D = M. According to the literature on epidemic models [21], and to
significant recent results [25,33], we start from the following epidemic model of COVID-19:

Ṡ = −β
SU
M

+ αR

U̇ = β
SU
M
− γU − τU

İ = τU − ζ I −ωI
Ṙ = γU + ωI − αR
Ḋ = ζ I

, (1)

where β is the infection rate, α is the drop immunity rate, γ is the spontaneous healing rate,
τ is the detection rate, ω is the healing rate of detected infected persons, and ζ is the death
rate. According to [25], we assume that, for the COVID-19 case, some model parameters
and the reproduction number

R(t) = β

γ + τ
, (2)

are time varying. For the sake of simplicity, in the rest of the paper, we will refer to (1) as
Infection Model (IM).

2.1. How Epidemics Influence People’s Behavior

In an epidemic context, it is reasonable that individuals behave by choosing one of the
following two strategies: cooperating (C) or not (N). In our study, the first option consists
of respecting the restrictions imposed by the deputed institutions for constraining the
spread of the disease, while the second indicates people adopting habits not fully aligned
with the sanitary guidelines. We denote by x ∈ [0, 1] the share of cooperators, and by
z = 1− x the share of non cooperators.

In Game Theory, the decision mechanism is ruled by a payoff matrix, describing the
outcome of the interaction between couples of players randomly chosen in the population
[34]. In the investigated context, the payoff matrix has been chosen following [24]:

B =

[
1 S
T 0

]
, (3)

where, the first row contains the payoffs for cooperation (C) and the second one the reward
for defection/non-cooperation (N) for player 1. Similarly, the columns of the payoff matrix
are related to the choices of player 2. More specifically, T corresponds to the temptation
to defect and S is the “sucker’s payoff”, embodying the fear of being betrayed by others.
Player 1 earns 1 if both cooperate, T if he defects and the opponent cooperates, S if he
cooperates and the opponent defects, or 0 if both players defect.

It is useful to introduce the net payoffs for cooperation, σC = 1− T , and for defection,
σN = −S . Then, for σC < 0 (i.e. the temptation to defect is higher than the reward for
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mutual cooperation) and σN > 0 (i.e. the fear of being betrayed is significantly high),
the payoff matrix (3) embodies a Prisoner’s Dilemma game, where defection is dominant,
while for σC > 0 and σN < 0, the game switches to a Harmony game, and cooperation is
the dominant strategy [34].

In the epidemic context, the Prisoner’s dilemma game can be restated as follows: if
two individuals meet, and adopt good practices (i.e. social distancing, mask wearing,
getting vaccinated), then they both get a normalized reward equal to 1, corresponding
to the preservation of their own health. In contrast, if two individuals meet, and, for
instance, neither of them wear a mask, then there is a high probability that, if one is
infected, the second will get infected too. In this case, both players earn a payoff equal
to 0, i.e. their health has not been preserved. Now, suppose that one of them knows that
the other is respecting the containment measure; then (s)he will be tempted not to respect
the good practices. In this case, the “free rider” will earn T > 1, which corresponds to
her/his own safety (the other will not infect her/him, and hence her/his payoff is equal
to 1) plus, for instance, the feeling of freedom of staying without mask (payoff equal to
T − 1 = −σC > 0). On the other hand, the “good citizen” is not protected—the other can
be infected and can infect her/him too. Thus, s(he) will earn 0 minus the feeling of being
the only one respecting the sanitary guidelines (payoff equal to S = −σN < 0). When we
move to the Harmony scheme, the outcomes for the hybrid case (a cooperator meets a
defector) change, since T < 1 and S > 0.

Given a generic game, the dynamical evolution of the strategies within a well mixed
population can be described by the Replicator Equation (RE) [5,6,34], which reads as
follows: {

ẋ = x(πC − π)

ẏ = y(πN − π)
, (4)

where [
πC
πN

]
= B ·

[
x
z

]
=

[
x + Sz
T x

]
=

[
x− σNz
(1− σC)x

]
represent the average payoffs πC and πN collected by the share of cooperative and non-
cooperative individuals, respectively, while

π = xπC + zπN = x2 + (T + S)xz = x2 + (1− σC − σN)xz,

is the average payoff of the whole population. When πC is bigger than π, the time
derivative of x is positive, and hence x increases over time. At the same time, by the
definition of π it follows that if πC > π, then πN < π, and hence y decreases over time.
Symmetric arguments hold for the opposite situation (πC < π). Coherently with the payoff
matrix (3) and Equation (4), cooperation evolves towards full defection (x = 0 and z = 1)
for the Prisoner’s Dilemma case or towards full cooperation (x = 1 and z = 0) for the
Harmony game.

It is natural to assume that the ruling parameters T and S vary with respect to people’s
perception on the infection strength, reasonably measured by the state variables I and D
of the IM model (U is not observable, since it corresponds to the number of undetected
infected people). In this regard, we can assume that the payoff matrix (3) depends on I and
D, i.e. B = B(I, D), and that it changes from a Prisoner’s Dilemma game to a Harmony
one when the value of I + D exceeds a given activation threshold a:

σC(I, D) = σ0
CG(I, D) (5)

and
σN(I, D) = σ0

NG(I, D), (6)

where
G(I, D) =

I + D− a
M

(7)
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works as a “game-switching” term, σ0
C > 0, σ0

N < 0 and 0 < a < M.
The term G(I, D) embodies the concept of coevolutionary rules in the evolutionary

games framework, thus accounting at the same time for the evolution of strategies, and
other related variables, such as the pandemic status [13]. Additionally, the role of G(I, D)
in the proposed model recalls the findings reported in [15,35] on the ability of finite and
networked populations to self-regulate the behavior when a higher common good (in this
case, the public health) should be preserved, thanks to the awareness of individuals.

For I + D < a, B(I, D) represents a Prisoner’s Dilemma game, since σC(I, D) < 0 and
σN(I, D) > 0. That is, when the epidemic is enough low, defection is the “natural” choice,
since a perceived weakness of the disease does not justify the adoption of any containment
measure. This is coherent with the fact that some governments have been laxer than others
in imposing restrictions. In this sense, the threshold a corresponds to an important tuning
parameter for the policy-makers, as it can be reduced by means of effective informative
campaigns on the real risks of the current sanitary crisis, thus making I + D > a. In this
case, B(I, D) turns to a Harmony game since σC(I, D) > 0 and σN(I, D) < 0.

For the sake of simplicity, we observe that, by exploiting z = 1− x, and using equations
(5) and (6), we get:

πC − π = x− σN(I, D)z− (x2 + (1− σC(I, D)− σN(I, D))xz)
= x− (1− x)σN(I, D)− x2 − (1− σC(I, D)− σN(I, D))x(1− x)
= x− (1− x)σN(I, D)− x2 − x(1− x) + (σC(I, D) + σN(I, D))x(1− x)
= −(1− x)σN(I, D) + (σC(I, D) + σN(I, D))x(1− x)
= (1− x)((σC(I, D) + σN(I, D))x− σN(I, D))
= (1− x)((σ0

C + σ0
N)x− σ0

N)G(I, D).

Then, the RE (4) is reduced to a monodimensional ODE [34] which reads as:

ẋ = x(1− x)((σ0
C + σ0

N)x− σ0
N)G(I, D). (8)

2.2. How People Behavior Influences the Epidemic

As mentioned before, cooperation corresponds to the adoption of good practices,
aimed at reducing the disease spreading, such as, limitation of social interactions, wearing
masks, getting vaccinated, and so on. As a consequence, the infection rate β of IM varies
according to people’s behavior. More specifically, cooperation produces a reduction of the
infection rate, while defection leads to its increment. In this work, we assume that the
infection rate β linearly depends on the cooperation x as follows:

β(x) = β0(1− ex), (9)

where β0 is the natural infection rate of the disease, while e ∈ [0, 1] weights the influence
efficacy of the cooperation on the infection rate. Notice that β(x) ≥ 0 ∀x ∈ [0, 1]. In this
case, reproduction number is defined as follows:

R(x) =
β(x)
γ + τ

=
β0(1− ex)

γ + τ
= R0(1− ex), (10)

where
R0 =

β0

γ + τ
(11)

represents the basic reproduction number of the disease. Since x is a function of time,
then R(x) is time varying, and it reaches the maximum R0 for no cooperation (x = 0).
Moreover, its minimum is equal to

R = R0(1− e), (12)
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and it is attained in presence of maximum cooperation (x = 1), i.e. when countermeasures
against the disease are effective at the highest level.

2.3. The Infection Game Model

By coupling the standard IM (1) with the RE (8), we get the Infection Game Model (see
Figure 1), hereafter called IGM. The model is characterized by the extended state vector
y = [S, U, I, R, D, x]>, and it reads as:

Ṡ = −β(x)
SU
M

+ αR

U̇ = β(x)
SU
M
− γU − τU

İ = τU −ωI − ζ I
Ṙ = γU + ωI − αR
Ḋ = ζ I
ẋ = x(1− x)((σ0

C + σ0
N)x− σ0

N)G(I, D)

, (13)

where β(x) and G(I, D) are defined in Equations (9) and (7), respectively.

β(x) τ

γ

ζ

ωα

β(x)S U I

R

D

x G(I, D)

Figure 1. Schematic representation of the proposed Infection Game model. Two feedback mechanisms
are at work, coupling the infection model and the RE: (1) The number of known infected people I and
of deaths D influences the cooperation dynamics by changing the game through the term G(I, D);
(2) the cooperation x influences the infection rate β(x).

It can be easily proven that all the trajectories of system (13) are confined in the feasible
set

F = {y ∈ R6 : S ≥ 0, U ≥ 0, I ≥ 0, R ≥ 0, D ≥ 0, S + U + I + R + D ≤ M, x ∈ [0, 1]}

for all times t > 0, provided that the initial condition y(0) belongs to the same set (see [33]
for S, U, I, R and D, and [34] for x). Model (13) presents infinite equilibria in F , specifically:

y∗1(k1) = [M− k1, 0, 0, 0, k1, 0]> ∀k1 ∈ [0, M]
y∗2(k2) = [M− k2, 0, 0, 0, k2, 1]> ∀k2 ∈ [0, M]
y∗3(h) = [M− a, 0, 0, 0, a, h]> ∀h ∈ [0, 1].

It is worthwhile noticing that the introduction of a new equation into the epidemic
model does not alter the biological mechanisms on which it is grounded. Indeed, at steady
state, U∗, I∗ and R∗ are all null, and the lines y∗1 and y∗2 correspond to the one of model (1).
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The line y∗3 is introduced by the replicator equation (8), and, differently from y∗1 and y∗2 ,
where the D∗ component is equal to k1 or k2, and it depends on the initial conditions, it
provides the policy-makers with the exact information on the total amount of dead people
at the equilibrium since D∗ = a.

For investigating the dynamics of the proposed system, we linearize (13) nearby

each equilibrium and the eigenvalues of the corresponding Jacobian matrices
∂ẏ
∂y

are

evaluated [36]. For y∗1(k1), we have λ1 = λ2 = 0, λ3 = −(ω + ζ), λ4 = −α, λ5 = σ0
N

a− k1

M

and λ6 = (γ + τ)

(
M− k1

M− k′1
− 1
)

, where

k′1 = M
(

1− 1
R0

)
. (14)

For y∗2(k2), the eigenvalues are λ1 = λ2 = 0, λ3 = −(ω + ζ), λ4 = −α, λ5 = σ0
C

a− k2

M
and

λ6 = (γ + τ)

(
M− k2

M− k′2
− 1
)

, where

k′2 = M
(

1− 1
R

)
. (15)

Finally, the eigenvalues for y∗3(h) are λ1 = λ2 = λ3 = 0, λ4 = −(ω + ζ) λ5 = −α and

λ6 = (γ + τ)

(
1− eh
1− eh′

− 1
)

, where

h′ =
1
e

(
1− M
R0(M− a)

)
. (16)

Following the theory of dynamical systems [37], it is well known that the Jacobian
matrix of a n-dimensional linearized dynamical system, evaluated in a steady state y∗, has
nc eigenvalues with null real part, nu eigenvalues with positive real part and ns eigenvalues
with negative real part, where nc + nu + ns = n. The corresponding eigenvectors span the
center, Ec(y∗), unstable, Eu(y∗), and stable, Es(y∗), subspaces, respectively.

Since the Jacobian matrices of all equilibria of system (13) have at least two null
eigenvalues, the corresponding center subspaces are not empty. This means that no
steady state is hyperbolic for any values of the parameters. In this case, it is interesting
to investigate the conditions for which the unstable subspaces are empty. The following
propositions hold.

Proposition 1. Eu(y∗1(k1)) = ∅ if and only if a > k′1 and k1 ∈ (k′1, a).

Proof. Since λ1 = λ2 = 0, λ3 = −(ω + ζ) < 0 (ω > 0 and ζ > 0) and λ4 = −α < 0

(α > 0), then only λ5 and λ6 can change their signs. Since σ0
N < 0, then λ5 = σ0

N
a− k1

M
is negative if and only if k1 < a. Additionally, since both γ and τ are positive, then

λ6 = (γ + τ)

(
M− k1

M− k′1
− 1
)
< 0 if and only if k1 > k′1. Then Eu(y∗1(k1)) = ∅ if and only if

a > k′1 and k1 ∈ (k′1, a).

Remark 1. As a remark to Proposition 1, notice that k′1 < 0 for R0 < 1. Indeed, using Equa-
tion (14):

k′1 = M
(

1− 1
R0

)
=

M(R0 − 1)
R0

< 0.
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In this case, Eu(y∗1(k1)) = ∅ for k1 ∈ [0, a). Instead, for R0 > 1, we have that k′1 > 0, thus
Eu(y∗1(k1)) = ∅ for k1 ∈ (k′1, a).

Proposition 2. Eu(y∗2(k2)) = ∅ if and only if a > k′2 and k2 ∈ (a, M), or a < k′2 and k2 ∈
(k′2, M).

Proof. λ1 = λ2 = 0, λ3 = −(ω + ζ) < 0 (ω > 0 and ζ > 0) and λ4 = −α < 0 (α > 0).

Since σ0
C > 0, then λ5 = σ0

C
a− k2

M
is negative if and only if k2 > a. Moreover, since

γ > 0 and τ > 0, then λ6 = (γ + τ)

(
M− k2

M− k′2
− 1
)
< 0 if and only if k2 > k′2. Then,

Eu(y∗2(k2)) = ∅ if and only if a > k′2 and k2 ∈ (a, M), or a < k′2 and k2 ∈ (k′2, M).

Remark 2. It is worthwhile to notice that k′2 < k′1 for all e ∈ [0, 1]. Indeed, using Equations (14)
and (15):

k′2 − k′1 = M
(

1− 1
R

)
−M

(
1− 1
R0

)
= M

(
1− 1
R − 1 +

1− e
R

)
=

M
R (−1 + 1− e) = −Me

R < 0.

Additionally, k′2 < 0 forR0 <
1

1− e
, or equivalently, for e > 1− 1

R0
.

Proposition 3. Eu(y∗3(h)) = ∅ if and only if a > k′2 and h ∈ (h′, 1).

Proof. Since λ1 = λ2 = λ3 = 0, λ4 = −(ω + ζ) < 0 (ω > 0 and ζ > 0) and λ5 = −α < 0
(α > 0), then only λ6 can change its sign. In particular, since γ > 0 and τ > 0, then and

λ6 = (γ + τ)

(
1− eh
1− eh′

− 1
)

is negative if and only if h > h′. a > k′2 ensures that h′ < 1.

Indeed, from Equation (15), we have that
M
R0

= (1− e)(M− k′2). Hence:

h′ − 1 =
1
e

(
1− M
R0(M− a)

)
− 1

=
1
e

(
1− (1− e)(M− k′2)

M− a

)
− 1

=
1
e

(
M− a− (1− e)(M− k′2)− e(M− a)

M− a

)
=

1
e

(
(1− e)(M− a)− (1− e)(M− k′2)

M− a

)
=

1− e
e

k′2 − a
M− a

< 0.

Then, Eu(y∗3(h)) = ∅ if and only if a > k′2 and h ∈ (h′, 1).

Remark 3. a < k′1 guarantees that h′ > 0. Indeed, using Equation (14), we get
M
R0

= M− k′1,

and then:

h′ =
1
e

(
1− M
R0(M− a)

)
=

1
e

(
1−

M− k′1
M− a

)
=

1
e

k′1 − a
M− a

> 0.

Summing up, for a > k′1 then h′ < 0, and hence Eu(y∗3(h)) = ∅ for all the equilibria y∗3(h)
with h ∈ [0, 1].
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By analyzing the case whereR0 > 1 (i.e. the disease is sufficiently strong to diffuse
in the population), we observe that, in agreement to Propositions 1–3, the plane (e, a) is
subdivided into three regions: R1 (a > k′1), R2 (k′2 < a < k′1) and R3 (a < k′1, a > k′2). In
R1, y∗1(k1) with k1 ∈ [k′1, a], y∗2(k2) with k2 ∈ [a, M] and y∗3(h) with h ∈ [0, 1] are reachable
by different initial conditions. In R2, y∗2(k2) with k2 ∈ [k′2, M] are reachable. In R3, y∗2(k2)
with k2 ∈ [a, M] and y∗3(h) with h ∈ [h′, 1] are reachable. In Figure 2, the three regions are
depicted. The insets (a), (b) and (c) depict the dynamics of D for suitable combinations of
e and a chosen in R1, R2 and R3, respectively. The values of the parameters are reported
in the caption of Figure 2. Noticeably, the asymptotic numbers of dead people in the
three regions are significantly different. Specifically, in R3 this number is up to 3 orders
of magnitude lower than R1. R2 has an intermediate level. This fact confirms that the
proposed IGM model well embodies the underlying containment mechanisms based on the
interplay between cooperation, observation and epidemic strength. In particular, region R3
is characterized by low values of a (i.e. high sensitivity of people to the observation on the
epidemic status) and enough high values of e (i.e. high weight for the behavioral variable
x), thus making it the most desirable.

Figure 2. Graphical representation of the statements of Propositions 1–3. The insets display the
dynamics of D in each of the three regions. Inset (a): e = 0.2 and a = 1.4 · 107. Inset (b): e = 0.2 and
a = 103. Inset (c): e = 0.24 and a = 103. For all the simulations, the other parameters have been set
as follows: β0 = 0.35, γ = 0.07, τ = 0.2, ω = 0.04, ζ = 0.002, α = 3 · 10−4, σ0

C = 8 and σ0
N = −6,

M = 60 · 106, U(0) = 100 and x(0) = 0.7.

2.4. Available Data

In this work, we use data collected in Italy by Protezione Civile (the national Italian
agency dealing with the prediction, prevention and management of emergency events),
updated daily on GitHub [38]. In particular, the data used in this paper correspond to the
infected, recovered and dead people per each day in the period of observation from March
24, 2020 to September 14, 2021 (540 days). The initial amount of infected, recovered and
dead is taken equal to the initial value of the corresponding variable in the dataset. Since
only the sum of the initial conditions of susceptible and undetected infected is known,
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U(0) or S(0) will be estimated and the other one will be calculated by difference from the
condition S(0) + U(0) + I(0) + R(0) + D(0) = M.

2.5. Parameters Estimation

The proposed model is characterized by three different sets of parameters. The first
set (θ1) includes parameters that are constant for the model but are assumed unknown,
and hence they are estimated from data. The unknown initial condition of the effective
susceptible individuals S(0) is also estimated together with the initial condition of the
behavioral variable x(0). The second set (θ2) is composed by unknown estimated time-
varying parameters, allowing us to take into account the epidemic evolution over time
windows of size TW = 30 days. Since the dataset is composed of 540 days, there are in
total W = 18 time windows. The last set (θ3) consists of parameters fixed according to the
literature values, since these are related to specific biological properties of COVID-19.

The estimation problem is formalized as follows:

θ̂ = arg min
θ1,θ2

1
W · TW

W·TW−1

∑
j=0

∑
Ξ∈{I,R,D}

(
Ξ̂(j)− Ξ(j)

Ξ̂(j)

)2

, (17)

where Î, R̂ and D̂ represent the real measurements of infected, recovered and dead individ-
uals, respectively.

The estimation problem (17) has been solved for both IM and IGM. For IM, θ1 =

{S(0)}, θ2 = {β, α, ω, ζ} and θ3 = {γ, τ} =

{
1
14

, 0.166
}

, according to [25]. For IGM,

θ1 = {S(0), x(0), β0, σ0
C, σ0

N}, θ2 = {α, ω, ζ, e, a} and θ3 is the same as in IM. Notice that,
since the variable e and x are absent in the IM model, then Equation (9) reduces to:

β = β0, (18)

and β0 is assumed time varying in the estimation procedure (β = β0 ∈ θ2). The larger
number of parameters of IGM is due to presence of the game dynamics. Additionally,
for both IM and IGM, since S(0) + U(0) + I(0) + R(0) + D(0) = M, then we estimate
S(0), and then calculate U(0) = M − S(0)− I(0)− R(0)− D(0), where I(0), R(0) and
D(0) are set equal the first values of the dataset, and M ' 6.024× 107 indicates the Italian
population size.

Furthermore, the time varying parameters in θ2 are estimated for each time window,
i.e. we have θ2,1, θ2,2, . . . , θ2,W .
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Table 1. Values of the estimated parameters in the set θ1 and in the θ2, values of parameters in the set
θ3, ranges and initial conditions used for the estimation. Moreover, t.v. stands for “time varying”,
while n.a. means that the parameter is not estimated in the corresponding model.

Range Param. i.c. IM est. IGM est. Meaning and Definition

β0 [0.1, 0.7] 0.5 t.v. 0.33 Natural infection rate.
Ref. to Equations (9) and (18) for the

relationship between β0 and β
in IGM and IM, respectively.

σ0
C [0.01, 10] 4.22 n.a. 0.66 Net game payoff for cooperation.

Ref. to Equation (5) for σC in IGM.

σ0
N [−10,−0.01] −4.2 n.a. −0.65 Net game payoff for defection.

Ref. to Equation (6) for σD in IGM.

S(0) [0.98 ·M, M] 59× 106 6× 107 6× 107 Susceptibles initial condition.

x(0) [0.1, 0.9] 0.7 n.a. 0.65 Cooperation initial condition.

e [0.05, 0.95] 0.75 n.a. t.v. Weight of cooperation in β.

a [1, 106] 8.7× 104 n.a. t.v. Sensitivity to disease strength.

α [10−4, 0.28] 0.03 t.v. t.v. Reinfection rate.

ω [10−4, 0.14] 0.02 t.v. t.v. Recovery rate for detected.

ζ [10−4, 0.3] 0.01 t.v. t.v. Death rate.

γ 1/14 Recovery rate for undetected.

τ 0.166 Detection rate.

Suitable constraints for each parameter in θ1 and θ2 have been set to guarantee their
physical and/or mathematical meaning. The specific ranges of the parameters, the initial
conditions and the estimated values are reported in Table 1 in the Results section. The same
constraints are used in both IM and IGM.

The Matlab source code for the estimation and simulation of both IM and IGM
described in this work is available at https://github.com/dariomadeo/IGM (created on
December 20, 2021).

3. Results

In this Section, the results of the parameter estimation procedure are reported. Figure
3 shows the recorded data Î, R̂ and D̂ (yellow dots), and the simulations of the three state
variables I, R and D of IM (red lines) and IGM (blue lines) obtained using the estimated
parameters.

It can be seen that the fitting performances between simulations of both IM and IGM
model and real data, evaluated in terms of average percentage errors over times of the
three measured state variables, defined as:

err(Ξ) = 100 · 1
T

t0+T−1

∑
t=t0

∣∣∣∣ Ξ̂(t)− Ξ(t)
Ξ(t)

∣∣∣∣, (19)

where Ξ ∈ {I, R, D}, are satisfactory (see Table 2).

https://github.com/dariomadeo/IGM
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Figure 3. Time course of Î, R̂ and D̂ data (yellow dots), and of the corresponding numerical solutions
I, R and D, obtained with IM (red lines) and IGM (blue lines).

Table 2. Fitting results. Percentage errors between data and simulations, averaged over time for both
IM and IGM models (see Equation (19)).

IM IGM

err(I) 2.4 % 2.3 %
err(R) 7.0 % 7.1 %
err(D) 0.2 % 0.2 %

Figure 4 shows the dynamics of the undetected infected individuals U of IGM (blue
line, left ordinate scale), as well as the percentage of undetected infected individuals with
respect to the total infected population U + I (violet line, right ordinate scale) over the
whole time period. The percentage of undetected cases over the total is about 20% in
average, with a peak of 40%, indicating that the number of unrecorded cases is high, and
hence the adoption of more organized containment measures, such as screenings and
vaccination campaigns are still desirable to prevent future disease resurgences.
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Figure 4. IGM simulation of U (blue line, left ordinate axis) and its percentage with respect to the
total number of infected individuals U + I (violet line, right ordinate axis).

The fixed parameters estimated by solving the optimization problem (17) over W ·
Tw = 540 days of recordings of the variables I, R and D, are reported in Table 1, which
includes also the list of all the model parameters, constant, fixed, and time varying, and
their meaning. The evolution of α, ω, and ζ, is drawn in Figure 5, where the red lines
are related to IM, while the blue ones to IGM. Subplot (a) contains the dynamics of the
reinfection rate α. In subplot (b), the time course of the recovery rate ω is drawn. In subplot
(c), the dynamic of the death rate ζ is depicted, which decreases over time, thanks to the
improvement of the caregivers’ techniques and to the vaccination campaign. In all cases,
we observe a perfect agreement of the parameter values estimated for the two models.

Figure 5. Estimation results of the time-varying parameters α (subplot (a)), ω (subplot (b)) and ζ

(subplot (c)). The piecewise shape of the curves is due to the fact that these parameters are constant
over each time window of Tw = 30 days.

Furthermore, subplot (a) of Figure 6 shows the dynamics of the control parameter a
(blue line), compared with the term G(I, D) (violet line), which rules the game switching.
The fluctuations of a over time indicate that this parameter embodies the sensitivity of
people to the observation of the pandemic status. High values of a indicate that people are
less sensitive to the pandemic status, thus in order to be effectively cooperative they need
to know that the number of infected and dead people is very large. The opposite behavior
is observed for G(I, D), which embodies the two-sided game. Indeed, people play the
Prisoner’s Dilemma game when a is bigger than the pandemic strength, or a Harmony
game in the opposite case. In this sense, G(I, D) acts as an “information filter”, balancing
the effective information represented by I + D with people perception a of the pandemic.
In this regard, it would be interesting to further investigate the quality and effectiveness of
the information campaign performed by media and politics. Our results show that, people
played Prisoner’s dilemma from March to October 2020, then switched to Harmony game
from October 2020 to June 2021 (around day 450), and then again to PD. In this case, the
combined effect of spring and successful vaccination campaign reduced the infection entity
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and allowed people to relax the attention level. Finally, during fall 2021, the game was
slightly turning back to Harmony.

Figure 6. Subplot (a): time course of the estimated threshold parameter a (blue line, left ordinate axis)
and of the “game-switching term” G(I, D) (violet line, right ordinate axis). The dashed black lines
represents the 0 of the right coordinate axis. For values of G(I, D) bigger than 0, the population plays
a Harmony game, while for values lower that 0, a Prisoner’s Dilemma game is used. Subplot (b):
time curse of the estimated efficacy parameter e (blue line), the simulated cooperation x(t) (violet
line) and of the product the product ex (green line). Subplot (c): time course of β for the two models
(red line for IM, blue line for IGM).

Subplot (b) of Figure 6 depicts the time course of the control parameter e (blue line),
of the state variable x(t), corresponding to the average people cooperation (violet) and
the combined effect of e and x, which represents the overall efficacy of the containment
measures (green line). It is interesting noticing that the overall cooperation is in general
increasing from fall 2020 to the end of the observation. This fact embodies a natural
“learning process”, leading people to the adoption of good practices even though the
government impositions are almost steady. Moreover, recalling the theoretical results
depicted in Figure 2, one can see that all estimated values of parameter a fall below
k′1 = 16.6× 106, thus the worst case concerning a potential dramatic number of dead
people was avoided along the whole pandemic. For low values of a, the parameter e
is most effective in terms of epidemic containment (a deep discussion on this aspect is
reported below). Finally, subplot (c) displays the evolution of β for IM (red line) and IGM
(blue line). The two curves exhibit very similar time courses, meaning that, differently
form the usual SIRS models, such as the IM considered in this study, the proposed IGM
explains the pandemic trends through new mathematical terms, accounting for the people
ability to cooperate with the aim of reducing the infection.

Furthermore, the trend of β is coherent with the values of the time varying reproduc-
tion numberR(t), as drawn in Figure 7, where the evolution ofR(t), evaluated according
to different methods, is shown. The reproduction number calculated on real data (yellow
circles) according to the following formula [39]:

R(t) = 1 +
1

γ + τ

I(t)− I(t− 1)
I(t− 1)

,

where γ = 1
14 and τ = 0.166 are assumed constant, according to [25]. We notice that the

method implemented for calculatingR(t) is in agreement with the one that supported the
decisions of Italian Government along the whole COVID-19 pandemic [40].
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Figure 7. Evolution of the estimated time varying reproduction numberR(t), from real data (yellow
circles) and IGMR(t) (blue line). TheR0 andR for IGM are reported in violet and green, respectively.

The parametersR(t),R0 andR have been also evaluated using Equations (10)–(12),
and depicted in Figure 7 with blue, violet and green lines, respectively. According to the
theory of dynamical systems, we notice that the trend of R(t), evaluated on the basis
of the estimated parameters of the IGM, anticipates theR(t) calculated using data, thus
confirming the good performances of the proposed model. The violet area represents
the distance between the current situation (blue line) and the worst case (violet line),
i.e. R(t) = R0, corresponding to the equilibrium state x = 0. Similarly, the green area
corresponds to the distance between the current situation and the best case (green line),
i.e. R(t) = R, corresponding to the equilibrium state x = 1. Moreover, in order R to be
minimum, the parameter e should be as large as possible. Then, at each time window, the
best containment of the epidemic spread corresponds to have the blue curve coinciding to
the green one, both lower than 1.

Upon these theoretical considerations, jointly with the very good performances of
the proposed model, we can use parameter e to evaluate how successful have been the
containment measures. To this aim, Figure 8 depicts the percentage variation over two
consecutive months between the maximum values of infected (yellow) and dead (violet)
individuals (y-axis), obtained with the value of e (x-axis) set during the first month, as
indicated by the label. A visual inspection of the Figure reveals that the best results have
been achieved for e sufficiently high (see also Figure 2 as reference), such as during the
second lockdown (month 9, November and December 2021). Moreover, at the end of the
first lockdown (month 2, May and June 2020) the value of e was very high, coherently to
the heavy efforts asked to people in that period. On the other hand, we highlight the fact
that the second, third and fourth waves, representing the periods in which the infection
reached the highest peaks in both absolute and relative terms, resulted from the use of low
values of the parameter e. These results are highlighted by circles in Figure 8, where, for
example, the periods indicated by labels 2 and 9 clearly belong to region R3 of Figure (2).



Games 2022, 1, 0 16 of 20

Figure 8. Percentage variation between two successive months of the maximum values of infected
(yellow) and dead (violet) individuals versus e(t). The labels indicate the reference months with
respect to which the percentage variation is calculated, for example, 1 refers to the percentage
variation between March and April 2020 and 17 to the percentage variation between August and
September 2021. Regarding the variable D, since the model considers the total amount of dead people
in each time instant, we have differentiated the variable in order to have the effective daily number
of deaths. The clusters highlight crucial situations in the overall period of the pandemic indicated in
the corresponding text.

The impact of the control parameter e on the pandemic has been inspected in two
different periods. The first period starts on day 210 (beginning of the second wave), and
the parameter e is assumed varying in the next time window between 0.1 and 0.6, around
the estimated value e = 0.29. Subplots (a) and (b) of Figure 9 display the resulting infected
and dead individuals, respectively. The second period starts on day 510, where in the
next two time windows, the parameter e varies in the range [0.3, 0.6], which includes the
value e = 0.34 estimated in the first window (from day 510 to day 539). Subplots (c) and
(d) of Figure 9 show the simulated infected and dead individuals, respectively. In each
subplot, yellow dots indicate real data, the red curve is the simulation of the IGM using
the estimated parameters, and the light blue area represents the range of variations of
the dynamics for different values of e. It is clear that reducing the value of e produces an
increase of both infected and dead individuals. On the other hand, when e is fostered,
positive effects on the pandemic status are observed. Overall, this analysis suggests that,
even though a strong increase of the parameter e can heavily drop the current pandemic
status, its values should be chosen in a wise way, in order not to stress too much the
population. Indeed, very good results are achievable even by setting e to value significantly
lower than its maximum, i.e. e < 1.
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Figure 9. Two different scenarios obtained by varying the control parameter e at the beginning of the
second wave (subplots (a,b)), reporting infected and dead people, respectively) and at the beginning
of the fourth (subplots (c,d)), depicting infected and dead people, respectively). Yellow dots indicate
real data, red curve is the simulation of the IGM using the estimated parameters, and the light blue
area corresponds to the range of variations of the dynamics for different values of e.

In order to deeply investigate the meaningfulness of the developed model, we recall
that the time varying parameters common to IM and IGM, i.e. α, ω, ζ and β, have similar
shapes (see Figures 5 and 6). As a consequence, it is interesting to assess the significance of
the specific IGM state variables and parameters, such as x, e and a. To this aim, we report
the correlation analysis between these parameters and additional data, available in [38,41],
not used for the modeling and identification phases. In particular, we have chosen data
related to people’s decisions on vaccination and testing. Figure 10 reports the scatter plots
of the number of daily swabs (subplots (a–g)), first vaccine (subplots (h–n)) and second
vaccine (subplots (o–u)) administrations (y-axis) versus α, ω, ζ, β, x, e and a (x-axis).

Figure 10. Scatter plots of the number of daily swabs (subplots (a–g)), 1st vaccine (subplots (h–n))
and 2nd vaccine (subplots (o–u)) dose administrations (y-axis) versus α, ω, ζ, β, x, e and a (x-axis).
The colors indicate the time flow (blue for the first days, yellow for the last). The corresponding
regression lines are reported (dashed black), as well as the correlation coefficients ρ. Most significant
correlations (|ρ| > 0.5) are highlighted in red.
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In the first four columns, the time varying parameters α, ω, ζ and β are considered. A
correlation of −0.51 between the drop infection rate α and the second vaccine administra-
tion (subplot (o)), and a correlation of 0.5 between the recovery rate ω and the first vaccine
administration (subplot (i)) are found. The death rate ζ has a negative correlation of −0.73
with the second vaccine administration (subplot (q)), coherently with the fact that vaccine
reduces dramatically the mortality. Finally, the infection rate β exhibits, as expected, a
negative correlation of −0.61 with the first vaccine administration (subplot (k)).

The peculiar structure of the β in the IGM (see Equation (9)) allows one to take into
account the social dynamics as additional detail, and hence it can be used to better un-
derstand the dynamics of vaccination and testing, as well as to plan more appropriate
countermeasures. x exhibits high correlations with swabs (subplot (e), ρ = 0.62), 1st vaccine
(subplot (l), ρ = 0.75) and 2nd vaccine (subplot (s), ρ = 0.61). Indeed, a strong cooperation
implies a diffuse willingness of people to check and protect their own health. Furthermore,
significant positive correlations are found between the parameter e and 1st vaccine admin-
istration (subplot (m), ρ = 0.53), and between a and 2nd vaccine administration (subplot
(u), ρ = 0.63). In the fist case, the diffusion of cooperative behavior stimulated an increase
of the 1st vaccination in the population. The last case implies that an increased tolerance to
the epidemic status may produce a higher propensity to vaccination. These results confirm
that the extended IGM is able to shade light on additional aspects related to the social
dynamics during the pandemic.

4. Conclusions

This paper presents an extended model, called IGM, which integrates a standard
epidemic system and evolutionary games, used to describe the propensity of people and
institutions to be cooperative, thus adopting the measures taken to control the epidemic.
The resulting model assumes that the infection rate decreases when the cooperation rises,
by means of a control parameter e, while the propensity to cooperate is favoured by strong
infection levels, ruled by the threshold parameter a, which embodies the awareness of
people concerning the gravity of the current sanitary crisis.

A stability analysis of the IGM equilibria was carried out, highlighting the possibility
to tune the parameters e and a in order to drive the system dynamics towards regions
where the number of potential dead people is dramatically reduced with respect to the
non-controlled case. An identification procedure, consisting of the minimization of the
relative square difference between real measurements and model simulations to estimate
system parameters, has been applied. The results indicate high fitting performances of
the developed model. Furthermore, the model, which assumes the presence of a twofold
feedback between the infection strength and the propensity of people to comply with the
containment measures, turns out to be effective in producing the observed alternating
periods of rising and damping of COVID-19 epidemic in Italy. The satisfactory results
are also confirmed by the strong correlations found between the behavioral variable x,
indicating the cooperation level, and swabs, first and second vaccine administrations.

Overall, thanks to its theoretical properties and to its good performance in terms of
fitting, the proposed model aspires to be considered as a reference framework to account
simultaneously for the biological aspects of an epidemic and for the social and decision
issues related to its containment. Future works will concern the extension of the present
model to include the vaccine dynamics, making it even more effective to be adopted by
the policy-makers. As a further development, the authors are investigating the impact of
“imperfect information” on the described process. Indeed, it is well known that some of
the infectious individuals are pauci- or even a-symptomatic. The information provided
on the status of the pandemics can be also incorrect due to the difficulties inherent in data
collection, or due to the diffusion of fake news. As a natural consequence, it would be
interesting to analyze the system behavior by considering only the fraction of (supposedly)
known infectious individuals.



Games 2022, 1, 0 19 of 20

Author Contributions: Conceptualization, Methodology, and Writing, Dario Madeo and Chiara
Mocenni; Data curation and Software, Dario Madeo; Investigation and Supervision, Chiara Mocenni.

Funding: This research was funded by Science without Borders Program of CNPq/Brazil, grant
number 313773/2013–0 and by Programs FESR 2014–2020 of Regione Toscana, Projects IMPRESA
R&S 4.0, and PRODEST.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used for this study are openly available in GitHub, reference
numbers [38,41].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Funk, S.; Salathé, M.; Jansen, V.A.A. Modelling the influence of human behaviour on the spread of infectious diseases: A review.

J. R. Soc. Interface 2010, 7, 1247–1256.
2. Stiff, C. The game theory of panic-buying—And how to reduce it. Conversation 2020, 134107.
3. Pennisi, E. On the origin of cooperation. Science 2009, 325, 1196–1199.
4. Hofmann, L.M.; Chakraborty, N.; Sycara, K. The evolution of cooperation in self-interested agent societies: A critical study. In

Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan, 2–6 May 2011;
Volume 2, pp. 685–692.

5. Hofbauer, J.; Sigmund, K. Evolutionary game dynamics, Bull. Am. Math. Soc. 2003, 40, 479–519.
6. Nowak, M.A.; Sigmund, K. Evolutionary dynamics of biological games. Science 2004, 303, 793–799.
7. Killingback, T.; Doebeli, M. The continuous prisoner’s dilemma and the evolution of cooperation through reciprocal altruism

with variable investment. Am. Nat. 2002, 160, 421–438.
8. Boyd, R.; Gintis, H.; Bowles, S. Coordinated punishment of defectors sustains cooperation and can proliferate when rare. Science

2010, 328, 617–620.
9. Ohtsuki, H.; Nowak, M.A. The Replicator Equation on Graphs. J. Theor. Biol. 2006, 243, 86–96.
10. Allen, B.; Lippner, G.; Chen, Y.T.; Fotouhi, B.; Momeni, N.; Yau, S.T.; Nowak, M.A. Evolutionary dynamics on any population

structure. Nature 2017, 544, 227–230.
11. Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M.A. A simple rule for the evolution of cooperation on graphs and social

networks. Nature 2006, 441, 502–505.
12. Li, A.; Zhou, L.; Su, Q.; Cornelius, S.P.; Liu, Y.Y.; Wang L.; Levin S.A. Evolution of cooperation on temporal networks. Nat.

Commun. 2020, 8, 1–9.
13. Perc, M.; Szolnoki, A. Coevolutionary games—A mini review. BioSystems 2010, 2, 109–125.
14. Wang Z.; Wang L.; Szolnoki A.; Perc M. Evolutionary games on multilayer networks: A colloquium. Eur. Phys. J. B 2015 5, 1–5.
15. Madeo, D.; Mocenni, C. Self-regulation versus social influence for promoting cooperation on networks. Sci. Rep. 2020, 10, 4830.
16. Manfredi, P.; D’Onofrio, A. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases; Springer: New York,

NY, USA, 2013.
17. Bauch, C.T. Imitation dynamics predict vaccinating behavior. Proc. R. Soc. B-Biol. Sci. 2005, 272, 1669–1675.
18. Kabir, K.M.A.; Tanimoto, J. Evolutionary vaccination game approach in metapopulation migration model with information

spreading on different graphs. Chaos Solitons Fractals 2019, 120, 41–55.
19. Kordonis, I.; Lagos, A.R.; Papavassilopoulos, G.P. Nash Social Distancing Games with Equity Constraints: How Inequality

Aversion Affects the Spread of Epidemics. arXiv 2020, arXiv:2009.00146.
20. Biswas, S.; Mandal, A.K. Parallel Minority Game and its application in movement optimization during an epidemic. Physica A

2020, 561, 125271.
21. Hethcote, H.W. The Mathematics of Infectious Diseses. SIAM Rev. 2000, 42, 599–653.
22. Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A. Spread and dynamics of the COVID-19

epidemic in Italy: Effects of emergency containment measures. Proc. Natl. Acad. Sci. USA 2020, 117, 10484–10491.
23. Calafiore, G.C.; Novara, C.; Possieri, C. A Modified SIR Model for the COVID-19 Contagion in Italy. In Proceedings of the 59th

IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 14–18 December 2020; pp. 3889–3894.
24. Santos, F.C.; Rodrigues, J.F.; Pacheco, J.M. Epidemic spreading and cooperation dynamics on homogeneous small-world networks.

Phys. Rev. E 2005, 72, 056128.
25. Della Rossa, F.; Salzano, D.; Di Meglio, A.; De Lellis, F.; Coraggio, M.; Calabrese, C.; Guarino, A.; Cardona-Rivera, R.; De Lellis, P.;

Liuzza, D.; Lo Iudice, F.; Russo, G.; Di Bernardo, M. A network model of Italy shows that intermittent regional strategies can
alleviate the COVID-19 epidemic. Nat. Commun. 2020, 11, 5106.

26. McAdams, D. Nash SIR: An economic-epidemiological model of strategic behavior during a viral epidemic. COVID Econ. 2020,
forthcoming.



Games 2022, 1, 0 20 of 20

27. Ye, M.; Zino, L.; Rizzo, A.; Cao, M. Game-theoretic modeling of collective decision making during epidemics. Phys. Rev. E 2021,
104, 024314.

28. Madeo, D; Mocenni, C. Evolutionary Game Theoretic Insights on the SIRS Model of the COVID-19 Pandemic. In Proceedings of
the 6th IFAC Conference on Analysis and Control of Chaotic Systems CHAOS, Catania, Italy, 27–29 September 2021.

29. Capraro, V.; Boggio, P.; Böhm, R.; Perc, M.; Hallgeir, S. Cooperation and Acting for the Greater Good During the COVID-19
Pandemic. PsyArXiv 2021. https://doi.org/10.31234/osf.io/65xmg.

30. Kabir, K.M.A.; Tanimoto, J. Evolutionary game theory modeling to represent the behavioral dynamics of economic shutdowns
and shield immunity in the COVID-19 pandemic. R. Soc. Open Sci. 2020, 7, 201095.

31. Poletti, P.; Caprile, B.; Ajelli, M.; Pugliese, A.; Merler, S. Spontaneous behavioral changes in response to epidemics. J. Theor. Biol.
2009, 260, 31–40.

32. Amaral, M.A.; de Oliveira, M.M.; Javarone, M.A. An epidemiological model with voluntary quarantine strategies governed by
evolutionary game dynamics. Chaos Solitons Fractals 2021, 143, 110616.

33. Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic
and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 855–860.

34. Weibull, J. Evolutionary Game Theory; MIT Press: Cambridge, MA, USA, 1995.
35. Madeo, D.; Mocenni, C. Consensus towards Partially Cooperative Strategies in Self-Regulated Evolutionary Games on Networks.

Games 2021, 12, 60.
36. Strogatz, S.H. Nonlinear Dynamics and Chaos; CRC Press: Boca Raton, FL, USA, 2018.
37. Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer: New York, NY,

USA, 1991.
38. Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile—GitHub. Available online: https://github.com/

pcm-dpc/COVID-19 (accessed on October 15, 2021).
39. Arroyo-Marioli F.; Bullano F.; Kucinskas S.; Rondón-Moreno C. Tracking R of COVID-19: A new real-time estimation using the

Kalman filter. PLoS ONE 2021, 16, e0244474.
40. Bonifazi G.; Lista, L.; Menasce, D.; Mezzetto, M.; Pedrini, D.; Spighi, R.; Zoccoli, A. A simplified estimate of the effective

reproduction number Rt using its relation with the doubling time and application to Italian COVID-19 data. Eur. Phys. J. Plus
2021, 136, 1–14.

41. Open Source Code and Developers Community of the Italian Government—GitHub. Available online: https://github.com/
italia/covid19-opendata-vaccini (accessed on October 15, 2021).

https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19
https://github.com/italia/covid19-opendata-vaccini
https://github.com/italia/covid19-opendata-vaccini

	Introduction
	Materials and Methods
	How Epidemics Influence People's Behavior
	How People Behavior Influences the Epidemic
	The Infection Game Model
	Available Data
	Parameters Estimation

	Results
	Conclusions
	References

